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Summary. The two-dimensional convective motion generated by buoyancy forces
on the fluid in a long rectangle, of which the two long sides are vertical boundaries held
at different temperatures, is considered with a view to the determination of the rate of
transfer of heat between the two vertical boundaries. The governing equations are set
up; they reveal that the flow is determined uniquely by the Prandtl number <r, the
Rayleigh number A = g{Tx — T0)(f /(T0kv), and the ratio of the sides of the rectangle
l/d. In the case of cavities used for thermal insulation of buildings, which is kept specially
in mind throughout the paper, A is usually about 1000 d3 (where d is in centimeters),
and l/d takes values between about 5 and 200.

The essence of the problem is to determine which of several different flow regimes
occurs at any given values of A and l/d. It appears that with the above practical values
the flow is not decisively of one single kind, and the discussion of the heat transfer for
each of several ranges of values of A and l/d is necessary. Sections 4, 5 and 6 are con-
cerned with laminar flow regimes characterized by very small values of A, large values
of l/d, and large values of A, respectively. In Section 7 approximate criteria for these
flows to be stable are established, and in Section 8 the expressions for the heat transfer
when the flow is turbulent are considered briefly. The unified picture provided by all
these different results is considered in Section 9.

A comparison of the theoretical predictions about the heat transfer with the limited
experimental data, mostly obtained by Mull and Reiher (1930), is made. Theory and
experiment agree in suggesting that, under practical conditions, the effect of convection
is negligible for d < 1 cm, and that the heat transfer per unit area of vertical boundary
decreases as d increases, provided d < 2.5 cm, and remains approximately constant
(at a value proportional to Z-1/4) for further increase of d.

1. The background to the problem. The purpose of this paper is to determine the
rate at which heat is transferred across the air space between two plane parallel vertical
boundaries which are held at different temperatures. The air space is closed by horizontal
boundaries distance I apart (I being large compared with the distance d between the
vertical walls, in general), as sketched in Fig. 1. In the remaining direction, at right
angles to the plane of the sketch, the air space is regarded as extending to infinity. All
boundary conditions will be assumed uniform in this latter direction, and the convective

*Received May 6, 1953.
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motion generated by buoyancy forces can then be assumed to be two-dimensional, lying
in the plane of Fig. 1. Only the heat transferred from one vertical boundary to the other
by conduction and convection will be considered. The radiative transfer is not negligible,
but it takes place independently of the conductive and convective transfer and does
not depend significantly on the shape and size of the air space; once the nature of the
surface of the boundaries and their temperature difference have been specified, the
radiative transfer can be calculated with reasonable accuracy from known laws.

The determination of the transfer of heat across an air space of given size and shape
is a problem which arises frequently in connection with the thermal insulation of build-
ings. This is the context in which the problem first came to my notice, and it will be kept
in mind in the analysis that follows. It has long been appreciated by those concerned
with the thermal insulation of buildings that a narrow gap or cavity in the interior of a
wall can impede the flow of heat considerably without adding appreciably to the cost of
construction of the wall. For instance the rate of transfer heat through a brick wall 9
inches thick is about 40% greater than that (with the effect of radiation included)
through a composite wall consisting of two 4|" brick leaves with an unventilated
cavity- 2 inches wide between them, given the same temperature difference between the
two outer brick faces in each case*. The use of cavity walls of this kind has been standard
practice for some years. Double windows consisting of two panes of glass with an air
space between them are also well-known in principle as a means of improving thermal
insulation (although it does not seem to be so widely appreciated in Great Britian that
their use may also be economically desirable, at any rate for rooms which are kept at a
comfortable temperature throughout most of the year).

Now it is clear that if the air space between the two vertical boundaries is very
narrow, very little convective motion can occur and the heat transfer will be due mostly
to conduction. If the air gap is widened, the transfer that would result from conduction
alone will decrease but the convective transfer will increase. Thus there exists the
possibility that the transfer is a minimum for an air space of certain width. Inasmuch as
the convective motion is mostly in the vertical direction, it is likely that the height of
the air space also has an influence on the heat transfer. In the design of a building in-

*An excellent account of the principles and practice of thermal insulation of buildings (with English
conditions chiefly in mind) is given by N. S. Billington, in "Thermal Properties of Buildings," Cleaver-
Hume Press Ltd. 1952.
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volving the use of an air space as a thermal barrier the gap d, and to a lesser extent the
height I will be disposable quantities, unlike the temperature difference, so that the
practical value of the investigation will lie in the information it provides about the
dependence of the heat transfer on d and I. This information is of special importance for
a consideration of the use of double windows, since first, the thermal resistance provided
by the air space is here more than half the total resistance of the window, and second,
the use of double windows will usually be economically justified by a small margin only,
if at all.

Although no anlytical discussion of the determination of the heat transfer seems to
have been published, a number of measurements of the heat transfer have been made;
the relevant parts of the data will be described later. So far as I can gather from the
literature of heating engineers, it seems to be generally accepted that an optimum size
of air gap exists and that it is close to 3/4 inch, at any rate for double windows. The fact
that the heat transfer may depend on the height I seems not to be well appreciated, and
the possibility that the optimum value of d itself depends on I has not always been taken
into account in the design of the experiments. No observations of the velocity or tempera-
ture distributions within the air space seem to have been published.

2. The equations governing the problem. Let T0 and 7\ be the absolute tempera-
tures of the two vertical boundaries. The main assumption underlying the equations
to be used is that the temperature difference T\ — ro is a small fraction of the absolute
temperature T0, and that the variation of temperature in the fluid can be neglected for
all purposes other than the determination of the buoyancy force. The self-consistency
of equations based on this assumption for problems of free convection has been explained
elsewhere (Goldstein, 1938). We shall see in the next section that (7\ — T0)/T0 is in
fact small in cases of heat transfer in buildings.

Now it is clear that the speeds involved in problems of free convection of this kind
are far below the speed of sound, and that the pressure differences produced by inertia
forces are a minute fraction of the absolute pressure. The pressure differences produced
by gravity are also very small compared with the absolute pressure (being controlled
by the length scale of the space occupied by fluid), and variations of the fluid density
p will be determined wholly by variations of the temperature T. The equation of state
for gases then has the form

p Po T T o
Po To

(2.1)

this and subsequent equations can be made applicable to liquids also by replacing the
factor T0_1 on the right hand side by a coefficient of expansion, since the magnitude of
the temperature does not occur in the equations in any other connexion.

The equation expressing conservation of mass is the same, with the assumptions
described, as that for an incompressible uniform fluid. Thus if coordinates x, y are
chosen as in Fig. 1, and the corresponding velocity components are u, v, we have

p + ~ = 0. (2.2)dx dy

The only cause of change of the temperature of a moving element of fluid is heat
conduction in the fluid, since neglect of temperature changes due to compression of the
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fluid and due to heat of viscous dissipation is consistent with the assumptions already
made. Hence, on introducing

„ T - To
Tr - T0

as a more useful variable than T, we have

dd ae , de (d2e . die\ „
57 + " 57 +»5S "'15? + 5?J' <2'3)

where k is the thermal diffusivity (= k/p0cT for gases, k/p0c„ for liquids where k is the
thermal conductivity of the fluid, and c„, c, are the specific heats); k is effectively uniform
in view of the smallness of (T, — T0)/T0.

The force equations, taking account of the effect of buoyancy, are

du , du , du 1 tip , (p — p0\ , (d2u , dV\
m+uei + "Ty=+ ' W + (2'4)

dt dx dy p0 dy \dx dy!

where p is the pressure in the fluid. In these equations the density and kinematic viscosity
v have been taken as uniform (and equal to p0 and mo/po respectively, where Mo is the
fluid viscosity at temperature T0), again in view of the smallness of (!Ti — T0)/T0.

The boundary conditions that will be imposed on the variables u, v and 9 at the vertical
boundaries are

u — v = 0, 9 = 0, at y = 0,

u = v = 0, 9=1, at y = d,

the assumption being that these boundaries are made of material of high conductivity
not in the form of thin sheets. On the two sides of the boundary given by x = 0 and
x = I, we shall require u = v = 0, together with a reasonable condition on 9. In cases
in which the boundary is of the same material on all four sides, the only consistent simple
assumption is that 9 = y/d on the horizontal boundaries. However in cases in which the
vertical and horizontal boundaries are not both appreciably better conductors than the
fluid (as for instance where air is enclosed by two glass panes set in a wooden frame;
fcgiasB — 30 hiT, and /cwood = 6 fcair), this assumption may not be accurate, and it may be
useful to consider the other extreme case of insulating horizontal boundaries, for which
the boundary condition is d9/dx = 0. The length of horizontal boundary is small com-
pared with the length of vertical boundary, and it seems unlikely that the exact form
of the boundary condition at x = 0 and x = I has much effect on the heat transferred
through the vertical boundaries.

These are the general equations and boundary conditions that will govern all types
of flow in the cavity. Since the time scale of changes in temperature inside or outside
buildings is large compared with time scales related to the convective motion, steady
motions (or steady mean motions in the case of turbulent flow) are of interest herein
and we therefore put d/dt = 0. Further simplification is obtained by writing the equa-
tions in dimensionless form. We take d as the unit of length for the coordinates x and y
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(without changing the notation), and define a dimensionless stream-function \p, with
the aid of (2.2), by the relations

u=Kd'1^' v=~Kd~1te' (2"6)

The heat equation (2.3) can then be written as

a ./A
= V20. (2.7)dd dip dd d\f/ d(0, \p) _ y2/

dx dy dy dx d(x, y)

When the pressure p is eliminated from (2.4) and (2.5), and p is eliminated with the use
of (2.1), we are left with the second governing equation for \f/ and 6:

(2.8)a d(x, y) dy

where o> = — VV is the (dimensionless) vorticity, a is the Prandtl number v/k, and

(2.9)

is the Rayleigh number*. The boundary conditions are now

A - (r, - To) dd3
Tow

* = dy = °' 6 = °' at y = °'

i = °, e = 1, at y = 1,

^ = — = 0, 5 = ?/ or — = 0, at x = 0 and x = -^ •

The form of the governing equations (2.7) and (2.8) and the above boundary con-
ditions shows that the dimensionless parameters whose values are sufficient to determine
uniquely the distributions of \p and 6 are a, A and l/d.

The quantity to be determined from the analysis is the rate at which heat is trans-
ferred by conduction through either vertical boundary. If this rate is Q heat units per
second per unit depth of boundary (in the z-direction), a suitable dimensionless quantity
describing the heat transfer is the Nusselt number

*-a57^3J-f (sL*- <2'10)
N has the value l/d when there is no convection, and in the general case we anticipate
that

N = N(a, A, l/d). (2.11)

*The Grashof number G = A/a is frequently used by authors in the analysis of problems of free
convection, but the number A enters directly at least as often as G. Moreover, as Professor H. B. Squire
has pointed out to me, there is a much stronger case for honouring the name of Rayleigh in this field.
The symbol A is used here to avoid the introduction of either R, which usually denotes Reynolds number,
or the double letter Ra.
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A quantity which is perhaps more useful for practical design of buildings is the heat
transfer coefficient or thermal conductance of the cavity, defined by

C = UT, - r0) = I N; (2'12)

C is the rate of heat transfer through the vertical boundary, per unit area, per unit
temperature difference between the boundaries.

It can be seen immediately that if the temperature in the cavity were distributed
as though the air were at rest, i.e. 6 = y, the term representing the effect of buoyancy in
Eq. (2.8) is finite, and it is not possible for both of the other two terms to vanish. Zero
velocity everywhere is thus not a possible solution of the equations, and any temperature
difference across the cavity, however small, will produce some steady convective motion.
The problem is quite different from that in which the temperature gradient is across the
two horizontal sides of a cavity, when steady convective motion can occur only if the
Rayleigh number exceeds a certain critical value. A plausible inference from the existence
of a convective motion at all Rayleigh numbers is that the dependence of and d on A
is smooth and that it is possible to expand f and 6 as power series in A for sufficiently
small values of A. This provides a potential method of solution of the problem which
will be taken up in section 4, although it will be found that the first few terms of this
series provide a valid approximation only when the convective flux of heat is small
compared with the transfer by conduction, and its usefulness is very limited.

3. The practical conditions. It will be useful to have some idea of the values of A
appropriate to the practical problem of heat transfer through the walls of buildings.
For air at 10°C and atmospheric pressure we have

v = 0.14 cm2 sec-1, k = 0.19 cm2 sec-1, <r = 0.73.

The difference between the temperature of the air inside the building and that outside
will not often exceed 20°C in Great Britain and an average value during the winter
months would be about 15°C for an indoor temperature of 18°C (= 65°F)*. Of this
air-to-air temperature difference, a fraction C„/Cc (where Cw is the air-to-air conductance
—including the effect of radiation—of the whole composite wall and Cc is the boundary-
to-boundary conductance of the cavity) represents the difference between the tempera-
tures of the boundaries of the cavity. For double windows Cw/Cc is roughly 0.6, and for
a wall composed of two 4|" brick leaves with a cavity C„/Cc is roughly 0.4. Taking
the value Cw/Cc = 0.5 we have 7.5°C as a representative value of T, — T0, and the
corresponding value of A for d = 1 cm is (very conveniently)

A =  980 X 7.5  _ jqqq /o -|\1 276 X 0.19 X 0.14 ( }

The values of d used in practice range from about 1 cm up to about 8 cm and the corre-
sponding values of A for the conditions described by (3.1) (which will be referred to as
the "standard" conditions) are given by

A = 1000rf3. (3.2)
where d is expressed in centimetres.

*The temperature difference appropriate to conditions in North Europe and North America might
well be twice as large.
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For double windows I will normally lie between 25 and 200 cm, and values of l/d
ranging from about 5 to 200 should be considered in the analysis. In the case of a cavity
in a brick wall, I will normally be at least 250 cm and may be much larger; standard
building practice is to make the cavity 5 to 7 cm wide, giving a range of values of l/d
which is included within that just mentioned.

4. The solution for very small values of A. We consider here a method of solution
by means of an expansion of the quantities 0 and >p in power series in A. As already
intimated the method is useful only at values of A too small for appreciable convection
to occur, but it is necessary to give a few details of the method in order to be able to
estimate its range of validity.

The expansions to be employed are

0(x, y) = y + Adiix, y) + A262(x, y) + ■■■ , (4.1)

4>(x, y) = Ai,{x, y) + A*$2(x, y) + ■■■ ] (4.2)

and the boundary conditions on the coefficients are

0 \l/n= — = 0, = 0 at y = 0 and y = 1,

tn = = 0, 0„ = 0 or ^ = 0, at x = 0 and x = ~ •dx dx a

These series can be substituted into equations (2.7) and (2.8), whence by equating
coefficients of like powers of A the following set of equations is obtained;

VV. - 1, V20i = - ^, (4.3)

_ Ml i I d(VVi > ̂ i) _ _ itk I d(0' , ix) u 4v
dy+o d(x, y) ' V - a* + d(x, y) ' (4"4)

The distribution of is thus identical with the distribution of displacement of an elastic
plane rectangular plate clamped at the edges and subjected to a (small) uniform trans-
verse pressure. An analytic solution to this latter problem is not known, so that it is
necessary to determine ^ numerically. When that has been done, the determination of
8i requires a numerical integration (which can be carried out explicitly), and , &2 , etc.,
can then be determined by similar procedures.

It is clear from the form of Eqs. (4.3), (4.4), etc. that ypn and 0„ have the
same symmetry properties as (x — h/2d)n~l (y — l/2)n_1 and (x — h/2d)" (y — 1/2)""1
respectively. Hence the horizontal flux of heat is given by

£7"A"(r--~ f. 4-5)"2 +
and the first approximation to N which takes account of the convection is

dN = ^ + t2^2. (4.6)
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The coefficient does not appear in the horizontal transfer of heat, but it does determine
the first approximation to the vertical flux of heat. It is easy to verify, from Eqs. (4.3),
that the rate of release of potential energy that is associated with the vertical heat flux
determined by the temperature and velocity distributions 61 and \pi is equal to the rate
of viscous dissipation of energy associated with the velocity distribution . Vertical
flow of heat is the driving mechanism of the convection, and horizontal flow of heat is
an accompanying effect, which is of higher order in A. The directions of the heat fluxes
through different parts of the vertical boundaries produced by the temperature dis-
tributions 6i and 62 are shown in Fig. 1.

The magnitude of A for which the above power series expansion is likely to be useful
can be estimated roughly in the following way without going through the labour of
numerical solutions of (4.3) and (4.4). For values of l/d not too different from unity, an
approximation to the solution of VVi = 1 is known (Love 1927, Chap. 22) to be given
by Grashof's formula, viz.

is anti-symmetrical about x = l/2d, so that we can regard 0, as being determined by
(4.7) and the second of equations (4.3) together with the condition 0i = 0 on the boundary
of the rectangle y = 0, 1, x = 0, l/2d, (taking, for definiteness, the case in which the
boundaries x = 0 and x = l/d are perfectly conducting). As expected, the above formula
shows dipi/dx to have the same sign over this area, with a single stationary value at the
centre. For the purpose of obtaining an estimate of the magnitude of , it will make
little difference if we take the right hand side of the second of equations (4.3) as constant
and equal to the average value of — dtyi/dx, with given by (4.7), over the region
0 < x < l/2d, 0 < y < 1. This average value is

__l i-h+iy360 d3 V + d*J '

The equation for 0l has now been made identical with that describing torsion of an
elastic rectangular prism, the solution of which is known (Love 1927, Chap. 14). The
solution is available in series form, and the maximum value of 0i , which occurs at y =
1/2, x = l/4id, is

l3/d3
2880 (1 + f/d*)

\ _ 32 y,  (Z^T '
CO*

For l/d = 2, this maximum value is 0.97 X 10-4, and for l/d — 4 it is 0.79 X 10~4.
Thus for values of l/d not very different from unity the maximum value of may be

expected to be about 10~4. When A has the standard value 1000 d3, the maximum value
of the second term A8l in the power series for 6 is then about 1/10 d3, whereas the value
of the first term y at the same point is 1/2. It seems that even for the smallest values of
d (and, consequently, of A) likely to be of interest (viz. d = 1 cm) the second term is not
far from being as large as the first. It is fairly clear from the form of equation (4.4) that
likewise 02 will not be a small perturbation of the temperature distribution y + A0t at
these same values of A. It is of course still possible that the power series (4.1) and (4.2)
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are convergent at these same values of A, but the more important practical point is that
the first few terms of the series—and only the first few could be determined numerically
without excessive labour—do not by themselves provide a good approximation to the
sums of the series. These remarks have been justified only for the case in which l/d is
not large compared with unity, since it is only for such values that Grashof's formula
(4.7) applies; however it is very unlikely that convergence of the series could vary
appreciably with the value of l/d. It seems that A = 1000 is outside (although possibly
only just outside) the range of usefulness of the expansion in powers of A.

When l/d » 1, Grashof's approximate formula for \pi fails because it spreads the
variation of \pi over the whole of the range 0 < x < l/d, whereas the solution of VVi = 1
will be such that the distribution of \pi with respect to y tends to a constant form as the
distance from either end of the rectangle increases.* This asymptotic distribution of

, which will surely be a valid approximation when t < x < l/d — t and c is only a few
multiples of unity, is

h = ^ y\i - y?- (4.8)

In the part of the rectangle where (4.8) holds, 6r , fa , d2 , ■ ■ • are all zero**, correspond-
ing to the fact that 9 = y, ^ = Afa , is an exact solution of the full equations. Thus at
values of A such that the series expansions (5.1) and (5.2) are rapidly convergent, finite
values of 6 — y are confined to regions at the two ends of the rectangle which have
dimensions in the ^-direction only a few times the width of the rectangle. This again
reveals the serious limitations of the range of usefulness of the expansion in powers of A.
Anything resembling a boundary layer on the vertical walls, or having strong asymmetry
about y = 1/2, could not be described by the power series. In short, only at values of A
such that conduction has a much stronger influence on the temperature distribution
than convection will the power series be useful***, whereas measurements at practical
value of A show that the two are of comparable importance.

5. General value of A, and l/d —*<*>. The starting point for an investigation of the
convection at larger values of A is supplied by the remark, at the end of the last section,
that when l/d is large enough the variables 6 and \p take up their asymptotic form

e = y, * = - y)\ (5.1)

at all points not near to either end of the cavity (see Fig. 2). This asymptotic state
corresponds to a purely vertical flow of the fluid in which the rate of viscous dissipation
of kinetic energy, per unit length (in the vertical direction) of the cavity, is just equal

*In accordance with Saint Venant's principle in elasticity theory.
"Although the difference between 0„, \/>n(n > 1) and their zero asymptotic values probably increases

as n increases, since the solutions of equations like (4.3), (4.4) ... are such that the dependent variable
lags behind the right hand side when the latter tends to zero at infinity.

***It is relevant that the smallest value of the Rayleigh number at which the fluid between two hori-
zontal boundaries at different temperatures is unstable, i.e. at which convection can overcome the damp-
ing effect of conductivity and viscosity, is also of the order of 103; for instance if the two boundaries are
rigid perfect conductors, the critical value of A (based on distance between the planes) is known to be
1708.
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to the rate at which potential energy is being released in unit length of the cavity. Since
the horizontal velocity is zero the horizontal heat flow, over parts of the cavity where
(5.1) holds, occurs wholly by conduction. Now at small values of A such that

6 ~ y + 0iA, \p = ypiA,

is valid everywhere, the region of the cavity in which 9 and \f/ do not have their asymptotic
form (5.1) is confined, as already stated, to nearly-square regions at the two ends of the
cavity. As A increases, and more terms in the power series become significant, the de-

Fig. 2. The asymptotic state far from both ends of the cavity.

partures from the asymptotic state spread from each end of the cavity (especially on
the side of flow away from the end). At large values of A at which boundary-layer
analysis is appropriate, the asymptotic state will exist only at distances sufficiently far
from each end for the boundary layers on the two vertical sides to have become thick
enough to overlap and amalgamate.

In this section we shall assume that the value of l/d is large enough for the asymptotic
state described by (5.1) to be set up over a finite range of values of x, say X/d < x <
(I — X)/d, at the general value of A under consideration. Several useful conclusions
follow from the existence of the asymptotic state at some values of x;

(a) The horizontal flow of heat due to convection occurs at the two ends of the
cavity, i.e. within the ranges x < X/d, x > I — X)/d, and the total heat flux though a
vertical boundary due to convection is independent of I; an increase in I merely increases
the extent of the region in which the asymptotic state occurs and in which the transfer
is by conduction alone. The general relation (2.11) thus reduces to

N = l/d + F(c, A), (5.2)
where the function F describes the additional heat transfer due to the existence of con
vection; likewise the addition to the conductance C due to convection is inversely
proportional to I.

(b) It follows from (a) that the insertion of horizontal partitions in a deep cavity
can only increase the total horizontal heat flow; indeed, if the new cavities which are
created by the insertion of horizontal partitions are themselves deep enough for the
asymptotic state to be set up in each separate cavity, we shall have

N = l/d + nF(c, A),
where I is the over-all height and n the number of separate cavities.
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(c) The streamlines which rise on the side of the cavity adjacent to the hot boundary
ultimately become the streamlines of the falling stream on the other side of the cavity.
In the course of its journey from one side of the cavity, in a region of asymptotic flow,
to the other, the rising stream loses heat at a rate equal to the net flux of heat across
any horizontal plane in the range X/d < x < (li — X)/d, i.e. equal to

k(Ti To) j" [ud]x/d<z<t.i-x)/d dy — k(Ti — T0) J (1 — 2y) ̂  2/2( 1 2/)2Jdy

= Kr, - To) ̂  • (5.3)

This addition to the heat content of the air in the upper end of the cavity (i.e. in the range
0 < x < X/d) is that due wholly to the existence of convection, and must be lost by
conduction through the two vertical walls* in this region, some of it—a fraction a,
say,—through the cold boundary, and the remaining fraction 1 — a through the hot
boundary. Hence the contribution to N due to the existence of convection is

F(a, A) = {2a — 1) • (5.4)

a is itself a function of A, about which a little information is available. When A is
very small we have already seen that the heat conveyed by the rising stream is given to
the two vertical boundaries in nearly equal parts (because the effect of conduction is
so powerful), the value of a being found from (4.6) and (5.4) as

a = | + 360y2A. (5.5)

As A increases, the distribution of loss of the heat of the rising stream becomes more
asymmetrical and a increases, presumably monotonically. a can never be as large as
unity**, so that as A —> °o it must asymptote to a constant value, /3 say, which cannot be
far from unity.

We thus have the result that, provided l/d is always large enough for the asymptotic
flow to be set up for some values of x,

N~ld + (5-6)

for large .-1. where /3 is a constant. There is the interesting consequence that for a given
value of I, N (and also the conductance C) has a minimum at a value of d given by

t ~ <5-7>

(provided that this value of l/d is large enough for a region of asymptotic flow to be set
up). With the standard conditions, and the approximation (3 = 1, this gives d ~
(1/4)1/4 as the optimum spacing between the cavity boundaries, where I and d are

*Assuming that the flow of heat through the horizontal boundary is negligible, either because its
length is small or its conductivity is small.

**For as the rising streamlines approach the upper end of the cavity, those near the boundary neces-
sarily diverge and reduce the value of {dd/dy)y= i, so that it is less than unity, and the flux of heat through
this part of the hot boundary into the cavity is less than that which occurs in absence of any convection.
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expressed in centimetres. At this optimum value of d, convection is responsible for 25%
of the total transfer, the proportion increasing very rapidly with increase of d.

Before the significance of the results of this section can be assessed we must estimate
the smallest value of l/d for which the asymptotic state described by (5.1) is set up. It
is difficult to do this exactly, but a number of consistent estimates can be obtained by
different methods. There is first of all the simple argument that when the rising stream
turns around at the top of the cavity, a new temperature distribution across this stream
has to be set up by a process of conduction across the flow and the time needed for this
process is of order d2/4<c. During this time a particle moving with a velocity equal to the
mean downward velocity in the asymptotic region (i.e. equal to the average value of
Ak/12<2 y (1 — y) (1 — 2y) over the range 0 < y < 1/2, which is found to be Ak/192<2)
moves through a distance

4 "• (5-8)
which will be of the same order as X.

Another estimate of X/d can be obtained by assuming that the rate at which the
influence of the cold boundary spreads into the stream, after it has turned around at the
upper end of the cavity, is the same as the rate at which the thermal boundary layer
grows on an isolated cold plate by free convection. On defining the edge of the thermal
boundary layer to be where the temperature (relative to that of the ambient fluid at
infinity) is 20% of the temperature of the boundary—assumed to be Ti — T0—we find
from Schmidt and Beckman's experiments (Goldstein, Ed., 1938) that the thermal
boundary layer due to free convection from a vertical plate has a thickness d/2 when the
length X of the plate is given by

Sg(Tx - To)!'1"L vn J 'd rt-rrl/41

5=2X

1,e" d 1024<r" (5-9)

Finally, we may analyse the way in which the thermal influence of the cold boundary
spreads into the stream by means of the Graetz-Nusselt procedure (Goldstein, Ed.,
1938), which was developed for the case of forced convection due to Poiseuille flow in a
circular tube with a sudden change in temperature of the wall at a certain section. If
the falling stream on the cold side of the cavity is regarded as a forced flow, with parabolic
velocity distribution (more accurate representation of the real velocity distribution is
not warranted) and the same mass flow (for 0 < y < 1/2 only) as that given by (5.1),
the approximate equation satisfied by 9 in the falling stream is

A ti idd d*e /= mx
svG-v>te = e?' (5-10>

A particular solution is

provided / (y) is such that

9 = y + e~ax*/A M,

f" + - y)f = o.



1954] HEAT TRANSFER BY FREE CONVECTION 221

If /(y) is now assumed to be an even power series in (y — 1/4) (the odd powers represent
a temperature distribution which dies out, as x increases, more rapidly than that described
by the even powers), the condition that f(y) = 0 at y = 0 and y = 1/2 gives an equation
for X whose degree is higher as higher powers are included in the series for /. In this way
the first three successive approximations to the smallest root for X are found to be 615,
735 and 705, and the series corresponding to this last approximation to the root is

f(y) = F[1 - 22.1 (y - i)2 + 13% - i)4 - 8400/
The general solution is then

e = y + £ e"8X"*M fn(y), (5.11)
n

where X'i , X2 , • • • are the possible values of X, and the constants Fn are chosen to give a
correct representation of the temperature distribution at x = 0. Whatever the shape of
the temperature disturbance, the rate at which its magnitude diminishes as x increases
will ultimately be dominated by the term in the series (5.11) corresponding to the smallest
value of X. The distance over which the magnitude of this term falls to a tenth qf its
initial value is

(5.12)2450 '
which can be regarded as another estimate of X/d.

These three estimates of X/d, (5.8), (5.9) and (5.12), are consistent (some variation
is to be expected, since X is not a definite length), despite the fact that two of them use
the data of forced convection and one uses free convection (although the methods are
not essentially different, since the assumed velocity of the forced convection is obtained
from a consideration of the velocity that would ultimately be attained in free convection).
As a rough average of the estimates, the value of x can be taken to be

X A
d 1000 '

this gives the distance from either end of the cavity at which the asymptotic state
described by (5.1) is attained approximately*. Hence for the asymptotic state to be set
up in a cavity we must have

5 > Si' <513)
With the standard conditions, and I and d in centimetres, this is equivalent to

I > 2d4, (5.14)

showing that results obtained in this section will be relevant to many cases of cavities
used in buildings, especially those in double windows in view of the common choice of
the value d ~ 2 cm.

*Note that it is only when A is less than about 1000 that conduction can carry the thermal effect of
the boundaries across the flow in such a short time that X is of the same order as d; this is consistent with
the conclusion, obtained in section 4, that A = 1000 is near the end of the range of values of A at which
conduction is sufficiently dominant for the expansions in powers of A to be useful.
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6. General value of l/d, and A —>°°. Since it will also be true, according to the
criterion (5.14), that the value of l/d in some practical cases is not large enough for the
asymptotic flow to be set up, it will be useful to supplement the foregoing theory with a
consideration of the extreme case in which the rising and falling streams at the vertical
boundaries are far from being contiguous. The thickness of boundary layers produced
by free convection always decreases as the Rayleigh number increases, so that this
extreme case is achieved by holding l/d constant and allowing A to approach infinity.
Ultimately, as A —> <», the thickness of the region of thermal influence of each portion of
the boundary becomes small compared with both I and d, and a single continuous bound-
ary layer surrounds the cavity. The boundary layer thickness remains finite, in spite of
the fact that the path length of any fluid particle in the boundary layer increases in-
definitely, because gravity produces a force on the particle in the direction of flow (for
part of the time) and counteracts the loss of momentum due to viscous forces. In the
core of the cavity, the flow is presumably such that the influence of the diffusivities v
and k is slight.

This is a type of flow problem which has considerable intrinsic interest, as Pillow
(1&52) has pointed out in a discussion of the analogous situation in which heat is being
transferred, by means of a two-dimensional convection call, between two horizontal'
plane boundaries. The special interest—and the difficulties—are associated mostly
with the determination of conditions in the core of the cavity. Inasmuch as when A —♦°o
(i.e. v —* 0, k —> 0) the terms containing second-order differentials in the governing
equations (2.7) and (2.8) become negligible everywhere, except possibly in the neighbour-
hood of the boundaries, the flow in the core of the cavity conforms to

W, *) _ o IXslA - . ,fin
d(x, y) U' 9{x, y) ~ dy

Now in cases in which the flow outside a boundary layer is known to be free from vorticity
(usually by reason of the fact that all streamlines originate at infinity where the vorticity
is zero), this same flow is determined uniquely (by the condition that the normal velocity
at rigid boundaries is zero). In the above case of cavity flow we have no reason to expect
irrotational flow in the core, and a unique determination from the condition of zero
normal velocity at the boundary is not to be expected without the introduction of
information concerning the flow outside the core of the cavity. Pillow shows that the
solution of equations (6.1) is

0 = « = <rAxf'(\p) + g(\p), (6.2)

where / and g are arbitrary functions. The condition of symmetry of the equi-tempera-
ture lines and streamlines in the core about x = l/2d and about y = 1/2 necessitates that
/(ip) is constant, and by symmetry again the value of the constant is 1 /2. This leaves the
vorticity distribution arbitrary, apart from being symmetrical, and to determine the
function g(\f/) it would seem to be necessary to make use of the condition of compatibility
of the flows in the core and in the boundary layer. So far as the form of g(\p) is concerned,
we can employ the argument that if the vorticity in the cavity core were not uniform,
the existence of a finite, although small, viscosity would make it uniform in a sufficiently
long time (unless of course there is some mechanism generating vorticity in the core;
inasmuch as the temperature is uniform in the core this possibility can be rejected).
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Hence the conclusion is that
  i— 2 J co = co0(const.), (6.3)

in the core of the cavity.
The flow in the cavity thus consists of an isothermal core in which the velocity dis-

tribution is given by

VV = —<o0 , (6.4)

with \p constant on a rectangular boundary, surrounded by a continuous boundary layer
in which the temperature and velocity make rapid transitions to their assigned values
at the boundary. If s denotes (non-dimensional) distance along the cavity boundary
from the point A towards B in Fig. 1, the velocity outside the boundary layer can be
written as <o0 U(s), where the function U is periodic in s with period 2 (l/d + 1) and is
determined by (6.4). (For the long narrow cavities with which we are concerned, U(s)
will have the value 1/2 at points not near the two ends of the cavity, since the velocity
will vary linearly across the cavity near such points). Except in the immediate neighbour-
hood of the corners, the boundary layer flow will be the same as that produced on a plane
wall, with the (spatially) periodic velocity U(s) at the wall in the absence of the boundary
layer, periodic temperature conditions at the wall, and periodic variation of the buoyancy
force. If u and v now denote velocity components parallel and at right angles to the
boundary, whatever its direction, the (non-dimensional) equations describing the flow
in the boundary layer will be, after the usual approximations are made,

- du 2 tt /*> A t a 1\ t d U
Ute+VfrL="oU~fc~aGMe~*)+adrf' (6-5)

dd , do d*0= (6"6)

where n denotes the normal distance from the boundary and G is a periodic factor which
takes account of the change in relative direction of the buoyancy force and has the
values shown in Fig. 3. The conditions at the wall are as before, while when n becomes
large the flow inthe cavity must be recovered, ie.

asn—><», 0 —> § and u—*u0U(s). (6.7)

fs Asn~a>>—»u,s)
[ 0 —1/2

D^g.oA 9=0 B -|^«oC fi.i D A
G *0 G= I G*0 G*-1

Fig. 3. (The points ABCD correspond to the points ABCD in Fig. 1).

The value of oj0 is presumably to be obtained mathematically from the condition
that equations (6.5) and (6.6), with the boundary conditions specified, do in fact permit
a periodic solution, although I have not been able to establish this in detail. Physically,
one may say that a finite positive value of co0 is produced by the torque exerted on the
cavity core by the boundary layer surrounding it. The velocity in the boundary layer is
everywhere in the direction of s increasing (which is obviously true immediately after
fluid at temperature 9 = 1/2 throughout the cavity is released from rest, while in the
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steady state a negative value of u(s) would imply the existence of a stagnation point in
the flow which would be contrary to the whole notion of the existence of a continuous
boundary layer) and so a core at rest would be subject to an anticlockwise frictional
couple at all points on its perimeter. Probably the value of u0 is such as to make the
velocity at the edge of the core comparable with the maximum velocity in the boundary
layer produced by free convection on a plate of length I and temperature difference
!(7\ — T0); that is, using the measurements of Schmidt and Beckman (Goldstein,
Ed., 1938),

_ 0 54^f ~ ^1'/2
2 d L 2 T0 J '

giving

«0 = 0.76^ffA j) 7 . (6.8)

I have not found any reasonably simple method of solving the boundary layer equa-
tions (6.5) and (6.6). Methods which rely on a polynomial representation of 9 and u are
frustrated by the fact that 8 and u make several oscillations as n increases and poly-
nomials of small degree in n are quite inadequate to represent them. Linearization of
the equations in the Oseen manner was also tried, but the simplification is evidently
too drastic, since a solution periodic in s did not appear to be consistent with any value
of to0.

Even though the problem remains unsolved in detail, it is possible to estimate the
rate of heat transfer. The flow near each vertical wall bears a partial resemblance to
forced convection due to a stream of speed u0k/ (2d) past a plate of length I with tempera-
ture difference — T0 (for the boundary layer near each end of the cavity, and con-
sequently near the leading edge of each vertical wall, can be assumed to have the tempera-
ture of the vertical wall it has just left*), on the one hand, and to free convection past a
plate of length I with temperature difference T, — T0 on the other. In the former case
the heat transfer would be (Goldstein, 1938), for air, and laminar flow,

N = 0.59(i dy2
\2u°dJ '
/A l3\Ui

" °-38(, d5) (6"9)
in view of (6.8), whereas in the latter case the heat transfer would be (Goldstein, Ed.,
1938)

IA l3\w*
iV = 0.48(7?) . (6.10)

The two expressions have the same functional form (necessarily, in view of their es-
sentially similar bases), and the closeness of the numerical coefficients makes it un-

*It seems to be appropriate to use i(Ti — To) as the temperature difference of the equivalent isolated
plate in an estimate of the maximum velocity in the boundary layer, as has already been done, since the
maximum velocity occurs near the trailing edge of the plate and the temperature of the cavity core will
here be important; but to use {'I\ — To) as the temperature difference in an estimate of the heat transfer,
because this is greatest near the leading edge where the ambient fluid is the oncoming boundary layer
from the other vertical boundary.
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necessary to consider which of the two cases represents the real situation more closely.
N is now independent of d, provided l/d is sufficiently large for the boundary layer to
be dominated by its travel over the vertical walls. With the standard conditions, and
with I in centimetres, the mean of (6.9) and (6.10) reduces to

N = 2.013/\ (6.11)

These expressions for N are asymptotically valid, as A —and supplement the ex-
pression (5.6) which is valid when l/d is large enough for the boundary layers to have
amalgamated completely near the centre of the cavity at least.

7. The criterion for the flow in the cavity to be laminar. The discussion of the
conditions under which the flow may be expected to be either laminar or turbulent has
been delayed until now, since it is necessary first to know what form the laminar flow
regime would take before considering its stability. Since the parameters A and l/d
(leaving aside a) are sufficient to determine the flow uniquely, the criterion for the flow
to be on the borderline of the laminar state can be expressed as a relation between A and
l/d. The kinds of laminar flow which exist when either l/d or A is very large have been
described (in sections 5 and 6), and the criteria for these two flows to break down will be
considered separately.

Taking first the case in which A is very large and a continuous boundary layer
surrounds the cavity, we can make use again of the general resemblance which this
boundary layer bears to the boundary layer produced by free convection on an isolated
flat plate of length I and temperature difference Ti — T0. Experiments with air (Goldstein,
1938) suggests that this latter flow is laminar provided the Rayleigh number based on
the length of the plate is less than about 10°. We may expect, therefore, that an approxi-
mate criterion for the flow (of air, and perhaps of other fluids also) in the cavity to be
laminar at large values of A is

A j 3 < 109, (7.1)

and the corresponding relation between A and l/d expressing the borderline state is
shown in Fig. 4. With the standard conditions, (7.1) states that the flow in the cavity
will be laminar provided I < 100 cm (and note that the initial assumption that A is
large here means that'd must be sufficiently large).

In the other extreme case in which l/d is so large that the asymptotic distribution of
temperature and velocity is set up at positions not near the ends of the cavity, it seems
likely that breakdown of the laminar flow will occur first in the region far from the cavity
ends* since this is where the greatest velocity gradients exist. We thus require to know
the critical Reynolds number of the flow described in Fig. 2. The boundary layer pro-
duced by free convection on an isolated plate has a velocity distribution with similar
general characteristics and again we may use it as a guide. The critical Reynolds number,
formed from the maximum velocity and the boundary layer thickness, in this latter case

There is also the possibility of breakdown of the laminar flow near the ends of the cavity where the
streamlines are curved and the circulation decreases with increase of distance from the centre of curva-
ture. A comparison with the case of flow between concentric cylinders, with the outer cylinder stationary,
suggests that the cavity flow is near the limit of stability for some of the relevant values of d and I, but
since there is so little time for a disturbance to be amplified while turning the corner this region of the
flow is unlikely to become a source of turbulence.
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is about 300 (Goldstein, 1938). Hence an approximate critical relation between A and
l/d for the cavity flow when l/d is large, obtained by taking d as equivalent to the bound-
ary layer thickness and by taking the maximum velocity difference in the asymptotic
cavity flow as equivalent to the maximum velocity in the boundary layer, is

d 2A,- A = 300,
72 V3 d'

i.e.
A = 18700<r, = 13700 for air. (7.2)
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J/d

Fig. 4. The critical relation governing the existence of laminar flow.

With the standard conditions, (7.2) states that when l/d is sufficiently large, d =
(13.7)1/3 = 2.4 cm is about the largest value of d for which the flow is laminar.

The two critical relations (7.1) and (7.2) cross at l/d = 42**, as shown in Fig. 4;
presumably in the neighbourhood of the point of intersection neither of the approxi-
mations on which (7.1) and (7.2) are based is valid. The true critical relation between
A and l/d will have the solid portions of the two curves as asymptotes and will lie a
little above both of them in order to have a smooth transition from one to the other.
For practical purposes it will be sufficiently accurate to regard the flow in the cavity as
laminar if the point (l/d, A) describing the flow lies below either of the curves (7.1) or
(7.2). If the point lies only a little above both curves, the flow in the cavity may be
turbulent, but it will probably be necessary for the point to lie well above the curves

**This value of l/d is implicitly an estimate of the minimum value of l/d, at A = 13700, for which the
asymptotic velocity and temperature distributions are set up and as such is consistent with the estimate
which is given by (5.13) (viz. 27); likewise the value A — 13700 is implicitly an estimate of the minimum
value of A, at l/d = 42, for which the notion of a continuous boundary layer surrounding a core in which
temperature and vorticity are uniform is valid.
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before the turbulent region is large enough to dominate expressions for the heat transfer;
for instance, the variation of N with Rayleigh number for the free convection produced
by an isolated vertical plate does not settle down to the form appropriate to wholly
turbulent flow until the Rayleigh number (based on length of the plate) is above about
1010. As a consequence, it will be possible to use the results appropriate to laminar flow,
as a reasonable approximation, even when the values of l/d and A are not quite such as
to satisfy the above criteria for laminar flow.

8. Cases of turbulent flow. It seems probable, from the considerations of the previ-
ous section, that in some cases of cavities used in buildings the convective motion is
turbulent. The difficulties of the problem are already great when the flow is laminar,
and it would be unwise to speculate about the case of turbulent flow without some
guidance from experiments. All that will be done here is to indicate how the expressions
for heat transfer obtained earlier, for the cases in which either l/d or A are very large,
are altered if the flow is assumed to be turbulent instead of laminar.

Consider first the case described in section 5, in which l/d is so large that the two
boundary layers on the vertical walls have amalgamated and do not vary with x over
the range X/d < x < (I — X)/d, and assume now that the flow in this latter range is
turbulent. The streamlines of the mean flow are vertical, as before, but there is now a
fluctuating velocity in the direction perpendicular to the vertical boundaries and the
convective flux of heat is not zero in this region. The magnitude of the velocity fluctua-
tions is readily found by returning to Eqs. (2.3), (2.4) and (2.5) and taking the mean
value of both sides. If u, v, w now represent (dimensional) velocity fluctuations and U
is the mean velocity, these equations show that in the region of asymptotic mean flow

(uv) 9(Tl ~ To)d [ ((6) ~ <*>.-,/O dy, (8.1)

where ( • • • ) indicates the mean value of the enclosed quantity. Except in the immediate
neighbourhood of the walls, the first term on the right hand side will be small, as in all
turbulent flows. The general magnitudes of u and v will be equal, and roughly constant,
over the central part of the turbulent where the influence of neither wall is dominant,
and (8.1) thus shows that

(u2), <A I (wo) |, g(Ti ~ To)d ,

are all comparable in magnitude.
Now the rate of heat transfer across the mean flow is pc„(ri — T0) (yd), per unit,

area, and the magnitude of (vd) will be the same as that of (i>2)1/2 since the range of varia-
tion of 6 is unity. The value of the Nusselt number N for a cavity of height I across
which the heat is transferred at the above rate over the whole of either vertical boundary
is then

<8-2>

This is not the whole of the heat transfer, for some heat is convected upwards by the
rising mean flow until it turns around at the upper end of the cavity and loses heat to
the cold boundary. The rate at which heat is convected upwards across a horizontal
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line in the region of asymptotic mean flow is
,.1/2

pcv{Tl — T0)d / U(d) dy,
Jo

and if we make the rough (but reliable) assumption that (u')l/2 and U are of the same
order of magnitude, this quantity has the magnitude

[gjT, - rj'd3 J"pcj yVJl . (8.3)
T

A certain fraction of this—not less than 1 /2, not more than unity—is conducted through
the cold boundary when the rising stream turns around at the top of the cavity, so that
the complete expression for N is

N = x, jj M)1/2 + XjM)1/2, (8,4)

where Ai and X2 are constants of order unity. This expression shows what might have been
expected, that in view of the ability of turbulent fluctuations to transfer heat across the
cavity even when the mean flow is vertical, the upward convection of heat by the mean
flow is comparatively unimportant. (It is to be expected that X2 will be a little larger
than Xi from the nature of the above approximations, but l/d is large compared with
unity and this will make the first term in (8.4) dominant.)

In the other limiting case, considered in section 6, in which A is so large that the
flow consists of an isothermal core of uniform vorticity, surrounded by a continuous
boundary layer, it may likewise be possible to make modifications to allow for the
existence of turbulence. If it can be shown from experiments that the flow in the iso-
thermal core remains laminar, still with uniform vorticity, while that in the boundary
layer is turbulent, it will be possible to make use of the general resemblance between
this boundary layer and that produced by free convection on an isolated plate of length
I and temperature difference 7\ — T0 or 1/2 (Ti — T0) (according to the quantity under
discussion). The empirical expression for the heat transfer, due to turbulent free con-
vection, from an isolated plate with temperature difference — T„ in air is (Goldstein,
1938)

N = 0.13A"3 ^ . (8.5)

which may be identified with the heat transfer across the cavity as in the case of laminar
flow.

9. Summary of the results and comparison with experiment. A rather confusing
picture of different types of flow occuring at different values of A and l/d has been built
up in the preceding sections, and it will be useful now to recall the principal results and
to see how they fit together. A comparison with the available measurements (leaving
aside those for which all the relevant data, such as the value of l/d, is not specified)
will be made, although these are so few in number as to leave the comparison indecisive.
The measurements to be used are those described in the book by Jakob (1949), most
of them having been made by Mull and Reiher (1930).

The final aim of the analysis is to determine the rate of heat transfer, and the sig-
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nificance of the various types of flow can be considered best with the aid of a diagram
showing the variation of N over a wide range of values of A. We shall use Fig. 5 for this

Fig. 5

20 40 60 80 100
Al/3

Fig. 5. Variation of heat transfer with Rayleigh number

(N = , ^—— , A = ——; note that A113 — 10d under standard conditions and with <!
k(Ti - To) Tokv

in centimetres^

Experimental points:
V l/d = 6.25 Schmidt
• 10.6 Mull and Reiher
A 11.5 Nusselt
X 21.1 Mull and Reiher
+ 42.2 Mull and Reiher
o denotes multiple point

purpose although the representation is designed to show clearly only the variation of
N over the range of values of A likely to be of practical interest in problems of thermal
insulation of buildings. The ordinate, N — l/d, is the addition to the Nusselt number
(see (2.10)) due to the existence of convection, giving the curves for different values of
l/d a common value at A = 0. (The contribution due to existence of convection is not
dominant at the values of A used in the figure, so that mental allowance for the con-
duction term l/d must be made.) The abscissa has been chosen as A1/3, corresponding to
a linear variation of the important parameter d when 7\ — T0 is kept constant; with the
standard conditions described in section 3, and with d in centimetres, we have

A1/3 = lOd. (9.1)

Considering first values of A less than about 1000, the appropriate prediction is that
N — l/d varies as A2 (see (4.6)), with a constant of proportionality which very roughly
is of the order of 10~8. We saw that at these low values of A at which a power series ex-
pansion of 6 and \p is useful convection is much less important than conduction. Indeed
we shall see that the values of N — l/d at even larger values of A, at which another type
of flow occurs, are too small for their exact magnitude to be of much interest, so that
^or practical purposes we can pass over the predictions about N described in section 4.
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The first curve shown in Fig. 5, at low values of A, therefore, is not the quadratic
law (4.G) but the linear law (5.6), which was derived on the assumption that l/d is large
enough for a region of flow parallel to the walls to be set up near the centre of the cavity.
A rough criterion for this to be a valid assumption was found to be l/d > .4/500 (see
(5.13)), so that the linear law (5.6) will be valid up to values of A which will be increasing
with l/d. The linear law (5.6) is not definite without some assumption about the
value of /3, which was seen to lie between 1/2 and 1 and to asymptote to a value near
unity as .4 —>=°. As a tentative approximation we may assume (3=1, and the first
curve shown in Fig. 5 is

A ~~ d = 720 ' (9'2^
When .4 is about 1000, the contribution to N due to convection will be small for all
values of l/d large compared with unity, as remarked above.

When .4 is in the neighbourhood of (30)3, = 2.7 X 104, corresponding to d = 3 cm
with the standard conditions, the requirement for the law (9.2) to be valid is that l/d
> 54 (equivalent to I > 162 cm with the standard conditions again), which is already
very restrictive. At values of A too large for the criterion (5.13) to be satisfied, the flow
does not attain the asymptotic form near the centre of the cavity and there is a tendency
for the gradients of the temperature and velocity to be largest in the neighbourhood of
the walls. At values of A large compared with that for which the criterion (5.13) just
fails, the assumption of a continuous boundary layer surrounding a core of uniform
temperature and vorticity is valid and we can use the predictions of Section 6. Two
alternative expressions for N, (6.9) and (6.10), were obtained (the methods being such
as to ensure the correctness of the functional form of N although not necessarily of the
multiplicative constant), and the mean of these expressions, viz.

n - °-43(7 ir - o-~(r. <**>
is plotted in Fig. 5 for various values of l/d. There is presumably a curve of transition
from the law (9.2) to the appropriate member of the family (9.3), and it will be noted
that the criterion A/500 < l/d, giving the upper limit of the range of validity of (9.2),
is consistent with the position of the curve to which the transition must be made. Short
dotted tangents are shown on the curve (9.2) in Fig. 5 at the place where the curve
ceases to be valid, according to the criterion (5.13), for the value of l/d shown in brackets.

When A reaches a certain value, given by the criteria (7.1) and (7.2), steady laminar
flow ceases to be possible. For the values of l/d employed in Fig. 5, viz. 10, 20, 40, the
criterion (7.1) is appropriate, and the corresponding limiting value of Al/3 is shown on
the curves in Fig. 5 as a short cross stroke. (Note that the upper limit of A for laminar
flow does not decrease indefinitely as l/d increases; when l/d = 42 the criterion (7.2)
takes over, and laminar flow is possible for A1/3 < 24 however large l/d may be). When
l/d = 40, the largest value of A1/3 for which laminar flow is possible is smaller than
the values of A1/3 at which transition from the law (9.2) to the law (9.3) occurs, so that
the curve corresponding to (9.3) with l/d = 40 in Fig. 5 has significance only as an ap-
proximation to the turbulent flow that will occur in practice, as explained at the end of
Section 7. It would be useful to know where the curves, that describe the variation of
N in turbulent flow for these larger values of l/d, occur in Fig. 5, but speculation about
this should perhaps await some guidance from experiments.
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Turning now to the experimental data about N, all the measurements described in
Jakob's book (1949), except three referring to small values of l/d and very large values
of A, are reproduced* in Fig. 5. Where several of the measurements were nearly identical,
they have been amalgamated into a single point, the number of separate measurements
being indicated in brackets. At small values of A, less than about 104, there are too few
measurements to permit any conclusions about the validity of (9.2) and all that can be
said is that the theory and the experiments are not inconsistent. (These smaller values
of A are not unimportant practically, so that there is a real need for further experiments
in this range). At larger values of A the experimental points seem to be consistent with
a set of curves like (9.3) in form but having a numerical coefficient smaller by a factor
of about 0.6. In other words, if (9.3) were replaced by

N = 0.3A1/4(j)3/4, (9.4)

the two laws (9.2) and (9.4), with appropriate transition curves, would fit the above
data adequately. That a change in the numerical coefficient of (9.3) should be necessary
for agreement with observation is not impossible in view of the numerical uncertainties
involved in its derivation. Moreover it will be recalled that (9.2) was based on the notion
of independent boundary layers on the two vertical boundaries, which will be a valid
picture only when the boundary layer thicknesses are small compared with d. Now if
l/d and T, — T0 are kept constant, the boundary layer thickness, as a fraction of d, is
proportional to cT3/4, which is a fairly slow rate of decrease, so far as the range of values
covered in Fig. 5 is concerned; in fact it is readily found that at A1/3 = 100, the boundary
layer on each vertical boundary near the centre has a thickness of about 0.15 d for l/d =
10, and varies as (Z/d)1/4, which is scarcely small enough for the asymptotic picture of
completely separate boundary layers to be valid. It is possible, therefore, that the ex-
perimental points are approaching the curves (9.3) (or a set of curves with a numerical
factor a little different from 0.48), and that values of A below 106 are still in the transition
range.

The above interpretation of the measurements is quite different from that proposed
by Jakob (1949). Jakob plots log (Nd/l) against log A, and represents the measurements
at values of A above 105 by means of curves of the form

j N = 0.065CTGT
on the supposition that the flow is then turbulent (compare (8.6)) and the measurements
in the range 104 < A < 105 by curves of the form

itTXT- (9-6)
The measurements at values of A less than 104 are represented by a curve common to
all values of l/d. This is an empirical representation, and will serve as well as any other
means of describing the data. However it should be observed that there is little evidence
for Jakob's assumption of turbulent flow at values of A above 105. The criterion for

*1 have been obliged to take the data from Fig. 25-7 of Jakob's book since Mull and Reiher's original
paper is not available in Cambridge.
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laminar flow to be possible clearly depends on l/d as well as on A, and the considerations
of section 7 suggest that all the measurements reproduced in Fig. 5 (and also the three
measurements not shown) correspond to laminar flow. The empirical conclusion that
log dX/l is independent of l/d at values of .4 below about 104 is also at variance with the
theory given herein, since this is the range in which we expect a region of parallel, vertical,
flow to be set up near the centre of the cavity, with (9.2) as the corresponding expression
for N.

For many practical purposes, the description of the theoretical results that is given
in Fig. 5 is not the most revealing. The quantity of greatest interest is the heat transfer
per unit area of a vertical boundary, which is proportional to N/I. Moreover, the width
d can be chosen much more freely than the height I when a cavity is being used in a build-
ing, so that curves showing the heat transfer as a function of d for various values of I,
rather than for various values of l/d, are needed. Both of these needs are met by Fig. 6,
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Fig. 6. Variation of conductance C with width of cavity (C = Q/l(Ti — T0) = kN/I,
i.e., C BTU/ft2 rF hour = 0.394/Z cm N. Note that d cm = 0.1A1'3 under standard conditions).

which shows the thermal conductance C (defined by (2.12)) as a function of d (i.e. of
A1'3, when 7\ — T0 is given) for various values of I, with the standard conditions. The
range of values of d is here restricted to those of greatest practical interest. The units
for C are those in common use by heating engineers.

At values of d less than about 1 cm, the conductance has approximately the value
obtained by ignoring the effect of convection, but at larger values of d the curves obtained
from (9.2) with different values of I diverge as shown in the figure. (There is the useful
conclusion that if it is possible to subdivide a given rectangular cavity by the insertion
of vertical partitions of small thickness, a maximum width of 1 cm for any of the new
cavities so formed will ensure that the overall conductance is close to the optimum
value obtained in the absence of convection.) The curves for different values of I all
show the potentially important feature of a minimum value of C. However the position
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of the curves corresponding to (9.3), towards which N asymptotes as d —»<*>, is such
that the value of N rises only a little, if at all, as d increases above the value at which
the minimum of (9.2) occurs. The limiting curves given by (9.3) are shown on the right
side of Fig. 6, but no transition curves to join the two theoretical predictions have been
drawn in view of the uncertainty about the rate at which the limiting curves are ap-
proached.

The measurements described by Jakob have been plotted in Fig. (5 by the device of
calculating what the values of d and I would have been if g(Tx — T0)/T0kv had the
standard value 1000 cm-3 and if A and l/d had the values given by Jakob; these equiva-
lent values of I are shown in brackets by each point. As already seen, they are consistent
with the theory only if we change the factor 0.48 in (9.3) to 0.3, or if we suppose that the
law (9.3) becomes asymptotically valid at values of d well above those used in Fig. 6.
Neither the theory no the measurements support the existence of a definite minimum
of C as a function of d but both suggest that no further significant decrease in C occurs
for values of d above about '2.5 cm (not even when I is greater than 200 cm, because for
such cavities laminar flow becomes impossible when d > 2.4 cm, and this will prevent
any decrease in C).
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