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Abstract 49 
Many heat shock proteins (HSPs) are essential to survival as a consequence of their role as 50 
molecular chaperones, and play a critical role in maintaining cellular proteostasis by 51 
integrating the fundamental processes of protein folding and degradation. HSPs are 52 
arguably amongst the most prominent classes of proteins that have been broadly linked to 53 
many human disorders, with changes in their expression profile and/or 54 
intracellular/extracellular location now being described as contributing to the pathogenesis of 55 
a number of different diseases. Although the concept was initially controversial, it is now 56 
widely accepted that HSPs have additional biological functions over and above their role in 57 
proteostasis (so called ‘protein moonlighting’). Most importantly, these new insights are 58 
enlightening our understanding of biological processes in health and disease, and revealing 59 
novel and exciting therapeutic opportunities. This theme issue draws on therapeutic insights 60 
from established research on HSPs in cancer and other non-communicable disorders, with 61 
an emphasis on how the intracellular function of HSPs contrasts with their extracellular 62 
properties and function, and interrogates their potential diagnostic and therapeutic value to 63 
the prevention, management and treatment of chronic diseases. 64 
 65 
1. Introduction 66 
The most extensively studied heat shock proteins (HSPs) are the molecular chaperones that 67 
function intracellularly in an ATP-dependent manner and include heat shock protein 60 68 
kDa/heat shock protein 10 kDa (HSP60/HSP10; chaperonins) (HSPD/HSPE); HSP40 69 
(DNAJ), HSP70 (HSPA); HSP90 (HSPC); HSP100; and HSP110 (HSPH) families. The 70 
expression of many of these HSPs is regulated by heat shock transcription factors (HSFs), 71 
of which HSF1 is the best studied. Increasing evidence now suggests that these molecular 72 
chaperones also have biological properties in the extracellular environment which may be 73 
independent of their chaperone functions. In addition to ATP, the molecular chaperone 74 
activity of the major HSPs is regulated by a cohort of non-substrate accessory proteins, 75 
known as co-chaperones. Co-chaperones are a diverse group of chaperone regulatory 76 
proteins which are required, to a greater or lesser degree, by certain chaperones. HSP90, 77 
for example, has over 20 co-chaperones that fine tune its function and adapt it to the 78 
different stages of the protein folding pathway. Some HSP families, such as HSP40, include 79 
members having both chaperone and co-chaperone activity.   80 
 81 
A particularly lively area relates to the evolving insight into the therapeutic potential of 82 
targeting HSPs in cancer, and their value as an exciting class of molecular target. Although 83 
HSPs and their transcription factors have been the subject of sustained interest in the field of 84 
cancer biology, more recently they have been attracting interest in many other chronic 85 
conditions such as diabetes, obesity, autoimmune disease, neurodegeneration, muscular 86 
dystrophies, psychiatric disorders and chronic heart failure. These studies are revealing that 87 
although increased levels of intracellular HSPs may be beneficial for acute conditions, such 88 
increases can be detrimental for certain chronic conditions, as exemplified by acute and 89 
chronic heart conditions. The contribution of extracellular HSPs to chronic disease is poorly 90 
understood. Increased levels of extracellular HSPs appear to be detrimental by enhancing 91 
inflammation pathways, and hence for conditions such as diabetes a reduction in the ratio of 92 
extracellular to intracellular HSPs is beneficial. In contrast, extracellular HSPs can also be 93 
beneficial to certain autoimmune conditions as a consequence of their ability to engage with, 94 
and recruit the immunomodulatory activity of regulatory T cell populations. Although the 95 
reported dichotomies in functionality of HSPs would appear to be counter-intuitive and has 96 
been the subject of great debate and counter-arguments, one needs to consider the context 97 
and the temporal nature of disease and its control. What is clear from current knowledge is 98 
that HSPs play important biological roles under physiological, stressful and disease 99 
conditions.  100 
 101 
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The articles in this theme issue highlight how insights (both anticipated and unanticipated) 102 
into the biological function of HSPs in cancer have revealed new therapeutic options for the 103 
treatment of the disease. The issue also explores how the intracellular function (ATP-rich 104 
context) of HSPs contrasts with their extracellular function (ATP-poor context), and their 105 
potential diagnostic and therapeutic value to the prevention, management and treatment of 106 
chronic diseases. Here we integrate and critique the content of this theme issue, addressing 107 
HSP moonlighting in the context of their contrasting intracellular and extracellular roles. 108 
 109 
2. Heat shock proteins and protein moonlighting 110 
Although the finding that exposure to a non-physiological temperature (37°C versus 26°C) 111 
induced a new puffing pattern in the polytene chromosomes of Drosophila [1] was 112 
interesting, the author could not have anticipated the significance and broad reach of this 113 
finding, especially given that the ‘biological relevance of the findings were unclear’ and it 114 
proved difficult to publish the findings. However, over 50 years later, we continue to 115 
appreciate the importance of this heat shock response (HSR) to the maintenance of cellular 116 
homeostasis and protection against a multitude of physical, chemical and biological 117 
stressors that exist in the environment [2]. 118 
 119 
As the protein folding paradigm and molecular chaperone functions of HSPs were 120 
developing in the late 1980s and 1990s, it became apparent that some of these proteins 121 
were also present on the surface of cells or in the extracellular fluids. This contradicted the 122 
established dogma that these proteins were exclusively intracellular and so it took time for 123 
the data to be accepted, the findings to gain traction with the scientific community and for 124 
this new field of extracellular HSPs to be accepted and become established. Interest in the 125 
biological role(s) and functions of these proteins grew, as did interest into the potential 126 
capacity of extracellular HSPs to influence biology and physiology. As discussed in this 127 
issue, it was shown that the treatment of cells with purified HSPs resulted in cell activation 128 
similar to that induced by pro-inflammatory cytokines. Despite controversy surrounding the 129 
possibility that at least some of the pro-inflammatory effects of HSPs might be due to 130 
contaminants of the preparations that have been used [3, 4], there is also a wealth of 131 
evidence from a number of settings which argues against this concept [5]. 132 
 133 
A new paradigm has arisen that at least some HSPs are secreted proteins [6] with pro- 134 
(HSP60, HSP70, HSP90) or anti-inflammatory (HSP10, thioredoxin, HSP27, BiP) actions of 135 
importance in human diseases such as cancer, coronary heart disease, diabetes and 136 
rheumatoid arthritis [7], to name but a few. In addition to having direct effects on cells, HSPs 137 
can bind peptides and present them to T cells to modulate immune responses, and this 138 
might have implications in a number of disease settings, including cancer [8]. It has become 139 
apparent that HSP70 can be present in a membrane expressed form. The significant 140 
diagnostic, therapeutic and imaging potential of this finding, and the progress which has 141 
been made in exploiting membrane HSP70-based theranostics (i.e. combining diagnostic 142 
and therapeutic capabilities into a single agent; a key element of Precision Medicine) for the 143 
management and treatment of patients with cancer, is considered in detail in this issue [9].  144 
 145 
Taken together, the findings that HSPs can be present in the extracellular and cell-146 
associated compartments have led to the establishment of a new paradigm which 147 
designates these proteins as ‘moonlighting proteins’ (proteins with more than one function) 148 
that have the capacity to ‘escape’ from cells and interact with different cell types to elicit a 149 
range of biological effects. These proteins can even act as receptors for inflammatory 150 
mediators called ‘inflammogens’ [10]. Support for this new paradigm comes from a number 151 
of studies that are highlighted in this issue [11], and a large number of studies that have, and 152 
continue to reveal, the presence of a number of HSPs in the bodily fluids of humans and 153 
animals [12]. The first two contributions in this issue provide a critical overview of 154 
extracellular HSPs [11] and the biology of protein moonlighting [13]. 155 
 156 
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3. Intracellular versus extracellular heat shock proteins in cancer  157 
The initiation, progression and metastasis of cancer have all been shown to be accompanied 158 
by multiple cellular insults arising from both intracellular and extracellular sources. Internal to 159 
the cancer cell, the high expression of oncogenic proteins (many of which are mutated), 160 
altered cellular metabolism, aneuploidy and genomic instability all contribute to its 161 
characteristic stressed phenotype. Moreover, during cancer development, cells are exposed 162 
to altered extracellular conditions that can include hypoxic, acidotic, mechanical and nutrient 163 
deprived microenvironments, further stimulating the cancer cell to engage highly conserved 164 
survival pathways such as the HSR. Consistent with the knowledge that cancer cells are 165 
exposed, both internally and externally, to major proteotoxic insults that challenge cellular 166 
homeostasis and survival, it is not surprising that cancers constitutively express high levels 167 
of HSP family members. In fact, tumour cells have become to be regarded as addicted to 168 
HSPs (e.g. HSP90) as well as their transcriptional regulators (e.g. HSF1).  169 
 170 
Increased expression of many HSPs, including HSP27 (HSPB1), HSP72 (HSPA1A, 171 
HSPA1B) and HSP90 (HSP90AA1, HSP90B1), have been shown in a wide variety of cancer 172 
types such as breast, prostate, lung and melanoma, and are associated with poor patient 173 
outcomes. Moreover, HSF1, the master regulator of the HSR has also been shown to be 174 
increased in expression and constitutively activated in many cancers. The parallel molecular, 175 
genetic and pharmacological investigations that have been performed in relation to HSPs 176 
and their signalling and transcriptional regulation, has further confirmed their importance to 177 
the growth and progression of many tumour types (reviewed in this issue [14]). For example, 178 
the work in targeting and developing HSP90 inhibitors has confirmed the importance of 179 
HSP90 to cancer signalling and oncogene driven growth (reviewed in this issue [15]). In a 180 
similar manner, the HSR has been shown to be an integral part of the oncogenic network, 181 
working through the actions of HSF1 to maintain cancer cell survival and function (reviewed 182 
in this issue [16]). Interestingly, it has been shown that within the oncogenic context, the 183 
expression of HSF1 is indispensable for the growth and survival of cancer cells, while its loss 184 
in non-transformed cells has little to no effect [17]. 185 
 186 
HSF1 and many of the HSPs have been shown to play fundamental roles in many aspects of 187 
the cancer cell phenotype associated with the hallmarks of cancer [18] including sustained 188 
proliferative signalling, evading growth suppression, replicative immortality, angiogenesis, 189 
resisting cell death and supporting invasion and metastasis [19]. Moreover, they are also 190 
involved in a number of the more recently identified hallmarks of cancer such as the 191 
deregulation of cellular energetics, genome instability, avoiding immune destruction and 192 
enabling tumour-promoting inflammation. The wide-ranging actions of the HSPs and HSF1 193 
are not limited to the cancer cells themselves, but have also been shown to play important 194 
roles for accessory cell function within the tumour microenvironment such as the cancer 195 
associated fibroblasts (CAFs) and tumour associated macrophages (TAMs), ultimately 196 
contributing to cancer cell growth and progression [20].  197 
 198 
Although it was originally proposed that the actions of HSPs were primarily intracellular to 199 
cancer cells and other cells of the tumour microenvironment, it is now evident that their 200 
presence and functionality are also very important to many molecules and processes 201 
external to the cell. For example, HSP90α (HSP90AA1) is known to exist outside the cell, 202 
termed as eHSP90, and has been shown to interact with a number of client proteins, 203 
including matrix metalloproteinase 2 (MMP2) through which it enhances the migration and 204 
invasion of cancer cells (reviewed in this issue [14, 15]). It has been shown that the functions 205 
of extracellular HSPs can have both anti-tumour or pro-tumour effects, ranging from anti-206 
tumour or pro-tumour immunomodulation (HSP90, HSP72, HSC70, HSP60, HSP27), 207 
suppression or promotion of tumour cell proliferation (GRP78, HSP20, HSP27), as well as 208 
promotion of cancer cell invasion (HSP90, GRP75, HSP27) and angiogenesis (HSC70) [21-209 
26]. Moreover, co-chaperones of HSP90, such as the HSP70/HSP90 organising protein 210 
(HOP), HSP40 and p23 have also been shown to be extracellular, and similar to their role 211 
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internal to the cell, are in complex with HSP90 to elicit extracellular functions such as MMP-2 212 
activation and cancer cell invasion and migration [23, 27]. 213 
 214 
Our increasing knowledge of the unique roles of HSPs and their co-chaperones external to 215 
the cell is leading to novel approaches for the therapeutic targeting of cancers. For example, 216 
cell surface HSP70 is currently being used as a target of novel therapies that include 217 
nanoparticle-based treatments for cancer, and cell-impermeable HSP90 inhibitors are being 218 
examined as to their efficacy in inhibiting cancer migration and invasion (reviewed in this 219 
issue [9]). Therefore, our increased understanding of the actions of extracellular HSPs will 220 
not only lead us to a better understanding of the biology of cancer and its progression, but 221 
will also reveal further therapeutic opportunities for the treatment of advanced cancers. 222 
 223 
4. Intracellular versus extracellular heat shock proteins in chronic diseases 224 
Much of the research into the function of HSPs in chronic disease has been focussed on 225 
cancer. However, it is also clear that HSPs are involved in many other chronic conditions, 226 
from neurological and muscle-wasting disorders to obesity and post-traumatic stress. This 227 
range of chaperonopathies highlights the important and central role which these proteins 228 
play in maintenance of correct cellular function.  229 
 230 
Findings from experimental, pharmacological or exercise studies on changes to HSP72 231 
expression levels suggest that the manipulation of the extracellular to intracellular ratio of 232 
HSP levels represents a useful avenue for the prevention and treatment of diabetes 233 
(reviewed in this issue [28]). For example, there is evidence that exercise promotes the 234 
release of extracellular HSP72 from certain human cells (brain, [29]; epithelium, [30]; 235 
immune system, [31]; muscle and adipose tissue, [32]). However, long-term exercise 236 
promotes a decrease in extracellular HSP72 and an increase in intracellular skeletal muscle 237 
HSP72 [28]. In fact, it is now apparent that the balance of extracellular (pro-inflammatory) 238 
versus intracellular (anti-inflammatory) HSP72 appears to be a determining factor for the 239 
extent of tissue inflammation and hence the pathology associated with diabetes. It is 240 
hypothesised that interventions that lower the extracellular to intracellular HSP72 ratio are 241 
potentially beneficial in the context of diabetes progression [33]. Hence, carefully constructed 242 
exercise regimes that favourably modulate this HSP72 ratio may serve as powerful 243 
therapeutic interventions for the prevention and management of diabetes. However, more 244 
detailed studies on extracellular HSPs and the effects of exercise are needed, particularly 245 
the contribution of different tissues to extracellular HSP expression levels, and the 246 
biochemical and physiological mechanisms of action of these HSPs.      247 
 248 
HSPs, and HSP72 in particular, also play an important role in muscle function and are 249 
potential therapeutic agents for muscle wasting conditions (reviewed in this issue [34]). 250 
HSP90, HSP72, and HSP27 all have a pro-myogenic role in muscle development, albeit via 251 
distinct mechanisms. HSPs are also differentially expressed in the muscle progenitor pool 252 
that differentiates to give rise to new muscle tissue [34]. HSP72 is the most widely studied 253 
HSP in this context and is required for muscle repair after acute injury. Both intracellular and 254 
extracellular HSP72 contribute to this process, with extracellular HSP72 functioning primarily 255 
via the activation of the immune response. Interestingly, many of the effects of HSP72 256 
knockout on muscle regeneration involve the immune response, which suggests that, given 257 
that extracellular HSP72 arises from intracellular HSP72, the extracellular functions of 258 
HSP72 are more important in this context. Indeed, injection of extracellular HSP72 has been 259 
shown to ameliorate many of the effects of muscle injury in HSP72 null mice [35]. With 260 
respect to disease, over-expression of intracellular HSP72 had a positive effect and led to 261 
improvements in body strength and endurance, diaphragm health, normalised muscle force 262 
and reduced markers of muscle damage in a mouse model of Duchenne muscular dystrophy 263 
[36]. HSP72 also has a positive effect on muscle function in the context of muscle 264 
immobilisation, suggesting that over-expression of this protein may be a therapeutic 265 
approach for a range of muscle wasting conditions. It is likely that at least some of the 266 
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described functions of HSP72 in these conditions are attributed to the extracellular function, 267 
but this has not been demonstrated definitively.  268 
 269 
In addition to a role in muscle-related immune responses, experimental models have 270 
provided evidence that both intracellular and extracellular HSPs also have a protective 271 
function in autoimmune diseases (reviewed in this issue [37]). The application of exogenous 272 
extracellular recombinant HSPs and the experimental co-induction of endogenous 273 
intracellular HSPs have been shown to lead to production of disease protective regulatory T 274 
(Treg) cells [37, 38]. This has stimulated research into the development of therapeutic HSP-275 
based peptide vaccines for the restoration of immune tolerance in inflammatory diseases. 276 
 277 
There is emerging evidence for increased expression of extracellular HSP70, HSP90, and 278 
certain associated co-chaperones (e.g. BAG-3) in heart failure, and that their functions are 279 
complementary and independent of their intracellular isoforms. The important therapeutic 280 
and diagnostic considerations of these findings are reviewed in this issue [39]. Current 281 
findings suggest that therapeutic strategies involving the increase of HSP levels may be 282 
applicable in the context of acute heart conditions (e.g. acute myocardial infarction/ischemic 283 
reperfusion injury), but not chronic heart conditions (e.g. hypertension). Indeed, the 284 
pharmacological enhancement of intracellular HSP function has been shown to provide 285 
protection against experimental myocardial infarction [40]. With respect to chronic heart 286 
conditions, extracellular and intracellular HSPs exert different effects. For example, a 287 
decrease in the expression of intracellular HSP70 promotes cardiomyocyte hypertrophy and 288 
dysfunction while protecting mice from cardiac fibrosis, whereas inhibition of extracellular 289 
HSP70 has been shown to improve hypertension-induced hypertrophy and fibrosis [41]. In 290 
the context of chronic heart disease, there are some parallels in the findings for extracellular 291 
HSP90 and extracellular HSP70. For example, the decrease in fibronectin levels, collagen 292 
production and the associated TGFβ signalling pathway via the inhibition of extracellular 293 
HSP90 [42, 43] has implications for the fibrosis-related pathology of chronic heart conditions. 294 
Although there is great promise for extracellular HSP70 and HSP90 as diagnostic markers of 295 
chronic heart disease, a deeper understanding of the mechanism(s) of action of extracellular 296 
HSP70 and HSP90 and its co-chaperones is required before effective prevention and 297 
treatment can be achieved. 298 
 299 
HSPs are also important in the context of neurodegeneration and neurological dysfunction 300 
leading to psychiatric diseases. HSP40s are the largest and most diverse of the HSPs and 301 
changes in different HSP40 isoforms all give rise to different, but related forms of 302 
neurodegeneration (reviewed in this issue [44]). Although these HSP40 isoforms share 303 
structural features such as the J domain, they also contain a number of unique functional 304 
domains (particularly since most of the isoforms associated with disease are the more 305 
diverse type III HSP40/DNAJC). The redundancy between isoforms in some contexts can 306 
also explain why it is possible to ameliorate the disease consequences of a mutation or 307 
deficiency of one isoform via over-expression of another. For example, overexpression of 308 
DNAJA1 can suppress aggregation of polyQ ataxin associated with neurodegeneration [45]. 309 
Interestingly, there are no neurological disorders associated with mutations in type I HSP40s 310 
like DNAJA1, presumably because many of these proteins are essential and loss of function 311 
cannot therefore be tolerated. With respect to psychiatric disorders, the co-chaperone 312 
FKBP51, acting via HSP90, is both a causative agent and biomarker for various forms of the 313 
disease (reviewed in this issue [46]). Increased levels of FKBP51 lead to glucocorticoid 314 
resistance by retarding the recruitment of glucocorticoid receptor (GR) to the nucleus and 315 
perturbing signalling via the hypothalamic-pituitary-adrenal (HPA) axis that culminates in a 316 
poor stress coping phenotype [46]. Specific single nucleotide polymorphisms that result in 317 
methylation changes which alter levels of FKBP51 may be a risk or prognostic factor for 318 
anxiety or suicide risk [47, 48]. This suggests that modulation of FKBP51 levels may be a 319 
relevant therapeutic strategy. However, in the context of both HSP40-related 320 
neurodegeneration and FKBP51-related psychiatric disorders, we have limited 321 
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understanding of the relative contribution of intracellular versus extracellular forms of the 322 
relevant HSPs due to a paucity of data. Certainly, it is known that both HSP70 and HSP90 323 
are extracellular and therefore it is at least theoretically possible that co-chaperones of these 324 
two proteins (HSP40 and FKBP51) also exist in functional extracellular forms. In these 325 
examples, what we do know is that disease is usually associated with a change in the levels 326 
of a particular HSP. For example, mutations or deletions in the HSP40 isoform DNAJC29 is 327 
one of the most common causes of ataxia [49]. In some instances, the change in HSP levels 328 
are associated with missense mutations, deletions or splicing changes, while in other cases 329 
levels change in response to the environment (such as age-induced increases in FKBP51 330 
levels which are associated with psychiatric disorders).  331 
 332 
5. Conclusion 333 
Fundamental insights into how HSPs give rise to disease will be an important component of 334 
therapeutic targeting of these proteins. However, many knowledge gaps remain and need to                              335 
be addressed. Importantly, with cancer and autoimmune disease being the exceptions, there 336 
is limited insight into the role played by extracellular HSPs in chronic diseases such as 337 
neurodegeneration or psychiatric disorders. In addition, while much is known about the 338 
mechanism of action of specific intracellular HSP networks, such as the HSP90-HOP-HSP70 339 
or HSP70-HSP40 complexes, the genesis and function of these HSP complexes in the 340 
extracellular milieu is poorly understood and raises many fundamental questions that need 341 
to be answered before therapeutic applications can be properly developed. Like the HSPs 342 
they regulate, co-chaperones like HOP appear to also be secreted via exosomes [50]. 343 
However, it is not known if HOP is secreted together with HSP90 and HSP70 as a functional 344 
complex, or if it is secreted separately and then forms a complex with the HSPs [51]. 345 
Therefore, the major questions that need to be answered for these extracellular HSP 346 
complexes and many other extracellular HSPs include the following: 347 
 348 

1. What is the origin of extracellular HSPs, and which isoforms are structurally and 349 
functionally distinct from their intracellular counterparts, and which isoforms are 350 
derived from their intracellular counterparts? 351 

2. Which isoforms of extracellular HSPs are encoded by separate genes and which are 352 
encoded by splice variants of the same gene? 353 

3. Are there receptors associated with extracellular HSPs? 354 

4. As a general principle, is the ratio of extracellular to intracellular HSP levels important 355 
for cellular and physiological homeostasis? 356 

5. What stimuli, mechanisms and pathways are required for the secretion of 357 
extracellular HSPs? 358 

6. Do extracellular (exosomal) HSPs function as molecular chaperones, is their activity 359 
regulated by extracellular co-chaperones and what defines extracellular client 360 
proteins? 361 
 362 

While there is much work to be done before we can more fully define the true biological role, 363 
therapeutic potential and significance of extracellular HSPs, we can draw inspiration from 364 
Hippocrates who stated: ‘That which drugs fail to cure, the scalpel can cure. That which the 365 
scalpel fails to cure, heat can cure. If the heat cannot cure, it must be determined to be 366 
incurable’. 367 
 368 
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