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Heat stress events are major factors limiting crop productivity. During summer days,

land plants must anticipate in a timely manner upcoming mild and severe temperature.

They respond by accumulating protective heat-shock proteins (HSPs), conferring

acquired thermotolerance. All organisms synthetize HSPs; many of which are members

of the conserved chaperones families. This review describes recent advances in

plant temperature sensing, signaling, and response. We highlight the pathway from

heat perception by the plasma membrane through calcium channels, such as cyclic

nucleotide-gated channels, to the activation of the heat-shock transcription factors

(HSFs). An unclear cellular signal activates HSFs, which act as essential regulators.

In particular, the HSFA subfamily can bind heat shock elements in HSP promoters

and could mediate the dissociation of bound histones, leading to HSPs transcription.

Although plants can modulate their transcriptome, proteome, and metabolome to

protect the cellular machinery, HSP chaperones prevent, use, and revert the formation

of misfolded proteins, thereby avoiding heat-induced cell death. Remarkably, the

HSP20 family is mostly tightly repressed at low temperature, suggesting that a costly

mechanism can become detrimental under unnecessary conditions. Here, the role

of HSP20s in response to HS and their possible deleterious expression at non-HS

temperatures is discussed.

Keywords: heat shock transcription factor, heat shock response, acquired thermotolerance, cyclic nucleotide-

gated channels, calmodulins, small heat-shock proteins, heat stress, global warming

INTRODUCTION

During summer days, mild or severe heat stress (HS) typically occurs at midday and lasts until
late afternoon in terrestrial systems (Dong et al., 2017). To survive, a plant must sense, early in
the morning, a minor temperature increment to establish a suitable genetic program. The heat
shock response (HSR) contains molecular defenses, including heat shock proteins (HSPs), that

Abbreviations: ARP6, actin-related protein 6; AT, acquired thermotolerance; CaM, calmodulin; CaMBD, calmodulin-
binding domain; CBK3, calmodulin-binding protein kinase 3; CML, calmodulin-like protein; CNBD, cyclic nucleotide-
binding domain; CNGC, cyclic nucleotide-gated channels; ER, endoplasmic reticulum; IQ, isoleucine-glutamine; HS, heat
stress; HSE, heat shock element; HSF1, heat shock transcription factor; HSP, heat shock protein; HSR, heat shock response;
miRNAs, microRNAs; ncRNA, non-encoding RNA; ROS, reactive oxygen species; siRNAs, small interfering RNAs.
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must accumulate rapidly under rising temperatures to minimize
foreseeable damage (Song et al., 2012; Serrano et al., 2019).
Acquired thermotolerance (AT) refers to the plant adaptive
capacity to survive noxious HS when exposed to sublethal
temperatures, requiring the accumulation of HSPs. Under HS,
both transcriptome and proteome-based studies have indicated
regulatory responses of HSPs (Qin et al., 2008; Finka et al., 2011;
Mangelsen et al., 2011; Xin et al., 2016; Guihur et al., 2020;
Zhao et al., 2021). A conserved subfamily called “heat-induced
molecular chaperones” contains the HSP100s, HSP90s, HSP70s,
HSP60s, HSP40s, and HSP20s (Al-Whaibi, 2011; Jee, 2016). They
are 20 times more likely to be heat-induced compared to non-
chaperone proteins (Wang et al., 2004; Finka et al., 2011, 2015;
Guihur et al., 2020). HSP chaperones prevent and repair protein
misfolding and aggregation, reducing cell damage (Ben-Zvi and
Goloubinoff, 2001; Wang et al., 2004; Zeng et al., 2004; Liberek
et al., 2008; Mogk and Bukau, 2017). In particular, HSP20s
are the most heat-responsive in plants due to their dramatic
induction (Vierling, 2003; Guihur et al., 2020). They also prevent
the aggregation of heat-labile proteins and could stabilize lipids
at the plasma membrane (Haslbeck and Vierling, 2015). At
low temperature, HSP20s are tightly repressed, suggesting that
their inappropriate expression could be deleterious for plants
(Sun et al., 2016). Moreover, HS generates stress granules
that contain molecular chaperones, such as HSP20s, HSP101,
untranslated mRNAs, elongation initiation factors, RNA-binding
proteins and transcription factors (McLoughlin et al., 2016, 2019;
Chantarachot and Bailey-Serres, 2018; Kosmacz et al., 2019).
Theses cytoplasmic and chloroplastic bodies seem to have an
important role in protein translation during and after HS (Merret
et al., 2017; Chodasiewicz et al., 2020).

In most eukaryotes, including land plants, HSP accumulation
depends on a signal that arises at the plasma membrane and
results in the activation of heat shock transcription factor (HSF)
families (Nover et al., 2001; Mishra et al., 2002; Hayashida et al.,
2011; Liu et al., 2011; Scharf et al., 2012; Fragkostefanakis et al.,
2015; Kijima et al., 2018). Plant cells can sense a wide temperature
range through changes in the plasmamembrane fluidity. Calcium
channels, such as cyclic nucleotide-gated channels (CNGCs),
can mediate calcium entry during HS as shown in Arabidopsis
thaliana and Physcomitrium patens (Gong et al., 1998; Saidi et al.,
2009; Finka et al., 2012; Gao et al., 2012; Tunc-Ozdemir et al.,
2013). Yet, a fraction of HSFA1 is associated with the HSP70-
HSP90 complex, and a large inactivated fraction might remain
unbound under non-stressful conditions (Kyle Hadden et al.,
2006; Westerheide et al., 2006; Saidi et al., 2009; Hahn et al.,
2011). Following the activation of CNGCs, and a still unclear
signaling pathway, HSFA1 is translocated into the nucleus and
can bind specific DNA motifs present in the promoter of HSP
genes, called “heat shock element” (HSE) (Santoro et al., 1998;
Liu and Charng, 2012). HSFA1 could also trigger regulatory
responses, including DNA methylation, histone modification,
and chromatin remodeling (Zhao et al., 2021). In particular,
bound histones to HSP genes, such as H2A.Z, must be evicted
to allow for RNA polymerase II docking for the transcription
of HSP (Franklin, 2010; Kumar and Wigge, 2010; Probst and
Mittelsten Scheid, 2015). Yet, the mechanisms of heat sensing,

particularly the components between the CNGCs sensors and
the activation of the main regulator HSFA1 are not elucidated
(Larkindale et al., 2005;Mittler et al., 2012). This review addresses
the heat perception and signaling pathway in land plants, with
a particular emphasis on the activation of HSFA1 at the plasma
membrane, leading to the accumulation of HSP chaperones. In
addition, the role of HSP20s at non-HS temperatures and their
putative effect in plant cells are discussed. Understanding these
critical processes would facilitate the production and selection of
thermotolerant cultivars to face global warming.

HEAT SENSING AND SIGNALING IN
LAND PLANTS

Calcium Entry Across the Plasma
Membrane Triggers the Heat Shock
Signaling
Plant cells developed an efficient mechanism for sensing the
increase in temperature, as well as a signaling cascade for a
rapid adaptive response. The nucleus, endoplasmic reticulum,
cytosol, mitochondria, and chloroplast may also contain heat
sensors (Bussell et al., 2010; Franklin, 2010; Schwarzländer and
Finkemeier, 2012; Hentze et al., 2016; Sun and Guo, 2016; Chang
et al., 2017; Lin K. F. et al., 2018). However, various observations
have indicated that the primary heat sensing might occur
at the plasma membrane. For instance, electrophysiology
measurements in P. patens protoplasts, expressing the
calcium-sensitive fluorescent protein aequorin reporter,
have demonstrated a saturated accumulation of cytosolic Ca2+

within the first 10 min at 38◦C (Saidi et al., 2009). Artificially
preventing the entry of periplasmic Ca2+ in A. thaliana and
P. patens protoplast showed a lack of HSP expression. A defective
HSR has also been described in the presence of ionomycin and
thapsigargin, which are ionophores known to release Ca2+ from
internal stores (Saidi et al., 2009; Finka et al., 2012). Similar
observations were reported for tobacco, maize, and rice (Gong
et al., 1998; Li et al., 2004; Wu and Jinn, 2010; Wu et al., 2012).
Yet, this phenotype has not been observed in Chlamydomonas
reinhardtii, suggesting another mechanism of heat perception
in green algae (Schmollinger et al., 2013). Thus, the HSR seems
to depend on Ca2+ entry across the plasma membrane in land
plants (Figure 1; Demidchik et al., 2018).

Embedded Cyclic Nucleotide-Gated
Channels Act as Plasma Membrane
Thermosensors
In both plants and animals, plasma membrane contains
CNGCs, which are tetrameric cation channels and contain
six transmembrane domains. They modulate Ca2+ entry from
the apoplast and other ions, such as Mg2+, K+, Na+, or
Pb+ (Véry and Sentenac, 2002). CNGCs can be assembled as
homotetrameric or heterotetrameric complexes, allowing for the
formation of a large array of sensors capable of responding
to different intensities of environmental cues (Clough et al.,
2000; Tan et al., 2020). The cytosolic C-terminus harbors a
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cyclic nucleotide-binding domain (CNBD) and a calmodulin-
binding domain (CaMBD), in which a calmodulin (CaM)
binding isoleucine-glutamine (IQ) motif is embedded (Kaplan
et al., 2007; Jarratt-Barnham et al., 2021). A. thaliana AtCNGC2
and four acts as a heat sensor since its lack of expression
leads to a hyper thermosensitive phenotype, resulting in a
higher accumulation of HSPs at lower temperature. Similar
results were observed in the orthologs CNGCb and CNGCd
of P. patens (A Finka et al., 2012; Finka and Goloubinoff,
2014). In addition, the lack of AtCNGC6 in A. thaliana leads
to a fewer transcript levels of HSP18.2, HSP25.3, and HSP70
compared to control plants at 37◦C, ultimately impacting the
HSR (Gao et al., 2012). In rice, reduced thermotolerance was
observed inOscngc14 andOscngc16mutants, resulting in a higher
accumulation of hydrogen peroxide, leading to the cell death
(Cui et al., 2020). These results strongly suggest that CNGCs
act as thermosensors in land plants. Other calcium channel
families have been also implicated in heat response. For example,
the lack of synaptotagmin A activity led to decreased HSPs
synthesis in A. thaliana at 45◦C (Yan et al., 2017). ANNEXIN
calcium channels canmodulate cytosolic calcium signature under
oxidative and heat stresses (Liao et al., 2017). Glutamate receptor-
like channels have been suggested to participate in Ca2+ signaling
since exogenous glutamate improves basal thermotolerance
in maize (Li et al., 2019). Therefore, the heat sensing by
the plasma membrane of plants contains calcium channels,
including CNGCs, that can respond to incremental temperatures,
mediating Ca2+ entry and triggering the signaling pathway for
the accumulation of HSPs.

Calmodulins Response to Heat
The signaling molecules located in the cytosol and required to
activate HSFA1s are not yet uncovered (Figure 1). Yet, both
CNBD and CaMBD present on the cytosolic part of CNGCs
suggest that cyclic nucleotide monophosphate and CaMs can
mediate the heat signaling (Gao et al., 2012). CaMs are made of
calcium-binding loops, called “E” and “F” that can each bind two
Ca2+ ions and can respond to biotic and abiotic stress in plants
(Rhoads and Friedberg, 1997; Mccormack et al., 2005; Fischer
et al., 2013; Virdi et al., 2015). A. thaliana contains nine CaMs;
among them are the first seven, which are highly conserved.
In addition, 50 members of calmodulin-like proteins (CMLs)
have been described as important players in stress perception
and plant development (Aldon and Galaud, 2006; Vadassery
et al., 2012). Interestingly, AtCaM2, AtCaM4, AtCaM6, AtCaM7,
and AtCML8 were found to bind the C-terminal of several
CNGC families (Fischer et al., 2017). At 37◦C, AtCNGC6
was negatively regulated by AtCaM2/3/5 and AtCaM7, which
interact with the IQ motif of AtCNGC6 and impact Ca2+ entry
(Niu et al., 2020). A potentially important role in the heat
signaling has been demonstrated forAtCaM3where the knockout
mutant has shown reduced levels of HSP18.2 and HSP25.3
transcripts at 37◦C, negatively impacting basal thermotolerance.
The overexpression of AtCaM3 leads to a significant increase
in the HSPs level and improves the resistance against noxious
temperatures (Zhang et al., 2009). AtCaM3 has been also
suggested to activate several components of the heat shock

signaling pathway, such as mitogen-activated protein kinase 6
and calmodulin-binding protein kinase 3 (CBK3) (Figure 1;
Liu et al., 2005; Yan et al., 2017). Moreover, AtCBK3 promotes
HSFA1 activation by phosphorylation. Under HS, the lack of
AtCKB3 dramatically reduced HSP18.2 and HSP25.3 levels,
resulting in defective basal thermotolerance, whereas the Atcbk3
overexpression line rescued the hypersensitivity phenotype (Liu
et al., 2008; Yip Delormel and Boudsocq, 2019). In other plant
species, several CaMs have been described to mediate the heat
signal. In rice, OsCaM1-1 was shown to positively regulate Ca2+

signals, resulting in HSP accumulation (Wu and Jinn, 2012; Wu
et al., 2012). In wheat, CaM1-2 has been found to act upstream
of HSP26 and HSP70 at 37◦C (Liu et al., 2003). Therefore,
CaMs have been mentioned to play a critical role in the heat
signaling of land plants and responding to other environmental
stimuli (Virdi et al., 2015). Yet, other components of the heat
signaling pathway between CNGC sensors and HSFA1s remain
to be identified (Figure 1).

Heat Shock Transcription Factor A1 Acts
as a Key Regulator of the Heat Shock
Signaling Pathway
HSFs are essential regulators of the heat signaling pathway
in many organisms (Gallo et al., 1993; Mishra et al., 2002;
Nicholls et al., 2009; Anckar and Sistonen, 2011). In contrast
to vertebrates, which contain fewer members (six for humans),
plant HSF families have more members that reflect their strategy
for a sessile adaptation in changing environment (von Koskull-
Doring et al., 2007; Huang et al., 2016; Gomez-Pastor et al.,
2018). For example, A. thaliana contains 21 HSFs, 24 for
tomato, 52 for soybean, or 56 for wheat (Scharf et al., 2012;
Xue et al., 2014; Fragkostefanakis et al., 2015). Plant HSFs
are classified into three classes: HSFA, B, and C. All HSFs
have a DNA binding, oligomerization, and nuclear localization
domains. Yet, HSFAs differ in the presence of an activator
region at the C-terminal, which binds HSEs, whereas HSFBs
contain an inhibitor region. Under HS, several subfamilies of
HSFA are required for the accumulation of HSPs. HSFB contains
subfamilies, which can act as coactivators of HSPs transcription
and, also, as antagonist repressors, competing for HSFAs at
the end of HS (Czarnecka-Verner et al., 1997; Santoro et al.,
1998; Mishra et al., 2002; Mitsuda and Ohme-Takagi, 2009;
Ikeda et al., 2011; Scharf et al., 2012; Liu and Charng, 2013;
Fragkostefanakis et al., 2015; Guo et al., 2016). In A. thaliana,
the hsfA1a mutant was shown to be ineffective in accumulating
several HSP transcripts at 37◦C, resulting in the absence of AT
(Liu et al., 2011). Similar observations were previously made in
tomato where HSFA1 has been shown to be a master regulator
for AT (Mishra et al., 2002). Studies in several monocotyledonous
species, such as wheat and rice, have also demonstrated the
important role of HSFA in mediating the heat signal (Yokotani
et al., 2008; Zhang et al., 2013; Guo et al., 2016). Furthermore,
the role of HSFA1 is not only limited to the transcription of
HSPs, but it also activates several transcription factors, such as
HSFA2, HSFA3, HSFA7a, multiprotein bridging factor 1C, and
dehydration-responsive element-binding protein 2A, which are
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FIGURE 1 | Heat perception by the plasma membrane and mechanisms leading to the onset of acquired thermotolerance in land plants. (A) At low temperature, the

rigidity of the plasma membrane prevents the activation of hypophosphorylated key regulator HSFA1, while a small fraction might still bind the HSP70-HSP90

complexes in the cytosol. Histones, such as H2A.Z, associate and condense the DNA and prevent the RNA polymerase from accessing HSP genes for active

transcription. (B) The increase in temperature increases the fluidity of the plasma membrane, resulting in the activation of CNGCs heat sensors. Transient periplasmic

Ca2+ entry into the cytosol trigger is an unknown signaling cascade that activates HSFA1. Excessive temperatures are expected to denature heat-labile proteins in

the cytosol. Misfolded and aggregated proteins are assumed to recruit the HSP90 and HSP70 being in part bound to HSFA1. The dissociation of HSP70-90 is a key

step that leads hyperphosphorylation of HSFA1 by CBK3 and leads to its translocation into the nucleus to bind HSEs. HSFA1 might mediate a signal to the

chromosome remodeling machinery to remove bound histones from HSP genes. HSFA1 can also activate histone and DNA modifications required for the regulatory

responses of HSPs. RNA polymerase II is then recruited for the transcription of HSFA2 (red circle), forming a superactivator complex with HSFA1 and leading to

accumulation of HSPs, ultimately conferring acquired thermotolerance in land plants.

required for HSP synthesis and thermotolerance in A. thaliana
(Suzuki et al., 2011; Yoshida et al., 2011; Liu and Charng, 2013;
Ohama et al., 2017). When accumulated, HSFA2 can form a
heterodimer with HSFA1 and thereby forming a superactivator
complex for sustaining HSPs expression under HS (Chan-
Schaminet et al., 2009). Thus, the family of HSFAs has been
identified as amajor regulator required for the onset of AT in land
plants (Mishra et al., 2002; Hahn et al., 2011; Yoshida et al., 2011).

At low temperature, inactive cytosolic HSFA1s are
hypophosphorylated and bound to the complex HSP70-
HSP90 (Figure 1; Hahn et al., 2011; Morimoto, 2012). The
traditional model suggests that, upon HS, HSP70-HSP90
complex is hijacked by the increased cytosolic levels of unfolded
or misfolded thermolabile proteins, leaving HSFA1 free to trigger
the HSR (Figure 1; Zou et al., 1998; Kim and Schöffl, 2002;
Yamada et al., 2007; Hahn et al., 2011). Although thermolabile
proteins become denatured and recruit molecular chaperones
upon heat exposure, the prevention of Ca2+ entry through the
plasma membrane led to an absence of HSR (Saidi et al., 2009).
In addition, treatment with HSP90 inhibitors triggers a minor
HSR at low temperature at rest, whereas a full-blown HSR can
be obtained at higher temperatures (Kyle Hadden et al., 2006;

Westerheide et al., 2006; Saidi et al., 2009). Therefore, even if all
HSP90s are dissociated from HSFA1s, a large fraction of HSFA1s
is required to be activated independently from a non-elucidated
signal, which strictly depends on the calcium entry across the
plasma membrane (Figure 1).

Histones and DNA Regulation Lead to
the Transcription of HSPs
The expression of HSPs in plants is regulated by epigenetics,
such as DNA methylation, histone modification, and chromatin
remodeling (Boyko et al., 2010; Gao et al., 2014; Gallego-
Bartolomé, 2020; Zhao et al., 2021). HSPs gene must be
unwrapped from histones to become actively transcribed when
HSF1As are bound to HSEs (Figure 1). Following HS, a global
rearrangement of the chromatin has been observed in rice,
rye, and A. thaliana (Santos et al., 2011; Tomás et al., 2013;
Probst and Mittelsten Scheid, 2015). These results indicate that,
at low temperature, HSPs genes are compacted by histones,
and chemical modifications are required for HSPs expression
to be allowed under HS. Interestingly, in A. thaliana, actin-
related protein 6 (ARP6) has been reported to be an essential
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component of the chromatin remodeling complex required for
H2A.Z incorporation (Figure 1; March-Díaz and Reyes, 2009).
The Atarp6 mutant exhibited a higher accumulation of HSP70
at 12, 22, and 27◦C (Kumar and Wigge, 2010; Cortijo et al.,
2017). Histone chemical modifications, such as methylation and
acetylation, have been also indicated to be important for the
regulation of HSPs in plants (Lämke et al., 2016; Yamaguchi et al.,
2021). Regarding non-coding RNA (ncRNA), such as microRNAs
(miRNAs) and small interfering RNAs (siRNAs), its involvement
in the regulation of the HSR has been suggested in several land
plant species (Khraiwesh et al., 2012; Li et al., 2014; Zhao et al.,
2016; Liu et al., 2017; Lin J. S. et al., 2018; Zhao et al., 2021).
Thus, following a short period of HS, epigenetic processes have
also been implicated in developing a transcriptional heat memory
(Bäurle and Trindade, 2020).

THE ROLE OF SMALL HEAT SHOCK
PROTEINS UNDER HEAT STRESS

Among HSP chaperones, the HSP20 (sHSP) family is the most
responsive to heat, whereas, at low temperatures, it is mainly
repressed (Waters et al., 1996; Sun et al., 2002; Vierling, 2003;
Guihur et al., 2020). HSP20s proteins are composed of subunits
between 12 and 43 kDa and have an alpha-crystalline domain
suggested to bind denatured proteins (Haslbeck et al., 2005;
Basha et al., 2012; Waters and Vierling, 2020). A. thaliana
contains 19 HSP20 (sHSPs) divided into six classes according to
their localization (Sun et al., 2002; Waters and Vierling, 2020).

Following HS, heat-labile proteins can be bound by HSP20s, in
an ATP-independent manner, and folded into their native state
by chaperone machinery, thereby preventing further heat-caused
denaturation (Waters et al., 1996; Glover and Lindquist, 1998;
Veinger et al., 1998; Goloubinoff et al., 1999; Swindell et al., 2007;
Haslbeck and Vierling, 2015; Mogk et al., 2015; Mogk and Bukau,
2017). As shown initially in E. coli, the small HSP IbpB has been
revealed to interact with HSP40, HSP60, and HSP70 chaperone
complexes and assist in protein refolding (Veinger et al., 1998).
Similar observations have been made in Pisum sativum and
Synechocystis sp. (Mogk et al., 2003). In addition, HSP20s stabilize
lipid bilayers and thereby protect the plasma membrane from
high fluidity under excessive temperatures (Horváth et al., 2008;
Haslbeck and Vierling, 2015).

HSP20s accumulation is essential for basal thermotolerance
and the onset of AT in plants. In A. thaliana, an AtHSP17.6II
mutant was unable to establish the AT, whereas the
overexpression of LimHSP16.45 from Lilium davidii rescued
the sensibility to HS (Yang et al., 2020). Supporting these
observations, A. thaliana RNAi lines of six cytosolic HSP20s
showed higher thermosensitivity, whereas the HSP20s
overexpression lines restored the phenotype (McLoughlin
et al., 2016). In wheat, chloroplastic HSP26 was shown to be
required for seed maturation, germination, and development
of HS tolerance (Chauhan et al., 2012). Similar observations
have been described in other plant species, such as in tobacco
and rice (Lee et al., 2000; Zhang et al., 2016). Besides providing
protection against noxious temperatures, HSP20s also confer
resistance to salt, drought, and cold stresses (Sun et al., 2002;

FIGURE 2 | The expression of HSP20s at low temperature might induce deleterious effects in land plants. (A) Under heat stress, HSP20s are accumulated,

conferring protective advantages in plant cells, leading to the onset of acquired thermotolerance. (B) The overexpression of HSP20s at low temperatures might

induce deleterious effect on plant growth and development (Sun et al., 2016), such as ROS accumulation (Ma et al., 2019), eventually resulting in the cell death (Sun

et al., 2016; Ma et al., 2019). Solid lines indicate the consequences of HSP20s expression at low temperature, whereas dashed lines indicate potential cell death

effect on plant cells.
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Sarkar et al., 2009; Song and Ahn, 2010; Yang et al., 2014).
HSP20s were also described to play key roles in somatic
embryogenesis, pollen development, and seed germination
(Sun et al., 2002; Volkov et al., 2005; Chauhan et al., 2012).

In several plant species, transcriptome and proteome-based
analyses have demonstrated a nearly total absence of HSP20s at
non-HS temperatures (Hernandez and Vierling, 1993; Simões-
Araújo et al., 2003; Finka et al., 2012; Guihur et al., 2020).
In contrast, other HSP chaperones families might have a
substantial constitutive expression (Finka et al., 2012; Guihur
et al., 2020). This raises a question of why plants tightly suppress
HSP20s synthesis at non-HS temperature (low temperature)
The complete HSP20 repression suggests that its constitutive
expression would be problematic (Figure 2). To date, one study
has reported a deleterious effect of one HSP20 in A. thaliana.
A. stolonifera HSP17 overexpression in A. thaliana led to a
reduction in leaf chlorophyll content and photosynthesis activity
at both 22 and 40◦C. The mutant showed hypersensitive response
to exogenous abscisic acid and salinity during germination and
during post-germinative growth (Sun et al., 2016). AtHSP24.7 has
been described as a central activator of temperature-dependent
seed germination (Ma et al., 2019). AtHSP24.7 overexpression
accelerated seed germination and caused the accumulation of
reactive oxygen species (ROS). In the study of Ma et al.
(2019), an absence of negative physiology impact on plants was
observed. Yet, it remains to demonstrate that other HSP20 family
members behave similarly to HSP24.7, which could increase
ROS content and, thereby, inducing apoptosis when achieving
a critical threshold. Other related studies have indicated that
the overaccumulation of HSP molecular chaperones might be
deleterious for plants. For instance, although the overexpression
of HSP70-1 improved basal thermotolerance in A. thaliana,
it resulted in a dwarf phenotype, altering root growth (Sung
and Guy, 2015). Furthermore, overexpression lines of HSP90.2,
HSP90.5, and HSP90.7 reduced the resistance to salt and drought
stress and produced a lower germination rate and lower fresh
weight (Song et al., 2009). Thus, plants seem to have established
a sophisticated mechanism to tightly regulate the expression of
HSP chaperones, presumably to not affect plant fitness (Figure 2).

CONCLUSION

In recent years, the threat of global warming and the wide-
reaching implications of the adverse effects on plant growth and

crop yields have called for more studies about HS. This review
has described some aspects of the heat perception and molecules
involved in the signaling, ultimately triggering the accumulation
of protective HSPs. There is strong evidence in literature showing
that the plasma membrane, embedded with CNGCs, acts as a
central hub for the perception of incremental temperature. Yet,
an unidentified signal, potentially involving calmodulins and
kinases, triggers the translocation of HSFA1s into the nucleus
to activate essential regulatory responses, such as histone and
DNA regulation (Figure 1). To further investigate the heat shock
signaling pathway, several questions remain unanswered; among
them are the following:

- What are the missing partners involved in the heat signal
transduction between CNGCs and the activation of HSFA1
upon HS?

- How are CNGCs subunits assembled to sense and respond
to a wide temperature scale?

- Does the overexpression of HSP20s at low temperature
induce deleterious phenotypes in land plants?

All these issues need further research to address a
comprehensive picture of heat sensing and AT.
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