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Abstract Heat shock proteins (HSPs) mediate a diverse range

of cellular functions, prominently including folding and regu-

latory processes of cellular repair. A major property of these

remarkable proteins, dependent on intracellular or extracellu-

lar location, is their capacity for immunoregulation that opti-

mizes immune activity while avoiding hyperactivated inflam-

mation. In this review, recent investigations are described,

which examine roles of HSPs in protection of kidney tissue

from various traumatic influences and demonstrate their po-

tential for clinical management of nephritic disease. The

HSP70 class is particularly attractive in this respect due to

its multiple protective effects. The review also summarizes

current understanding of HSP bioactivity in the pathophysiol-

ogy of various kidney diseases, including acute kidney injury,

diabetic nephropathy, chronic glomerulonephritis, and lupus

nephritis—along with other promising strategies for their re-

mediation, such as DNA vaccination.
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Introduction

In 1999, Kitamura et al. formulated a new concept of kidney

self-defense, which was based on a well-known phenomenon

of enhancement of local tissue defense in response to

environmental stresses. The authors hypothesized that after

initiation of an inflammatory process, the kidney tissue may

acquire a potential for protecting itself from further activation

and injury. BThermotolerance^ is one example of such a tissue

defense. In various tissues and cultured cells, the exposure to

thermal stress induces activity of a number of stress proteins,

so-called heat shock proteins (HSPs), thereby affording toler-

ance against subsequent insults. The activity of HSPs

(сhaperones) is one of the most effective kidney protection

mechanisms.

The HSPs or stress proteins are highly conserved mole-

cules that play a range of functions, including cytoprotection,

intracellular assembly, protein folding, and translocation of

oligomeric proteins (Hightower 1991). HSPs can play an im-

portant role in the intra- or extracellular defense of the kidney

tissue. In addition to being constitutively expressed (up to 5–

10% of the total protein content under normal growth condi-

tions), the synthesis of these proteins can be induced (up to

15% of the total cellular protein content) by a range of cellular

insults (Welch 1993). The constitutively expressed intracellu-

lar HSPs control maturation and turnover of intracellular pro-

teins and play significant role in the maintenance of cellular

integrity. Intracellularly, HSPs facilitate the formation of the

secondary and tertiary structure of other proteins and also

participate in the processes of repair or removal of damaged

denatured protein molecules or their toxic aggregates. The

inducible HSPs are synthesized in response to environmental

perturbations, such as inflammation, ischemia, and oxidative

stress, as defending molecules that protect tissues from further

injuries (Lindquist and Craig 1998; Pockley 2003). They

mainly act as intracellular chaperones, protecting protein

structure and folding under stress condition. HSPs are also

able to assist with numerous reparative processes including

the refolding of denatured proteins and removal of irreparably

damaged proteins (Kampinga and Craig 2010). Under certain
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circumstances, these proteins can be released from cells into

the extracellular space, where they exhibit a range of immu-

noregulatory activities.

HSF1 is a transcription factor, which plays a critical regu-

latory role in HSP expression with the promoter element for

the HSP genes described by Voellmy (1994). HSF1 exists in

the cellular cytoplasm as a latent monomer molecule.

Cytotoxic influences increase the intracellular levels of newly

synthesized protein precursors, which have not been properly

folded into physiologically functional conformations. Such

Bunfolded^ molecules stimulate HSF1 phosphorylation by

mitogen-activated protein kinase with the formation of three-

dimensional HSF1 structure (Kim et al. 1997). This trimer

translocates to the nucleus, binds to DNA of HSP gene pro-

moter, and enables the transcription of the corresponding pro-

tein (Pockley 2003). HSPs are subdivided into families ac-

cording to their molecular weight in kilodaltons (kDa).

There are small HSPs (16–40 kDa) belonging to HSP40,

HSP60, HSP70, and HSP90 families. Many HSPs are

expressed in normal kidney tissue, and their expression is

changed after an injury (Beck et al. 2000) (Table 1 and Fig. 1).

Small (low molecular weight) HSPs

Small HSPs are a group of proteins highly heterogeneous in

molecular weight, which ranges from 16 to 40 kDa. The low

molecular weight HSPs play a role in the polymerization/

depolymerization of actin (Lavoie et al. 1993). HSPs inhibit

the aggregation of proteins by interaction with hydrophobic

regions of the proteins involved in the formation of globular

structure (Lee et al. 1997). Among the low molecular weight

proteins, HSP25/27 plays an important role in the protection

of renal tissue from damage (HSP27 in humans and rats and

HSP25 in mice). HSP27 exists in the cell in the form of large

oligomers functioning as chaperones, and smaller oligomers

combined with actin microfilaments (actin-associated protein)

stabilizing actin fibers in the cells under stress especially under

the influence of reactive oxygen species and TNF-α (Huot

et al. 1996; Mehlen et al. 1997; Preville et al. 1998). At the

same time, the most potent protective activity is provided by

non-phosphorylated HSP27 oligomers, after phosphorylation

by p38 MAP kinase losing their ability to bind to the actin

microfilaments and promoting remodeling of the actin net-

work in the cell.

HSP27 in normal kidney tissue

The low molecular weight HSPs can perform various protec-

tive functions in all regions of the kidney. The normal human

kidney shows a significant staining for HSP27 in the endothe-

lium, strong apical staining of proximal tubules, and the med-

ullary papillae of the terminal collecting ducts or the ducts of

Bellini (O’Neill et al. 2013).

In cells of the medulla, which express HSPs at high levels,

the protection by these molecules functions primarily to inhib-

it osmotic damage via effects of hypertonic medium

(Neuhofer et al. 1998). High expression of HSP27 in

intrarenal arterial vessels suggests the involvement of

HSP27 in a vascular contraction–dilatation cycle (Muller

et al. 1996). Intense staining of HSP25/27 in the brush border

of proximal tubules may reflect the effect of this protein on the

remodeling of actin filaments in the cellular domain (Schober

et al. 1998).

HSP27 in acute kidney injury

HSP25 is a part of generalized stress response in renal proxi-

mal tubular cells, which may play a role in recovery from

ischemia-induced actin filament disruption (Smoyer et al.

2000). After the acute ischemic kidney damage, an increased

HSP27 expression is observed in the kidney tissues peaked at

6 h post-reperfusion in rats (Guo Q et al. 2014). In addition,

the chaperon function HSP27 causes autophagy and inhibits

apoptosis that is shown in vitro and in renal tubular cells in

ischemia/reperfusion acute kidney injury (AKI) model

(Matsumoto et al. 2015). HSP27 can inhibit apoptosis by de-

creasing intracellular reactive oxygen species and the mito-

chondrial caspase-dependent apoptotic pathway (Tian et al.

2016). Kim et al. (2010) have shown selective renal overex-

pression of HSP27 in mice through intrarenal lentiviral gene

delivery that provides renal protection against the ischemic

renal injury. Selective expression of HSP27 improves the re-

nal function and reduces necrosis, inflammation, apoptosis,

and preservation of the F-actin cytoskeleton after ischemia

reperfusion injury.

Vidyasagar et al. hypothesized that HSP27 plays an active

and protective role during renal fibrogenesis in rat and human

obstructive nephropathy. They indicated that overexpression

of HSP27 in tubular epithelial cells preserved E-cadherin pro-

tein levels during an epithelial–mesenchymal transition.

Expression of HSP27 was associated with reduced oxidative

stress and fibrogenesis in transgenic kidneys due to decrease

of activated (phosphorylated) p38 MAPK, collagen III, α-

smooth muscle actin (α-SMA), and lipid peroxidation

(Vidyasagar et al. 2013).

HSP27 accumulation in the cytoplasm of proximal tubule

cells in toxic tubular injury in rats contributed to cell survival

and regeneration (Fujigaki et al. 2010). According to Djamali

et al. (2005), immunohistochemical analysis revealed a Bshift^

in HSP27 from the medulla to the cortex in allografts with

chronic allograft nephropathy (CAN). Lower medullary

HSP27 in CAN could result from a relative redistribution of

blood flow toward the medulla, with attenuation of local

hypoxia.

In a more recent work (O’Neill et al. 2013), an increased

expression of HSP27 was observed in the tubular cells of the
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distal convoluted tubules in acute cellular rejection,

cyclophilin nephrotoxicity, and less frequently, in CAN. The

cases of cyclophilin nephrotoxicity and type II acute cellular

rejection did show evidence of HSP 27 and 70 within the

parietal epithelium of Bowman’s capsule.

HSP27 in podocytes

Increased intracellular HSP27 inhibits actin polymerization

and aggregation, stabilizes actin cytoskeleton of the cells,

and increases resistance to damage. Therefore, HSP27 has

emerged as a dynamic protein with diverse roles in the regu-

lation of actin cytoskeletal remodeling, apoptosis, oxidative

stress, and renal fibrogenesis. Localization of HSP27 within

the glomeruli revealed that it was almost completely restricted

to podocytes, which have a well-developed actin microfila-

ment system. The structure of the pedicels of podocytes is

an integral part of the kidney filtration barrier, which depends

directly on the actin microfilaments condition and their

polymerization processes and is regulated by HSP27.

Smoyer et al. (1996, 2002) have demonstrated a significant

expression of HSP27 in podocytes within the glomerular cap-

illary loops of normal rats. Induction of experimental nephrotic

syndrome resulted in both increased expression and enhanced

phosphorylation of glomerular HSP27. Phosphorylation of

HSP27 in podocytes leads to aggregation and redistribution

Table 1 HSP expression in

various kidney diseases HSPs Type of cells with intracellular

HSP expression

Renal diseases associated

with HSP overexpression

References

HSP27 Actin network of the podocytes,

tubular cells, and endothelial

cells

Acute kidney injury (AKI):

ischemic and toxic

Matsumoto et al. (2015)

Diabetic nephropathy Sanchez-Nino et al. (2012)

Lupus nephritis Tsagalis et al. (2006)

Obstructive nephropathy Vidyasagar et al. (2013)

HSP 70 Mesangial cells, tubular cells,

macrophages

AKI Guo et al. (2014)

Diabetic nephropathy Barutta et al. (2008)

Chronic glomerulonephritis Venkataseshan and

Marquet (1996)

Lupus nephritis Tsagalis et al. (2006)

Tubulo-interstitial nephritis Venkataseshan and

Marquet (1996)

HSP 60 Podocytes, tubular cells of outer

medulla, macrophages

AKI Hernandez-Pando et al.

(1995)

Diabetic nephropathy Barutta et al. (2008)

Transplant rejection O’Neill et al. (2013)

HSP 47 Fibroblasts, myofibroblasts in

the zones, glomerulosclerosis,

interstitial fibrosis

AKI Hegazy et al. (2016)

Diabetic nephropathy Ohashi et al. (2004)

IgA nephropathy Razzaque et al. (1998)

Cyclosporine nephrotoxity Abe et al. (2000)

Obstructive nephropathy Moriyama et al. (1998)

Transplant rejection Abe et al. (2000)

HSP 90 Podocytes, pariethal epithelial

cells, proximal tubular cells,

endothelium, mesangial cells

AKI: ischemic and toxic Morita et al. (1995)

Ohtani et al. (1995)

Crescentic nephritis Komatsuda et al. (1996)

Glomerulonephritis Pieper et al. (2000)

HSP 32 Podocytes, endothelium, tubular

cells, mesangial cells,

macrophages

AKI Shimizu et al. (2000)

Diabetic nephropathy Pagnin et al. (2016)

Obstructive nephropathy Chen et al. (2016)

Chronic glomerulonephritis Datta et al. (1999)

Lupus nephritis Takeda et al. (2004)

Transplant rejection Agarwal et al. (1996)

O’Neill et al. (2013)
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of the actin filaments, the cytoskeleton destruction, the loss of

normal structure of the filtration barrier, and the development

of proteinuria. So, the loss of pedicels of podocytes in puro-

mycin aminonucleoside nephrosis (PAN) is closely linked to

hyperphosphorylation of HSP27. Thus, HSP27 may regulate

actin polymerization in the foot processes of podocytes, and

thus have an important role both in the maintenance of normal

foot process structure and during development of the nephrotic

syndrome. An increased glomerular HSP27 expression was

observed using immunohistochemistry measurements in ne-

phropathy associatedwith proteinuria and nephrotic syndrome,

such as human diabetic nephropathy (DN), focal segmental

glomerulosclerosis (FSGS), and hypertonic nephropathy

(Sanchez-Nino et al. 2012). The phosphorylated form of

HSP27 was enhanced in the glomerular podocytes of diabetic

animals and in vitro exposure of podocytes to stretch-induced

HSP27 phosphorylation via a p38-MAPK-dependent mecha-

nism (Barutta et al. 2008). Furthermore, HSP27 upregulation

in the presence of diabetic nephropathy protected human

podocytes from a stress induced by high glucose and angioten-

sin II (Sanchez-Nino et al. 2012).

Tsagalis et al. (2006) demonstrated an important role of

HSP 27 in cellular defense in lupus nephritis. The increased

expression of HSP27 was noted primarily in residential (glo-

merular and proximal and distal tubular) cells, and not in the

inflammatory kidney tissue cells, suggesting activation of pro-

tective intrarenal reserves in this case. The expression was

especially high in diffuse proliferative nephritis (with the most

pronounced inflammatory processes and cell proliferation)

and correlated with histological indices of nephritis activity

and with the serum creatinine level. In a less severe

inflammation (lupus nephritis of classes III and V), no

HSP27 expression in glomeruli was detected. The

cytoprotective response in nephritis is believed to depend on

the severity of the injury (Tsagalis et al. 2006).

The increased HSP27 serum and urine levels in chronic

kidney disease (CKD) of various etiologies on stages 3 to 5

were detected (Lebherz-Eichinger et al. 2012; Musiał and

Zwolińska 2012). The authors suggested that the increased

urine HSP27 level resulted from the compensatory renal reac-

tion to elevated serum concentrations as well as from the in-

creased cell damage in the kidney itself (Lebherz-Eichinger

et al. 2012). Serum levels of HSP27 were significantly elevat-

ed in dialyzed patients compared to the predialysis period and

healthy subjects, and this effect was likely associated with an

additional activation of сhronic inflammation and enhanced

apoptosis in progressing CKD (Musiał and Zwolińska 2012).

HSP70 family

HSP70 has a wide spectrum of functions common to all chap-

erone proteins and participates in shaping the structure of

newly synthesized native proteins, restoring of partially dena-

tured proteins, and degradation of irreversibly damaged pro-

tein molecules. HSP70 can interact with cytoskeletal struc-

tures and participate in the transport of proteins through intra-

cellular membranes into the organelles and in the cleavage of

protein aggregates (Beck et al. 2000). The HSP70 family con-

sists of 73-kDa HSP and 72-kDa HSP. HSP73 (also known as

a 70-kDa heat shock cognate protein, HSC70) is the main

constituent protein of the family, which is normally expressed

Fig. 1 Expression of HSPs in various parts of kidney
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in all areas of renal tissue. The extensive investigation of renal

localization and function of HSP70 family started in 1990s.

HSP73 in normal renal tissue

Thus, Komatsuda et al. (1992) studied HSP73 localization in a

normal rat kidney tissue. The protein was expressed in kidney

tissue of experimental rats, specifically in podocytes,

Bowman’s capsule cells, tubular epithelial cells of the proxi-

mal tubules, collecting tubules, papillary epithelium, and in-

terstitium. The ubiquitous presence of HSP73 can be attribut-

ed to the need, also of non-stressed cells, for assistance in

protein folding, trafficking, and controlled degradation. In

the puromycin aminonucleoside induced nephrosis, the intra-

cellular expression of HSP73 is increased in mesangial cells,

tubular cells of the Henle loop, distal tubules, and collecting

tubules, probably due to increased protein reabsorption, and

this effect reflects a protective response to the damaging com-

ponents of proteinuria. In kidneys with the puromycin

aminonucleoside induced nephrosis, HSP73 accumulates in

the cytoplasm at a level higher than in the nucleus in associ-

ation with the severity of renal dysfunction and proteinuria

(Komatsuda et al. 1992). Somewhat different localization of

HSP70 expression in normal human kidney was demonstrated

by Venkataseshan and Marquet (1996) and Dinda et al.

(1998). HSP73/72 showed a uniform fine granular cytoplas-

mic staining of visceral glomerular epithelial cells and epithe-

lia of distal convoluted tubules and collecting ducts without

localization in proximal tubules.

HSP73 after renal ischemia

Morita et al. (1995) described the effect of increased HSP 73

levels after renal ischemia. HSP73 was rapidly induced in the

cytoplasm of injured epithelial cells of the proximal tubules

that were the main site of injury. It was again induced in the

cytoplasm of regenerative cells in this segment and involved

in the process of post-ischemic cellular recovery. After the

gentamicin-induced acute tubular damage, HSP73 leaves the

nucleus of tubular cells, enters the cytoplasm and accumulates

in the lysosomes, and is probably involved in degradation of

structurally damaged proteins (Komatsuda et al. 1993).

Furthermore, the expression of HSP73 increases the resistance

of cells to apoptosis when exposed to oxidative stress (Yokoo

and Kitamura 1997).

HSP72 in normal kidney tissue

HSP72 is an inducible protein; however, its expression is

also detected in normal kidney. In the early 1990s, it was

demonstrated that HSP72 expression was increased in cul-

tured kidney cells (MDCK) in response to an increase in

extracellular osmolality due to selected osmotic agents

(Cohen et al. 1991; Cowley et al. 1995). The osmolality-

dependent reorganization of the cytoskeleton and expres-

sion of heat shock proteins may be components of the reg-

ulatory systems involved in the adaptation of medullary

cells to osmotic stress (Beck et al. 1998). O’Neill S et al.

(2013) identified HSP72 in the renal cortex (only in indi-

vidual collecting duct cells) and medulla. All tubules were

stained weakly in the outer medulla, while an intense stain-

ing was noted in the papilla collecting duct epithelium and

in the urothelium lining the papilla. Features of its distribu-

tion along the cortico-papillary areas suggest the involve-

ment of this protein in the adaptation of medullary cells to a

high extracellular concentration of salts, that is, to hyper-

tonic stress. HSP72 stabilizes intracellular proteins and thus

reduces the denaturing effect of hypertensive environments

including a high concentration of urea (Neuhofer et al.

2001).

Immunohistochemical analysis revealed an overexpression

of HSP72 in the diabetic outer medulla, whereas no differ-

ences were seen in the glomeruli. The increased hypertonic

and hypoxic stress in the diabetic outer medulla may induce an

overexpression of HSP localized specifically to this area,

which may result in cytoprotection and counterbalance in

diabetes-induced cell (Barutta et al. 2008).

HSP72 in acute kidney injury

Expression of the protein increases sharply in cell injury

that has been found in many studies in ischemic and toxic

renal failure (Emami et al. 1991; van Why et al. 1992;

Schober et al. 1997; Aufricht et al. 1998; Wang et al.

2009). HSP72 plays an important role in AKI induced by

renal ischemia in animals and humans (Harrison et al. 2008;

Guo et al. 2014). The experimental results indicate that

HSP72 complexes with aggregated cellular proteins in an

ATP-dependent manner and suggest that enhancement of

HSP72 function assists in refolding and stabilization of

Na–K–ATPase or aggregated elements of the cytoskeleton

(Aufricht et al. 1998). The observation that HSP72 is tran-

siently induced in cortex and outer medulla, but not in inner

medulla after renal ischemia, may be explained by the fact

that while all kidney cells are exposed to ischemic stress,

only inner medullary cells experience a major post-ischemic

attenuation of osmotic stress (Schober et al. 1997). Zhang

et al. (2008) demonstrated that when the kidney was sub-

jected to ischemia–reperfusion injury, the heat shock pro-

teins were among the gene products that responded to the

highest degree from more than 30,000 genes analyzed. The

HSP70 gene was upregulated more than 43-fold compared

to control non-ischemic kidneys after renal ischemic insult

in rats. Non-proximal tubules possess high levels of HSP70

regardless of their location in the cortex or the medulla. It

seems likely that normally high levels of heat shock proteins
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are cytoprotective in non-proximal tubules when the kidney

is subject to ischemic or toxic injury. Thus, HSP70 provides

a sensitive molecular marker for renal ischemia–reperfusion

injury. Over the last few years, an increasing number of

studies have been conducted to investigate the role and

functions of HSPs in the ischemic renal injuries, and the

results of these works pave the way to the development of

targeted therapeutic approaches to HSP modulation (Kim

et al. 2014; Yeh et al. 2010; Wang et al. 2011; O’Neill

et al. 2012, 2015).

A variety of protective mechanisms of HSP72 action in

AKI are discussed. HSP72 is involved in the degradation of

irreversibly damaged proteins, restoration of the structure of

partially denatured proteins, recovery of the cytoskeleton,

and cell polarity. In addition, the induced HSP72 expression

significantly limits tubular cell apoptosis by controlling the

activity of Akt kinase and glycogen synthase kinase 3β that

regulate the activity of a pro-apoptotic protein Bax.

Lentiviral-mediated HSP70 repletion decreases mitochon-

drial Bax accumulation, the pro-apoptotic protease caspase

3, and rescues HSP70 knockout cells from death (Wang

et al. 2011). HSP70 also limits pro-inflammatory NF-κB

signaling in kidney ischemic renal injury by inhibiting

NF-κB p65 translocation to the nucleus (Wang et al. 2011)

(Fig. 2a). HSP72 influences the chronic tubulointerstitial

fibrosis by mechanisms that are independent of its effect

on tubular apoptosis. HSP72 inhibited tubular epithelial–

mesenchymal transition in response to TGF-1 (Fig. 2b), de-

creased the number of SMA-positive myofibroblasts, colla-

gen I deposition, and reduced tubulointerstitial fibrosis

(Mao et al. 2008). The induction of HSP70 expression is

thought to play a protective role from toxic injuries. In that

case, HSP72 can play by means of the MEK/ERK signaling

pathway and by inhibiting oxidative stress, providing the

cell survival (Zhipeng et al. 2006; Wang et al. 2009). On

the other hand, HSP70 inhibits phosphorylation of the stress

kinases (JNK and p38 MAPK) that leads to inhibition of

both apoptosis and synthesis of pro-inflammatory Th1-cy-

tokines (Fig. 2c).

HSP70 in renal transplantation

The inducible HSP70 showed a most significant induction

within distal tubules in acute rejection and cyclophilin

toxicity. HSP70 expression was more pronounced in type

II acute rejection and increased within all cortical tubules

including the proximal convoluted tubules and collecting

ducts. In chronic allograft nephropathy, HSP70 was in-

duced in the distal tubules. The cases of type II acute

cellular rejection and cyclophilin toxicity also had evi-

dence of HSP70 induction within the parietal epithelium

of Bowman’s capsule. A constitutively expressed HSP72/

73 was found in the tubular cells in acute cellular

rejection. It was most marked within cortical distal tubules

but not markedly increased from expression in normal

allografts. There was no increase in HSP72/73 in acute

cyclophilin toxicity or chronic allograft nephropathy

(O’Neill et al. 2013).

HSP70 as a biomarker of kidney injury

HSP70 is released into the extracellular space and circula-

tion (Multhoff and Hightower 1996; Bassan et al. 1998),

and it can also be found in the serum and plasma.

Increased expression of HSP72 in the kidney tissue is ac-

companied by increased excretion of the protein in the

urine; therefore, the urinary HSP72 can be used as a non-

invasive biomarker of kidney damage. So, the urinary

HSP72 detection has been shown to be a sensitive and early

AKI biomarker up to 3–4 days before the diagnosis in crit-

ically ill patients. This protein was not only able to detect

early AKI but it could also reflect the tubular recovery pro-

cesses that occur after the epithelium is exposed following

ischemic/reperfusion insult (Morales-Buenrostro et al.

2014). The urinary Hsp72 levels were sensitive enough to

monitor therapeutic interventions and the degree of tubular

recovery following an I/R insult in rats (Barrera-Chimal

et al. 2010). Yilmaza A. et al. (2016) showed that the urine

HSP70 may be a useful biomarker to detect early phases of

diabetic kidney injury and may indicate progression of dia-

betic kidney injury with time.

The sharp increase in HSP72 urinary excretion is also

observed in patients during the first hours after kidney trans-

plantation, in the first urine of renal allografts, reflecting the

violation of the integrity of the tubular epithelium and pos-

sibly indicating the degree of kidney damage after renal

ischemia (Mueller et al. 2003). However, Ramires-

Sandoval et al. (2014) showed that the urinary level of

HSP72 did not increase significantly in kidney transplant

recipients with prerenal AKI and immunological rejection.

In this study, a small increase in HSP70 level was noted at

patients with other factors of AKI (obstructive uropathy,

calcineurin-inhibitor drug toxicity, recurrence of primary

glomerular disease, and NSAID use) (Ramires-Sandoval

et al. 2014).

In patients with the end-stage renal disease on dialysis, a

significant increase in intracellular HSP72 in the tubular

cells was shown; in addition, excretion of HSP70 in urine

in patients with CKD stages 4 and 5 was significantly ele-

vated (Lebherz-Eichinger et al. 2012). The increased ex-

pression of HSP with hemodialysis might be secondary to

stress caused by dialysis in addition to alteration of end-

stage renal disease (ESRD). Dialysis may cause the intro-

duction of several potentially toxic exogenous chemicals

(Dinda et al. 1998).
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HSP60 family

HSP60 in normal kidney tissue

HSP60 family also includes molecular chaperones cross-

linking monomeric proteins and combining them into oligo-

meric complexes (Beck et al. 2000). Normally, HSP60 is

located predominantly in proximal tubule cells, but also with

lower staining intensity in cells of the distal convoluted tu-

bules in rats. HSP60 could not be detected in Bowman’s cap-

sule or in blood vessels. In the outer medulla, HSP60 is de-

tected in thick ascending limbs of the Henle’s loop. Barely

noticeable amounts of HSP60 are present in the medullary

collecting ducts. In the inner medulla, HSP60 appears
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exclusively in the papillary tip in the cytoplasm of collecting

duct cells (Muller et al. 1996). The normal human kidney

cortex shows mild HSP60 staining in most proximal tubules,

with occasional intensely staining tubules. Distal convoluted

tubules show moderately intense staining. In the medulla, the

ascending thick limb shows strong staining, with thin limbs of

Henle showingmildly intense staining (O’Neill et al. 2013). In

glomeruli, HSP60 is expressed only by podocytes

(Hernandez-Pando et al. 1995).

HSP60 in acute renal injury and renal transplantation

In experimental toxic renal damage, the HSP60 expression

increased in all cortical tubules correlating with the degree

of the damage (Hernandez-Pando et al. 1995). There was a

significant increase in HSP60 expression in the outer medulla

of renal tissue in early and advanced experimental diabetes

(Barutta et al. 2008). Сisplatin-induced tubular damage in

experimental model could be delayed through an early induc-

tion of cytosolic HSP60 by preventing the Bax-mediated ap-

optosis (Tsuji et al. 2009). HSP60 induction within distal tu-

bules occurred in cases of type I acute rejection, chronic allo-

graft nephropathy, and cyclophilin toxicity. In type II acute

rejection, HSP60 expression within cortical distal tubules

was more pronounced (O’Neill et al. 2013).

Role of HSP70 and HSP60 in the T cell regulation

of chronic inflammation

Increasing expression of HSPs inside the cells provides stabi-

lization and recovery of damaged proteins as well as optimal

balance between the synthesis, structure formation, and deg-

radation of proteins. It results in enhanced cell resistance to

cellular stress. At the same time, HSPs can release into the

extracellular medium or express on cell surface (Tytell et al.

1986; Basu et al. 2000), and in that case, their specific protec-

tive role is to control the inflammatory immune response.

HSP60 and HSP70 are the immune-dominant molecules,

and the peptide sequences of microbial HSP60 and 70 are the

major epitopes stimulating an anti-infective immune response.

Prokaryotic (bacteria) and eukaryotic (mammalian and hu-

man) cells in HSP have a high degree of homology reaching,

for example, 50–60% in HSP60 family (Kaufmann 1990a.

One explanation is that HSPs are potential candidates for mo-

lecular mimicry and can be recognized by the immune system

as being potentially pathogenic antigens; as a result, they can

play a role in the development of both anti-infective response

and autoimmunity (Lydyard and van Eden 1990). This hy-

pothesis is evidenced by the increased serum levels of

HSP60 and 70, as well as the respective antibodies, in several

autoimmune diseases such as rheumatoid arthritis, systemic

lupus erythematosus, dermatomyositis, scleroderma, diabetes,

nephritis, and after organ transplantation (Dhillon et al. 1991;

Georgopoulos and McFarland 1993; Birnbaum et al. 1998;

Jorgensen et al. 1998; Lang et al. 2005; Trieb et al. 2005;

Wu and Tanguay 2006). However, the first evidence of the

protective role of HSP in inflammatory diseases was the fact

that HSP60 infusion to experimental animals with autoim-

mune adjuvant arthritis provided an anti-inflammatory effect

and inhibited the development of the disease (van Eden et al.

1988). Later, the regulatory effect of microbial HSPs has been

established in other models of autoimmune diseases, includ-

ing autoimmune encephalomyelitis, collagen-induced arthri-

tis, and type I diabetes (Elias et al. 1997; Birnbaum et al.1998;

Jorgensen et al. 1998). Kim et al. (2014) demonstrated that in

heat preconditioning, upregulation of HSP70 in СD11c+ den-

dritic cells was responsible for Treg-mediated renoprotective

effect and subsequent conversion of immune response toward

tolerance or anti-inflammation in ischemia/reperfusion acute

kidney injury.

�Fig. 2 The role of Hsp70 in signal transduction pathways. a Role of

Hsp70 in signal transduction pathways of NF-κB. Intracellular HSP70

may also involve in preserving I-κB complex by interacting with IKK

(Uchinami et al. 2002). HSP70 forms a complex with IκBα, attenuating

NF-κB activity. HSP70 might bind IκBα to prevent its phosphorylation

by IκB kinase, or HSP70 might inhibit IκB kinase directly, thereby

inhibiting the degradation of I-κB and the subsequent activation of the

NF-κB pathway (Shimizu et al. 2002). NF-κB activation induced by

various stimuli is mediated by members of the TNF receptor-associated

factor (TRAF) adapter family (le Luong et al. 2013). Intracellular HSP70

was demonstrated to inhibit NF-κB activation by binding TRAF6 via the

TRAF-C domain and preventing its ubiquitination, thus resulting in inhi-

bition of inflammatory mediator production (Cao et al. 1996). b Role of

Hsp70 in signal transduction pathways of TGF signaling. HSP70 inhibits

TGF-β signal by Smad-dependent and Smad-independent pathways.

Upon TGFβ stimulation, Smad2 and Smad3 are phosphorylated by the

activated TGFβ type I receptor kinase, forming a stable complex with

Smad 4 in cytoplasm and then accumulating in the nucleus to regulate

transcription of target genes. Moreover, in renal cells, TGF-beta direct or

via TRAF6 stimulates rapid phosphorylation of the TGF-beta-activated

kinase (TAK)1 and TAK1-binding protein, in turn activating MKK,

which appears to function upstream of JNK and p38 (Schnaper et al.

2009). In contrast, Smad7 inhibits the TGFβ receptor type I-dependent

Smad2/3 activation. Intracellular HSP70 interrupting Smad2/3 protein

phosphorylation and its nuclear translocation and accumulation increases

Smad7 protein expression, binds TRAF6, and reduces the phosphoryla-

tion of JNK and p38 MAPK, providing a protective effect (Zhou et al.

2010). c Role of Hsp70 in stress kinases (MAPK) signal transduction.

The relative extent of MAPK activities, including JNK, p38, and ERK,

has been proposed to determine cell fate after injury. Hsp70

downregulates also the activation of stress kinases (JNK and p38), and

suppresses activation of caspases in renal cells (Suzuki et al. 2005) The

activity of the MEK/ERK pathway that is upregulated by HSP70 may be

relevant to renal protection. HSP70 providesmost of the protective effects

by activation of Raf, MEK, and ERK phosphorylation and cell survival

(Wang et al. 2009, Park et al. 2002). Abbreviations: TGF-β transforming

growth factor beta, MAPK mitogen-activated protein kinase, JNK c-Jun

N-terminal kinase, ERK extracellular signal-regulated kinases, MEK

MKK–mitogen-activated protein kinase kinase, MKKK mitogen-

activated protein kinase kinase kinase, Raf a family of serine/threonine-

specific protein kinases
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Intracellular heat shock proteins can be expressed in cellu-

lar inflammation and damage on the cells surface or released

into the extracellular space (Multhoff and Hightower 1996;

Bassan et al. 1998). The epitopes of the proper HSPs

expressed in the inflammation sites are recognized by T cells

with the formation of anti-inflammatory phenotypes of regu-

latory T cell (Anderton et al. 1995), namely T-helper type 2

(Th2) phenotype producing IL-10 and IL-4, T regulatory cell

1 (Tr1) producing IL-10 and TGF-β, and CD4+CD25+ regu-

latory cells (Treg) (de Kleer et al. 2003, 2004; Zanin-Zhorov

et al. 2005, 2006). The anti-inflammatory IL-10 is one of the

first cytokines expressed by regulatory cells in inflammatory

site and is a major stressor cytokine mediating many immu-

noregulatory effects of HSP. So, the preimmunization of ex-

perimental animals by HSP60 and HSP70 leads to an increase

in the number of IL-10-producing T regulatory cells in the

inflammatory site (Zanin-Zhorov et al. 2006). A change in

the phenotype of T cells exposed to HSPs is found to occur

after the activation of a signal from the Toll-like receptors

(TLRs). HSP60 or 70 released from the cells into the extracel-

lular space can activate CD4+CD25+ regulatory cells, acting

on TLR-4 (Vabulas et al. 2001; Ferat-Osorio et al. 2014). The

interaction of HSP60 or its peptide p277 (437–460) with

TLR2 on T cells leads to Bswitch^ of Th1 phenotype on Th2

one with the decrease in the inflammatory (TNF-α and IFN-γ)

and the increase of anti-inflammatory (IL-10 and IL-4) cyto-

kine secretion (Paul et al. 2000; Wendling et al. 2000; Zanin-

Zhorov et al. 2003; Zanin-Zhorov et al. 2005) (Fig. 3).

HSPs increase the production of anti-inflammatory cyto-

kines not only in T cells but also in the mononuclear cells,

such as monocytes and dendritic cells (Detanico et al. 2004).

For example, peripheral Tcells and transplant-infiltrating lym-

phocytes, as well as peripheral blood mononuclear cells of

patients with chronic post-transplant nephropathy, can pro-

duce IL-10 under the influence of HSP60 (Caldas et al. 2006).

The role of HSPs in the process of removal of activated

immune cells from inflammatory site and reduction of the in-

flammatory infiltration is being actively discussed. The HSP60

and 70 natively expressed on the surface of inflammatory neu-

trophils are recognized by the HSP-specific T cells (γδ Tcells)

characterized by the production of cytokines IFN-γ, IL-10, and

TNF-α as well as by the immediate cytotoxic activity against

neutrophils and macrophages (Hirsh and Junger 2008). In the

immune inflammation, HSPs are expressed on the surface of

the activated T cells and can be recognized by T cell receptors

(TCR) of regulatory T cells (CD4+ or CD8+) involved in the

elimination of abnormal activated T cell clones from inflam-

matory site (Ferris et al. 1988).

The HSP expression in an inflammatory site and the ability

of HSPs to induce the production of IL-10 by mononuclear

cells affect the extent of anti-inflammatory action of these

proteins and can be influenced by genetic factors (Miyata

et al. 1999; Xiao et al. 2004). The decreased cellular HSP

expression ability can cause the loss of resistance to chronic

inflammatory diseases (Rao et al. 1999). The role of HSPs in

the regulation of chronic immune inflammation in the human

kidney is poorly studied.

Increased HSP expression is found in patients with various

forms of nephritis including minimal change glomerulone-

phritis, FSGS, membranous nephropathy, and acute interstitial

nephritis in the loci of acute interstitial infiltration

(Venkataseshan and Marquet 1996). Marzec et al. (2009) re-

vealed the decreased HSP72 expression on the surface of pe-

ripheral blood monocytes of patients with CKD as compared

with the control. This decrease of HSP72 expression by

monocytes was observed in patients with terminal CKD and

with the development of systemic inflammation. In patients

with lupus nephritis, the HSP72 expression in renal tissue (in

the cytoplasm of cells of the proximal and distal tubules and

collecting ducts) was normal (Tsagalis et al. 2006). However,

Venkataseshan and Marquet (1996) showed a significant in-

crease in the HSP70 expression by tubular cells in the areas of

acute interstitial inflammation in glomerulonephritis and inter-

stitial nephritis, whereas no increase of HSP70 was observed

in chronic interstitial inflammation and fibrosis.

We can assume that the expression of these proteins on the

surface of the cells corresponding to the inflammation activity

is important in the resolution of the inflammation, especially

since they have a protective effect in chronic inflammatory

diseases with different and sometimes unknown autoantigens.

T cells reactive to HSPs have also been found in healthy

human (Pockley et al. 1998, 1999). The HSPs are found to be

expressed by the cells into the extracellular space and on the

cell surface even in the absence of any damage (Multhoff and

Hightower 1996; Bassan et al. 1998). The normal immune

response to the HSPs is needed to maintain immune homeo-

stasis, and it can also participate in controlling the inflamma-

tory diseases. The absence of autoimmune response to the

expression of the genuine HSPs is probably due to the forma-

tion of a regulatory or tolerant phenotype of autoreactive T

cells. The Tcells reactive to cross-epitopes of HSPs are known

to avoid removing in the thymus and obtain tolerance by the

peripheral immune organs. So, the autoreactive T cells of in-

testinal lymphoid tissue can recognize the highly homologous

HSPs of normal microflora and differentiate into regulatory

anti-inflammatory phenotypes producing IL-10 and TGF-β.

These HSP-specific regulatory T cells can migrate to the site

of immune inflammation and control the pathogenic T cell

clones (Chen et al. 1994; Samson 2004).

Thus, to the late 1990s, the role of HSP60 and HSP70 in

regulation of chronic immune inflammation was determined.

A number of authors (Pockley 2003; Hauet-Broere et al. 2006;

de Kleer 2003, 2004) developed a concept which stated that the

reactivity to self-heat shock proteins rather than promoting

disease can downregulate the chronic disease process. HSPs

prevent or arrest inflammatory damage and promote
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production of anti-inflammatory cytokines indicating immuno-

regulatory potential through expansion of Tregs. Therefore, in

addition to their original function as a chaperone, HSP-induced

immunomodulation is thought to be another important mech-

anism of renoprotection in various pathologies including I/R-

induced AKI. A better understanding of HSP–immune cell

interaction could facilitate the discovery of new targets or drug

development in the prevention or treatment of AKI (Kim et al.

2014). Moreover, taking into account the protective role of

HSPs in chronic immune inflammation, a targeted modulation

of HSP60 and HSP70 seems to be a prospective approach in

chronic glomerulonephritis. However, this area still requires

further theoretical and practical investigations.

HSP47

Heat shock protein (HSP) 47 is a specific chaperone of

procollagen. HSP47 is a 47-kDa glycoprotein that is mostly

present in the endoplasmic reticulum (ER) of collagen-

producing cells. HSP47 binds to the triple helical procollagen

and stabilizes its higher-order structure. It prevents the prema-

ture secretion of procollagens from the ER into the Golgi

apparatus and concentrates them within the ER before

finishing their maturation process. HSP47 seems to dissociate

from the procollagens, which is then rapidly secreted from the

cell (Tasab et al. 2000). The protective role of many

chaperones in the renal tissue is well documented; at the same

time, HSP47 expression in kidney cells promotes develop-

ment of post-injury profibrogenic transformations. Increased

glomerular expression of the collagen-specific chaperone pro-

tein HSP47 is likely to be involved in overproduction of col-

lagens that ultimately promotes glomerular sclerosis. HSP47

is strongly expressed in glomerulosclerotic lesions in parallel

with increased expression of collagens I and IV in DN.

Advanced glycation end products are a key factor in the syn-

thesis of the increased expression of both HSP47 and colla-

gens in vitro and in vivo (Ohashi et al. 2004). HSP47 may be

involved in the initial stage of fibrosis via the TGF-β1-

induced transdifferentiation of fibroblasts to myofibroblasts,

as well as at the later stage of fibrosis, the collagen synthesis in

already transdifferentiated myofibroblasts (Hong et al. 2012).

HSP47 increases the expression of collagen type I, collagen

type IV, fibronectin, and tissue-type plasminogen activator

inhibitor in human proximal tubular epithelial (HK-2) cells,

suggesting the functionality of HSP47 in regulating ECM

synthesis and degradation in processes related to renal

tubulointerstitial fibrosis (Xiao et al. 2012).

A similar induction of HSP47 expression with excessive

accumulation of collagens is also noted in other experimental

models of renal fibrosis. Overexpression of HSP47 was close-

ly associated with increased deposition of interstitial collagens

in toxic kidney injury (Cheng et al. 1998; Hegazy et al. 2016)

Fig. 3 Role of Hsp70 in immune inflammation. HSP70-induced

beneficial protective effect is caused not only by intracellular produced

HSP70 but also by HSP70 in immune cells and subsequent regulatory

function toward anti-inflammation in immune and non-immune renal

diseases. Extracellular Hsp70 binds with the Toll-like receptors (TLR) 2

and 4 on the antigen-presenting cells (APCs): dendritic cells (СD11c),

monocytes/macrophages, and tubular cells in site of inflammation or

injury. Other transmembrane receptors such as CD91 and LOX-1 may

be the receptors for HSP 70. APCs present HSP 70 epitopes with help of

MHC-II to HSP-specific CD4+ Tcells, ultimately leading to expansion of

СD4+CD25+ (T regulatory cells) with subsequent anti-inflammatory or

immunomodulatory effect via IL-10 and TGF-β production (Kim et al.

2014). Moreover, HSP70 may directly bind to the TLR2/4 of CD4+ T

cells, and activate the expansion of Tregs. HSP70 may also converse

inflammatory macrophage (M1) phenotype to the anti-inflammatory

(M2) macrophage providing the resolution of inflammation. TCR T cell

receptor, MHC-II major histocompatibility complex class II
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and in rats with radiation-induced tubulointerstitial nephritis

(Liu et al. 2002). However, this effect may be related to its

powerful antioxidant properties that prevent generation of free

radicals and removed the stress induced by toxic agents in

tubular cells (Hegazy et al. 2016).

In addition, HSP47 may play an important role in the ex-

cessive assembly of collagens resulting in glomerulosclerosis

and interstitial fibrosis found in DN and immunoglobulin A

nephropathy (IgAN) patients. Increased deposition of colla-

gens was present in relation to a strong expression of HSP47

in glomeruli and the tubulointerstitium of these patients

(Razzaque et al. 1998). HSP47 might play a significant role

in the excessive assembly of collagens and could subsequently

contribute to the expansion of mesangial matrix found in anti-

thymocyte serum glomerulonephritis in rats (Razzaque and

Taguchi 1997). Using anti-sense oligonucleotides against

HSP47, it was shown that attenuation of sclerotic lesions

and expression of collagen in glomeruli coincided with a re-

duction of HSP47 expression (Sunamoto et al. 1998). In the

earlier studies, the potential role of HSP47 in the pathogenesis

of interstitial fibrosis in the obstructed kidneys was suggested.

The early and persistent upregulation of HSP47 was deter-

mined during the progression of interstitial fibrosis in mouse

unilateral ureteral obstruction (UUO) kidneys (Moriyama

et al. 1998). Recently, interesting data were obtained by re-

searchers from Japan. They found that amlodipine may inhibit

the expression of HSP47 and type IV collagen by reducing

phosphorylation of c-jun-N-terminal kinase and ameliorating

the renal interstitial fibrosis in mice (Honma et al. 2016).

The level of HSP47 expression in the interstitial area cor-

related with the histological degree of fibrosis in chronic allo-

graft rejection and cyclophilin toxicity. The fibroblasts and

renal tubular epithelial cells are the predominant sites of col-

lagen production and HSP47 in the tubulointerstitium of

chronic rejection renal tissue (Abe et al. 2000).

HSP90 family

While ubiquitously expressed in unstressed normal cells, the

HSP90 complex assists in the folding and function of a variety

of proteins, which are called client proteins. There are over

175 client proteins involved in a multitude of cellular process-

es such as cell cycle control, apoptosis, proliferative signaling,

and malignancy (Richardson et al. 2011; Peng et al. 2007).

The client proteins include tyrosine kinases (e.g., Akt and

MEK), transcription factors (androgen receptor, estrogen re-

ceptor, and p53), structural proteins (tubulin, actin), and

hypoxia-inducible factor 1α (HIF-1α) (Goetz et al. 2003;

Neckers and Ivy 2003). The mechanism of action of HSP90

includes the stepwise recruitment of cochaperones, including

HSP70, p50cdc37, HOP, and p23 (Pearl and Prodromou 2000).

The HSP90 protein contains three functional domains, the

ATP-binding, protein-binding, and dimerizing domain, and

each of these domains plays a crucial role in the functioning

of the protein. The ATPase-binding region of HSP90 is

currently under intense study because it is the principal

binding site for drugs targeting this protein (Chiosis et al.

2006). The HSP90 protein can adopt two major conformational

states. The first is an open ATP-bound state, and the second is a

closed ADP-bound state. Thus, ATP hydrolysis drives what is

commonly referred to as a Bpincer-type^ conformational

change in the protein binding site (Grenert et al. 1997). On

ATP-binding, the HSP90 client complex associates with co-

chaperones to facilitate client stabilization (Isaacs et al. 2003).

In contrast, in its ADP-bound form, HSP90 associates with

different co-chaperones such as HSP70, resulting in enhanced

proteasomal degradation of the HSP90 client proteins. HSP90

inhibitors targeting this section of HSP90 include the antibiotics

geldanamycin (Goetz et al. 2003; Pratt and Toft 2003),

herbimycin, radicicol (Oh et al. 2007), derrubone (Hadden

et al. 2007), and macbecin (Martin et al. 2008) and suppress

the progression of the HSP90 complex toward the stabilizing

form and shift it to the proteasome-targeting form, which results

in ubiquitin–proteasome degradation of the client (Kamal et al.

2003). HSP90 interacts with many cellular proteins, including

protein kinases and steroid receptors, in a manner which regu-

lates their activity and kinetics (Beck et al. 2000).

HSP90 in normal renal tissue

The normal kidney tissue expresses HSP90 mainly in the distal

tubules and the cortical and medullary collecting ducts, which

corresponds to the distribution of mineralocorticoid and gluco-

corticoid receptors, determining the importance of the complex

HSP90/steroid receptor in the signal transduction (Farman et al.

1991). After binding the hormone, the HSP-receptor complex

becomes disintegrated, and the activated receptor is

translocated into the nucleus. Also, some HSP90 expression

is observed in the loop of Henle, podocytes, parietal epithelium

of the Bowman’s capsule, and in endothelial and interstitial

cells, which indicates that the HSP90 has a wide range of func-

tions in various kidney cells (Matsubara et al. 1990). HSP90 is

involved in the maintenance of normal renal blood flow and

affects the glomerular filtration rate (GFR) by regulating the

synthesis of nitric oxide-dependent on endothelial NO-syn-

thase. Ramirez et al. (2008) showed that inhibition of HSP90

resulted in a reduction in renal blood flow and GFR, and sig-

nificantly decreased urinary excretion of nitrates and nitrites.

HSP90 in acute kidney injury

Following ischemic damage and in toxic AKI, the expression

of HSP90 is increased in tubular cells in the late regeneration

phase. In gentamicin-induced acute renal failure, it was found

in the proximal tubules and in cisplatin-induced renal fail-

ure—in the epithelium of the loop of Henle (Morita et al.
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1995; Ohtani et al. 1995). Thus, HSP90 is a component of the

protective system providing regeneration of the damaged and

differentiation of new tubular cells. In crescentic nephritis in

humans, the expression of HSP90 is increased in the cyto-

plasm of proliferating crescent cells. (Komatsuda et al.

1996). A recent study has identified TGF-β1 receptor and

TGF-βII receptor as HSP90 client proteins. HSP90 inhibitor

(17-allylamino-17-demethoxygeldanamycin (17-AAG)) can

also prevent the development of renal fibrosis via blocking

the interaction between HSP90 and TGF-β type II receptor

(TβRII) and promoted ubiquitination of TβRII, leading to the

decreased availability of TβRII (Noh et al. 2012).

HSP90 in renal transplantation

In the first study of Maehana et al. (2016), high serum

HSP90α levels were obtained from patients whose graft vas-

cular tissues were damaged by acute rejection, such as those

with acute antibody-mediated rejection and type II acute T

cell-mediated rejection. In contrast, the serum HSP90α levels

were not elevated in other conditions such as chronic rejection

and calcineurin inhibitor nephrotoxicity (CIN). It was specu-

lated that vascular cells damaged by allorejection could be a

source of increased serum free HSP90α in kidney recipients.

Other cells in the kidney, including renal tubular cells and

infiltrating immune cells, can also be a source of free

HSP90α because the serum HSP90α level was high in two

cases of type IB acute T cell-mediated rejection, which must

have had only interstitial infiltration of lymphocytes and

tubulitis. The results of this study suggest that the serum

HSP90α level can predict acute rejection distinct from CIN

before it is proven by biopsy. It can be helpful for assessment

of the effect of anti-rejection therapy and early detection of

steroid-resistant rejection (Maehana et al. 2016).

HSP32 (heme oxygenase-1)

Heme oxygenase (HO) is a ubiquitously expressed microsom-

al enzyme which catalyzes the cleavage of unreacted heme to

biliverdin, free iron, and carbon monoxide (CO). HO-1 (also

called HSP32) is an inducible isoform whose expression is

induced by the substrate (heme) availability and action of

stressors such as heat, heavy metal ions, cytokines, and reac-

tive oxygen species (Maines 1997). In human cells, HO-1 is

involvedmainly in the protection against the adverse effects of

oxidative stress (Toru et al. 2006). But it can also be induced

by inflammatory stimuli, such as the addition of IL-1β. The

protective value of HO-1 is the inhibition of synthesis of in-

flammatory factors (IL-1, IL-6, IL-8, TNF-α), increasing anti-

inflammatory cytokines (IL-10) (Nakao et al. 2003), heme

degradation products, and their metabolic derivatives. CO re-

duces the production of inducible NO-synthase (iNOS), cy-

clooxygenase-2, related inflammatory mediators NO, and

prostaglandins (Nakao et al. 2003). Biliverdin converts into

bilirubin, and iron stimulates synthesis of ferritin exhibiting

antioxidant properties (Morse and Choi 2002).

da Silva et al. (2001) demonstrated that the basal levels of

HO-1 expression in the normal kidney in rats were relatively

low. The immunohistochemical localization performed with

anti-HO-1 antibodies indicated mainly tubular and arteriolar

expression. In the cortex, HO-1 immunostaining was present

in proximal and distal tubules. In the medulla, HO-1 staining

was evident in collecting tubules and loop of Henle.

The increased HO-1 expression was observed in tubules and

interstitium after UUO injury in WT mice. Overexpression of

HO-1 counteracts multiple renal fibrosis-associated pathologi-

cal processes, such as peritubular capillary (PTC) loss, tubular

apoptosis, and proliferation of myofibroblasts (Chen et al.

2016). The protective role of HO-1 is demonstrated in ischemic

and toxic kidney damage, rejection of kidney transplant, ob-

structive nephropathy (Agarwal et al. 1996; Mosley et al.

1998; Datta et al. 1999; Shimizu et al. 2000; Chen et al.

2016), and diabetic nephropathy (Pagnin et al. 2016).

Interestingly, HO-1 can contribute to T cells homeostasis,

maintaining these lymphocytes in a non-activated state, and

the pharmacological inhibition of HO-1 leads to T cell

activation and proliferation. Choi et al. (2005) demonstrated

that CD4+CD25+Treg cells constitutively expressed HO-1

and that this enzyme could be induced after FoxP3 expression

in CD4+CD25− cells, conferring a regulatory phenotype to

these cells. Thus, in animal models and in patients with low

production of HO-1, mesangioproliferative glomerulonephri-

tis develops frequently (Poss and Tonegawa 1997; Yachine

et al. 1999; Ohta et al. 2000). On the contrary, the induction

of endogenous HO-1 in experimental models of anti-BMP

nephritis and lupus nephritis reduces the glomerular injury

and immune deposits in the kidney tissue and results in a

reduction of proteinuria (Datta et al. 2002; Takeda et al. 2004).

High glucose levels induced podocyte apoptosis through

direct downregulation of HO-1 (Yang H et al. 2016). HO-1

inhibition promoted the increased albuminuria and reduced

podocyte numbers in diabetic rats (Lee et al. 2009). The up-

regulation of HO-1 in obese, hypertensive rats with type II

diabetes improved proteinuria levels and significantly de-

creased histological abnormalities. Moreover, the treatment

also reduced the gene expression of profibrotic molecules

transforming growth factor (TGF)-β (Ohtomo et al. 2008).

Thus, HO-1 is an important endogenous protecting factor

in both inflammatory and non-inflammatory kidney damage.

HSP renal expression data are presented in Table 1 and Fig. 1.

Interplay of HSPs in kidney diseases

Synthesis of HSPs in response to different types of tissue inju-

ry, including endogenous inflammatory processes, is a major

intracellular protective mechanism for inhibiting cell damage
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(Welch 1992). Chaperones never work alone, but form large

complexes with each other and with their cochaperones. In

these associates, one of the basic principles of the protein fold-

ing is observed, namely, the ordered cooperative effect of dif-

ferent classes of chaperons on the growing client (substrate)

protein. Co-expression of HSP 27, HSP70, HSP90, and

HSP60 in kidney cells and tissues was observed in in vitro

and in vivo experiments under normal and pathologic condi-

tions (Morita et al. 1995; Donnelly et al. 2013; Dihazi et al.

2011; Schober et al. 1997; O’Neill et al. 2013). According to

current models of protein folding in the cytoplasm, HSP70 is

an important molecular chaperone that regulates protein qual-

ity control through a conserved mechanism of ATP hydrolysis.

The capacity of cytoplasmic HSP70 to perform these diverse

tasks requires ATP binding and hydrolysis, which is facilitated

by other chaperones or cofactors (i.e., Bco-chaperones^). These

co-chaperones include HSP40, HSP60, and HSP90 (Fink

1999). Aberrant or misfolded client proteins bind to HSP40

and HSP70 to prevent aggregation. The HSP70–HSP40–client

complex can recruit HSP90, a central regulator of protein ho-

meostasis that also influences protein folding via an ATP-

dependent hydrolytic cycle (Kampinga et al. 2016).

Formation of HSP70/HSP40/HSP90 Bintermediate

complexes^may be augmented by the HSP70/HSP90 organiz-

er protein (HOP), which connects the C-termini of HSP70 via

tetratricopeptide repeat (TPR) domains to promote productive

folding. On the other hand, quality control of misfolded

HSP70- and HSP90-bound clients can be managed by a dif-

ferent TPR domain-containing cochaperone, the C-terminus of

HSC70 interacting protein (CHIP). The mechanism of

multichaperone complex formation is presented in Fig. 4.

The highly coordinated interactions of HSP70 and HSP90

resulting in formation of HSP70/HSP40/HSP90 intermediate

complexes are required for the folding and conformational

regulation of a variety of proteins, including the renal tissue

cell proteins. The thiazide-sensitive NaCl co-transporter

(NCC) in renal cell forms complexes with the core chaperones

HSP90, HSP70, and HSP40. Two cochaperones, CHIP and

HOP, are associated with NCC (Donnelly et al. 2013). Dihazi

et al. (2011) showed that the exposition of the kidney cells to

osmotic stress (NaCl, glucose) resulted in an enhancing of co-

expression of HSP70 and HSP90. Moreover, Morita et al.

(1995) investigated the inductions and intracellular localiza-

tions of HSP70 and HSP90 in rat kidneys after unilateral is-

chemia following reflow. Both HSP70 and HSP90 were rap-

idly induced in the cytoplasm of injured epithelial cells of the

proximal tubules during the degenerative and regenerative

phases of the post-ischemic injury. In the study of Coskun

et al. (2016), the members of HSP70 and HSP90 families were

detected in the preservation solution of the pretransplanted

kidney by proteomic analysis. Furthermore, the levels of

HSP90β and HSP70 were correlated with ischemia time and

donors’ age.

HSP90, by itself and/or associated with multichaperone

complexes, is a major repressor of heat shock transcription

factor-1 (HSF1), which binds to upstream regulatory sequences

in the promoters of heat shock genes (Zou et al. 1998). Under

non-stressed conditions, HSP90 binds to HSF-1 and maintains

the transcription factor in a monomeric state. Denatured pro-

teins bind to HSP70 and HSP90, thus resulting in the displace-

ment of HSF1. Activated HSF1 translocates to the nucleus and

induces the transcription of a number of HSP genes, including

HSP70 and HSP40. HSP90 inhibitor geldanamycin (GA) tar-

gets HSP90 fairly specifically by binding to and inhibiting the

ATP binding pocket (Hadden et al. 2006) and inhibits HSP90

ATPase activity, affecting the dissociation of HSP90/HSF-1

complex, while HSF-1 translocates to the nucleus and initiates

the production of HSPs such as the chaperones HSP70 and its

activator, HSP40 (Murata et al. 2003; Wang et al. 2014). This

effect of HSP90 inhibitors is used for targeted treatment of renal

injuries in animal models (Harrison et al. 2008; Noh et al. 2012;

Lazaro et al. 2015; O’Neill 2015).

Interactions of small HSPs such as HSP27 with HSP70 in

kidney are also of significant interest, since these HSPs may

interact with cytoskeletal structures and participate in translo-

cation of proteins across membranes into organelles and in the

disassembly of protein aggregates within the actin-rich renal

cells, podocytes, and tubular epithelial cells. It was shown that

toxic metals exposure alter phosphorylation of HSP25/27

along with induction of HSP70 in cultured tubular renal epi-

thelial cells and podocytes (Bonham et al. 2003; Eichler et al.

2005), in a model of ischemic renal injury (Schober et al.

1997), and also in patients with renal obstruction (Valles

et al. 2003) and lupus nephritis (Tsagalis et al. 2006) In vari-

ous pathologies associated with kidney transplantation in

humans, including acute and chronic rejection and cyclophilin

nephrotoxicity, an increased cytoplasmic immunopositivity

for HSP27 and HSP70 was shown in the same sites of injury

(O’Neill et al. 2013).

Sreedharan et al. (2011) demonstrated that in cultured prox-

imal tubule cells (LLC-PK1), suppressing the endogenous

stress response as well as abolishing specific HSP70 induction

decreased the resistance to injury afforded by overexpression

of HSP27. Furthermore, specific blockade of HSP70 induc-

tion eliminated the cytoprotection provided by HSP27 over-

expression. Thus, HSP27 and inducible HSP70 might work in

the renal cells, cooperatively, as co-chaperones to other

disrupted cell proteins important to maintaining cell integrity.

It was hypothesized that an individual and specific function

for each HSP is necessary but not sufficient to prevent break-

down of cell structure. Although HSP27 is not dependent on

induction of HSP70 for its association with actin, stabilization

of the membrane associated protein Na–K–ATPase requires

HSP70. So, overall protection of cell architecture cannot be

achieved by overexpression of HSP alone, but requires coor-

dinated work of HSPs in tandem.
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It has also been argued that HSP27, HSP70, and HO-1/

HSP32, which are upregulated in rat model of ischemia–re-

perfusion injury, play consolidated roles in preconditional

cytoprotection in ischemia/reperfusion injury (IRI) (Zhang

et al. 2008; Guo et al. 2014). According to Ishizaka et al.

(2002), staining of serial renal sections in rats undergoing

long-term administration of angiotensin II clearly demon-

strates that HSP70, HSP25, and HO-1/HSP32 are induced in

proximal renal tubular epithelial cells from the same segments

and play a role against angiotensin-II-induced nephrotoxicity

including hypertonic nephropathy.

The induction of HO-1/HSP 32 and HSP70 by means of

NO-mediated modification in intracellular antioxidants levels

is a novel alternative anti-apoptotic mechanism. NO can oxi-

dize intracellular reduced glutathione and thereby change the

antioxidant levels within the cell, resulting in oxidative or

nitrosative stress (Mazzei et al. 2015).

In the eukaryotic cell, about 10% of newly synthesized

cytosolic proteins, including actin and tubulins, are co- or

post-translationally passed on to the chaperonin TCP-1 ring

complex (TRiC), which belongs to chaperonins of the HSP-60

family (Vabulas et al. 2010). The substrate transfer to TRiC is

also mediated by HSP70/HSP40, which is consistent with a

general sequence of chaperone interactions in the cytosolic

folding pathway (Fig. 4). HSP70, HSP40, and double-ring

chaperonin TRiC also form a high molecular mass complex

Fig. 4 Interplay of HSP70, HSP 90, and HSP60 in renal cells. The

unfolded or misfolded (client) protein is initially recognized by the

Hsp70/40 system with CHIP (carboxy-terminus of Hps70 interacting

protein) and, subsequently, transferred to HSP90. CHIP is a Ubox E3

ubiquitin ligase that associates with Hsp70 or Hsp90 via its TPR

domain and ubiquitinates misfolded substrates (Murata et al. 2003).

HSP90 forms a multicomponent complex with cochaperones including

Hsp40, Hsp70, HOP (Hsp70 and Hsp90 organizing protein), and p23 that

serve to recognize client proteins and assist their binding to the Hsp90

heteroprotein complex (Dickey et al. 2007,Hernández et al. 2002).

Subsequently, the cochaperone p23 interacts with the Hsp70/40-HOP-

Hsp90-substrate complex resulting in the release of Hsp70/40 and HOP.

The folded protein, HSP90, and cochaperone p23 released from the com-

plex and could be participated in the next cycle of protein folding action

(Wang et al. 2014). HSP70, HSP40, and TCP-1 ring complex (TRiC) also

form a high molecular mass complex that mediates protein folding in

ATF-dependent process. HSP70 and HSP 40 bind first to the nascent

chain and subsequently mediated the interaction of the growing polypep-

tide with the TRiC cylinder. As translation proceeds, ATF-dependent

folding of an N-terminal domain of the client protein occurs within the

central cavity of the TRiC cylinder, while the C-terminal regions remain

associated with HSP70/HSP40 in an unfolded conformation (Frydman

et al. 1994)
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that mediates protein folding in an ATP-dependent process

(Frydman et al. 1994).

It was shown that HSP70 and HSP60 co-existed in sites of

severe damage (i.e., cortical tubules) during the necrotic phase

of acute tubular necrosis induced by inorganic mercury

(Hernádez-Pando et al. 1995). Since mercury promotes pro-

tein denaturation and aggregation, it is tempting to speculate

that an enhanced expression of HSP60 and HSP70 in HgCl2-

induced acute renal failure accelerates the reconfiguration of

Bdisordered^ proteins. Co-expression of HSP70, HSP60, and

HSP27 in the tubular compartment was also detected in renal

graft rejection (O’Neill et al. 2013; Trieb et al. 2001). The

chaperone interaction scheme is shown in Fig. 4.

The studies on themechanisms of chaperone interactions in

the renal cells represent both theoretical and practical interests,

since the modulation of the key stages of the multichaperone

complexes formation may open promising approaches to

HSP-targeted therapy.

Prospects of HSP therapy

Considering a wide variety of protective functions of HSPs,

there are rich possibilities associated with the induction of

their expression in kidney cells in various kidney diseases.

HSPs are therefore the promising therapeutic candidates to

be used in the context of predictable injury. Themost common

experimental paradigm for evaluation of the potential

cytoprotective effects of HSPs is the preconditioning experi-

ment (Table 2). The cells in culture or the whole organisms are

first conditioned by exposure to a mild or moderate stress that

is sufficient to stimulate accumulation of HSPs but does not

result in a significant level of cell death. A period of several

hours after the moment of conditioning stress is then required

to achieve the elevated HSP levels. Then, the cells or organ-

isms are subjected to a more severe test stress that typically

causes a significant cell death. The result is that the

preconditioned specimen shows a significantly improved sur-

vival as compared to a specimen exposed only to the severe

stress (Tytell and Hooper 2001). Recently, there were reports

on a protective impact of the mild systemic thermal stimula-

tion of the progression of renal injury in a mouse model of

renal ablation through increased level of HSP27, reduced ap-

optosis, and oxidative stress in remnant kidney (Iwashita et al.

2016).

HSP70 is one of the important candidates due to its multi-

ple protective effects, wide tissue distribution in renal tissue,

and potential anti-inflammatory properties (Aufricht 2005).

Induction of HSP70 in high-risk patients in post-operative

AKI may benefit from HSP70 induction prior to surgery.

However, the physical preconditioning approaches often in-

volve an additional thermal or ischemic injury potentially as-

sociated with some negative consequences (O’Neill et al.

2014). An alternative approach is related to the use of

pharmacological agents capable of increasing the level of

HSP70 locally in the kidney prior to the onset of ischemia/

reperfusion injury. As an illustration, a liposomal delivery

form of HSP72 prevented the ischemia-induced renal tubular

cell apoptosis by inhibiting NF-κB activation and TNF-α pro-

duction. The authors suggested that the impact on this mech-

anism can underlie therapeutic interventions that minimize

renal dysfunction and accelerate recovery from AKI

(Meldrum et al. 2003).

Development of a viable pharmacological strategy to re-

duce AKI, including the pathologies induced by renal trans-

plantation, is highly desirable. The ultimate aim is to improve

the function and longevity of transplanted organs by adminis-

tering a single dose of an agent to an organ donor prior to

organ retrieval. In addition, it may be beneficial to treat the

organ ex vivo with a drug delivered by machine perfusion

prior to the implant procedure (O’Neill et al. 2013). Recent

research has begun to focus on pharmacological induction of

HSP70, but so far only in experimental models (Tsuji et al.

2009; O’Neill et al. 2014). The treatment with an HSP70 in-

ducer geranylgeranylacetone (GGA) before ischemia results in

increased renal cortical HSP70 content, decreased BUN levels,

more rapid renal recovery, preserved tubular morphology after

injury, and improved animal survival (Wang 2011). The HSP90-

binding agent geldanamycin and its analogs (17-AAG and 17-

dimethylaminoethylamino-17-demethoxygeldanamycin,

alvespimycin (17-DMAG)) are known to upregulate HSPs. The

treatment with these agents results in increased expression of

HSP70 in human cells in vitro and murine cells in vivo. This

expression pattern is associated with cell protection from oxida-

tive injury and decreased morphological and functional injury

following ischemia/reperfusion injury in a mouse model

(Harrison et al. 2008); attenuated renal fibrosis through degra-

dation of TGF-β-receptor in the unilateral ureteral obstruction

model (Noh et al. 2012); improved renal function; decreased

albuminuria and renal lesions, such as mesangial expansion,

leukocyte infiltration, and fibrosis, in diabetic mice (Lazaro

et al. 2015). Geldanamycin, herbimycin, and then radicicol were

the first natural Hsp90 inhibitors discovered; however, their in-

stability and hepatotoxicity limited any clinical potential

(O’Neill et al. 2012). A geldanamycin analog 17-allylamino-

17-demethoxygeldanamycin (17-AAG) was well tolerated and

assessed in a clinical trial. 17-DMAG is another water-soluble

geldanamycin analog, which can be administered both intrave-

nously and orally (Kim 2009). However, due to the fact that the

exact mechanisms of protective action of HSPs and potential

side effects in renal diseases are not established yet, the use of

these drugs is limited in human studies. O’Neill (2015) recently

studied a new small molecule HSP90 inhibitor (AT13387) in an

established renal IRI model to assess efficacy of this agent in

reducing renal IRI. Following renal IRI, AT13387 significantly

reduced serum creatinine, tubular necrosis, TLR4 expression,

and NF-κB-dependent chemokines in mice. AT13387 also has
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a low toxicity profile and better translational potential than 17-

DMAG, and therefore, it may be possible to more rapidly trans-

late this therapy into a clinical trial. Thus, preventive treatment

with AT13387 could be administered in individuals at high-risk

of acute ischemic kidney injury (patientswith preexisting kidney

disease, diabetes, or previous toxic drug and radiological con-

trast exposure) (O’Neill 2015).

Zhang (2009) demonstrated that pretreatment of animals

with a single dose of glutamine i.v. (0.75 g/kg) 1 h in advance

was effective in IRI in rats. Ischemia–reperfusion renal injury

Table 2 The pleiotropic effects of HSPs in the kidney

HSPs Effects References

HSP27 • Inhibits actin polymerization and aggregation, stabilizing actin cytoskeleton

• Maintenance of foot process structure of podocytes (in normal cells and

nephrotic syndrome)

• Prevent apoptosis via decrease of caspases activity

• Protects against the oxidative stress

• Rescued endothelial dysfunction

• Inhibits renal fibrogenesis

• Preserved E-cadherin during an EMT

• Inhibits osmotic damage in medulla

Smoyer et al. (1996)

Mehlen et al. (1997)

Neuhofer et al. (1998)

Preville et al. (1998)

Schober et al. (1998)

Smoyer et al. (2000, 2002)

Kim et al. (2010)

Vidyasagar et al. (2013)

Matsumoto et al. (2015)

Tian et al. (2016)

HSP70 • Shaping the structure of newly synthesized native proteins

• Restoring of partially denatured proteins

• Degradation of irreversibly damaged protein molecules

• Transport of proteins through intracellular membranes into the organelles

• Cleavage of protein aggregates

• Prevent apoptosis

• Supress pro-inflammatory NF-κB signaling

• Protects against the oxidative stress

• Suppresses of stress kinases (JNK and p38), caspases, and activates of the

MEK/ERK pathway

• Supress TGF-1 signal, decreased the number of SMA-positive myofibroblasts,

collagen I deposition, reduced tubulointerstitial fibrosis

• Mediates anti-inflammatory response

• Interplays with co-chaperones—HSP40, 90, 60, 27 for more effective protein

refolding

Frydman et al. (1994)

Aufricht et al. (1998)

Beck et al. (2000)

Park et al. (2002)

Shimizu et al. (2002)

Uchinami et al. (2002)

Suzuki et al. (2005)

Jo et al. (2006)

Wang et al. (2009)(

Mao et al. (2008)

Schnaper et al. (2009)

Marzec et al. (2009)

Wang et al. (2011)

Sreedharan et al. (2011)

Kim et al. (2014)

Kampinga et al. (2016)

HSP60 • Folding of newly synthesized native proteins

• Refolding damaged protein molecules

• Preventing the Bax-mediated apoptosis

• Promotes protein translocation into mitochondria

• Mediates anti-inflammatory response

Frydman et al. (1994)

Stuart et al. (1994)

de Kleer et al. (2003)

Zanin-Zhorov et al. (2003, 2006)

Tsuji et al. (2009)

HSP90 • Folding of a variety of client proteins: tyrosine kinases (e.g., Akt and MEK),

transcription factors, structural proteins (tubulin, actin), HIF-1α, and TGF-β

receptors

• Forms of Bintermediate complex^ with co-chaperones—Hsp70, p50 (cdc37),

HOP, and p23 resulting in enhanced degradation of the client proteins

• Binds to HSF-1 and maintains the transcription factor in a monomeric state

• Regulates the synthesis of NO-dependent on endothelial NO-synthase, normal

renal blood flow and glomerular filtration rate

Zou et al. (1998)

Pearl and Prodromou (2000)

Murata et al. (2003)

Goetz et al. (2003)

Neckers and Ivy (2003)

Ramirez V. et al. (2008)

Noh et al. (2012)

Wang et al. (2014)

HSP47 • Binds to the triple helical procollagen and stabilizes its structure

• Promotes excessive assembly of collagens

• Increases of collagen type I, IV, fibronectin, and t-PAI expression

• Promotes glomerulosclerosis and interstitial fibrosis

Razzaque and Taguchi (1997)

Tasab et al. (2000)

Xiao et al. (2012)

HSP32 (HO-1) • Protects against the oxidative stress

• Prevent apoptosis

• Limits production of NO by iNOS

• Mediates anti-inflammatory response

• Reduces TGF-β expression

Albakri and Stuerh (1996)

Nakao et al. (2003)

Choi et al. (2005)

Toru et al. (2006)

Ohtomo et al. (2008)

Wei et al. (2011)

ROS reactive oxygen species, EMTepithelial–mesenchymal transition, SMA smoothmuscle actin,NO nitric oxide, iNOS inducible nitric oxide synthase,

HIF-1α hypoxia-inducible factors, HOP Hsp70/Hsp90 organizer protein, HSF-1 heat shock factor protein 1, t-PAI tissue-type plasminogen activator

inhibitor
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and cell apoptosis in the glutamine group were significantly

milder than those in control group. HSP70 expression was

higher in the glutamine group, and the peak of HSP expression

was much earlier. The mechanism of glutamine in reducing

renal IRI is partially due to the induction of HSP70 expres-

sion, through which anti-inflammatory, anti-injurious, and

anti-apoptotic action work.

In addition to the protective function as a chaperone mol-

ecule, HSP70 and HSP60 can modulate chronic immune in-

flammation by regulation of the immune activity of Tregs

and other infiltrating inflammatory cells in immune diseases,

such as chronic glomerulonephritis. The introduction of bac-

terial HSPs is attempted as factors contributing to the deter-

mination of the cross-reactive epitopes and to the formation

of regulatoryTcell activity in experimental animals (Shi et al.

2014) and in patientswith autoimmune diseases. The protec-

tive effect of immunization by bacterial HSP is ensured by

the high degree of homology of certain HSP epitopes of bac-

teria and humans (mostly of intermediate and C-terminal

peptides). The induction of regulatory protective T cell phe-

notype is associated only with the cross (homologous) pep-

tides, whereas bacterial (existing exclusively in bacteria, and

non-homologous) epitopes induce the development of in-

flammatory response (Pockley 2003). To clarify the factors

that contribute to the determination of cross-reactive epi-

topes and the formation of regulatory Tcell activity in immu-

nization by bacterial HSPs, further research is needed.

However, attempts were made to use bacterial HSPs for pre-

vention and inhibition of autoimmune diseases in an experi-

ment and in a clinical setting.TheuseofOM-89 (Escherichia

coli extract purified from endotoxin and containing HSP60

and HSP70) in one study and dnaJP1 (HSP40 bacterial pep-

tide) in another study has not been accompanied by the de-

velopmentof side effects and resulted in agoodclinical result

(Vischer 1990; Rosenthal et al. 1991; Prakken et al. 2004).

The immune modulatory effect consisted of Bswitching^ of

pro-inflammatory T cell phenotype (Th1) to anti-

inflammatory one (Treg). The dnaJP1 peptide was safe and

well tolerated. In response to treatment with dnaJP1, there

was a significant reduction in the percentage of T cells pro-

ducing tumor necrosis factor α and a corresponding trend

toward an increased percentage of T cells producing

interleukin-10 (Koffeman et al. 2009). Subcutaneous injec-

tions of p277 peptide (HSP60 peptide) to type I diabetes

patients provided a favorable clinical effect based on the im-

mune switching of Th1 response to the anti-inflammatory

Th2 one (Raz et al. 2001; Huurman et al. 2008). Of signifi-

cant interest are findings by Kim et al. (2014) that the heat

preconditioning significantly expanded the intrarenal CD4+

CD25+ Treg population following renal IRI in comparison

with control injured kidneys. Heat preconditioning induces

renoprotection that is Treg dependent and associated with

increased expression of HSP70.

An elegant clinical approach was described by McCarty

and Al-Harbi who vaccinated patients, which have been sub-

jected to heat shock in the early 1990s in Kuwait, with human

mononuclear cells (McCarty and Al-Harbi SA 2013).

Mahmoud FF (1996, 2010) documented anomalous immune

cell activation and deficiency (CD4+CD25+) of Treg cells

among citizens of Kuwait following the 1991 Gulf War, con-

tributing to increases in chronic illness and autoimmunity in

this population. The mononuclear cells were incubated at

42 °C for 30 min, then at 37 °C for 24–48 h, which resulted

in activation of the synthesis of heat shock proteins. Then,

these cells were injected subcutaneously into the patients.

This therapeutic procedure dubbed MAM-14 that was found

to be therapeutically beneficial, low cost, and side effect-free

in the autoimmune patients (McCarty and Al-Harbi SA 2013).

Althoughmanymodels of kidney diseases have focused on

the effect of HSP70, other strategies have been used to manip-

ulate HSP and protect kidneys from injury. These include

inhibition of HSP90, which may mediate protection through

induction of HSP70 and selective expression of HSP27 and

HO-1.

The intrarenal transfection of HSP90 protects against the

renal damage induced by ischemia/reperfusion. Rats subjected

to ischemia/reperfusion and transfected with HSP90 showed

preservation of the tubular epithelium and no reduction in renal

blood flow and abnormal proteinuria (Barrera-Chimal et al.

2014). Tanaka et al. (2013) showed that HSP90 inhibitor 17-

dimethylaminoethylaminogeldanamycin (17-DMAG) signifi-

cantly suppressed the proliferation of human aortic endothelial

cells induced by anti-HLA IgG. HSP90 plays a role in endo-

thelial cell proliferation induced by anti-HLA alloantibodies,

and therefore, it can be a potential target for the treatment of the

acute antibody-mediated rejection in kidney transplantation.

Kim et al. (2010) introduced HSP27-lentiviral constructs

via injections into the kidneys 2 days prior to induction of

ischemia in mice. HSP27 overexpressing mice demonstrated

lower plasma creatinine, significantly lower apoptosis and ne-

crosis, and lower induction of mRNAs of various pro-

inflammatory cytokines and neutrophil infiltration. These

mice also demonstrated better F-actin preservation in the

proximal tubules, thus substantiating a therapeutic role for

HSP27 as an actin remodeling protein during conditions of

ischemic injury. It is supposed that kidney-directed local ex-

pression of HSP27 through lentiviral delivery is a viable ther-

apeutic option in attenuating the effects of renal IRI.

Vidyasagar et al. (2013) demonstrated that overexpression

of HSP27 was associated with decreased renal fibrosis after

UUO. In their earlier study, the same authors suggested a

therapeutic role for HSP27 delaying tubular injury by main-

taining E-cadherin protein levels, possibly through the down-

regulation of Snail. HSP27 was overexpressed in rat proximal

tubular cells NRK52E by transiently transfecting with a

plasmid-HSP27 cDNA construct (Vidyasagar 2008).
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Studies on HO-1 and AKI support a therapeutic approach

for human AKI based on the induction of HO-1.

Administration of macrophages modified to overexpress

HO-1 would protect from renal IRI. Using an adenoviral con-

struct, HO-1 was overexpressed in primary bone marrow-

derived macrophages. The injection of macrophages to mice

resulted in serum creatinine reducing and promoted resolution

of platelet deposition. The protective effects of these macro-

phages likely reflected their elicited anti-inflammatory actions

and their enhanced capacity to phagocytose apoptotic cells

(Ferenbach et al. 2010). Macrophages in which HO-1 is up-

regulated thus provide a strategy to reduce the risk for ische-

mic AKI in the elderly and other susceptible patient popula-

tions. In a study by Сhen et al. (2015), preconditioning by

HO-1 inducer (hemin) enhanced tubular recovery, which sub-

sequently prevented further renal injury in a mouse model of

renal IRI. Cheng et al. (2012) recently showed that

adiponectin upregulated HO-1 could protect against IRI-

induced renal damage. In an SLE (MRL/lpr) mice model,

the induction of HO-1 with hemin resulted in decreased pro-

teinuria, reduced glomerular immune complex deposition, and

decreased levels of anti-dsDNA immunoglobulin (Takeda

et al. 2004). Positive effects of HO-1 preconditioning, which

resulted in the decreased renal injury, were obtained in the

models of cisplatin-, cyclosporine-, and contrast-induced ne-

phropathy (Agarwal 1995; Rezzani 2005; Goodman 2007).

The strategy based on application of HO-1 inducers, such

as Ginkgo biloba, curcumin, and sour cherry seed extract, is

not only safe but also low cost (reviewed by Haines et al.

2012). A source of HO-1-inducing phytochemicals is the

biflavone component of seeds Prunus cerasus—the Lake

Balaton sour cherry. Dietary administration of sour cherry

seed kernel biflavones induces expression of physiologically

relevant CO levels in selected tissue (Szabo et al. 2004). Sour

cherry seed extracts and other phytochemical HO-1 inducers

are likely to significantly expand the range of pathologies that

may be treated at low cost and with minimal adverse effects

(Haines et al. 2012). A polyphenol component of green tea,

epigallocatechin-3-gallate, is an inducer of HO-1 capable of

protecting kidneys from ischemia/reperfusion (IR) injury

(Kakuta et al. 2011). Plant-derived compounds are non-toxic

and may be used in patients with kidney diseases.

Recently, the introduction of DNAvaccines was attempted

to prevent and treat autoimmune diseases. The effectiveness of

HSPs for their prevention and inhibition pave the way to ap-

plication of HSP-immunotherapy of kidney immune and in-

flammatory diseases. Mice vaccinated with DNA that

encoded the membrane-bound or secreted forms of HSP70

showed significant increase in the frequency of IFN-γ-

secreting T cells. Inclusion of these novel forms of HSP70

may increase the efficacy of DNA vaccines and opens up the

possibility of use of human HSP70 as an effective adjuvant in

DNA clinical trials (Garrod et al. 2014).

In recent years, several experimental studies of heat shock

proteins DNA vaccination method were performed with suc-

cess, mainly in adjuvant arthritis. A single intramuscular in-

jection of vaccinal DNA provided cellular and humoral im-

mune response to antigen and induction of memory cells

(Gurunathan et al. 2000). The vaccination with HSP60 and

70 DNA has been shown to activate the specific T cell clones

secreting anti-inflammatory IL-10 and TGF-β and to cause

the inhibition of autoimmune disease in an experiment

(Quintana and Cohen 2005). Moreover, the HSP70 vaccine

induced a response not only to the genuine peptides but also to

multiple HSP60 peptides, i.e., the development of immuno-

logical cross-phenomenon between structurally non-

homologous molecules, though the mechanisms of this effect

require further investigation (Quintana et al. 2004).

Conclusion

In kidney tissue, HSPs are an important part of the intracellu-

lar defense system, which is operated physiologically and ac-

tivated by different types of cellular stress. The various HSPs

inside the cell provide stabilization of cell structures, enhance

cell resistance to apoptosis and necrosis, and preserve poten-

tial for further regeneration. The unique properties of HSP60s

and HSP70s provide an important immunoregulatory function

in human body. Expression of these proteins on the inflamma-

tion cell surface results in differentiation of specific regulatory

phenotypes of HSP-specific T-lymphocytes (CD4+, CD25+,

Th2, Tc1 cells). By regulating the phenotype of T cells and

production of anti-inflammatory cytokines, HSPs form a mi-

croenvironment conducive to limit the inflammatory process.

CKDs result in a violation of HSP function, which can lead to

a violation of local kidney self-defense mechanisms with

resulting progressive tissue damage. The study of HSPs in

kidney tissue in normal and chronic diseases is very impor-

tant, as HSPs are promising targets for the development of

new approaches to the treatment of kidney diseases.
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