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The significance of immune responses to certain heat shock
proteins (HSPs) that develop in virtually all inflammatory
diseases is only now becoming clear. In experimental
models, HSPs prevent or arrest inflammatory damage, and
initial clinical trials in chronic inflammatory disease have
shown HSP peptides to promote production of anti-inflam-
matory cytokines—indicating immunoregulatory potential.
HSPs are ubiquitous self-antigens that are highly expressed in
inflamed tissues. The prokaryotic homologous proteins,
present in every bacterial species, are dominantly immuno-
genic. This is striking, especially as these proteins have large
areas of sequence homologies with the host (mammalian)
counterparts. In several experimental models of autoimmune
diseases, immunisation with bacterial HSPs inhibited disease
development, as did oral/nasal administration. Based on the
experimental evidence so far, it is tempting to speculate that:
firstly, exposure to homologues of these self-antigens, as
present in, for instance, the bacterial intestinal flora, has a
decisive impact on the regulation of self-tolerance at the level
of T cells; and secondly, such proteins or their derivative
peptides may have a role in an antigen specific immunother-
apy approach involving modulation of relevant T cells,
without the immediate necessity of defining disease specific
autoantigens. Recent findings in experimental asthma and
atherosclerosis have indicated that the field of application of
such immunotherapy can be broader than just autoimmunity.

H
eat shock proteins (HSPs) were originally discovered as
proteins induced by heat stress and were named
accordingly. Nevertheless, other stressful stimuli, such

as hypoxia, toxic chemicals, and inflammation, also induce
HSP expression.1 2 Several distinct families of HSPs can be
distinguished, based on their molecular weight: HSP10,
HSP40, HSP60, HSP70, HSP90, and HSP100. All the members
of the HSP families play an important role in cell survival
under both physiological and stress conditions due to their
function in chaperoning other intracellular proteins during
(re)folding and assembly.3 4

HSPs are evolutionary highly conserved proteins and are
abundantly expressed in both prokaryotic and eukaryotic
organisms. Despite their evolutionary sequence conservation,
even between microbes and their host self-homologues, the
microbial proteins are highly immunogenic and have been
implicated in the control of autoimmune inflammation due
to a cross-reactive immune response. HSP immunisations
have been shown to inhibit autoimmune disorders such as
diabetes and arthritis both in animal models and in initial
clinical trials in patients with chronic inflammatory disease.5–

12

Over the past years, several research groups have shown
that HSP reactive T cells might play a role in this regulatory

function and in the induction of anti-inflammatory cytokines
in chronic inflammation.

IMMUNE SUPPRESSION
The observation that eukaryotic and prokaryotic HSPs have
high sequence homology prompted the hypothesis that HSPs
might be potential candidates for molecular mimicry and
could act as potentially dangerous autoantigens. Studies
showing that elevated HSP levels and anti-HSP antibodies are
present in autoimmune inflammatory responses, such as
arthritis, multiple sclerosis, and diabetes, seemed to support
this hypothesis. Intriguingly though, initial studies in
adjuvant arthritis, a Mycobacterium tuberculosis induced arthri-
tis, demonstrated that immunisation with the dominant
mycobacterial antigen, HSP60, abrogated subsequently
induced disease.13

This protective effect is not exclusive for adjuvant arthritis
and has been detected in an array of chronic inflammatory
animal models, such as experimental autoimmune encepha-
lomyelitis, collagen induced arthritis, and diabetes.5 14–16 As
the latter models do not depend on immunisation with M.
tuberculosis, the suppressive effect of mycobacterial HSP60
seems independent of the subsequent disease inducing
antigen. In addition, experiments exploring the suppressive
capacity of mycobacterial HSP60 in more detail have
illustrated that only the self-HSP cross-reactive peptides
induced protection against adjuvant arthritis via the induc-
tion of self-HSP-reactive regulatory T cells.17

INNATE IMMUNITY
Besides modulating inflammatory responses via the induc-
tion of HSP-reactive regulatory T cells, HSPs can directly
activate the immune system through surface receptors such
as toll-like receptor (TLR)2, TLR4, CD91, CD40 and CD14.18 19

However, such reports have been questioned by studies
indicating that proinflammatory activity of HSP via such
receptors was solely due to bacterial contaminants.20–22 Even
though this cannot be entirely excluded, because regular tests
to exclude that contamination by lipopolysaccharide (LPS) is
responsible for the observed effects (such as polymyxin B
preincubation and/or protein denaturing by boiling HSP),
might not affect all other bacterial compounds, several
reports show that highly purified HSP can still activate
dendritic cells and macrophages. For example, HSP derived
from murine liver and kidney has been shown to be able to
activate dendritic cells and macrophages.23 Moreover, cells
that were triggered to upregulate cell-surface HSP70 could
induce TLR2 and TLR4 signalling in macrophages.24 25

In addition to these reports of highly purified HSP, other
papers have described distinct activation of TLR signalling
after HSP binding. HSP induced signalling via TLR is

Abbreviations: HSP, heat shock protein; IL, interleukin; PG,
proteoglycan; PGIA, proteoglycan induced arthritis; TLR, toll-like
receptor
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dependent on CD14 expression, whereas LPS signalling is still
present in the absence of the coreceptor, though signalling is
enhanced in the presence of CD14. Furthermore HSP70
induces a Ca2+ flux in monocytes after TLR binding, which is
absent after LPS triggering.25 26 Moreover, HSP60 induced
TLR signalling has been shown to be dependent on
endocytosis, in contrast with LPS, which signals at the cell
surface.27

Although extensive data support a role for HSP in the
activation of both innate and adaptive immune cells (fig 1), it
is apparent from the above mentioned data that knowledge
of the origin and purity of the HSP proteins used in
experiments is important.

MECHANISMS
Initial reports showed that immunisation with mycobacterial
HSP60 protected animals against adjuvant arthritis.
Characterisation of the protective mycobacterial HSP60
epitopes showed that only conserved epitopes that induced
a T cell response to self-HSP60 abrogated arthritis induc-
tion.17 T cell lines specific for this self-HSP peptide could
transfer protection against the induction of adjuvant arthritis
in Lewis rats.

Since upregulation of HSPs is part of an inflammatory
response, self-HSP-reactive T cells with a regulatory pheno-
type might be part of the physiological termination of the
inflammatory response. Several studies in which bacterial
HSP60 or HSP70 pre-immunisations were used to protect
against subsequently induced inflammatory diseases have
shown induction of interleukin (IL)-10 producing T cells on
restimulation with both bacterial and self-HSPs.9 17 28 29 Also
in a murine model of proteoglycan induced arthritis (PGIA),
mycobacterial HSP70 protected against disease induction.
Analysis of the lymphoid cells obtained from the HSP70
protected mice revealed the presence of IL-10 producing cells
on restimulation with HSP70 as well as with the arthritis

inducing PG. In other words, HSP immunisation has led to
the production of a regulatory phenotype in both HSP specific
cells and cells specific for the disease associated PG antigen.
This indicates that HSP immunisation might spread regula-
tory activity in cases where the autoantigen is unknown to
potentially proinflammatory T cells and still can induce
antigen specific regulation (Berlo et al, unpublished results,
2006). Recently we have developed a new TCR-Tg mouse that
expresses T cells specific for arthritis inducing human
cartilage PG.30

To explore the mechanism of immune regulation by
antigen specific IL-10 producing T cell in an arthritis model
in more depth, we have retrovirally transduced these PG
specific cells with the murine IL-10 gene and green
fluorescent protein (GFP) as selection marker. Transfer of
these antigen specific IL-10+ cells not only suppressed the
induction of arthritis in acceptor mice compared with cells
transduced with GFP alone, but also induced IL-10 producing
proteoglycan specific T cells within these mice, thereby
spreading their regulatory function. Moreover, transfer of T
cells with irrelevant TCR specificity did not abolish the
development of PGIA when transduced with the same
construct, emphasising the importance of antigen specificity
of the regulatory T cells (Guichelaar et al, unpublished results,
2006). These data suggest that spreading of the regulatory
capacity is both dependent on IL-10 production and TCR
specificity. However, it is attractive to assume that compar-
able mechanisms play a role in the spreading of tolerance
after HSP70 immunisation in PGIA.

Self-HSP-reactive T cells are not only part of the adult T cell
repertoire, but also are considered to play an important role
in maintaining immune homoeostasis. Studies using trans-
genic animals overexpressing HSP60 still displayed self-HSP-
reactive T cell responses, underlining that the lack of central
deletion is not because of the absence of HSP expression in
the thymus.31 This suggests that during T cell development in
the thymus central deletion is either not occurring or not
complete, allowing the development of self-HSP-reactive T
cells. Under homoeostatic conditions, these self-reactive T
cells do not induce autoimmune inflammatory responses.
Therefore, these self-HSP-specific T cells must be kept in a
tolerant or regulatory mode. This can be achieved by the
regular exposure to regulatory cytokines such as IL-10. IL-10
is known to be associated with stress (stressed cells do
produce IL-10) and therefore exposure to HSP. Expansion of
HSP-reactive T cells usually occurs in the presence of IL-10.
In addition, HSP expression is upregulated in all cells at the
site of inflammation, which includes non-professional anti-
gen presenting cells lacking costimulatory molecules. These
cells will induce an anergic state in these HSP specific T cells.
Finally, high levels of commensal HSPs are present at the
normal mucosa, and since mucosal antigen exposure induces
regulatory T cells32–34 exposure to such HSPs might favour the
induction of HSP specific mucosal regulatory T cells. This is
supported by studies showing that mucosal administration of
HSP60 indeed induces regulatory T cells that mirror the
phenotype of mucosally induced regulatory T cells to
previously novel antigens in IL-10 production.35

Furthermore, changes in the gut microflora have been shown
to change the susceptibility to subsequently induced arthri-
tis.36–39

Recent reports in the literature further support the role of
HSP induced regulatory activity. Besides direct induction of
HSP-specific regulatory T cells due to presentation at
tolerance inducing mucosal sites, one can speculate that
HSP might aid in the expansion of existing regulatory T cells
via antigen non-specific responses.

As described above HSPs have the ability to directly
interact with different cells of the immune system by

Figure 1 The complexity of heat shock protein (HSP)–immune-system
interactions. Microbial HSPs trigger both innate and adaptive immune
reactions leading to pathogen elimination in infection. Self-HSPs are
involved in immune reactions leading to immunoregulation. Conserved
epitopes of microbial HSP trigger self-HSP-reactive T cells, which lead to
immunoregulation. By this, in the kinetics of microbial HSP immunity,
proinflammatory responses are followed by inflammation dampening
immunoregulation. In addition, self-HSPs activate through the direct
triggering of innate receptors on regulatory T (Treg) cells. TLR, toll-like
receptor.
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triggering TLR. HSP60 induced TLR signalling on T cells,
independent of LPS, enhanced GATA3 expression, suggesting
the induction of a T helper 2 phenotype.39 40 Also, HSP70 has
been shown to induce anti-inflammatory cytokines in both
peripheral blood and synovial derived monocytes from
patients with arthritis. In addition, HSP70 has been shown
to enhance IL-10 production by mouse bone marrow
dendritic cells.41 These data suggest that HSPs might induce
a microenvironment that is favourable for the induction of
regulation.

In addition to direct signalling of HSP via TLR on antigen
resenting cells, HSP60 has been shown to specifically activate
T cells via TLR2 and regulate migration and adhesion.40

Intriguingly, TLR2 signalling on regulatory T cells has been
shown to expand existing CD25+ regulatory T cells.42 43 In line
with these findings, recently a fascinating study showed that
HSP60 and HSP60-derived peptide triggering of TLR2 on
CD25+ regulatory T cells enhanced their suppressive function
in in vitro assays.44 This direct enhancement of regulatory T
cell number and function could significantly enhance the
regulatory capacity of HSP immunisations.

Protective effects of bacterial HSP immunisations could be
due to the high homology of the protein. Since only cross-
reactive peptides seem to induce a regulatory T cell response
involving the induction of IL-10, self-HSP-reactive responses
might be regulatory, whereas bacterial HSP epitopes, which
are uniquely present in microbial HSP, might induce
proinflammatory responses. Which factors contribute to the
selection and dominance of such self-reactive epitopes on
bacterial HSP immunisations are unclear, but such knowl-
edge might contribute to the therapeutic potential of HSPs.

Data from animal experiments strongly point toward a
regulatory role for HSP in arthritis. In addition, human trials
have confirmed the immunomodulatory role of HSP. For
example, in patients with juvenile idiopathic arthritis, HSP60
reactivity correlated with beneficial outcome of disease, and
HSP60 specific T cells from patients had a regulatory
phenotype, producing IL-10 and transforming growth factor
b.7 45 Moreover, among patients with rheumatoid arthritis,
those with HSP60-reactive synovial T cells acquired the
regulatory phenotype on in vitro restimulation with self-
HSP60 and suppressed production of tumour necrosis factor
by autologous blood T cells.46 Initial clinical trials using HSPs
and HSP-derived peptides showed promising results in
dampening the clinical disease score in ongoing disease.8 11 12

In conclusion, it is clear that HSP proteins and peptides
have an immunomodulatory role. Immune modulation is
essential for an organism for prevention of excessive
inflammation and subsequent organ damage, but inflamma-
tory reactions are a prerequisite to eradicate harmful
pathogens. Therefore, the immune system has developed
several tightly regulated mechanisms, which, depending on
time, location, and intensity of the inflammatory response,
will be able to regulate the immune response. HSPs might
play an important role in such an educated regulatory
mechanism and might provide a strategic target for develop-
ing therapies in various inflammatory disorders, including
rheumatoid arthritis.
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