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Heat is a common source of stress in aquatic environments and can alter the
physiological and metabolic functions of aquatic animals, especially their intestinal
function. Here, the effects of heat stress on the structure and function of the intestine
and the characteristics of the intestinal microbiota were studied in sturgeon (Acipenser
baerii ♀ × Acipenser schrenckii ♂ hybrid F1). Sturgeons were exposed to sub-extreme
(24◦C) and extreme (28◦C) high water temperatures for 12 days. The heat stress
caused systemic damage to the intestine of sturgeons, which displayed severe enteritis
in the valve intestine. The microbial diversity analysis showed that heat stress led
to the disorder in intestinal microbiota, manifesting as an explosive increase in the
abundance of thermophilic intestinal pathogens such as Plesiomonas, Cetobacterium,
and Aeromonas and causing physiological dysfunction in the sturgeons. The disorder
was followed by significant inhibition of intestinal digestion with reduced chymotrypsin,
α-amylase, and lipase activities in the valve intestine and of antioxidant function
with reduced peroxidase (POD) and catalase (CAT) activities. Simultaneously, heat
stress reduced the thermal tolerance of sturgeons by reducing Grp75 expression and
damaged the valve intestine’s repair ability with increased Tgf-β expression. The results
confirmed that heat stress damaged the sturgeon intestines obviously and disturbed the
intestinal microbiota, resulting in serious physiological dysfunction. The present study
investigated the mechanism of the effect of heat stress on the sturgeon intestine and
will help develop strategies to improve the resistance to thermal stress for wild and
cultured sturgeons.
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INTRODUCTION

Heat stress in local waters is likely to worsen due to global warming, threatening aquatic animals
and potentially altering their behavior, growth, development, reproduction, and digestion (Hui-
Huang et al., 2012; Miller et al., 2015; Aidos et al., 2020). Heat stress has severe consequences
including death to fish (Yang et al., 2021). Heat stress threatens the survival of cold-water fishes,
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especially for sturgeons whose wellbeing closely relates to the
environmental temperature. Zhang H. et al. (2019) found that
the water temperature in the Yangtze River basin, which is the
primary habitat of Chinese sturgeons, has increased by 1 to 3.5◦C
in autumn and 2 to 5◦C in winter over the past 60 years (Zhang
H. et al., 2019). Similarly, Larnier et al. (2010) found that the
average surface water temperature in summer in Garonne, where
the European sturgeon (Acipenser sturio) mainly lives, rose by
2.9◦C between 1978 and 2005 (Larnier et al., 2010). Temperature
increases not only directly delay the spawning of sturgeons but
also can lead to degeneration in gonad development (Zhang
H. et al., 2019). Affected sturgeons have been observed to have
problems related to feeding (Mizanur et al., 2014), growth (Aidos
et al., 2020), and reproduction, and in some cases, increased
mortality has occurred (Lankford et al., 2003; Ficke et al., 2007;
Hassell et al., 2008). The hybrid sturgeon (Acipenser baerii
♀ × Acipenser schrenckii ♂ hybrid F1) is a kind of commercial
sturgeon valued globally for its flesh (Bronzi et al., 2019).
Sturgeon habitats in China have historically been concentrated
in the Yangtze and Yellow Rivers, but the temperatures of these
rivers are rising (Liu et al., 2009; Zhang H. et al., 2019; Figure 1A).
The abnormally high water temperatures from July to September
present an especially difficult challenge for this cold-water fish;
and numerous studies have associated immune decline, illness,
and death with rising river temperatures (Shen et al., 2014;
Castellano et al., 2017; Zhang H. et al., 2019). Therefore, the
present study investigated the potential mechanisms by which
heat stress influences the yields of commercial sturgeons.

The intestine is the largest organ involved in the digestion
and absorption of nutrients, as well as the largest organ involved
in the immunity, defense, and endocrine systems in fish (Zhu
et al., 2013). In freshwater fish, digestive enzyme activities in the
intestinal mucosa of Carassius auratus, Cyprinus carpio, Rutilus,
and Perca fluviatilis decreased under high water temperatures,
and rapid increases in water temperature adversely affected
the rate of carbohydrate hydrolysis and lowered the thermal
tolerance of the intestinal tract (Golovanova et al., 2013).
In addition, high water temperatures reduced the secretion
of digestive enzymes in fish intestines, resulting in decreased
intestinal chyme transport time and digestibility (Miegel et al.,
2010; Tirsgaard et al., 2015). Stable gastrointestinal function
contributes to the normal biological function of sturgeons and
improves the yield and quality of the meat of commercial
sturgeons, but the effects of heat stress on the structure and
function of the sturgeon intestine are still unknown.

Intestinal microbiota in fish have dynamic compositions of
aerobic bacteria, facultative anaerobes, and anaerobic bacteria
(Evariste et al., 2019). The ecological balance of intestinal
microbiota is important for maintaining normal feeding
behavior, growth performance, digestive capability, and fecundity
in fish (Kunz et al., 2009; Desai et al., 2016; Chenggang and
Wenjing, 2017). Studies have shown that increased temperatures
can disrupt the balance of intestinal microbiota and facilitate the
growth of pathogenic bacteria. High water temperatures have
been shown to trigger explosions of the pathogen Sphingomonas
that can decimate sea cucumber populations (Zi-Jiao et al.,
2019). Larios Soriano et al. (2018) confirmed that increased water

temperatures resulted in increased abundance and richness of
intestinal microbiota in the yellowtail kingfish Seriola lalandi,
along with an increased abundance of a large number of harmful
bacteria (Larios Soriano et al., 2018). A study of lake sturgeon
(Acipenser fulvescens) found a dynamic relationship between the
composition of intestinal microbiota and the physiology of the
host gastrointestinal tract (Razak and Scribner, 2020). However,
the effects of high water temperatures on the intestinal microbiota
of cold-water fish like sturgeons remain to be studied.

This study investigated the composition of intestinal
microbiota and physiological and biochemical indexes in the
intestine of sturgeons under different water temperatures. It
revealed the mechanism of the effect of heat stress on sturgeon
intestines, and the results will provide guidance toward managing
thermal stress in wild and cultured sturgeons.

MATERIALS AND METHODS

Fish Maintenance and Treatment
Protocols
All animal handling procedures were approved by the Animal
Care and Use Committee of Sichuan Agricultural University in
accordance with the Animal Experiment Guidelines of Sichuan
Agricultural University, license no. ZCY-2019202031. For the
experiment, a total of 180 6-month-old healthy juvenile sturgeons
(A. baerii ♀ × A. schrenckii ♂ hybrid F1) of 76.37 ± 9.45 g and
23.54 ± 2.41 cm length were purchased from Sichuan Runzhao
Fishery Co., Ltd., Sichuan, China.

Referring to the study of Mai et al. (2014), Bai et al. (2012),
and the data collected at the farm, 18 to 20◦C was deemed to
be the optimal temperature range for sturgeon growth (Bai et al.,
2012; Mai et al., 2014). The fish were acclimated in the laboratory
at 20◦C for 2 weeks prior to the experiment. The sturgeons
were then randomly divided into three groups, a control group
kept at 20◦C and two elevated temperature groups at 24◦C (G1)
and 28◦C (G2) (Yang et al., 2021). Each group included four
parallel tanks with 15 fish each. The experimental heating and
heat treatment steps are illustrated in Figure 1B. The control
group was held at 20◦C at room temperature for the duration of
the experiment. The G1 and G2 groups were also held in room
temperature water for the first 14 days, and then the temperature
was increased by 1◦C/day until reaching the experimental
temperatures of 24 and 28◦C on day 22 where the temperature
was maintained until day 34. During the treatment period, the
state of the experimental fish was continuously observed for 24 h.
Oxygen was continuously supplied by the oxygen pumps for 24 h,
and dead or dying fish were quickly removed.

During the experiment, the feeding rates and deaths of the
sturgeons in each group were recorded daily, along with dissolved
oxygen in the water. On day 34, upon completion of the
heat treatment, the sturgeons in each group were euthanized
with tricaine mesylate (MS-222) (Sigma-Aldrich, Beijing, China).
Blood was collected via the caudal vein, and fish were dissected
for biochemical examination. The histopathology, ultrastructure,
enzyme activity, mRNA expression, and intestinal microbiota of
gastrointestinal tissues and contents were examined.
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FIGURE 1 | Sturgeon production in part of the province in China in 2017 (Le-jun and Yong-hui, 2018), water temperature scheme applied to the sturgeon in the
present study, effects of heat stress on water dissolved oxygen, sturgeon feeding rate, and cumulative survival rate. Sturgeon production in 2017 (A). During the
experiment, each tank volume was 0.5 m3, dissolved oxygen was maintained above 7.5 mg/L, and pH was 7.4 ± 0.4. Feed was added twice a day (at a 7-h
interval); the daily feed amount was 2% of the fish body mass. The water in the tanks was pretreated with UV light and an aeration process, and 25% of the culture
water was renewed every day. Fish were held in a 12-h:12-h light/dark cycle (B). (C) Dissolved oxygen (DO) in different treatments. (D) Feeding rate of sturgeon in
different groups. (E) Fraction survival (%) of sturgeon during heat exposure. (∗) Represents a significant difference between groups (p < 0.05).

Serum Biochemical Analysis
The blood was centrifuged at 3,500 × g at 4◦C for 10 min.
The serum of three fish was selected in each group randomly
to form a pooled sample. Serum samples from each group
(n = 3) were measured for albumin (ALB), alkaline phosphatase
(ALKP), alanine transaminase (ALT), amylase (AMYL), blood
urea (UREA), calcium (CA), cholesterol (CHOL), creatinine
(CREA), gamma-glutamyl transpeptidase (GGT), globulin
(GLOB), glucose (GLU), lipase (LPS), phosphatase (PHOS), total
bilirubin (TBIL), and total protein (TP). All these indicators were
measured using the IDEXX Catalyst One biochemical analyzer
(IDEXX, Catalyst One, Westbrook, ME, United States).

Examination of Anatomy,
Histopathology, and Ultrastructure
The sturgeons from day 35 were euthanized and dissected for
examination. The physical morphology of the gastrointestinal
tract was observed. Tissue specimens of the intestines were
fixed in 4% polyformaldehyde solution and, following a routine
process, fixed in paraffin and stained with H&E. Histological
slides were examined under a light microscope (Nikon, Tokyo,
Japan). Intestinal tissue was placed in a fixative of 2.5%
glutaraldehyde in pH 7.4 cacodylate buffer, washed three times
in phosphate-buffered saline (PBS), and post-fixed with 1%

osmium tetroxide. After dehydration in graded alcohol, the
tissues were embedded in Araldite. The blocks were sectioned on
a microtome with a glass knife. The 6.575-µm-thick sections were
placed on uncoated copper grids, stained with uranyl acetate,
and post-stained with 0.2% lead citrate. A transmission electron
microscope (HT7700, Hitachi, Tokyo, Japan) was used to observe
and collect images for analysis.

The degrees of hemorrhage, edema, deposits, hypertrophy,
hyperplasia, atrophy, infiltration, and necrosis of the
gastrointestinal tract were evaluated according to Huang
et al. (2019). Every change was given an S score ranging from
0 to 6, depending on the degree and extent of the change:
unchanged (0), mild change (2), moderate change (4), and
severe change (6) as a diffuse lesion. Intermediate values were
also considered. The organ index (I = 6t6alt [S × ωIF]) and
total index (I = 6Org6t6alt [S × ωIF]) were calculated for
each experimental group in this study, where ωIF was the
important factor.

Antioxidant Index and Digestive Enzyme
Activity Determination
The antioxidant and digestive enzyme activity indexes for the
intestine and serum were determined using diagnostic kits
produced by Nan Jing Jian Cheng Bioengineering Institute
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(Nanjing, China) following the manufacturer’s instructions.
Approximately 0.1-g valve intestinal tissue was homogenized
with 0.9 ml of 0.65% NaCl solution in a homogenizer on ice. The
homogenates and whole blood were then centrifuged at 3,500× g
10 min at 4◦C, and total protein in the supernatant of the tissue
was determined with a protein quantification kit (A045-2). The
diagnostic kits used in this experiment were for catalase (CAT)
(A007-1), glutathione peroxidase (GSH-Px) (A005), peroxidase
(POD) (A084-1), alpha amylase (α-AMS) (C016-1), LPS (A054-
1), and chymotrypsin (CHY) (A080-3).

Real-Time Quantitative Polymerase
Chain Reaction
Primer sequences for β-actin, ef1a, Hsp60, Hsp70, Tgf-β, and
Grp75 were designed and synthesized based on unpublished
transcriptome data by the Beijing Qingke Biotech Co., Ltd.
(Beijing, China). The housekeeping genes β-actin and ef1a were
used as internal references. All primer sequences are shown
in Table 1. Total RNA was extracted from frozen intestine
samples using an animal total RNA isolation kit (Foregene,
Chengdu, China) according to the manufacturer’s instructions.
The integrity and quality of the RNA were assessed using
1% agarose gel electrophoresis. The RNA concentration and
purity were spectrophotometrically determined at 260/280 nm.
Complementary DNA (cDNA) was synthesized using the
RR047A kit (TaKaRa, Dalian, China) according to the
manufacturer’s instructions. The polymerase chain reaction
(PCR) was performed using a CFX96 (Bio-Rad, Hercules, CA,
United States) according to the manufacturer’s instructions.
Reactions were performed in a 10-µl mixture made up of 1 µl
of diluted cDNA, 5 µl of SYBR green master, 0.5 µl of forward
primer, 0.5 µl of reverse primer, and 3 µl of PCR-grade water.
The PCR program was 95◦C for 1 min and 40 repeated cycles
of 95◦C for 10 s, and the appropriate melting temperature was
30 s. The melting curve revealed a single peak for each PCR
product. Relative mRNA expression was calculated using the
2−11Ct method with the following formula: F = 2−11Ct ,
11Ct = (Ct,targetgene − Ct,referencegene) − (Ct,targetgene −

Ct,referencegene) control.

High-Throughput Sequencing of the
Intestinal Microbiota
DNA Extraction and Purification
Fifteen individuals of hybrid F1 from each group of four batches
were randomly selected and humanely euthanized with MS-
222. Intestinal fecal matter from five sturgeons was combined

to make a pooled sample with three pooled samples per group.
To ensure the efficiency of DNA extraction, 0.5 g of feces in
each pooled sample was considered necessary. All intestinal
content samples were sent to Shanghai Majorbio Biopharm
Technology Co., Ltd. (Shanghai, China) for genomic DNA
extraction. The DNA was extracted from the intestinal feces
using the Bacterial DNA Isolation Kit (DE-05311, Foregene
Company, Limited, China) and Plant DNA Isolation Kit (DE-
06111, Foregene Company, Limited, China), according to the
manufacturer’s instructions. DNA concentration and quality
were checked using a NanoDrop2000 (Thermo Fisher, Scotts
Valley, CA, United States). The genomic DNA quality was
assessed by 1% agarose gel electrophoresis. The V3–V4 region
of the 16S rRNA gene was amplified by PCR with the primers
proposed by Mori et al. (2014). Bacterial primer information:
forward primer 338F: 5′-ACTCCTACGGGAGGCAGCAG-3′
and reverse primer 806R: 5′-GGACTACHVGGGTWTCTAAT-
3′. The ITS1 (internal transcribed spacer) region of the fungi
rRNA gene was amplified by PCR with the primers proposed by
Adams et al. (2013). Fungal primer information: forward primer
ITS1F: 5′-CTTGGTCATTTAGAGGAAGTAA-3′ and reverse
primer ITS2R: 5′-GCTGCGTTCTTCATCGATGC-3′. The PCR
products were detected by 2% agarose gel electrophoresis
and purified with the AxyPrep DNA Gel Extraction Kit
(Axygen, Corning, NY, United States), quantified using the
QuantiFluorTM-ST Blue Fluorescence System (Promega, Beijing,
China), and subjected to next-generation sequencing.

Sequencing and Quality Control
Sequencing of the 16S and ITS rDNA was performed on an
Illumina Miseq PE300 platform (Illumina, San Diego, CA,
United States) by Meiji Bioinformatics Technology Co., Ltd.
(Shanghai, China). Two libraries were constructed for the V3–
V4 and ITS1 amplicons. The paired-end (PE) sequencing was
performed on the MiSeq system. The sequencing data were
uploaded to the Sequence Read Archive at the National Center for
Biotechnology Information (accession numbers PRJNA739968
and PRJNA738812). Based on the overlapping PE reads, pair-
end double-ended sequences were merged into single sequences
using Flash software (Version 1.2.11). Raw fastq files were
demultiplexed and quality-filtered by removing those that were
shorter than 50 bp and greater than 10 bp in libraries or had
ambiguous nucleotides that constituted over 20% of the sequence.
According to the overlap of PE reads, the PE reads were merged
into a sequence, and the minimum overlap length was 10 bp. The
maximum allowable mismatch ratio in the overlapping region of

TABLE 1 | Primers of various genes detected with qPCR.

Symbol Genes Tm (◦C) Primer sequences (from 5′ to 3′) Size (bp)

β-actin β-actin 59.4 F:TGGACGCCCAAGACATCAGG R:GGTGACAATGCCGTGCTCG 127

ef1a ef1a 59.4 F:TGAAGGCTGGCATGATCGTC R:AGGGTCTCGTGGTGCATTTC 118

Hsp60 heat shock protein 60 53.4 F:AGTTCCAGGACGCTTATCTG R:GTTCTGGTTTGCGATTTCCA 89

Hsp70 heat shock protein 70 53.7 F:GCCAGCGGTGGATTTCACT R:TGCTATTGCTTATGGCTTGGAC 136

Tgf-β transforming growth factor-β 57.2 F:GCAGCTGTTCTTCAACATGT R:GTGCCCTTGTACAGCTCTAT 141

Grp75 glucose regulated protein 75 53.9 F:ACGGACTGAGTCAAGATGTC R:CTGTTTGCCTTCCATCACTG 131
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TABLE 2 | Effects of heat stress on biochemical indicators in the serum of sturgeon.

Symbol Item Control G1 G2

ALB (g/L) Albumin 7.00 ± 0.82 8.00 ± 0.00 8.67 ± 1.25

ALKP (U/L) Alkaline phosphatase 85.50 ± 11.50 121.00 ± 26.00 157.50 ± 9.50

AL (U/L) Alanine transaminase 128.50 ± 27.50 175.67 ± 33.81 150.00 ± 44.97

AMYL (U/L) Alpha amylase 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00

UREA (mmol/L) Urea 0.63 ± 0.05 0.67 ± 0.05 0.67 ± 0.05

CA (mmol/L) Creatine kinase 1.77 ± 0.05 1.87 ± 0.04 1.84 ± 0.03

CHOL (mmol/L) Cholesterol 0.50 ± 0.27a 0.62 ± 0.04a 1.57 ± 0.02b

CREA (µmol/L) Creatinine 25.00 ± 1.00a 13.33 ± 3.30b 28.00 ± 2.00a

GGT (U/L) Gamma-glutamyl transpeptidase 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

GLOB (g/L) Globulin 10.00 ± 0.00ab 9.67 ± 1.70a 13.33 ± 1.70b

GLU (mmol/L) Glucose 3.68 ± 1.45 4.44 ± 1.96 5.34 ± 0.56

LPS (U/L) Lipase 34.00 ± 12.68a 67.00 ± 6.48b 77.00 ± 5.00b

PHOS (mmol/L) Phosphatase 3.12 ± 0.42a 4.08 ± 0.48ab 4.34 ± 0.61b

TBIL (µmol/L) Total bilirubin 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00

TP (g/L) Total protein 17.00 ± 0.82a 17.67 ± 1.70ab 22.00 ± 2.83b

Superscript a and b denote statistically significant differences among groups (p < 0.05).

the spliced sequences was 0.2, and any unmatched sequences were
screened. Samples were distinguished according to the barcodes
and primers at the beginning and end of their sequences, and
the sequence direction was adjusted. The allowed number of
mismatches in the barcode was zero, and the maximum allowable
number of primer mismatches was 2.

Non-repetitive sequences were extracted from the optimized
sequences to reduce the number of redundant calculations in
the middle of analysis.1 All single sequences without repetitions
were removed.2 Operational taxonomic unit (OTU) clustering
of non-repetitive sequences excluding single sequences was
conducted according to 97% similarity. Chimeras were removed
in the clustering process, and representative OTU sequences
were obtained. All optimized sequences were mapped to the
OTU representative sequences, and sequences that shared more
than 97% similarity with the representative sequence were used
to generate the OTU table. To obtain the species classification
information corresponding to each OTU, the RDP classifier
Bayesian algorithm was used to perform taxonomic analysis on
the 97% similar level of OTU representative sequences. Each
OTU was compared with the 16S rRNA database (Silva) and ITS
rRNA database (UNITE) using BLAST analysis to obtain species
classification information. In all sample analyses, species with
relative abundance rates <0.01 were classified as “others.”

Intestinal Microbiota Analysis
Species observed (Sobs) were used to evaluate actual richness, the
Shannon and Simpson indexes were used to assess microbiota
diversity, the Ace and Chao indexes were used to assess
microbiota richness. The Venn diagram was prepared based
on the alpha diversity analysis performed in Mothur.3 The
R language (version 3.3.1) was used to make the microbiota.
Bar diagrams were used to visualize the dominant genus of

1http://drive5.com/usearch/manual/dereplication.html
2http://drive5.com/usearch/manual/singletons.html
3https://www.mothur.org/wiki/Download_mothur

each sample at the taxonomic level and the relative abundance
(proportion) of each dominant genus in the sample. A beta
diversity analysis was used to compare species diversity between
different temperature groups. The abundances of the genus and
the number of genera in each sample were counted. A visual
circle diagram was used to reflect the connections among samples
and the genus. The top 50 most abundant genera were used to
visually study the microbiota composition using the heat map
visualization method.

Statistical Analysis
All data were shown as the mean ± SD and assessed for
homogeneity of variance. The IBM SPSS version 27.0 Statistics
software (IBM Corp., Armonk, NY, United States) was used
for the statistical analyses. Indicators related to heat stress were
analyzed using one-way ANOVAs, and t-tests and differences
among the two temperature groups at the same time point as
well as the differences within groups at different time points
were analyzed. Duncan’s multiple comparison tests were used to
compare means. The microbial diversity analysis database and
software are shown in Supplementary Table 1. A normality test
was conducted before the evaluation of the variables between the
groups of the microbiota. The p-value was corrected by multiple
hypothesis tests using the BH method (screening threshold: false
discovery rate (FDR) <0.1, FDR= E(V/R), Abs (log2 fold change)
≥2). p < 0.05 and p < 0.01 were considered significant and
extremely significant, respectively.

RESULTS

The Effects of Heat Stress on Sturgeon
Feeding, Survival Rate, and Physiological
Indicators
As the water temperature increased, the dissolved oxygen in
the tank significantly decreased in the three temperature groups

Frontiers in Microbiology | www.frontiersin.org 5 March 2022 | Volume 13 | Article 755369

http://drive5.com/usearch/manual/dereplication.html
http://drive5.com/usearch/manual/singletons.html
https://www.mothur.org/wiki/Download_mothur
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-755369 March 1, 2022 Time: 16:5 # 6

Yang et al. Sturgeon Intestinal Microbiota Disorder

(Figure 1C). Compared with the control and G1 groups, the
fish in the G2 group had a significantly lower feeding rate
(Figure 1D). The cumulative survival rate of the control group
was significantly higher than that of both treatment groups, and
it was higher in G1 than G2 (Figure 1E). The final survival rates
of the control group were 86.2%, G1 group 46.7%, and G2 group
31.4% survival. Plasma biochemical indexes have been widely
used to assess the physiological function in animals (Lei and Xiu-
Mei, 2004). In this study, the ALB, ALKP, CHOL, GLOB, GLU,
LIPA, PHOS, and TP were all higher in the highest temperature
group. The LPS, ALKP, and PHOS can be used to specifically
assess the physiological function of the digestive system, and
their plasma levels increased significantly with increasing water
temperature (Table 2). Overall, there was a significant decrease
in feeding rate at the higher temperature, and it was speculated
that the sturgeons’ digestion was impaired.

Heat Stress Causes Enteritis of Valve
Intestine in Sturgeons
Anatomical results showed that the valve intestine in the
sturgeons of group G2 had dilated due to substantial amounts
of gas, despite being devoid of food, and the valve intestinal
walls had high transparency (Figure 2A). To further explore the
effect of heat stress on the gastrointestinal tract, pathological
changes were evaluated. Pathological lesions occurred in the valve
intestine and were most serious in the G2 group (Figures 2C,D).
Mucosal epithelial cells showed marked signs of necrosis, and
shedding cells were seen in the lumen of the valve intestine
accompanied by a large amount of inflammatory cell infiltration
(Figure 2B). The ultrastructural changes showed that heat
stress had led to an enlargement of the mitochondria and
endoplasmic reticulum, solidified chromatin, and blurring of
the membrane boundary of the valvular intestinal epithelial
cells (Figures 2B,E). The valve intestine of sturgeons in the
elevated temperature group showed enteritis symptoms. No
obvious lesions were present in the stomach or duodenum in
any group, and no lesions were present in the valve intestinal of
the control group.

Heat Stress Disturbs the Intestinal
Microbiota Diversity of Sturgeons
To further examine the relationship between intestinal
damage and intestinal microbiota in sturgeons at high water
temperatures, the compositions and changes of the bacterial
and fungal microbiota of the intestinal feces were analyzed.
Through optimizing sequencing results and statistical analysis,
a total of 479,104 effective bacterial and 611,088 effective
fungal DNA sequences were obtained from nine intestinal
samples, each sample representing the intestinal feces of five
fish. High-quality reads were clustered based on a >97%
sequence identity into 45,785 bacterial and 56,847 fungal
OTUs. Rarefaction curves showed that these OTUs represented
sufficient coverage and accurately reflected the bacterial and
fungal compositions (Supplementary Figures 1A,B). Alpha
diversity was used to evaluate the diversity of bacteria and fungi
in the intestines of sturgeons. Almost all bacterial and fungal

diversity indexes showed upward trends as the water temperature
increased (Table 3).

Explosive Increase of Thermophilic
Microbiota Triggers Intestinal Microbiota
Disorders
The species, quantities, and proportions of intestinal microbiota
were used to directly observe the differences in the microbiota of
different treatment groups (Valdes et al., 2018; Aggeletopoulou
et al., 2019). The Venn diagram illustrated that the number
of OTUs of both bacteria and fungi was higher in the
elevated temperature treatment groups than in the control
group (Figures 3A,C). The microbiota composition analysis
revealed that the bacterial microbiota of the control and
heat treatment groups had significantly different dominant
genus composition ratios. In the control group, Pseudomonas
(51.36%) and Clostridium sensu stricto 1 (29.99%) were the
dominant genera, whereas the proportion of dominant bacterial
genus in the G2 group has changed significantly. The bacteria
Cetobacterium (29.36%), Plesiomonas (18.24%), and Aeromonas
(13.29%) all exhibited significant increases in abundance, while
the abundances of Pseudomonas (13.28%) and C. sensu stricto
1 (4.58%) declined (Figure 3B). The increased diversity of
fungi is reflected in the non-dominant genus, which increased
significantly in the G2 group, reflected in the abundance
of Rhodotorula (0.48 to 2.87%) and Cladosporium (0.94 to
1.79%). As the water temperatures rose, the abundances of the
fungi Cutaneotrichosporon (57.17 to 43.34%), Ascomycota (8.89
to 1.16%), and Aspergillus (5.51 to 0.22%) were significantly
reduced (Figure 3D).

The visual circle diagram was used to reflect the distribution
ratios of each group of the dominant genus in the samples,
as well as the distribution ratios of each dominant genus
in separate groups. The top eight genera (others) in the
dominant ratios were analyzed. The relative abundance values
observed for each genus in the bacterial microbiota in the
control group were Pseudomonas (45.00%), Cetobacterium
(3.50%), C. sensu stricto 1 (84.00%), Rhodococcus (22.00%),
Plesiomonas (0.28%), Aeromonas (0.33%), Turicibacter (0.02%),
and Peptostreptococcaceae (0.13%). The proportions of
Cetobacterium (60.00%), Plesiomonas (98.00%), Aeromonas
(99.63%), and Turicibacter (42.00%) increased significantly
in G2. In contrast, the ratio of Pseudomonas (12.00%) and
C. sensu stricto 1 (13.00%) were significantly reduced by heat
stress (Figure 3E). A quantitative analysis of the bacteria whose
abundance had increased significantly showed that the average
abundance value in the control, G1, and G2 were as follows:
Cetobacterium 744, 8,483 and 14,201, respectively; Plesiomonas
shigelloides 26, 150, and 8,332, respectively; and Aeromonas
veronii 17, 1, and 6,081, respectively. The relative abundances of
the fungal genera in the control group were Cutaneotrichosporon
(42.00%), Rhodotorula (5.20%), Cladosporium (12.00%),
Aspergillus (76.00%), Candida (54.00%), Cyberlindnera (20.00%),
Fusarium (15.00%), and Engyodontium (0.13%). The proportions
of Aspergillus and Candida decreased in G2, but the proportions
of Rhodotorula and Cladosporium increased (Figure 3F).
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FIGURE 2 | Systematic pathology of sturgeon gastrointestinal tract under heat stress. (A) Gastrointestinal lesions caused by heat stress (→, flatulence and no feces).
(B) Histopathological changes in valve intestine induced by heat stress seen in the capillaries, intestinal villus (N, inflammatory cell infiltration;→, necrotic cells; �,
edema; l, congestion; �, loss of intestinal villi), and intestinal epithelial cell (N, nucleus; M, mitochondria; ER, endoplasmic reticulum; L, lysosome; �, chromatin
contracts; N, mitochondrial enlargement and rupture;→, microvilli shedding). (C–E) Overall health status (gross index) of sturgeon based on the histopathological
damage in capillaries, intestinal villus, and intestinal epithelial cells, respectively. (∗∗) Indicates extremely significant differences between groups (p < 0.01).

To better illustrate the change in genus abundances within
the intestinal microbiota, the top 50 most abundant genera were
selected to make a heat map. The horizontal abundance of the
bacterial population between the G1 and control groups showed
an intuitive dynamic change trend. Mycoplasma and Brevinema

decreased significantly with increasing water temperature, while
Plesiomonas, Aeromonas, Faecalibacterium, and Turicibacter
gradually increased in abundance with increasing temperature
(Supplementary Figure 2A). In the fungal microbiota, half
of the population represented by Alternaria and Talaromyces
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TABLE 3 | Alpha diversity of intestinal bacteria and fungi of sturgeon after exposure to high water temperature for 12 days.

Sample/Item Sobs Shannon Simpson Ace Chao

Bacterial community Control 192.67 ± 84.82 1.19 ± 0.39 0.52 ± 0.06 274.00 ± 29.74 228.54 ± 57.15

G1 149.00 ± 19.80 1.24 ± 1.24 0.50 ± 0.18 173.89 ± 19.51 172.42 ± 17.80

G2 292.33 ± 195.84 1.81 ± 0.78 0.32 ± 0.32 334.64 ± 194.42 324.86 ± 194.40

Fungi community Control 33.00 ± 8.49 1.38 ± 0.08a 0.37 ± 0.01a 34.36 ± 7.94 33.17 ± 8.37

G1 54.00 ± 36.12 2.40 ± 0.02b 0.15 ± 0.01b 54.68 ± 37.08 54.26 ± 36.48

G2 57.00 ± 27.09 2.05 ± 0.70ab 0.24 ± 0.14ab 58.38 ± 27.13 57.20 ± 27.32

Data are presented as mean ± SD (n = 9). Different lowercase superscript letters indicate significant differences between treatments (p < 0.05).

increased in group G2 compared with the control and G1 groups,
but Xerochrysium, Penicillium, Xeromyces, and Aspergillus all
decreased in group G2 (Supplementary Figure 2B). Principal
component analysis (PCA) was used to perform a simplified
analysis of the data set, and it showed that heat stress caused a
significant difference between the group control and the G2 in
bacterial (Figure 4A) but in fungal microbiota, and the control
and G2 groups had a sample overlap (Figure 4B).

Heat Stress Suppresses the Digestive
and Antioxidant Function of the Valve
Intestine in Sturgeons
To examine the functional changes in the valve intestine, the
digestive ability and antioxidant activity were determined in
the valve intestine and in the plasma by measuring CHY,
α-AMS, LPS, CAT, POD, and GPH-PX. The activity of CHY,
α-AMS, and LPS in the intestines and POD and CAT activity
in the plasma decreased with increasing water temperature
(Figures 5A–C,F,H). However, the GXH-PX activity showed an
opposite trend (Figure 5E). The CHY, POD, and CAT activities
were significantly lower in the elevated temperature treatment
groups G1 and G2 (Figures 5A,F,H: p < 0.05). In addition, the
CAT activity in valve intestine and GXH-PX activity in serum did
not change significantly (Figures 5D,G). The results suggested
that the decreased activity of digestive and antioxidant enzymes
in the valve intestine may be ascribed to heat stress.

Reduced Thermal Tolerance and Repair
Ability of Valve Intestine
The heat shock protein family genes Hsp60, Hsp70, and Grp75
and transforming growth factor Tgf-β were used to assess the
stress status of the valve intestinal tissue. The analysis showed
that Grp75 expression was significantly lower in the elevated heat
treatments (G1) (Figure 6C) (p < 0.05). Of the remaining genes,
Hsp60 and Tgf-β showed the same trends, and Tgf-β transcription
was significantly higher in the G2 group (Figures 6A,D).
However, the expression of Hsp70 did not change (Figure 6B).
Most of these results indicated decreases in thermal tolerance and
repair capacity of the valve intestine at elevated temperatures.

DISCUSSION

Heat stress reduces the availability of suitable habitats for
cold-water fish in freshwater environments and impacts their

physiological and metabolic processes (Larnier et al., 2010;
Schram et al., 2013; Huang and Wang, 2018; Zhang H. et al.,
2019), directly affecting the health and biological function of
cold-water fish (Miegel et al., 2010; Larios Soriano et al., 2018).
The normal function of the intestine requires the participation
of a healthy intestinal microbiota (Larios Soriano et al., 2018).
Previously, high water temperatures have been reported to affect
the intestinal microbiota of Salmo salar more than their diet
(Neuman et al., 2016). Within the microbiota, bacteria and
fungi play important roles in promoting food digestion, nutrient
absorption, and the immune system (Yap and Marino, 2018).
Under suitable water temperatures, beneficial microbiota can
flourish, and high relative abundances of beneficial microbes
can be maintained, helping to maintain the host’s metabolic
capacity and health (Dehler et al., 2017). In this study, the
number of species and abundance of thermophilic bacteria
and fungi were elevated in sturgeons exposed to high water
temperatures, which was consistent with the results of the
study by Soriano et al. on Yellowtail Kingfish in 2018, which
showed that increases in ambient temperature increased the
diversity of intestinal microbiota. The bacterial PCA in this study
showed that there was a significant difference in composition
between the control and G2 species. However, the composition
of fungi of samples 1 and 2 was like that of G2, which may
be due to the individual differences of sturgeons under heat
stress and the low sensitivity of most fungi to temperature
increase. This study saw an explosive growth of thermophilic
bacteria and the severe decline of psychrophilic bacteria
during heat stress, which significantly changed the composition
of the microbiota.

Previous studies reported that elevated temperatures had led
to a significant increase in abundance of certain bacteria, such
as Plesiomonas and Aeromonas, which had been found to have
some degree of pathogenicity in Hypophthalmichthys molitrix
and Lateolabrax maculatus (Behera et al., 2018; Wang et al.,
2021). In the present study, the abundance and proportions of
the thermophilic bacteria Plesiomonas and Aeromonas increased
after heat stress. Studies have shown that outbreaks of pathogenic
bacteria caused by high water temperatures can invade the blood
from the intestine and lead to severe enteritis (Kanai et al.,
2006; Chen et al., 2020). In this study, the relative abundance
of Plesiomonas, which is a common aquatic pathogen that is
speculated to be responsible for enteritis in sturgeons, was higher
in G2 (Behera et al., 2018; Gong et al., 2019; Zhang M. et al.,
2019). However, the abundance of Plesiomonas only increased
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FIGURE 3 | Composition of intestinal bacteria and fungi in sturgeon after exposure to high water temperatures for 12 days. (A) Venn diagram of unique and shared
operational taxonomic units (OTUs) in bacterial microbiota. (B) Bar plot of the bacterial microbiota at the genus level. (C) Venn diagram of unique and shared OTUs in
fungal microbiota. (D) Bar plot of the fungal microbiota at the genus level. (E) Intestinal bacterial composition at the genus level in different groups of sturgeon.
(F) Intestinal fungal composition at the genus level in different groups of sturgeon.

significantly in two samples of the G2 group, which may be
due to host differences and the low basic quantification of
Plesiomonas.

Aiming at the phenomena occurring in the valve intestine,
Huang et al. (2020) speculated that Clostridium was the main
cause of excess gas production. Based on the changes in genera

Frontiers in Microbiology | www.frontiersin.org 9 March 2022 | Volume 13 | Article 755369

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-755369 March 1, 2022 Time: 16:5 # 10

Yang et al. Sturgeon Intestinal Microbiota Disorder

FIGURE 4 | Principal coordinate analysis (PCoA) of microbiota differences among the three treatments. (A) PCoA of bacterial microbiota. (B) PCoA of fungal
microbiota.

FIGURE 5 | Antioxidant and digestive capacity in the valve intestine and plasma of different groups. (A–F) Assessment of CHY, α-AMS, LPS, CAT, GSH-PX, and
POD enzyme activity in sturgeon valve intestine. (G,H) Assessment of CAT and GSH-PX enzyme activity in sturgeon plasma. (∗) Indicates significant differences
between groups (p < 0.05). CHY, chymotrypsin; α-AMS, alpha amylase; LPS, lipase; CAT, catalase; GSH-Px, glutathione peroxidase; POD, peroxidase.

compositions and abundances in the high-temperature group
(G2), Cetobacterium and Aeromonas were suspected to be the
main causes of valve intestine flatulence in this study (Wiegel
et al., 2006; Ma et al., 2009). Fungi with increased abundance
after heat stress, such as Rhodotorula, are not pathogenic in
research reports (Raggi et al., 2014; Boguslawska-Was et al.,
2019), and Cutaneotrichosporon has no pathogenicity studies.
Therefore, we can deduce that it was the large proliferation

of gas-producing bacteria caused by temperature elevation that
induced the flatulence, decreased food intake, and no feces in the
valve intestine of sturgeons.

In this study, no feces was present in the intestines of the
high-temperature group, and a large number of pathogenic
bacteria may attack the host’s intestinal mucosa and cause
serious damage to the intestinal tissue (Desai et al., 2016). The
histopathological results of the sturgeon intestine in group G2
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FIGURE 6 | Thermal tolerance capacity of sturgeon in different groups.
Expression of heat shock proteins (A–C) and transforming growth factor (D)
mRNA in sturgeon from different groups. (∗) Indicates significant differences
between groups (p < 0.05).

were similar to the enteritis symptoms reported by Huang et al.
(2020), so it was speculated that heat stress caused sturgeon
enteritis. Research has shown that environmental temperatures
may influence physiological metabolic processes in fish by driving
dramatic changes in the composition and abundance of intestinal
microbiota (Kuz’mina et al., 2012, 2019) and may inhibit the
secretion of digestive enzymes and damage the structure of
digestive enzymes (Ahmadifar et al., 2020). Clostridiaceae has
been recognized as a beneficial bacteria that is involved in
the breakdown of carbohydrates and proteins (Kim et al.,
2008; Wuest et al., 2011), but the high water temperatures
in this study inhibited their growth and led to a significant
decrease in C. sensu stricto 1 abundance. Studies have indicated
that Trichosporonaceae promotes the digestion and absorption
capacities of hosts by secreting proteinases (Aliyu et al., 2020),
but in this study, the abundance of Cutaneotrichosporon in
the intestinal microbiota gradually decreased under high water
temperatures, although a high metabolic rate was maintained.
The transport and repair ability of proteins was reduced, and the
proliferation of intestinal epithelial cells and vascular endothelial
cells was inhibited.

Overall, the feed intake, the ability of digestion, and absorption
of sturgeons were significantly inhibited in sturgeons, which
was attributed to the damage of the intestinal structure, heat
tolerance reduction, and reduced repair ability. Consequently,
the sturgeons’ energy supply was blocked, and microbial

consumption was disordered, which inevitably posed a threat
to the growth and survival of wild and cultured sturgeons.
The absence or proliferation of intestinal microbiota in fish
may lead to impaired physiological functions, such as intestinal
epithelial cell dysfunction, compromised nutrient absorption,
and metabolism (Wang et al., 2018). Therefore, a series of
preventive measures will be indispensable in the protection and
breeding of sturgeons. First and foremost, stable habitats with
suitable water temperatures especially in summer play a vital role
in the conservation of wild endangered sturgeons and breeding
of farmed ones. Regular monitoring of both water temperature
and the sturgeons’ behavior is needed during farm management.
Water cooling should be undertaken as soon as the water
temperature in ponds rises dramatically to protect physiological
functions and the maintenance of intestinal microbiota. In
summer, the regular addition of endogenous probiotics such as
Bacillus spp. and prebiotics to the diet or aquaculture water
may protect the sturgeon intestines from the negative effects of
heat stress (Geraylou et al., 2013). Natural extracts including
resveratrol and arabinoxylan-oligosaccharides can also be added
to the diet to enhance the anti-oxidation and antibacterial abilities
of the sturgeon intestines and improve the growth performance
(Geraylou et al., 2012; Liu et al., 2018; Zheng et al., 2018; Farsani
et al., 2021). On the whole, effective and timely precaution can
be essential to the resistance to heat stress for the protection and
breeding of sturgeons and other cold-water fishes.

CONCLUSION

This study demonstrated that heat stress triggered the
disturbance of the intestinal microbiota in A. baerii
♀ × A. schrenckii ♂ hybrid F1. The explosive increase of
thermophilic microbiota and pathogenic bacteria genera
including Plesiomonas, Cetobacterium, and Aeromonas may be
associated with the development of enteritis. This was followed
by the serious inhibition of intestinal digestion and antioxidant
function. Simultaneously, heat stress reduced the thermal
tolerance and weakened the repair ability of the valve intestine in
sturgeons. The present work will be helpful for strategies making
to enhance the resistance to thermal stress for wild and cultured
sturgeons.
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