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Abstract This paper presents a Caputo–Fabrizio fractional

derivatives approach to the thermal analysis of a second grade

fluid over an infinite oscillating vertical flat plate. Together

with an oscillating boundary motion, the heat transfer is

caused by the buoyancy force induced by temperature dif-

ferences between the plate and the fluid. Closed form solu-

tions of the fluid velocity and temperature are obtained by

means of the Laplace transform. The solutions of ordinary

second grade and Newtonian fluids corresponding to time

derivatives of integer and fractional orders are obtained as

particular cases of the present solutions. Numerical computa-

tions and graphical illustrations are used in order to study the

effects of the Caputo–Fabrizio time-fractional parameter α,

the material parameter α2, and the Prandtl and Grashof num-

bers on the velocity field. A comparison for time derivative

of integer order versus fractional order is shown graphically

for both Newtonian and second grade fluids. It is found that

fractional fluids (second grade and Newtonian) have highest

velocities. This shows that the fractional parameter enhances

the fluid flow.

1 Introduction

The concept of fractional-order derivatives is as old as for

integer-order derivatives. For the past three decades, this

subject was limited only to mathematics. However, in the

last few years, the concepts of fractional calculus were fre-

quently applied to other disciplines. Recently, this subject has

been extended in various directions such as fractional-order

multipoles in electromagnetism, electrochemistry, tracer in

fluid flows, model of neurons in biology, finance, signal pro-

cessing, applied mathematics, bio-engineering, viscoelastic-

ity, fluid mechanics, and fluid dynamics [1]. In fluid dynam-

ics, the fractional derivative models were used widely in the

a e-mail: i.said@mu.edu.sa

past for the study of viscoelastic materials such as poly-

mers in the glass transition and in the glassy state [2].

Recently, it has increasingly been seen as an efficient tool

through which a useful generalization of physical concepts

can be obtained. The fractional derivatives used most are

the Riemann–Liouville fractional derivative and the Caputo

fractional derivative [3,4]. It is well known that these oper-

ators exhibit difficulties in applications. For example, the

Riemann-Liouville derivative of a constant is not zero and

the Laplace transform of the Riemann–Liouville derivative

contains terms without physical signification. The Caputo

fractional derivative has eliminated these difficulties, but the

kernel of the definition is a singular function. Caputo and

Fabrizio have introduced recently a new definition of the frac-

tional derivatives with an exponential kernel without singu-

larities [5]. The Caputo–Fabrizio temporal-fractional deriva-

tive is suitable in the use of the Laplace transform. The spatial

representation of the Caputo–Fabrizio derivative is adequate

in the use of the Fourier transform. Due to increased interest

in modeling with the help of the fractional derivative, several

existing fluid models are generalized and fractional deriva-

tives models have been developed. Amongst them, the most

popular fluid models are fractional second grade model, the

fractional Maxwell model, the fractional Oldroyd-B model,

the fractional Burgers model, etc. The second grade fluid

model is a sub-model of differential type fluids whereas

the other models (Maxwell, Oldroyd, and Burgers) form a

subclass of rate-type fluids. According to Tan and Mingyu

[6], the starting point of fractional derivative model of non-

Newtonian fluids is usually a classical non-Newtonian model,

which is modified by replacing the time derivative of an

integer order by Riemann–Liouville fractional derivative i.e.

a time derivative of fractional order. In the earlier studies,

Friedrich [7] generalized the ordinary Maxwell fluid model

to the fractional Maxwell model and studied it as a func-

tion of the relaxation and retardation times. Tan et al. [8]

addressed in a short note unsteady flows of a viscoelastic
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fluid with a fractional Maxwell model between two parallel

plates. Hayat et al. [9] studied periodic unidirectional flows

of a viscoelastic fluid with the fractional Maxwell model. Yin

and Zhu [10] examined an oscillating flow of a viscoelastic

fluid in a pipe with the fractional Maxwell model. Qi and Jin

[11] investigated unsteady rotating flows of viscoelastic fluid

with the fractional Maxwell model between coaxial cylin-

ders. Qi and Xu [12] analyzed an unsteady channel flow of a

viscoelastic fluid with fractional Maxwell model. Mahmood

et al. [13] determined the velocity field and the associated

shear stress corresponding to the torsional oscillatory flow

of a generalized Maxwell fluid between two infinite coax-

ial circular cylinders by means of the Laplace and Hankel

transforms. Fetecau et al. [14] established exact solutions

for the flow of a fractional Maxwell fluid between coaxial

cylinders. Jamil et al. [15] provided new exact solutions for

Stokes’ first problem of the Maxwell fluid using a fractional

derivative approach. Similar attempts for other viscoelastic

fluids, namely the Oldroyd-B fluid, the Burgers fluid, and

the generalized Burgers fluid were made by Khan et al. [16–

18], Fetecau et al. [19], Qi and Jin [20], Jamil et al. [21],

Zheng et al. [22], Liu et al. [23], Tong [24], and Zheng et

al. [25]. Apart from the rate-type fluids, the idea of frac-

tional derivatives is also implemented on differential type

fluids, particularly the second grade fluid; see for instance

[26–29]. In view of the above discussion, although some

important investigations in the past on fractional models of

a non-Newtonian fluid were carried out, yet this field is not

as rich as for integer derivatives of non-Newtonian fluids

problems. Therefore, very limited investigations were car-

ried out for fractional models of non-Newtonian fluids, more

exactly for exact solutions. Such investigations are even more

scarce when the non-Newtonian fluid flow is considered in

the presence of convection heat transfer. With this motiva-

tion, Vieru et al. [30] in a recent investigation used the idea

of a fractional derivative and studied the free convection flow

of a viscous fluid past a vertical infinite plate with Newto-

nian heating and constant mass diffusion conditions. How-

ever, such investigations are not available for any subclass of

non-Newtonian fluids. More exactly, there is no single inves-

tigation available on a fractional model of a non-Newtonian

fluid together with convection heat transfer where the exact

solutions are established. Therefore, the present work aims

to make such an attempt. For this purpose a simpler subclass

of differential type fluid, known as a second grade fluid, is

chosen. More exactly, the second grade fluid in the pres-

ence of heat transfer analysis due to buoyancy convection

over an oscillating vertical plate is investigated by using the

fractional derivative approach. The above mentioned papers,

which have considered flows modeled by fractional differen-

tial equations, are based on Riemann–Liouville or Caputo

fractional derivative operators. For this reason, analytical

solutions are expressed as a series of generalized functions

(Mittag–Leffler, Lorenzo–Hartley, Robotnov) making them

inadequate for the numerical calculation. In this paper we

consider the governing equation of the flow as a fractional

differential equation based on the new fractional derivative

without singular kernel. By using this derivative, calculations

become simpler and the final form of the solutions is suitable

for numerical calculations.

The rest of the paper is arranged as follows. The mathe-

matical formulation of the problem is given in Sect. 2. Exact

solutions via the Laplace transform are established in Sect. 2

followed by some limiting cases in Sect. 3. Graphical results

are presented in Sect. 4 for important pertinent parameters.

This paper ends with some important conclusions in Sect. 5.

Some important formulas used in this paper are presented in

the appendix.

2 Mathematical formulation and solution of the

problem

Let us consider an incompressible second grade fluid lying

over an infinite rigid flat plate occupying the xy plane. The

y axis is taken normal to the plate. Initially the fluid and the

plate are at rest and its temperature is T∞ (ambient fluid tem-

perature). After time t = 0+, the plate begins to oscillate in

its own plane and induces the motion in the fluid with veloc-

ity f H(t) exp(iωt), where H(t) is the unit step function, f

is the constant having the dimension of a velocity and ω is the

frequency of the oscillation. At the same time, the plate tem-

perature is raised to Tw (wall temperature) which is thereafter

kept constant. We assume that the velocity and temperature

are functions of y and t only. For such a flow, the constraint

of incompressibility is identically satisfied. Taking the usual

Boussinesq approximation, the unsteady flow is governed by

the following set of partial differential equations [31]:

∂u(y, t)

∂t
= ν

∂2u(y, t)

∂y2
+

α1

ρ

∂3u(y, t)

∂y2∂t

+ gβT (T (y, t) − T∞); y, t > 0, (1)

∂T (y, t)

∂t
=

k

ρC p

∂2T (y, t)

∂y2
; y, t > 0, (2)

where u(y, t) is the fluid velocity, T (y, t) is the fluid tem-

perature, ν is the kinematic viscosity of the fluid, ρ is the

constant density, α1 is the second grade parameter, g is the

gravitational acceleration, βT is the volumetric coefficient of

thermal expansion, C p is the heat capacity at constant pres-

sure, and k is the thermal conductivity.

The appropriate initial and boundary conditions are

u(y, 0) = 0, T (y, 0) = T∞; y > 0, (3)
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u(0, t) = f H(t) exp(iωt), T (0, t) = Tw, t > 0, f > 0,

(4)

u(y, t) → 0, T (y, t) → T∞, as y → ∞, t > 0. (5)

Introducing the following dimensionless variables into Eqs.

(1)–(5):

t∗ =
f 2t

ν
, y∗ =

f y

ν
, u∗ =

u

f
, θ =

T − T∞
Tw − T∞

,

α2 =
α1 f 2

μν
, Gr =

νgβT (Tw − T∞)

f 3
, Pr =

μC p

k
, (6)

and dropping the star notation, we obtain the dimensionless

problem

∂u(y, t)

∂t
=

∂2u(y, t)

∂y2
+ α2

∂3u(y, t)

∂y2∂t
+ Grθ(y, t), (7)

∂θ(y, t)

∂t
=

1

Pr

∂2θ(y, t)

∂y2
, (8)

u(y, 0) = 0, θ(y, 0) = 0, y ≥ 0, (9)

u(0, t) = H(t) exp(iωt), θ(0, t) = 1, t > 0, (10)

u(y, t) → 0, θ(y, t) → 0 as y → ∞, t ≥ 0. (11)

In order to develop a model with time-fractional derivatives,

we replace the time derivative of order one with the Caputo–

Fabrizio time-fractional derivative of order α ∈ [0, 1] , and

Eqs. (7) and (8) are written as

Dα
t u(y, t) =

∂2u(y, t)

∂y2
+α2 Dα

t

∂2u(y, t)

∂y2
+Grθ(y, t), (12)

Pr Dα
t T (y, t) =

∂2T (y, t)

∂y2
, (13)

where the Caputo–Fabrizio time-fractional derivative [5] is

defined by

Dα
t u(y, t) =

1

1 − α

t
∫

0

exp

(

−α(t − τ)

1 − α

)

u′(τ )dτ,

α ∈ [0, 1] . (14)

2.1 Calculation for temperature

Applying the Laplace transform to Eqs. (13), (10)2, (11)2,

and using (9)2, we obtain

Pr
s

(1 − α)s + α
θ̄(y, s) =

∂2θ̄ (y, s)

∂y2
,

θ̄ (0, s) =
1

s
, θ̄ (y, s) → 0 as y → ∞.

Using the notation γ = 1
1−α

, we have

Pr γ s

s + αγ
θ̄(y, s) =

∂2θ̄ (y, s)

∂y2
, (15)

θ̄ (0, s) =
1

s
, θ̄ (y, s) → 0 as y → ∞. (16)

The solution of the problem (15), (16) is

θ̄ (y, s) =
1

s
exp

(

−y

√

Pr γ s

s + αγ

)

= �(y, s; Pr γ, αγ ),

(17)

respectively, and the temperature field is given by

θ(y, t) = ϕ(y, t; Pr γ, αγ ), 0 < α < 1, (18)

where functions �(y, s; a, b) and ϕ(y, t; a, b) are defined

by (A1), (A2) from the appendix.

2.2 Temperature field for the ordinary case (α = 1)

The temperature expression corresponding to the ordinary

case is obtained based on a property of the Caputo–Fabrizio

fractional derivative, namely

θ(y, t) = lim
α→1

ϕ(y, t; Pr γ, αγ ) = lim
γ→∞

ϕ(y, t; Pr γ, αγ )

= 1 −
2

π

∞
∫

0

sin(yx)

x
exp

(

−
t x2

Pr

)

dx . (19)

Using the formula [32]

∞
∫

0

sin(bx)

x
exp(−ax2)dx =

π

2
erf

(

b

2
√

a

)

, (20)

we obtain

θ(y, t) = 1 − er f

(

y
√

Pr

2
√

t

)

= erfc

(

y
√

Pr

2
√

t

)

. (21)
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2.3 Calculation for velocity field

Applying the Laplace transform to Eq. (12) and using the ini-

tial and boundary conditions (9)–(11), we obtain the problem

γ s

s + αγ
ū(y, s) =

∂2ū(y, s)

∂y2
+ α2

γ s

s + αγ

∂2ū(y, s)

∂y2

+ Grθ̄ (y, s), (22)

ū(y, s) =
1

s − iω
, ū(y, s) → 0 as y → ∞. (23)

Using Eq. (17) in Eq. (22) and rearranging, we obtain

γ sū(y, s) =
[

(1 + α2γ )s + αγ
] ∂2ū(y, s)

∂y2

+ Gr
(s + γ )

s
exp

(

−y

√

Pr γ s

s + αγ

)

, (24)

ū(y, s) =
1

s − iω
, ū(y, s) → 0 as y → ∞. (25)

The solution of the partial differential equation (24) with the

conditions (25) is

ū(y, s) =
1

s − iω
exp

(

−y

√

a1s

s + a2

)

−d1
1

s
exp

(

−y

√

a1s

s + a2

)

− d2
1

s2
exp

(

−y

√

a1s

s + a2

)

−d3
1

s + b2
exp

(

−y

√

a1s

s + a2

)

+ d1
1

s
exp

(

−y

√

Pr γ s

s + αγ

)

+d2
1

s
exp

(

−y

√

Pr γ s

s + αγ

)

+ d3
1

s + b2
exp

(

−y

√

Pr γ s

s + αγ

)

, (26)

where a1 = γ
1+α2γ

, a2 = αa1, b1 = Gr
γ (1−Pr −α2γ Pr)

, b2 =
αγ (1−Pr)

(1−Pr −α2γ Pr)
, d1 = Gr[(1−Pr)+α2γ Pr]

γ (1−Pr)2 , d2 = Grα
(1−Pr)

, d3 =
Gr

(1−Pr)2

α2
2 Pr2 γ

(1−Pr)−α2γ Pr
, Pr 	= 1.

Now, using the formulas from the appendix, we obtain the

velocity field

u(y, t) = U1(y, t) + U2(y, t) + ψ(y, t; a1, a2, iω), (27)

where

U1(y, t) = (1 − d1 − d3)ϕ(y, t; a1, a2)

+ (d1 + d3)ϕ(y, t; Pr γ, αγ )

+ d3[ψ(y, t; Pr γ, αγ,−b2)

−ψ(y, t; a1, a2,−b2)], (28)

U2(y, t) = d2

t
∫

0

[ϕ(y, τ ; Pr γ, αγ ) − ϕ(y, τ ; a1, a2)]dτ.

(29)

In order to obtain the real part and the imaginary part, we

observe that

ψ(y, s; a1, a2, iω) = −ω
ω

s2 + ω2
�(y, s; a1, a2)

+ iω
ω

s2 + ω2
�(y, s; a1, a2).

Therefore

ψ(y, t; a1, a2, iω) = −ω

t
∫

0

sin[ω(t − τ)]ϕ(y, τ ; a1, a2)dτ

+ iω

t
∫

0

cos[ω(t − τ)]ϕ(y, τ ; a1, a2)dτ . (30)

For cosine oscillations of the plate

uc(y, t) = U1(y, t) + U2(y, t)

−ω

t
∫

0

sin[ω(t − τ)]ϕ(y, τ ; a1, a2)dτ , (31)

respectively, for sine oscillations of the plate

us(y, t) = U1(y, t) + U2(y, t)

+ lω

t
∫

0

cos[ω(t − τ)]ϕ(y, τ ; a1, a2)dτ . (32)

2.4 Velocity field for ordinary second grade fluid

(α → 1 => γ → ∞)

In the case of a velocity field for an ordinary second grade

fluid (α → 1 => γ → ∞), we obtain

a1 = a2 =
1

α2
, b1 = 0, b2 = −

1 − Pr

α2 Pr
,

d1 = −
α2Gr Pr

(1 − Pr)2
, d2 = −

Gr

(1 − Pr)
, d3 = −d1,

lim
γ→∞

ϕ(y, t; Pr γ, αγ ) = erfc

(

y
√

Pr

2
√

t

)

,
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respectively,

lim
γ→∞

ψ(y, t; Pr γ, αγ,−b2)

= −b2 exp(−b2t) ∗ ϕ(y, t; Pr, 0),

and we find the velocity profile,

u(y, t) = U1(y, t) + U2(y, t) + ψ

(

y, t;
1

α2
,

1

α2
, iω

)

,

(33)

with

U1(y, t) = ϕ

(

y, t;
1

α2
,

1

α2

)

+
α2Gr Pr

1 − Pr

×
[

b2 exp(−b2t) ∗ ϕ(y, t; Pr, 0)

+ψ

(

y, t;
1

α2
,

1

α2
,−b2

)]

, (34)

U2(y, t) =
Gr

1 − Pr

t
∫

0

×
[

ϕ(y, τ ; Pr, 0) − ϕ

(

y, τ ;
1

α2
,

1

α2

)]

dτ, (35)

where the notation ∗ represents the convolution product.

3 Special cases

3.1 Velocity field for the fractional Newtonian fluid

(α2 = 0, 0 < α < 1)

In the case of a velocity field for the fractional Newtonian

fluid (α2 = 0, 0 < α < 1), we have b1 = Gr
γ (1−Pr)

, b2 =
αγ, a1 = γ, a2 = αγ, d1 = Gr

γ (1−Pr)
, d2 = αGr

1−Pr
, d3 =

0, Pr 	= 1, respectively,

u(y, t) = U1(y, t) + U2(y, t) + ψ(y, t; γ, αγ, iω), (36)

with

U1(y, t) = (1 − d1)ϕ(y, t; γ, αγ ) + d1ϕ(y, t; Pr γ, αγ ),

(37)

U2(y, t) = d2

t
∫

0

[ϕ(y, τ ; Pr γ, αγ ) − ϕ (y, τ ; γ, αγ )]dτ.

(38)

3.2 Velocity field for the ordinary Newtonian fluid

(α2 = 0, α = 1)

We use lim
γ→∞

ϕ(y, t; γ, αγ ) = erfc

(

y

2
√

t

)

, (39)

U1(y, t) = erfc

(

y

2
√

t

)

, (40)

U2(y, t) =
Gr

1 − Pr

t
∫

0

[

erfc

(

y
√

Pr

2
√

τ

)

− erfc

(

y

2
√

τ

)

]

dτ .

(41)

The velocity field for the ordinary Newtonian fluid is

u(y, t) =
Gr

1 − Pr

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

t + Pr y2

2

)

er f c
(

y
√

Pr

2
√

t

)

−
(

t + y2

2

)

er f c
(

y

2
√

t

)

+ y
√

t√
π

(

exp
(

− y2

4t

)

−
√

Pr exp
(

−Pr y2

4t

))

+ 2√
π

∞
∫

y

2
√

t

cos

(

ωt −
ωy2

4x2

)

exp(−x2)dx

+i 2√
π

∞
∫

y

2
√

t

sin

(

ωt −
ωy2

4x2

)

exp(−x2)dx

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(42)

4 Numerical results and discussions

In order to obtain some information on the fluid flow param-

eters, we have made several numerical simulations using

Mathcad software. The results obtained are presented in the

graphs from Figs. 1, 2, 3, 4, and 5. All the parameters and

profiles are dimensionless.

We were interested, first, in an analysis of the influence of

the fractional parameter α on the dimensionless temperature

and the fluid flow velocity. Also, the influence of the Prandtl

number Pr on the temperature and fluid velocity were stud-

ied. The influence of the Grashof number Gr for velocity is

also presented. The ordinary fluid, corresponding to the unit

fractional parameter, is compared with a few cases with the

fractional parameter.

The diagrams of Fig. 1 are plotted in order to dis-

cuss the influence of the fractional parameter α on the

fluid temperature. The curves corresponding to the tem-

perature θ(y, t) are sketched versus y, for different val-

ues of the time and of the fractional parameter α, namely,

α ∈ {0.4, 0.6, 0.8, 1.0}. For the Prandtl number we used

the value Pr = 5.

By increasing values of the fractional parameter α the

temperature increases. The thickness of the thermal boundary

layer is increasing with the time t and with the parameter α.
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Fig. 1 Profiles of temperature versus y for Pr = 5

The influence of the Prandtl number Pr on the fluid tem-

perature is shown in Fig. 2. For the curves plotted in Fig.

2, the fractional model corresponding to α = 0.5 was con-

sidered. It is observed from Fig. 2 that, at small values of

the Prandtl number, the thermal diffusivity is large and the

thickness of the thermal boundary layer decreases with the

Prandtl number.

Figure 3 was drawn in order to analyze the influence of

the fractional parameter α on the fluid velocity. Both cases of

Fig. 2 Profiles of temperature versus y for α = 0.5 and Pr variation

for different values of t

the plate oscillations were considered, namely cosine oscil-

lations and sine oscillations. For Fig. 3 we used the values

Pr = 5, Gr = 1.5, α2 = 0.5, ω = 2. It must be emphasized

that, if the fractional parameter α has low values, then the

fluid velocity is higher. The ordinary fluid moves the slow-

est.
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Fig. 3 Profiles of cosine and sine oscillation versus y for α variation and different values of t

The diagrams of Fig. 4 are plotted in order to discuss the

influence of the Prandtl number Pr on the fluid velocity. The

curves corresponding to the fluid velocity are sketched versus

y, for different values of the time and of the Prandtl number

Pr, namely, Pr ∈ {5, 10, 15, 20}. For the other constants we

used the values α = 0, 2, ω = 2, Gr = 10, α2 = 0.5.

By increasing the value of the Prandtl number Pr, the

velocity of the fluid for cosine and sine oscillation decreases

and by increasing the time the influence of the cosine oscil-

lation is very much smaller than in the case of the sine oscil-

lation.
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Fig. 4 Profiles of cosine and sine oscillation versus y for Pr variation and different values of t

Figure 5 was plotted in order to discuss the influence of

the Grashof number Gr on the fluid velocity. The curves cor-

responding to the fluid velocity are sketched versus y, for

different values of the time and of the Grashof number Gr,

namely Gr ∈ {3, 5, 7, 9}. For the other constants we used

the values Pr = 5, ω = 2, α = 0.5, α2 = 0.5.

The curves show the behavior of the cosine and sine oscil-

lations for the velocity. By increasing the value of the Grashof

number Gr the velocity of the fluid for the cosine and sine

oscillations increases and by increasing the time the influ-

ence of the cosine oscillation is very much smaller than in

the case of the sine oscillation. In Fig. 6, the curves are plot-
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Fig. 5 Profiles of cosine and sine oscillation versus y for Gr variation and different values of t

ted in order to show a comparison between second grade and

Newtonian fluids for fractional and ordinary derivatives for

the two cases of sine and cosine oscillations. The fractional

fluids (both second grade and Newtonian) flow faster than

ordinary fluids. The fractional second grade fluid shows the

highest velocity, whereas the ordinary Newtonian fluid has

minimum velocity.
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Fig. 6 Comparison of cosine (a) and sine (b) velocities for fractional second grade and Newtonian fluids with ordinary second grade and Newtonian

fluids when t = 0.2

5 Conclusions

The Caputo–Fabrizio fractional derivatives approach was

used and the heat transfer analysis in a second grade fluid

over an infinite oscillating vertical plate was studied. The

solution of the problem in closed form was obtained using

the Laplace transform method. Some limiting solutions were

extracted corresponding to ordinary second grade and New-

tonian fluids. The results were analyzed graphically for time-

fractional, second grade parameters, and Prandtl and Grashof

numbers for various times. By the following remarks we con-

clude this article.

1. On increasing the fractional parameter, the temperature

increases. The temperature is maximum for ordinary fluid

(α = 1).

2. The temperature decreases with increasing Prandtl num-

ber.

3. For large times, the thickness of the thermal boundary

layer increases.

4. The velocity decreases with increasing fractional param-

eter; this behavior is quite opposite to that of the temper-

ature.

5. The velocity decreases with increasing Prandtl number.

6. The velocity increases with increasing Grashof number.

7. The momentum boundary layer thickness of the cosine

velocity is greater than the sine velocity.

8. Fractional fluids (second grade and Newtonian) have

highest velocities. This shows that the fractional param-

eter enhances the fluid flow.
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Appendix

We have

�(y, s; a, b) =
1

s
exp

(

−y

√

as

s + b

)

, (A1)

ϕ(y, t; a, b) = L−1 {�(y, s; a, b)}

= 1 −
2a

π

∞
∫

0

sin(yx)

x(a + x2)
exp

(

−
btx2

a + x2

)

dx,

(A2)

F(y, s; a, b, c) =
1

s − c
exp

(

−y

√

as

s + b

)

= �(y, s; a, b) + ψ(y, s; a, b, c), (A3)

ψ(y, s; a, b, c) =
1

s − c
�(y, s; a, b) (A4)

ψ(y, t; a, b, c) = L−1 {ψ(y, s; a, b, c)}

= exp

(

ct − y

√

ac

b + c

)

−1 −
2ac

π

∞
∫

0

sin(yx)

x[ac + (b + c)x2]

exp

(

−
btx2

a + x2

)

, (A5)

f (y, t; a, b, c) = L−1 {F(y, s; a, b, c)}
= �(y, t; a, b) + ψ(y, t; a, b, c), (A6)
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G(y, s; a, b) =
1

s2
exp

(

−y

√

as

s + b

)

=
1

s
�(y, s; a, b),

(A7)

g(y, t; a, b) =
t

∫

0

ϕ(y, τ ; a, b)dτ. (A8)
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