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Abstract: Digital cameras represented by industrial cameras are widely used as image acquisition

sensors in the field of image-based mechanics measurement, and their thermal effect inevitably

induces thermal-induced errors of the mechanics measurement. To deeply understand the errors,

the research for digital camera’s thermal effect is necessary. This study systematically investigated the

heat transfer processes and temperature characteristics of a working digital camera. Concretely, based

on the temperature distribution of a typical working digital camera, the heat transfer of the working

digital camera was investigated, and a model describing the temperature variation and distribution

was presented and verified experimentally. With this model, the thermal equilibrium time and thermal

equilibrium temperature of the camera system were calculated. Then, the influences of thermal

parameters of digital camera and environmental temperature on the temperature characteristics of

working digital camera were simulated and experimentally investigated. The theory analysis and

experimental results demonstrate that the presented model can accurately describe the temperature

characteristics and further calculate the thermal equilibrium state of working digital camera,

all of which contribute to guiding mechanics measurement and thermal design based on such

camera sensors.
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1. Introduction

For common sensor systems, thermal effect, in general, occurs in many different practical

applications and in different forms, due to their self-heating and temperature variation of surroundings.

Considering the performance of such sensors, especially high-precision sensor systems, the thermal

effect plays a very important role [1–5]. On the one hand, thermal effect may cause adverse impact on

the reliability of sensors and even result in their function failure [1,2]; on the other hand, for common

temperature-sensitive sensors, thermal effect can reduce the accuracy of their measurement results [3–5].

Mainly driven by complexity of application environment, reliability enhancement and implementation

of high-accuracy measurement, the investigations of thermal properties of materials [6–12], thermal

design, and control of sensor systems [13–16], as well as thermal compensation techniques [17,18], have

been extensively carried out. It is worth noting that whether the evaluation of the adverse impacts

on sensor systems and its measurement accuracy induced by thermal effect or developments of the

methods and techniques to eliminate such adverse impacts, it is critical to understand the heat transfer

and temperature characteristics of these sensors [11,12,14,19–21].

Sensors 2020, 20, 2561; doi:10.3390/s20092561 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0949-6773
https://orcid.org/0000-0003-2792-8389
http://dx.doi.org/10.3390/s20092561
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/9/2561?type=check_update&version=2


Sensors 2020, 20, 2561 2 of 16

Digital camera is a kind of important photoelectric sensor for image acquisition, such as widely

used industrial camera in image-based mechanics measurements [22] with internal heating source and

multiple components, which include camera case, mount for mechanically connecting lens, and optical

lens. As a precision and temperature-sensitive sensor, the investigation of these digital camera’s

thermal effect is vital and imperative. In general, when the digital camera works, the interaction

of the heat generated by the internal heating source and environmental temperature causes the

temperature variation of the whole camera system [23–25], and further thermal deformations of

the multiple components [23,25–27]. Even though such thermal deformations are very slight, there

are significant adverse impacts on imaging optical path, i.e., imaging parameters, and further

measurement errors in mechanics [23–31]. Based on this matter, some researchers carried out

investigations on the compensation of thermal-induced errors in mechanics measurement [23–25,32–34].

These investigations, however, focus on the relationship between imaging parameters variation and the

measurement errors [32,33] or the relationship between thermal deformation of camera components

and the measurement errors [23], but are shallow for the investigation of digital camera’s temperature

variation as the fundamental reason of the measurement errors. In fact, the temperature variation

characteristics of digital camera play an important role in the investigation of the thermal-induced

errors in image-based mechanics measurement. Yu et al. [33] pointed out that the variations in the

camera imaging parameters depend on the variations in camera temperature, and the main influencing

factors include the camera’s absolute temperature, the value of temperature variation and the velocity

of the temperature variation. In this regard, the temperature compensation method [23], which uses

the camera case’s temperature to characterize the temperature of the whole camera system, can only

be applied to the compensation of the thermal-induced error caused by camera self-heating, that

is to say, it is not applicable to the error correction in the case of complex temperature variations.

Therefore, to develop temperature compensation methods suitable for complex temperature changes,

it is necessary to study the temperature characteristics of a working digital camera system. In addition,

the references [23,24,28,31] shown that when the image-based mechanics measurement is performed

with a working digital camera in thermal equilibrium, there will be no thermal error. Hence, via

studying the camera’s temperature variation characteristics to determine the thermal equilibrium state

of the camera, i.e., thermal equilibrium time and thermal equilibrium temperature, the time period of

performing the mechanics measurement without thermal-induced error, named ‘measurement time

window’, can be effectively determined.

So far, these existing methods for obtaining temperature data of digital camera are usually based

on the measurement of temperature variation at one [26,28,31] or multiple locations [27,30,32,33]

of the camera system, and the camera system’s temperature filed detection using thermal infrared

camera [23,24], all of which cannot reveal the mechanism of temperature characteristics of the whole

camera system over time, which limits the applicability of the existing compensation methods in

complex thermal environments. In fact, considering the coaction of time-varying environmental

temperature and camera self-heating, the temperature characteristics of a working camera system

present complexity. Firstly, the temperature variation of camera system is complex [25], and the

relationships between camera components temperature are no longer simply linear function just

considering camera self-heating [23]. Secondly, the temperature distribution of camera components

exhibits heterogeneity, which depends on the structure, material and size of those components. To date,

there is no research reports to describe the complexity of temperature variation and the heterogeneity

of temperature distribution in digital camera system with the analysis of heat transfer under the

coaction of time-varying environmental temperature and camera self-heating. Note that for both the

development of temperature compensation methods in image-based mechanics measurement and the

implementation of digital camera’s thermal design, it is necessary to investigate heat transfer of the

whole camera system, and further to establish model describing the temperature characteristics of

such system.
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In this study, therefore, the heat transfer of a working digital camera system was investigated

under the coupling effect between camera self-heating and environmental temperature, and a physical

model was presented to describe the temperature variation and distribution of the digital camera

system. With the model, the temperature of a digital camera system was calculated via environmental

temperature. Then, the temperature characteristics of digital camera with different thermal parameters

and different environmental temperatures were investigated by simulation and experiment.

2. Model for Heat Transfer Process of Working Digital Camera Systems

2.1. Temperature Distribution of Working Typical Camera Systems

As illustrated in Figure 1a, a typical digital camera system is mainly composed of the camera

case, integrated circuit board (the heating source during camera operation), the mount, and the lens.

When the camera is operating, heat generated by the circuit board will be transferred between the

camera’s mechanical components and the environment, all of which leads to the temperature variation

of the components. The integrated circuit boards are approximately uniformly distributed in the

camera case, which will result in uniform temperature distribution of camera case. In addition, since

the mount and lens can be considered as axisymmetric cylinders in terms of structure and material

composition, the temperature distribution of the mount and lens should also show axisymmetric

characteristics. Figure 1b shows the temperature distribution of the components after the camera

system reaches thermal equilibrium. The temperature distributions of the camera components indicate

that the temperature distribution of the case is uniform; the temperature distributions of the mount

and lens are non-uniform. The closer to the heat source, the higher the temperature. All of which

match the above analysis of the camera-components temperature characteristics. Therefore, this study

assumes that the heat transfer of the camera is one-dimensional.

 

 
Figure 1. (a) Structural composition and (b) temperature distribution of typical digital camera system

monitored by infrared camera.
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2.2. Temperature Model of Working Digital Camera System

According to the composition of the digital camera system, the entire heat transfer process can be

classified into three components: heat conduction between the integrated circuit board, case, mount,

and lens; heat convection between the camera’s mechanical components and the environment; heat

absorption of the camera components. The heat transfer path of the digital camera system under the

coupling effect of self-heating and environmental temperature is shown in Figure 2.
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Figure 2. Heat transfer path of a working digital camera system.

The heat generated by the integrated circuit board is assumed to be Q, a part of which (Qicb)

changes the temperature of the integrated circuit board, and the rest (Qicb−c) transfers to the camera

case. Qicb−c can be further divided into three components: Qc changes the temperature of the camera

case, and Qc−e is exchanged between the case and the environment, and Qc−m that transfers to the

mount. Qc−m can also be divided into three components: Qm that changes the temperature of the

mount, and Qm−e is exchanged between the mount and the environment, and Qm−l that transfers to the

lens. Finally, Qm−l can be divided into two components: Ql that changes the temperature of the lens,

and Ql−e is exchanged between the lens and the environment. Thus, the heat transfer process can be

described by the expressions:


































Q = Qicb + Qicb−c

Qicb−c = Qc + Qc−e + Qc−m

Qc−m = Qm + Qm−e + Qm−l

Qm−l = Ql + Ql−e

(1)

Combined with the fundamental formulae of thermology, including Fourier’s law of heat

conduction, Newton’s cooling formula, and the specific heat capacity formula [19], Equation (1) can be

rewritten as:
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where P denotes the thermal power (units: W) of the integrated circuit board. R1, R3, and R5 represent

the heat conduction parameters (units: W/◦C) of the case, mount, and lens, respectively, and are directly

proportional to the material’s thermal conductivity, cross-sectional area, and inversely proportional to

the length of the heat conduction direction of the corresponding components. R2, R4, and R6 represent

the heat convection parameters (units: W/◦C) of the case, mount, and lens, respectively, and are directly

proportional to the material’s surface heat transfer coefficient and superficial area of the corresponding

components. K1–K4 denote specific heat parameters (units: J/◦C) of the integrated circuit board, case,

mount, and lens, respectively, and are directly proportional to the material’s specific heat capacity

and quality of the corresponding components. Ticb, Tc, and Te are the temperature of the integrated

circuit board, case, and environment, respectively, all of which are the function of time t. Tm and Tl

are the temperature of the mount and lens, respectively, all of which are the function of time t as well

the position coordinate x whose direction along the optical axis and origin is located on the contact

surface between the mount and the case. Lm and Ll represent the length of the mount and lens along

the optical axis, respectively.

Equation (2) expresses the relationship between the camera component temperatures (Tc, Tm,

and Tl), the environmental temperature (Te), and the thermal power (P) of the working digital camera.

The temperature of the camera components cannot be solved first-hand according to Equation (2);

to calculate the camera components temperatures, Equation (2) is firstly simplified to obtain the

temperature of the case (Tc), the boundary temperature of the mount (Tm|Lm
), and the boundary

temperature of the lens (Tl|Ll
). Then, based on analysis of the internal heat transfer of the mount (lens),

the temperature expression of the mount (lens) is established. The simplification of Equation (2) is

as follows:
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where r1, r3, and r5 are the characteristics heat conduction parameters of the case, mount, and lens,

respectively; r2, r4, and r6 are the characteristics heat convection parameters of the case, mount, and lens,

respectively; and k1–k4 are the characteristics specific heat parameters of the integrated circuit board,

case, mount, and lens, respectively. The above-defined parameters are related to the thermal power of

working digital camera. If the abovementioned parameters are obtained, the temperature of the case

(Tc), the boundary temperature of the mount (Tm|Lm
), and the boundary temperature of the lens (Tl|Ll

)

can be calculated via the environmental temperature.

Next, the temperature expressions of the mount and lens are established. The shape of the mount

can be simplified to a cylinder with inner diameter R0, outer diameter r0, and length Lm. Figure 3a

shows cross sections of the simplified mount along the optical axis and perpendicular to the optical

axis. The heat transfer path of object dx is shown in Figure 3b; according to the conservation of energy,

the heat transfer can be expressed as:

Qinto = Q1
out + Q2

out + Qabsorb (4)

where Qinto is the heat flowing into dx from the last infinitesimal; Q1
out is the heat flowing into the

environment from dx; Q2
out is the heat flowing into the next infinitesimal from dx; and Qabsorb is the heat

increment of dx.
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Figure 3. Analysis of heat transfer for the mount: (a) cross section of mount, (b) the heat transfer path

of the dx.

Combined with the fundamental formulae of thermology, including Fourier’s law of heat

conduction, Newton’s cooling formula, and the specific heat capacity formula [19], Equation (4) can be

rewritten as:

km
∂2Tm

∂x2
= mm(Tm − Te) + nm

∂Tm

∂t
(5)

where km, mm, and nm represent the heat conduction parameter, the heat convection parameter, and the

specific heat parameter of the mount, respectively. If those parameters are obtained, the temperature of

the mount (Tm) can be calculated via the environmental temperature, the initial temperature, and the

boundary temperature of the mount.

Similarly, the temperature expression of the lens can be expressed as:

kl
∂2Tl

∂x2
= ml(Tl − Te) + nl

∂Tl

∂t
(6)

In summary, Equation (2) describes the temperature variation and distribution of a working

digital camera system, which can be calculated by Equations (3), (5), and (6). Thus, the temperature

model is established.

The thermal equilibrium time and thermal equilibrium temperature during the working process

of a camera system are important values in mechanics measurement. In this paper, the thermal

equilibrium time refers to the time period during which the temperature of working camera remains

constant and the thermal equilibrium temperature refers to the camera’s temperature during the

thermal equilibrium time. The precise value of the thermal equilibrium time and temperature can

effectively guide the selection of the ‘measurement time window’ so as to eliminate thermal-induced

errors of mechanics measurement. After the working camera system reaches thermal equilibrium,

the temperature variation of any point (i) of the camera satisfies:
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(7)

In other words, the slope and curvature of the temperature curve over time are all zero for any

measurement point on the camera system, all of which can be calculated by differential algorithms.

2.3. Experimental Verification

In this subsection, taking the digital camera system consisting of an IPX-16M3-L CCD camera

and Sigma DG 28-300 mm lens, the accuracy of the camera component’s temperature variation and

distribution calculated using the temperature model was verified experimentally. Firstly, in order
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to obtain the specific temperature model, the thermal parameters in Equations (3), (5), and (6) were

calibrated by the optimization algorithm of nonlinear least square (the MATLAB’s built-in nonlinear

least square function, i.e., lsqnonlin). Then, under the coaction of camera self-heating and time-varying

environmental temperature, the temperatures of the camera components were calculated via the

above obtained temperature model, and compared to the measured camera component temperatures

measured using thermal sensors (i.e., the reference values for experimental verification). Finally, based

on the verified temperature model, the thermal equilibrium time and thermal equilibrium temperature

of the working digital camera were calculated.

First, the obtaining of specific temperature model is introduced in detail. The thermal parameters

of the camera system were calibrated using the camera component temperature variation value induced

by camera self-heating. A schematic and layout of the calibration-experiment setup are shown in

Figure 4a. The camera system was placed in a temperature box (an electric heating equipment named

CINITE MAC3) that achieved the constant environmental temperature. The temperature data of the

camera case, the different measurement points of the mount, the different measurement points of the

lens and environment were measured using thermal sensors (K-type thermocouple, precision of 0.01 ◦C)

during the process of camera self-heating. The experimental results are shown in Figure 4b. In the

whole process, the average value and variance of environmental temperature are −0.01 and 0.01 ◦C,

respectively. Therefore, the influence of environmental temperature in those thermal parameters’

calibration was ignored.

 

−

 

Figure 4. Parameter calibration of the temperature model: (a) schematic of the experimental setup,

(b) temperature variation of camera components.
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According to the experimental temperature data of the case (Tc), the boundary of the mount

(T3
m), and the boundary of the lens (T3

l
), the thermal parameters of Equation (3) were obtained via

the optimization algorithm; the results are given in Table 1. According to the measured temperature

data of the mount (T1
m, T2

m, and T3
m) and assuming that nm = 1.00, the thermal parameters (km, mm) of

Equation (5) were obtained via the optimization algorithm; the results are given in Table 2. According to

the measured temperature data of the lens (T1
l
, T2

l
, and T3

l
) and assuming that nl = 1.00, the thermal

parameters (kl, ml) of Equation (6) were obtained via the optimization algorithm; the results are given in

Table 3. The specific relationship between the environmental temperature and the camera components

temperature was determined by substituting the calibration results into Equations (3), (5), and (6).

Table 1. Calibration results of Equation (3).

Parameter r1 r2 r3 r4 r5 r6 k1 k2 k3 k4

value 0.21 0.03 0.09 0.06 0.03 0.21 0.76 0.17 0.97 0.87

Table 2. Calibration results of Equation (5).

Parameter km mm

value 143.80 0.13

Table 3. Calibration results of Equation (6).

Parameter kl ml

value 116.41 0.55

Next, the validity of the temperature model was verified experimentally with the coaction of camera

self-heating and time-varying environmental temperature. The layout of the verification experiment

is the same as shown in Figure 4. During the process of camera self-heating, the environmental

temperature controlled by the temperature box changed over time. The environmental temperature

and the camera component temperatures were measured by thermal sensors. According to the measured

environmental temperature and the obtained temperature model, the theoretical camera component

temperatures were calculated, and compared to the measured temperature of the corresponding

components. Figure 5 shows the variation of the measured camera component temperatures and the

calculated temperatures over the whole verification experiment. Figure 6 shows the errors between

the calculated temperatures and the measured temperatures over the whole experimental process.

The average errors range from just −0.6 to 0.5 ◦C and the variances range from 0.2 to 0.3 ◦C, confirming

the accuracy of the proposed temperature model to describe camera component temperature variations

and distribution.

 

−

Figure 5. Temperature variation of the measured and calculated results over time.
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−

Figure 6. Errors between measured and calculated temperatures: the marker represents the average

error, which ranges from −0.6 to 0.5 ◦C; the error bar represents the variance of the error, which ranges

from 0.2 to 0.3 ◦C.

Finally, the thermal equilibrium time and thermal equilibrium temperature were investigated

via the temperature model. By controlling the temperature box, the environmental temperature

firstly rose to nearly 20 ◦C, then maintained for a period of time, and finally gradually decreased

to a stable state. During the experiment, the camera component temperatures and environmental

temperature were measured by means of thermal sensors. Through the measured environmental

temperature, the temperature model, Equation (7), in which the threshold of slope and curvature were

set to 0.001, the thermal equilibrium time, and the equilibrium temperature were calculated, as shown

in Figure 7. The experimental results confirm that our temperature model can accurately calculate the

thermal equilibrium time and equilibrium temperature. Once the camera’s thermal equilibrium state

is obtained, the time period of performing the mechanics measurement without thermal-induced error

can be effectively determined.

 

−

Figure 7. Calculated thermal equilibrium time and equilibrium temperature: in the first equilibrium

time (230 to 650 min), the equilibrium temperatures of the target points on the camera are 34.2, 30.4, 28.4,

27.7, 26.4, 24.2, 21.4 ◦C, respectively; in the second equilibrium time (1350 to 1800 min), the equilibrium

temperatures are 27.0, 23.2, 21.3, 20.5, 19.2, 17.0, 14.2 ◦C, respectively.

3. Temperature Variation and Distribution

In order to fully understand the temperature characteristics of digital camera under different

thermal parameters and different environmental temperature, simulation and experimental

investigations are necessary with the abovementioned presented temperature model. Concretely, under

a constant environmental temperature, the influences of heat conduction, heat convection, and specific

heat on the camera component temperature variations and distributions were studied. Then, under
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constant thermal parameters, the influence of environmental temperature on the temperature variations

and distributions was investigated and verified experimentally.

3.1. Influence of Thermal Parameters

The thermal parameters in Equations (3), (5), and (6) can be divided into three categories: heat

conduction parameters, including r1, r3, r5, km, and kl are used to describe the performance of internal

heat transfer in camera components; heat convection parameters, including r2, r4, r6, mm, and ml are

used to describe the performance of heat transfer between camera components and the environment;

specific heat parameters, including k1, k2, k3, k4, nm, and nl are used to describe the ability to temperature

variation of those camera components. When the influence of one type of parameter on the temperature

variation and distribution was studied, the other two parameters types were set to the values given in

Tables 1–3.

Using the values of the heat conduction parameters in Table 4, the influence of heat conduction on

the camera component temperature variations and distributions was studied via simulation. Figure 8a

shows camera component temperature variation curves over time under different values of the heat

conduction parameters. The simulation results indicate that the thermal equilibrium time of camera

components decrease with the increase in the heat conduction parameters, as shown in Figure 8b;

the distribution of the thermal equilibrium temperature become more uniform with the increase in the

heat conduction parameters, as shown in Figure 8c.

Table 4. Values of heat conduction parameters.

Parameter r1 r3 r5 km kl

I 0.17 0.07 0.02 115.04 93.13
II 0.21 0.09 0.03 143.80 116.41
III 0.25 0.11 0.04 172.56 139.69

 

  

Figure 8. Effect of heat conduction parameters on camera component temperature variation and

distribution: (a) components temperature variation, (b) thermal equilibrium time, and (c) distribution

of equilibrium temperature.

Based on the values of the heat convection parameters in Table 5, the influence of heat convection

on the camera component temperature variations and distributions was studied via simulation.

Figure 9a shows camera component temperature variation curves over time under different values

of the heat convection parameters. The simulation results indicate that the thermal equilibrium time

of the camera components decrease with the increase in the heat convection parameters, as shown

in Figure 9b; the thermal equilibrium temperature decrease with the increase in the heat convection

parameters, as shown in Figure 9c.
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Table 5. Values of heat convection parameters.

Parameter r2 r4 r6 mm ml

I 0.02 0.05 0.17 0.10 0.44
II 0.03 0.06 0.21 0.13 0.55
III 0.04 0.07 0.25 0.16 0.66

 

Figure 9. Effect of heat convection parameters on camera component temperature variation and

distribution: (a) components temperature variation, (b) thermal equilibrium time, and (c) distribution

of equilibrium temperature.

Based on the values of the specific heat parameters in Table 6, the influence of specific heat

on the camera component temperature variations and distributions was studied via simulation.

Figure 10a shows camera component temperature variation curves over time under different values

of the specific heat parameters. The simulation results indicate that the thermal equilibrium time of

camera components increase with the increase in the specific heat parameters, as shown in Figure 10b;

the thermal equilibrium temperature is almost constant for different values of the specific heat

parameters, as shown in Figure 10c.

Table 6. Values of specific heat parameters.

Parameter k1 k2 k3 k4 nm nl

I 0.61 0.14 0.78 0.70 0.80 0.80
II 0.76 0.17 0.97 0.87 1.00 1.00
III 0.91 0.20 1.16 1.04 1.20 1.20

 

Figure 10. Effect of specific heat parameters on camera component temperature variation and

distribution: (a) components temperature variation, (b) thermal equilibrium time, and (c) distribution

of equilibrium temperature.

The above investigations indicate that under a constant environmental temperature, thermal

equilibrium time is negatively correlated with both heat conduction parameters and heat convection
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parameters, and positively correlated with specific heat parameters. The distribution of thermal

equilibrium temperatures is affected by heat conduction parameters and convection parameters, and it

is independent of specific heat parameters.

3.2. Influence of Environmental Temperature

Next, the influence of environmental temperature on the camera component temperature variations

and distributions was investigated via simulations and experiments. The values of the thermal

parameters are as given in Tables 1–3. Figure 11 shows the temperature variation of camera components

with increasing environmental temperature variation rate. The simulation results indicate that when the

environmental temperature changes slowly, the temperature variation values of camera component are

almost the same as the environmental temperature variation values after a period of camera self-heating,

and the variation of camera component temperatures can be represented by the environmental

temperature variation; as the variation rate of the environmental temperature increases, the variation in

camera component temperatures and the environmental temperature variation is no longer equivalent.

This can explain the influence of environmental temperature variation rate on thermal-induced

errors of mechanics measurement [33]; the environmental temperature variation rate affects the

camera component temperature variations and distributions, and in turn affects the thermal-induced

errors. Therefore, when the variation rate of environmental temperature is small, the temperature

variation of the camera system can be represented by measuring the variation of environmental

temperature, and then combined with the temperature compensation method [23], the thermal-induced

measurement error in photomechanics can be compensated. While in the case of a large variation rate

of environmental temperature, because the temperature variation of environment is not equal to that of

the camera, it is necessary to calculate the temperature variation of the camera system via the proposed

temperature model in this paper, and then combined with the relationship between the camera’s

temperature variation and imaging parameters’ variation [33], the correction of the measurement error

in photomechanics can be carried out. Figure 12 shows camera component temperature variation curves

from the initial state of camera self-heating to the thermal equilibrium state for different environmental

temperature variations. The simulation results show that the thermal equilibrium time and thermal

equilibrium temperature of the camera components are greatly influenced by the environmental

temperature and are related to the time and temperature at which the environmental temperature

reached stability. On the premise that the thermal parameters remain constant, the difference value

between camera-components temperature and environmental temperature is the same with different

environmental temperature variation.

 

5sin( / 50) 20sin( / 50) 30sin( / 50)

Figure 11. Effect of environmental temperature variation rate on camera components temperature:

(a) Te = 5 sin(t/50), (b) Te = 20 sin(t/50), and (c) Te = 30 sin(t/50).
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Figure 12. Effect of environmental temperature on the thermal equilibrium time and thermal equilibrium

temperature: (a) Te = 0, (b) Te =
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, and (c) Te =

{
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.

Based on the experimental setup shown in Figure 4, the camera component temperatures

with different environmental temperature variations were measured to verify the simulation results.

Figure 13 shows the camera component temperature variations over time with increasing environmental

temperature variation rate; the results are similar to those of the simulation shown in Figure 11. Figure 14

shows the working camera component temperature variations under different constant environmental

temperatures (15, 20, and 25 ◦C). When the camera component reached thermal equilibrium, despite

the difference values from camera components temperature minus environmental temperature are

approximately equal for all the three experiments with different environmental temperature, there is a

slight distinction for those difference values (i.e., case: 13.2, 14.1, 13.7 ◦C; mount: 9.0, 9.9, 9.5 ◦C; lens:

2.1, 2.7, 2.3 ◦C). The slight differences from the simulation results shown in Figure 12 can be explained

as the temperature model’s thermal parameters are related to environmental temperature.
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Figure 13. Experimental results of camera component temperatures with increasing environmental

temperature variation rate.
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Figure 14. Camera component temperature variation over time under different constant environmental

temperatures: (a) Te = 15 ◦C, (b) Te = 20 ◦C, and (c) Te = 25 ◦C.
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4. Conclusions

In this study, the heat transfer and temperature characteristics of a working digital camera

were systematically investigated under the coaction of camera self-heating and environmental

temperature. From the investigation results, we conclude the following: (a) Considering the

time-varying environmental temperature, the temperature characteristics of a working digital camera

show the heterogeneity of temperature distribution and the complexity of temperature variation,

all of which are caused by heat conduction between camera’s mechanical components and heat

convection between these components and the environment. (b) As the heat transfer investigations of

working digital camera consider the elements of the heterogeneity of the components temperature

and the time-varying environmental temperature, the temperature model proposed in this paper

can describe the temperature characteristics of a working digital camera under the condition of

complex environmental temperature and further obtain the camera’s thermal equilibrium time and

thermal equilibrium temperature, which can be used to determine the time period of performing

the mechanics measurement without thermal-induced error. (c) The thermal equilibrium time of

working digital camera decreases with the increase of the heat conduction parameters and convection

parameters, and increases with the increase of the specific heat parameters; the thermal equilibrium

temperature of the camera is related to the heat conduction parameters and convection parameters,

and has nothing to do with the specific heat parameters. So, under the premise of ensuring the optical

quality, the thermal design of digital camera can be carried out by selecting camera components

material with reasonable thermal characteristics (e.g., material’s thermal conductivity, surface heat

transfer coefficient, and specific heat capacity) and/or changing the structural dimension of camera

components (e.g., the superficial area). (d) The variation rate of environmental temperature influences

the temperature characteristics of the camera. When the variation rate of environmental temperature

is lower than the rate of heat transfer, the variation value of digital camera’s temperature is nearly

equal to that of the environmental temperature; with the increase of the variation rate of environmental

temperature, this equivalence is gradually no longer available and the temperature characteristics show

that the temperature variation of digital camera lags that of environment. When it comes to thermal

effect, all these conclusions can be used to guide digital camera-based mechanics measurements.

Note that considering that the investigated camera structure with internal heating source

and mechanical components (i.e., camera case, mount, and lens) is universal in image-based

mechanics measurement, it is reasonable to believe that the proposed temperature model and

conclusions are applied to the investigation of temperature characteristics for other cameras with such

structure. In addition, considering the fact that the thermal parameters of materials are related to

environmental temperature, it is necessary to accurately calibrate those thermal parameters under

different environmental temperature when using the proposed temperature model to investigate the

camera temperature characteristics in the case of large-scale environmental temperature changes.

The results of this study provide a deeper understanding of the thermal-induced errors in

image-based mechanics measurement, and are helpful to realize the unification of thermal-induced

errors for indoor mechanics measurement (wherein the environmental temperature is constant)

and outdoor mechanics measurement (wherein the environmental temperature changes over time).

Moreover, the investigations of heat transfer processes and temperature characteristics contribute to

implementing thermal design and fabrication of temperature-insensitive digital cameras.
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