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�e e	ect of radiation on natural convection of Newtonian 
uid contained in an open cavity is investigated in this study. �e
governing partial di	erential equations are solved numerically using the Alternate Direct Implicit method together with the
Successive Overrelaxation method.�e study is focused on studying the 
ow pattern and the convective and radiative heat transfer
rates are studied for di	erent values of radiation parameters, namely, the optical thickness of the 
uid, scattering albedo, and the
Planck number. It was found that, in the optically thin limit, an increase in the optical thickness of the 
uid raises the temperature
and radiation heat transfer of the 
uid. However, a further increase in the optical thickness decreases the radiative heat transfer rate
due to increase in the energy level of the 
uid, which ultimately reduces the total heat transfer rate within the 
uid.

1. Introduction

�ere are many physical phenomena in which energy
exchange due to radiation plays an important role, for
instance, heat transfer in furnaces and combustion chambers,
solar simulators and the utilization of solar energy, 
ow of
the earth’s mantle, the 
ow of oxide melts during crystal
growth, processing ofmolten glass, and the solar air receivers.
Heat leakage in evacuated spaces, energy dissipation in
vacuum tubes, role of air and water as coolant in power
plants, and cooling of electronic and optoelectronic devices
also involve the energy exchange via radiation. One of the
important features of radiation heat transfer is the nature
of its dependency on temperature. Review of the radiation
models that exist in the literature is given by Siegel andHowell
[1]. It should also be noted that the study of heat transfer
in 
uids which absorb and emit radiant energy becomes
a complicated task due to the coupled, non-linear physical
phenomena of internal radiation and natural convection. A
detailed review of this coupling phenomenon of radiative and

uid transport can also be found in Modest [2].

In general, the combined mechanism of radiant and
convective heat transfer in �nite enclosures has received
considerable attention. Larson and Viskanta [3] investigated
the e	ects of free burning by taking a model of transient
natural convection and radiation for gray di	use walls with
an arbitrary temperature in an enclosure. �ey showed that
the di	erence between the temperatures of the hot and the
cold walls reduces to about 1% of that of the hot wall, due to
radiation e	ect. More interestingly, the air in the core region
generally reached 33% of the hot wall temperature, whereas
it obtains 13% of the hot wall temperature in the absence of
radiation e	ect at the same time level. Lauriat [4] analyzed
the e	ect of combined radiation and radiation phenomena
for gray 
uids. Bouallou and Sacadura [5] considered the
porous media case of participating medium. Draoui et al.
[6] further made an investigation of natural convection of
participating 
uids in a square enclosure. �e study of 
ow
properties for such kind of 
ows showed that there is a
tendency of 
ow reduction and an increase in heat transfer
for the process of combined conduction-radiation of 
uids in
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enclosures. Moreover the centrosymmetric property of 
ow
is perturbed due to the e	ect of radiation (see also Lauriat
[4]). Salinger et al. [7] studied the e	ects of optical thickness
and thermal gradients on the stability and structure of 
ows
in a cylindrical container heated from below. Modest [2, page
466] indicated that there is a general misconception about
lowest order di	erential approximation, that it may fail in
optically thin limit. Rather there is some loss of accuracy only
when small optically thinmedium is sandwiched between hot
and cold surfaces in the presence of Collimated irradiation.
Derby et al. [8] examined the performance of the approxima-
tions for modeling a representative problem of heat transfer
and buoyant 
ow in optically thick 
uids. �ey remarked
that although Rosseland di	usion had an advantage of less
computational cost, an inaccuracy in the thermal boundary
layer appears in it. However despite the fact that di	erential
approximation is more costly in terms of computation due to
an additional elliptic type di	erential equation, it gives more
accurate results. Ridouane et al. [9] studied both transient
and steady conditions for the e	ects of surface radiation
on natural convection in a square enclosure heated from
below and cooled from above.�ey showed that heat transfer
across the cavity rises quickly due to active walls emissivity.
Recent boundary layer study of combined mechanism of
convection and radiation under di	erent conditions can be
seen in [10–14]. Liu et al. [15] used discrete ordinate method
to investigate the combinedmechanismof natural convection
and radiation in a cavity and showed that radiative heat
transfer was signi�cantly reduced as the optical thickness was
increased.

Most of the study of natural convection in enclosures
has been devoted to the study of streamlines and isotherms.
However, the investigation of heat function is also useful in
studying the heat transfer characteristics of the phenomenon
of natural convection. Kimura and Bejan [16] introduced
heat function as the energy analog of stream function.
Also, isotherms provide credible information about heat 
ow
only in conduction dominated regime, whereas heatlines
are locally parallel to the actual direction of energy 
ow in
a domain. �us heatlines study helps to comprehend the

ow and temperature pro�le as the heat function formu-
lation is based on identically satisfying the thermal energy
equation (see also Bello-Ochende [17], Costa [18, 19], and
Deng and Tang [20]). �e study of heat function pro�le
becomesmore important when the natural convection 
ow is
combined with radiation, as the inclusion of radiation raises
the energy level of the 
uid in domain considerably (see
Larson and Viskanta [3]). A very recent study of heatlines
formulation for surface radiation case in enclosures has been
made by Hossain et al. [21]. Further, the problem of natural
convection in open ended cavity is recently addressed by
Saleem et al. [22, 23]. As far as the study of the e	ect of
surface radiation in open cavity is concerned, the model
was considered by Hinojosa et al. [24]. �ey investigated
the Nusselt number distribution for the natural convection
and surface thermal radiation in a square tilted open cavity.
However, more emphasis was laid on the e	ect of tilt

angle on the Nusselt number distributions. Also the case of
conjugate natural convection with conduction and surface
radiation in open cavity was studied by Nouanegue et al.
[25].

�e present study aims to investigate the basic 
ow pat-
tern and heat transfer characteristics in open ended domain.
Since, to author’s knowledge, the study of participating 
uids
in open ended cavities is not found in literature, such kind
of models may have their applications in the situations where
heat is rejected via spaces between re
ecting surfaces, energy
transfer in vacuum tubes, and 
ow of air and water as coolant
in power plants, where heat is mainly rejected via radiation.
�us here we consider the case of combined natural con-
vection and radiation of Newtonian 
uid in an open ended
cavity, whose le� wall is maintained at a higher temperature.
�e density of 
uid with temperature is considered to vary
under Boussinesq approximation. Boussinesq approximation
is a better choice for laminar case of such 
uids. (See also
[26].) Further, it is also worthmentioning here that modeling
such 
ows requires that the temperature of the gas does not
rise enough to a level where it causes generation of large
number of ions in the gas. So high energy photons due to ionic
exchange do not come into account and the frequency/energy
level of radiation does not vary over a wide range (Modest
[2]), and gray approximation remains valid therein. Air (Pr =
0.71) can be chosen for modeling such phenomenon (see also
[3, 4, 6]) so that the ionic exchange does not take place even

at high temperatures. �us we consider a Boussinesq type

uid with gray radiant properties and consider the Rayleigh
number only in the range of 2 × 105 ≤ Ra ≤ 7 × 105.
Attention is focused on investigating the e	ect of radiation
parameters, namely, the optical thickness, scattering albedo,
and the Planck number.

2. Mathematical Formulation

Consider two-dimensional 
ow of a viscous incompressible
absorbing/emitting and scattering Boussinesq type 
uid con-
�ned in an open rectangular cavity formed by the regions
between two horizontal planes at � = 0 and � = �, and the
two vertical planes at � = 0 and the open end along � = �,
where � is the length and � is the height of the cavity. �e
le� wall is assumed to be emissive, whereas its temperature

is isothermally maintained at ��. �e temperature of the


uid that enters the cavity region is supposed to be at ��
at � = 0 (where �� > ��). In order to represent the
temperature at the open end, we use the subscripts “in” for
incoming and “out” for outgoing 
uid, respectively. Flow con-
�guration and dynamical boundary conditions are shown in
Figure 1.

Here, 	 and V are the components of velocity along the

� and � axes, respectively, � is the 
uid temperature, and 

is the magnitude of acceleration due to gravity whereas ��,
(� = �, 2, 3) is the emissivity of le�, top, and bottom walls,
respectively. �e unsteady motion of incompressible 
uid
and the equations for conservation of mass, momentum, and
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Figure 1: Flow con�guration in coordinate system.

energy in two-dimensional Cartesian coordinate system are
given by
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where ] is the kinematic viscosity, � is the coe�cient of
volume expansion, � is the density, �� is the molar speci�c
heat at constant pressure, � is the coe�cient of thermal
conductivity, � is the time, and �� is the radiation 
ux vector
in two dimensions.We have considered semitransparent 
uid
with gray radiant properties. �e equation of radiant energy
for optically thick absorbing/emitting and scattering 
uid is
thus given by (see [4–6])


2�

�2 +


2�

�2 = 3�2� (1 − Ω0) {� −  (� − ��)4} , (3)

where �� is mean extinction coe�cient, Ω0 is scattering
albedo, and  is Stefan-Boltzmann constant. �e boundary
conditions are expressed as follows:

� < 0
	 = V = � = � = 0, 0 ≤ � ≤ �, 0 ≤ � ≤ �, (4)

� ≥ 0. First we describe the boundary conditions at the solid
walls. �e velocity components at the solid walls are given by
no slip condition

	 = V = 0. (5)

�e temperature of the le� wall is given by

� = ��, � = 0, 0 ≤ � ≤ �, (6)

whereas the temperature at the nonisothermal walls is given
by

�
�
� + 1
3��


�

� = 0, � = 0, �, 0 ≤ � ≤ �. (7)

Finally the boundary conditions at the solid walls for thermal
radiation are


�

#� =

3����4 − 2�� {� − 4 (�� − ��)4} . (8)

Here, # is the direction normal to the wall and � = 1, 2, 3,
respectively, represent the le�, top, and bottomwall as labeled
in Figure 1. (See [6].)

To set up the open end boundary conditions, notice that
the velocity component 	, V should satisfy the continuity
equation at the open end. Moreover, 
V/
� = 0 is a physically
more realistic condition for vertical velocity at the open end
as compared to V = 0, as the 
uid may not necessarily leave

the domain horizontally. Further, (
�/
�)out = 0 is found
to be a suitable condition at the open end for temperature.
Most recently, these conditions are also addressed by the same
authors (Saleem et al. [22, 23] and see the references therein).
Further, since it is required to con�ne the e	ects of wall
radiation within the cavity, this suggests that the divergence
of radiation intensity at the open end for thermal radiation
should be zero.�us the boundary conditions at the open end
of the cavity are summarized by the following equations
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In order to transform the problem into stream vorticity form,
we de�ne the stream function and vorticity by the following
relations:
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Further introduce the nondimensional variables by using the
following transformations:

� = �
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where �, � are the nondimensional coordinate axis, 	, V are
the nondimensional velocity components, % and $ are the
nondimensional stream and vorticity functions, � is the time,

�0 is the reference temperature, ' is the nondimensional
temperature, '0 is the mean temperature in nondimensional
form,� is the dimensionless radiant energy, and -0 is the opti-
cal thickness.�e treatment of radiative 
ux divergence in (2)
is based on two-dimensional di	erential approximation. �e
nondimensional form of radiative 
ux and its divergence are
given by the following relations (see also [1, 2, 4–6]):
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where ��,� and ��,	 are the radiative 
uxes along the � and� components, respectively. �us the governing equations in
nondimensional form �nally become
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with the following boundary conditions:
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	 = V = % = $ = ' = � = 0, 0 ≤ � ≤ 1, 0 ≤ � ≤ 1

*
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�Δ�93
�] , 5CR = ���Δ�
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are, respectively, the Prandtl number, the Rayleigh number,
and the Planck number (also known as conduction-radiation
parameter). �e temperature boundary conditions for hori-
zontal walls and radiation energy conditions at the three solid
walls in nondimensional form are now given by ([1, 2, 4–6])
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Heatlines are a measure of the path followed by the heat
function across the 
ow region. Following the formulation of
heat function de�ned by Kimura and Bejan [16], we construct
a Poisson-type heat function equation that identically satis�es
the energy transport equation (2) given by (see also [15–19])
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Now de�ning 9 = 9/�Δ� as the nondimensional heat
function and making use of (12), we get the following
de�nition of heat function:
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�e wall boundary conditions for the heatlines are followed
by the de�nition of heat function given by (17) (see also [15–
19]):
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Finally we de�ne the heat transfer from the le� wall. When
energy transfer takes place in combined mode, the net heat
transfer rate is also de�ned as the combined mechanism of
these modes (Lauriat [4]). �us for combined mechanism of
convection and radiation the net heat transfer for solid wall
boundaries can be de�ned by the following relations (see [4–
6, 21]):

Nu� = −(
'
�)�=0, Nu
 = − 1
35CR

(
�
� )�=0,
Nu = Nu� +Nu
.

(23)

From here it follows that the average Nusselt number is
de�ned as
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 = ∫1
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'
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1
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�

� )�=0] ;�,

(24)

where ;� is the element of length � along the wall. Equations
(13) to (16) are solved with the boundary conditions given by
(17) and (19) to solve the system. �e heat lines are given by
(21) whereas the average heat transfer is calculated from (24).

3. Method of Solution

�e 
ow is developed by coupling of buoyancy term in (14),
which is updated by (15) and (16), stream function is obtained
by coupling of (13) and (14), and �nally velocity pro�le is
updated using the nondimensional form of (10).�e solution
is complemented with the implementation of boundary con-
ditions given in (17) and (19). �e stream function equation
(13) is solved using SuccessiveOverRelaxation (SOR)method
with residual tolerance of order 10−5. With � as the reference
height of the cavity, we have considered a uniform grid of
size ℎ = �/(B − 1), where B is the maximum number of
grids along coordinate axes.�roughout the computation we
take � = 1. �e time dependent vorticity transport equation
(14) and thermal conduction-convection equation (15) are
solved using theAlternateDirect Implicitmethod.�edetails
of the proposed method are also given in [21–23, 27]. A
simple discretization procedure given by Bello-Ochende [17]
is adopted for the solution of radiation equation (16) and
heat function equation given by (21). As a simple case, all
computations are performed for square cavity. �at is,* = 1.
Now in order to meet the criteria of convergence to reach the
steady state, we de�ne the error bound in the computed value
of a variable C, by the relation

DDDDDDDDDD
C�+1(�,�) − C�(�,�)

C�(�,�)
DDDDDDDDDD < 10−8, (25)

where the superscript E refers to the number of time steps
and (�, F) is a grid location on coordinate axes. A grid
dependence study has been carried out for the choice of
suitable number of grid points whose results are shown in
Figure 2.
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Figure 2: Average heat transfer rate of the heated wall against time
for various grid choices at Ra = 5 × 105, Pr = 0.7, and -0 = Ω0 =5CR = 0.5.

Figure 2 shows the result of grid dependence study at Ra =5 × 105, -0 = Ω0 = 5CR = 0.5 for the choice of appropriate
mesh size ℎ. For any variable C, we de�ne the relative error %
between the computed values taking di	erent grid points as
given by

Error% = DDDDDDDDD
C(�+10,�+10) − C�,�C�,�

DDDDDDDDD , (26)

where C�,� is previously calculated value of a variable for(H × H) grid points. As a demonstration, Figure 2 shows the
percentage error in the values obtained from the di	erence
between the computed values of the Average Nusselt number,
for di	erent choices of mesh points. It can be seen that the
maximum error between mesh sizes 61 × 61 and 71 × 71,
in terms of Nu, drops to less than 1%. �us a mesh of 61 ×61 is considered su�cient for the entire computation. �e
reduction in relative error justi�es the grid independence
of the solution. In order to further check the validity for
the solution method of the proposed model, we have also
revisited the work of Draoui et al. [6] using the solid wall
conditions and the temperature and radiation condition
given by [6] for the right wall.�e comparison of streamlines,
isotherms, and heatlines, for Ra = 105, Pr = 0.7, -0 = 1,Ω0 =0.2, and 5CR = 0.1, is shown in Figure 3. From this �gure
we assert that the numerical solution we obtained agrees
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Figure 3: Comparison of (a) streamlines and (b) isotherms. (c) Heat lines with the results of Draoui et al. [6] for Ra = 105, Pr = 0.7, -0 = 1,Ω0 = 0.2, and5CR = 0.1 with the conditions given by [6].

well with the existing literature of heatlines. Intel 1.83GHz
processing machine is used for the entire computation.

4. Results and Discussion

We have considered combined natural convection and radia-
tion phenomena for participating 
uid con�ned in an open
square cavity. �e le� wall is considered at a temperature
higher than that of the 
uid entering from the ambient
region. �e e	ect of relevant radiation parameters, namely,
the optical thickness, scattering albedo, and Planck number,
on the 
owpro�le and heat transfer rate has been numerically
studied. �e result is presented graphically in terms of

streamlines, isotherms, heatlines, and heat transfer rate for
di	erent values of these governing physical parameters.

4.1. E	ect of Optical 
ickness. Figure 4 represents the
selected results of steady state pattern of streamlines while
Ra = 7×105,Ω0 = 0.2, and5CR = 0.1 for (a) -0 = 0.0, (b) -0 =0.5, and (c) -0 = 1.0, respectively. �e result of Figure 4(a)
shows the streamlines in the absence of radiation e	ects.
However, with the increase in optical thickness, the 
ow in
the core region decreases as shown in Figure 4(b); rather it is
minimum at this value of -0. By further increasing the optical
thickness, the 
ow develops into amulticell pattern due to the
dominance of radiation e	ects into the core region. It may be
due to the reason that the 
uid in the core region experiences
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Figure 4: Steady state pattern of streamlines for Ra = 7 × 105,Ω0 = 0.2, and5CR = 0.1 at (a) -0 = 0.0, (b) -0 = 0.5, and (c) -0 = 1.0.

a force from the incoming 
uid, whereas the recirculation
is higher in the half open vortex close to the opening. �is
counteracting mechanism develops a multicellular pattern as
shown in Figure 4(c). Figure 5 shows the isotherms at these
values of optical thickness. Figure 5(a) shows that, at -0 =0.0, the isotherms are clustered close to the heated wall. It is
due to the dominance of convection in the boundary layer
region. However with the increase in optical thickness, the
boundary layer thickness increases.�is e	ect is qualitatively
in agreementwith the case of completely con�ned enclosures.
�e radiation energy adds to the total energy of isotherms and
thus the high energy isotherms shi� towards the core region
as shown in Figure 5(b). At -0 = 1.0, the whole 
ow domain
has the isotherms nearly equal to unity due to the dominance
of radiant energy, shown in Figure 5(c). �is might well be
understood also from the heatlines pattern of Figure 6.

Figure 6 shows the heatlines while Ra = 7 × 105, Ω0 =0.2, and 5CR = 0.1 for (a) -0 = 0.0, (b) -0 = 0.5, and
(c) -0 = 1.0, respectively. Obviously, at -0 = 0.0, there is
no contribution of radiation in heat transfer and 
uid 
ow.
All 
uid entering the 
ow domain absorbs heat from the
solid wall and heatlines are negative throughout the 
ow
region with higher values close to the solid wall as shown
in Figure 6(a). �e 
ow region, in which the recirculation
is weaker (as in Figure 4(b)), is the region which absorbs
heat at -0 = 0.5, given in Figure 6(b). �e positive part
of the heatlines pattern is the region of 
uid with higher
energy level. Figure 6(c) shows the heatlines pattern at -0 =1.0. �is clearly indicates the high energy level of 
uid due
to dominance of radiation e	ect. �e heatlines are positive
throughout the region, which indicates that the 
uid in the
region is at high energy level and emitting heat. �e e	ect of
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Figure 5: Isotherms for Ra = 7 × 105,Ω0 = 0.2, and5CR = 0.1 at (a) -0 = 0.0, (b) -0 = 0.5, and (c) -0 = 1.0.

optical thickness on heat transfer is described in Figure 7. It
can be discerned that the overall heat transfer Nu pattern is
dominated by the radiation heat transfer Nu
. In particular,
overall heat transfer is almost the same as radiative heat
transfer beyond -0 > 0.5. Heat transfer is maximum at-0 = 0.5, when the 
ow in the core region is very weak.
�e contribution of convective heat transfer asymptotically
vanishes with the increase in the contribution of optical
thickness. At -0 = 1.25, both the radiative and convective heat
transfer rates coincide with “0,” beyond which the negative
heat transfer signi�es the energy level of 
uid due to the fact
that contribution of radiant energy is so high that it serves to
reject heat to the solid wall. However, the smooth curve, for-0 > 1.75, shows that the 
ow pattern and transfer rates are
not much a	ected beyond -0 = 1.75.

4.2. E	ect of Scattering Albedo. Scattering albedo is ameasure
of radiative participation of the 
uid. 0 ≤ Ω0 ≤ 1 shi�s the

uid regime from perfectly participating to nonparticipating.
Figure 8 shows the average total heat transfer against time
at Ra = 2 × 105, -0 = 0.5, and 5CR = 0.2 for
di	erent values of scattering albedo Ω0. �e right hand side
of (16) signi�es that the 
uid is perfectly transmitting atΩ0 = 0. �is justi�es that with the increase in the value
of Ω0, the scattering increases, which enhances the e	ect of
convective heat transfer; ultimately Nu� increases whereas
the radiative heat transfer decreases and the decrease seems
more prominent because Ω0 = 1 decouples the radiation
equation from the thermal energy. �us, at Ω0 = 1, the
radiative heat transfer is zero. Figure 8 signi�es thatΩ0 has no
signi�cant e	ect on the overall heat transfer 0 ≤ Ω0 ≤ 0.75;
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Figure 6: Heat lines for Ra = 7 × 105,Ω0 = 0.2, and5CR = 0.1 at (a) -0 = 0.0, (b) -0 = 0.5, and (c) -0 = 1.0.

rather, there is a considerable decrease only between Ω0 =0.75 and Ω0 = 1 due to the reason that at Ω0 = 1 the 
uid
surface is perfectly scattering, and the contribution of Nu

vanishes at this value ofΩ0.
4.3. E	ect of Planck Number. Planck number represents the
ratio of conduction to radiation e	ects on the 
uid. �e
greater the value of5CR is, the lesser the e	ect of radiation on
the 
uid will be. Figure 9 shows the streamlines at Ra = 5 ×105, Ω0 = 0.2, and -0 = 1.0 for (a)5CR = 0.2, (b)5CR = 2.0,
and (c) 5CR = 4.0, respectively. At 5CR = 0.2, the radiation
e	ect is dominant and the 
ow in the core region is weaker.
Rather, a multicellular pattern appears due to the reason that
the lower energy 
uid is trapped by the recirculating 
uid
close to the opening. However, at 5CR = 2.0, the two e	ects

are comparable, and the 
ow in the core region develops into
a unicellular pattern with maximum value of the 
ow at the
opening. At5CR = 4.0, the conduction e	ect is dominant and
the 
ow further decreases. �e 
ow in Figure 9(c) is weaker
than the one noticed in Figure 9(b), because of the gradual
exclusion of radiant energy from the 
ow. Figure 10 shows
the heatlines at Ra = 5 × 105, Ω0 = 0.2, and -0 = 1.0 for (a)5CR = 0.2, (b) 5CR = 2.0, and (c) 5CR = 4.0. Obviously at5CR = 0.2, the radiant energy is a dominant factor in the

ow, because the 
uid in most of the domain is at higher
energy level, shown by positive values of heatlines. However,
the heatline labeled −6 at the opening signi�es that there is a
small portion of the incoming 
uid that absorbs heat from
the 
ow domain. Figures 10(b) and 10(c) show that as the
value of Planck number increases, more andmore 
uid in the
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Figure 7:Average heat transfer rates against various values of optical
thickness -0 at Ra = 7 × 105, Ω0 = 0.2, and5CR = 0.1.

core region absorbs heat by conduction due to decrease in the
energy level of the 
uid in the core region.

Finally Figure 11 shows the convective, radiative, and total
heat transfer as a function of 5CR while -0 = 1, Ω0 = 0.2,
and Ra = 5 × 105. It can be observed that, for su�ciently
low value of Planck number (5CR ≤ 0.5), both the radiation
and convective heat transfer increase. �e reason might be
that, for low value of Planck number, radiation is assisted by
natural convection. Looking up at (15) and (24), it becomes
obvious that the contribution of radiation in total energy and
total heat transfer should fade away in the limit 5CR →∞, and for su�ciently large 5CR, the energy equation (15)
gets decoupled from the radiant energy, whereas natural
convection becomes the main mechanism to drive the 
ow.
�is is now evident from Figure 11 that, beyond 5CR0.5,
there is a decrease in the radiation heat transfer with the
increasing values of5CR, and it asymptotically reaches to zero
in the limit 5CR > 20 in this case, whereas the convective
heat transfer rate increases and approaches total heat transfer
curve for5CR > 20.�us in this case for5CR > 20, the overall
heat transfer rate is represented by convective heat transfer
rate and the contribution of radiative heat transfer vanishes.
�erefore we can say that there is a smooth transition of 
ow
from radiation dominated regime to convection dominated
regime. �is is also physically evident from the de�nition of
Planck number that, for 5CR ≫ 1, the conduction e	ects
would become dominant. However, the convective and total
heat transfer attain almost a steady value beyond 5CR > 15,
due to the fact that the contribution of radiation in the total
thermal energy becomes less and less as we increase the value
of5CR.

5. Conclusion

An investigation of the e	ect of radiation and natural convec-
tion of viscous incompressible 
uid in a square open cavity

t
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N
u

Figure 8: Average heat transfer rate against time while Ra = 2×105,-0 = 0.5, and5CR = 0.2 for di	erent values of scattering albedo Ω0.

has been carried out. �e main focus was the study of 
ow
pattern and heat transfer rates for di	erent values of radiation
parameters 0 ≤ -0 ≤ 2.5, 0 ≤ Ω0 ≤ 1, and 0.05 ≤ 5CR ≤ 20.
�e following conclusions are obtained.

(1) It was seen that with the increase in the optical thick-
ness the strength of 
ow and energy level of the 
uid
increases, which ultimately results in the negation
of heat transfer rate. Convective heat transfer Nu�
decreases asymptotically to zero, whereas radiative
heat transfer Nu
 �rst increases in the range 0 ≤ -0 ≤0.5 and then decreases due to rapid attenuation along
propagation in the optically thick media.

(2) �e total heat transfer is not signi�cantly a	ected
in the range 0 ≤ Ω0 ≤ 0.75, whereas due to
rapid decrease in radiative heat transfer, overall heat
transfer decreases nearΩ0 = 1.

(3) Both the strength of 
ow and energy level of the 
uid
decreasewith the increase in Planck number5CR.�e
contribution of radiative heat transfer asymptotically
fades to zero with the increase in the value of 5CR,
whereas convective heat transfer remains the main
mechanism of heat transfer for large values of5CR.

Nomenclature

English Letters

*: Aspect ratio��: Molar speci�c heat at constant pressure (JK−1)

: Acceleration due to gravity (ms−2)�: Radiant energy Wm−2
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Figure 9: Streamlines for Ra = 5 × 105,Ω0 = 0.2, and -0 = 1.0 at (a)5CR = 0.2, (b)5CR = 2.0, and (c)5CR = 4.0.

�: Dimensionless radiant energy9: Heat function Wm−19: Dimensionless heat functionℎ: Mesh spacing(�, F): Nodal locations of (�, �) on gridM, B: �enumber of grid points in each direction�: Coe�cient of thermal conductivity

(Wm−1K−1)5CR: Planck number
Nu�: Convective Nusselt number

Nu�: Average convection Nusselt number
Nu
: Radiation heat transfer

Nu
: Average radiation heat transfer
Nu: Total Nusselt number

Nu: Average Nusselt numbers

�: Fluid pressure (Pa)��: Radiant 
ux Wm−2��: Dimensionless radiant 
ux
Pr: Prandtl number
Ra: Raleigh number

�: Dimensional temperature (K)

��, ��: Maximum and minimum temperature (K)

�0: Average/reference temperature (K)�: Dimensional time (s)�: Nondimensional time	,V: Velocity components (ms−1)	, V: Nondimensional velocity components�,�: Length and height of the cavity (m)�, �: Dimensional coordinate axis (m)�, �: Nondimensional coordinate axis.
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Figure 10: Heatlines for Ra = 5 × 105,Ω0 = 0.2, and -0 = 1.0 at (a)5CR = 0.2, (b)5CR = 2.0, and (c)5CR = 4.0.
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Greek Letters

�: �ermal di	usivity (�/���)��: Mean extinction coe�cient�: �ermal expansion coe�cient (K−1)��: Wall emissivity/absorption': Nondimensional temperatureN: Dynamic viscosity (m−1s−1)
]: Kinematic viscosity m2s−1Kg−1�: Density of 
uid (Kgm−3) : Stefan-Boltzmann constant Wm−2K−4-0: Optical thickness%: Stream function (m2s−1Kg−1)%: Nondimensional stream functionΩ0: Scattering Albedo$: Dimensional vorticity function (s−1)$: Nondimensional vorticity function.
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