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Abstract 

Heat transfer and fluid flow in a single-rib mounting channel were investigated by 

directly solving Navier-Stokes and energy equations.  Flow and thermal fields 

were considered to be fully developed at the inlet of the channel, and the simulation 

was made for spatial advancement of turbulent heat transfer.  Keeping the 

frictional Reynolds number, Reτ0, at 150, the rib height ratio was changed in four 

steps from H/δ = 0.05 to H/δ = 0.4.  Computational results were confirmed to be 

nearly independent of grid meshes.  In addition, numerical accuracy was 

confirmed through close agreement between computed mean pressure and the 

experiment by Yao et al. (1995).  The numerical results revealed that the highest 

value of the mean Nusslet number was as large as 1.3 times the smooth surface 

consuming the same pumping power, and the local enhancement of heat transfer 

was correlated with the turbulence increase near the rib front and the reattachment 

point.  According to the Reynolds stress budgets for H/δ = 0.2, there were 

mechanisms to induce powerful fluctuations: (1) Streamwise fluctuation was 

increased through production by flow deceleration in the upstream of the rib; (2) 

Redistribution to wall-normal and spanwise fluctuations was fortified by the fluid 

splattering to the rib front.  Therefore, excellent performance of heat transfer was 

concluded to occur due to flow structures, which induce the strong disturbance near 

the rib front triggering smooth transition of the separated shear layer. 

Key words: Turbulent Flow, Heat Transfer Enhancement, Pressure Drop, Direct 

Numerical Simulation, Rectangular Rib, Reynolds Stress Budget 

 

1. Introduction 

The wall roughness or the protrusions are convenient tools to destabilize wall-bounded 

flows.  This type of device can be utilized for fluid control and augmentation of heat 

transfer in turbo-machineries, power generators, combustors and chemical reactors.  

Enhancement of inner-cooling in gas-turbine blades is one of applications.  Optimization 

of the roughness or the turbulator is a key to achieve better performance in machineries of 

energy conversion and process engineering. 

In addition to the practical importance of fully developed cases of periodic 

obstacles
(1)-(5)

, the case of a single obstacle means a lot both scientifically and 

practically
(6)-(10)

.  Suzuki et al.
(6)

 reported that the heat transfer increase and the friction 

decrease simultaneously occurred in a local spot of the turbulent boundary layer inserted by 

an cylinder.  Yao et al.
(7)

 visualized flow fields in a similar situation, and they argued about 

roller structures behind the obstacle, which caused the local dissimilarity between the heat 
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transfer and the friction on the wall. 

In spite of these efforts, there is ambiguity in the heat transfer enhancement by a single 

obstacle.  At the present time, it is not evident if the overall heat transfer in the case with 

an obstacle can actually exceed the flat-plate case.  The recent DNSs (Direct Numerical 

Simulations) for non-periodic cases
(8)-(10)

 did not resolve this question since they targeted on 

basic fluid mechanics not paying special attention to the heat transfer enhancement. 

In the present study, a spatially advancing type of DNS is performed for turbulent air 

flows in a channel with a single rib mounted on the wall.  The frictional Reynolds number 

is kept at 150 at the channel inlet, and the ratio of the rib height to the channel half width is 

changed in 0.05, 0.1, 0.2 and 0.4.  The mean Nusselt number is analyzed through 

comparison with the flat-plate case showing the same pumping loss in order to verify the 

total merit of the single-rib augmentation.  Mechanisms of heat transfer enhancement are 

examined through discussion of turbulence statistics of flow and temperature and the 

Reynolds stress budgets.  An instantaneous flow is argued to compile information on 

turbulence structures related to transport process. 

 

Nomenclature 

Cf : skin friction coefficient 

Cp : specific heat at constant pressure 

f : friction factor 

H : height of rib 

H
(+)

: roughness Reynolds number, Uτ0H/ν 
Lx, Lz : computational domain sizes in x and z directions 

Nx, Ny, Nz : grid numbers in x, y and z directions 

p : pressure 

Pr : Prandtl number 

qw : wall heat flux 

Rem : Reynolds number, 2Umδ/ν 
Reτ0 : Reynolds number, Uτ0δ/ν 

T : temperature 

t : time 

ui : velocity in xi direction;  

Um : bulk mean velocity 

Uτ0 : friction velocity in driver part, (τw0/ρ)1/2
 

u, v, w : velocity in x, y and z directions 

V : magnitude of velocity 

W : width of rib 

xi : coordinate in the i-th direction; x1, x2 and x3 denote x, y and z 

x, y, z : streamwise, wall-normal and spanwise coordinates 

δ : channel half width 

∆Tw : temperature difference between smooth and rough walls, Ts-Tr 

∆t : time increment 

∆x, ∆y, ∆z : grid spacings in x, y and z directions 

λ : thermal conductivity 

ν : kinematic viscosity 

ρ : density 

τw : wall shear stress 

Subscripts and Superscripts 

( )0 : value in driver part or on inlet 
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( )r : value on rough-wall side 

( )s : value on smooth-wall side 

( )' : fluctuating component 

( )
(+)

: normalized by Uτ0 and ν 
)  ( : ensemble averaged value 

 

2. Numerical Method 

 

 

 

 

 

 

 

 

Fig. 1  Computational domain and coordinate system. 

 

Figure 1 shows the computational domain and the coordinate system.  A fully 

developed turbulent flow with thermal variation is assumed to enter a straight channel 

obstructed by one rectangular rib protruded from the wall.  The inlet values for the ribbed 

channel are generated by the driver part, where a constant pressure gradient drives the fluid 

flow.  Periodic boundary condition is employed in streamwise and spanwise directions of 

the driver part, and in the spanwise direction of the main part.  In both of the driver and 

main parts, non slip condition is used on channel walls.  Thermally, temperature of the 

lower walls and rib surfaces are kept at (T-Tr)/∆Tw = 0, and that of the upper walls are fixed 

at (T-Tr)/∆Tw = 1.  At the exit of the main part, the convection out-flow condition
(11)

 is 

applied for flow and temperature fields. 

The continuity, Navier-Stokes and energy equations for the incompressible fluid; 
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are used as governing equations.  As implied by Eq. (2), gravity effects are neglected.  

Time advancement of Eqs. (1) and (2) is made by the fractional step method
(12)

.  In time 

splitting of Eqs. (2) and (3), the second-order Crank-Nicolson method is applied for the 

wall-normal second derivatives, and the second-order Adams-Bashforth method is used for 

other terms.  The forth-order central difference
(13), (14)

 is utilized as spatial difference for 

convection and diffusion terms of Eqs. (2) and (3).  In the driver part, the Poisson equation 

for the pressure is solved by the fast Fourier transformation (FFT) in the streamwise and 

spanwise directions and by the TDMA of compact difference for wall-normal derivatives.  

In the ribbed channel, the Poisson equation is computed by the FFT in the spanwise 

direction and by the SOR at each plane perpendicular to the spanwise axis. 

Computational conditions are listed in Table 1.  The rib height is changed in four steps 

ranging from H/δ = 0.05 to H/δ = 0.4.  The Reynolds number based on the frictional 

velocity and the channel half width, Reτ0, is set at 150 for H/δ = 0.05, 0.1, 0.2, 0.4 (Cases 2, 
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3a-3d, 4, and 5), and at 180 for H/δ = 0.4 (Case 1) which exactly corresponds to the 

experiment
(7)

.  Air flow is assumed through the simulations, and the Prandtl number is 

fixed at 0.71. 

Figure 2 shows an example of grid arrangement.  As shown in this figure, numerical 

grids are allocated finely to the rib walls, especially dense in upstream of the front surface 

of the rib.  Such a grid arrangement is used in order to resolve the thin boundary layer in 

the impinging region without numerical oscillation.  For H/δ = 0.2, four kinds of 

computation (Cases 3a-3d) are performed with using different grid meshes.  Case 3a and 

Case 3b are simulated by the largest computational volume with the spanwise length of  

Lz/δ = 6.4.  In the former and the latter, grid numbers are (128+320) x 185 x 256 and 

(64+320) x 98 x 128, respectively.  Case 3c is computed by the reduced domain, where the 

spanwise length is a half of Case 3a or 3b (Lz/δ = 3.2), and grid resolution is (64+320) x 98 

x 64.  Case 3d is also computed by the reduced domain, having sparser grids in the 

streamwise direction than Case 3c.  Figures 3 and 4 show distributions of the skin friction 

coefficient and the Nusselt number, respectively, for Cases 3a-3d.  There is almost no 

essential difference occurring from changes in the domain size or the grid arrangement.  It 

is thus suggested that the domain size is enough large with sufficient resolution of grids 

through Cases 3a-3d.  As suggested in Table 2, simulations for Cases 1, 2, 4, and 5 are 

made by the reduced domain with grid resolution as fine as Case 3b or 3c to save the 

computational load. 

 

Table 1  Computational conditions. 

 Case 1 Case 2 Case 3a-3d Case 4 Case 5 

H/δ 0.4 0.4 0.2 0.1 0.05 

W/δ 0.4 0.4 0.2 0.2 0.2 

Reτ0 180 150 150 150 150 

H
(+)

 72 60 30 15 7.5 

Pr 0.71 0.71 0.71 0.71 0.71 

 

Fig. 2  Grid arrangement near rib. 

 

   
Fig. 3  Local skin friction coefficient: (a) bottom wall; (b) rib. 
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Fig. 4  Local Nusselt number: (a) bottom wall; (b) rib. 

Table 2  Computational domain and grid arrangement. 

 Case 1 Case 2 Case 4 Case 5 

Lx0/δ 8 8 8 8 

Lx/δ 10.6 22.9 13.4 13.4 

Lz/δ 3.2 3.2 3.2 3.2 

Nx0 128 64 64 64 

Nx×Ny×Nz 320×128×128 512×128×64 320×98×64 320×98×64 

∆x0
(+)

 11.3 18.8 18.8 18.8 

∆x
(+)

 1.13-11.3 0.938-14.1 0.938-14.1 0.938-14.1 

∆y
(+)

 1.13-7.34 0.938-6.12 0.938-10.0 0.938-10.0 

∆z
(+)

 4.50 7.50 7.50 7.50 

∆t
(+)

 0.00720 0.00600 0.0120 0.0120 

 Case 3a Case 3b Case 3c Case 3d 

Lx0/δ 16 8 8 8 

Lx/δ 11.0 13.4 13.4 14.3 

Lz/δ 6.4 6.4 3.2 3.2 

Nx0 128 64 64 64 

Nx×Ny×Nz 320×185×256 320×98×128 320×98×64 320×98×64 

∆x0
(+)

 18.8 18.8 18.8 18.8 

∆x
(+)

 0.938-9.38 0.938-14.1 0.938-14.1 1.88-14.1 

∆y
(+)

 0.300-6.00 0.938-10.0 0.938-10.0 0.938-10.0 

∆z
(+)

 3.75 7.50 7.50 7.50 

∆t
(+)

 0.00600 0.0120 0.0120 0.0120 

 

3. Results and Discussion 

3.1 Pressure Loss and Heat Transfer 

Mean pressure distributions for H/δ = 0.2 and H/δ = 0.4 are shown in Fig. 5.  In the 

figure, Case 1 for H/δ = 0.4 and Rem = 5650 is very close to the experiment for the same 

condition by Yao et al.
(7)

, and validity of the numerical data is thus confirmed.  In all the 

presented cases, there are pressure drops due to the blockage effect from the rib, and the 

mean values show transitional variation in the upstream and downstream region between  

-5 ≦ x/H ≦ 30. 

Pressure loss and heat transfer in a channel are evaluated, respectively, by the apparent 

skin friction coefficient 
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Fig. 5  Distribution of mean pressure on bottom wall (

ref,wp  is pressure at x/H = -4.5). 

 

and the mean Nusselt number 
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The reference planes are chosen as xu = -20H and xd = 40H, by which major part of the rib 

effects can be included in the parameters.  Computed values from Eqs. (4) and (5) are 

shown in Figs. 6 and 7, respectively.  The former presents experimental correlation for a 

smooth channel by Dean
(15)

  

 

25.0

mRe073.0f
−=  (6) 

 

and the Blasius’s law
(16)

 

 

( ) 25.0

mRe2079.0f
−= , (7) 

 

and the latter indicates the correlation by Tsukahara et al.
(17)

  

 

5.08.0

m PrRe014.0Nu = . (8) 

 

In Fig. 6, the friction coefficient on the flat surface is doubled by the highest rib (H/δ = 0.4).  

However, in Fig. 7, even maximum of the mean Nusselt number does not reach twice of the 

flat-plate value. 

In Fig. 8, the mean Nusselt number is plotted against f
1/3

Rem, which corresponds to cubic 

root of non-dimensional pumping power.  The figure includes the correlation for flat-plate 

values deduced from Eqs. (6) and (8), 

 

( ) 55/48

m

3/15.0 RefPr03.0Nu =  (9) 

 

and that from Eqs. (7) and (8), 
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( ) 55/48

m

3/15.0 RefPr0308.0Nu = . (10) 

 

In the figure, the mean Nusselt number on the ribbed wall is confirmed to exceed the 

smooth plate for the same pumping power.  The enhancement ratio is 1.3 at maximum.  

Merit of the single-rib enhancement is thus validated for the case when the hydrodynamic 

loss is taken into consideration. 

 

 
Fig. 6  Friction factor versus bulk Reynolds number. 

 

 
Fig. 7  Mean Nusselt number (on the two walls <Num>, on the rough-wall <Nur> and on the smooth-wall 

<Nus>) versus bulk Reynolds number. 

 

 
Fig. 8  Mean Nusslt number (on the two walls <Num>, on the rough-wall <Nur> and on the smooth-wall 

<Nus>) versus pumping power. 
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3.2 Turbulence Statistics of Flow 

In the following, attention is paid to the results from Case 3a (H/δ = 0.2), where heat 

transfer is preferably enhanced with increasing pressure loss penalty modestly as earlier 

mentioned. 

Figure 9 shows mean streamlines together with colored gradation of the mean-velocity 

magnitude.  In this figure, circulating flows exist next to the upstream and downstream 

surfaces of the rib.  From numerical analysis, the separated shear layer from the rib is 

confirmed to reattach to x/δ = 1.67 on the wall, which is mostly correspond to the 

streamwise extent of the largest circulation as observed in the figure.  In this case, the 

Nusselt number takes a peak at x/δ = 1.75 as suggested in Fig. 4, and this peak position is 

nearly coincident with the reattachment point. 

The Reynolds normal stresses and the shear stress are shown in Figs. 10 and 11, 

respectively.  In the downstream part of the rib, there are conspicuous increase in the 

Reynolds stresses, which is remarkable around 1.0 < x/δ < 2.0 prevailing in the upstream of 

the reattachment position.  There are also high values of Reynolds stresses in the upstream 

of the rib, where the streamwise stress increases at -0.5 < x/δ < 0 and others are large in 

close vicinity of the rib front.  Increases in Reynolds stresses are correlated well with high 

values of Nusselt number in Fig. 4, and the heat transfer enhancement is suggested to occur 

due to the turbulent fluctuation. 

The mean pressure and the root-mean-square of the fluctuation are shown in Figs. 12 

and 13, respectively.  In Fig. 12, mean pressure suddenly drops near the front edge of the 

rib, which implies an acute acceleration of the flow.  In Fig. 13, pressure fluctuation is 

high in the downstream of the rib and in small spots near the front surface of the rib.  As 

described later, such high fluctuations of pressure contribute the transport of Reynolds 

stresses through inter-component redistribution of turbulence energy and the 

pressure-assisting diffusion. 

 

 

Fig. 9  Mean stream lines and contours of mean-velocity magnitude in Case 3a. 

 

 

Fig. 10  Contours of Reynolds stress normalized by Um
2
 in Case 3a. (a) 'u'u ; (b) 'v'v ; (c) 'w'w . 

 

Fig. 11  Contours of Reynolds shear stress, 'v'u− , normalized by Um
2
 in Case 3a. 



 

 

 

Journal of  Thermal 
Science and Technology  

Vol. 5, No. 1, 2010

143 

 

Fig. 12  Contours of mean pressure, ( ) 2

m0 U/Pp ρ− , in Case 3a. 

 

Fig. 13  Contours of root-mean-square pressure fluctuation normalized by ρUm
2
 in Case 3a. 

 

 

Fig. 14  Contours of mean temperature, (T -Tr)/∆Tw, in Case 3a. 

 

 

Fig. 15  Contours of turbulent heat flux normalized by Um∆Tw in Case 3a. (a) ''u θ ; (b) ''v θ . 

 

 

Fig. 16  Contours of root-mean-square temperature fluctuation normalized by ∆Tw in Case 3a. 

 

3.3 Turbulence Statistics of Temperature 

Examination is given to the thermal field for the same case (Case 3a for H/δ = 0.2) as 

treated in the previous section.  Figure 14 shows the mean temperature.  The thermal 

boundary layer is thin near the front surface of the rib and reattachment point (x/δ = 1.67).  

Comparison of Fig. 14 with Figs. 4 and 9 reveals that the flow impingements on the walls 

lead to thin thermal layers enhancing heat transfer.  The dense distributions of thermal 

contours near impinging regions contrast with sparse contours away from the wall, by 

which turbulent transport is implied to exist. 

The streamwise and wall-normal turbulent heat fluxes are presented in Fig. 15.  In the 

present study, ''u θ  > 0 and ''v θ  > 0 express turbulent transport in positive x and y, 

respectively, while ''u θ  < 0 and ''v θ  < 0 mean transport in inverse directions.  In most 

parts of the channel, ''v θ  shows negative values, and the turbulent heat flux is suggested 

to activate the heat travelling from the hotter (upper) to cooler (lower) walls. Similarly, 

positive values of ''u θ  near the rib front and its negative values near the back surface are 

consistent with heat directing to the rib surfaces.  However, turbulent heat fluxes act to 

deteriorate the heat flow in small portions near the lower half of the rib’s front surface 
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( ''u θ  < 0, Fig. 15(a)), its top surface ( ''v θ  > 0, Fig. 15(b)) and the channel wall just 

upstream of the rib front ( ''v θ  > 0, Fig. 15(b)).  From Fig. 9, it is confirmed that such 

inverse contributions of turbulent heat flux tend to accompany with the separation of 

wall-bounded flow.  Therefore, inverse contribution of turbulent motion is thought to 

occur in relation with bending of stream lines, which can inversely correlate flow and 

thermal fluctuations due to excessive convection of scalar. 

Intensity of temperature fluctuation is displayed in Fig. 16.  Temperature fluctuation is 

high around the rib’s top surface extending between -0.5 < x/δ < 1.5.  This extension is 

broader than velocity fluctuation, 'u'u .  This is because the thermal boundary condition 

adopted in this paper has the mean thermal gradient over the channel width and strong 

thermal fluctuation is assisted to occur through production by mean thermal gradient
(18)

. 

 

3.4 Budgets of Reynolds Stress 

Transport equations of Reynolds stresses can be written as follow: 
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In this section, budgets of Eq. (11) are presented for the Case 3a (H/δ = 0.2) similarly to 

sections 3.2 and 3.3.  Figure 17 shows budgets in the driver part.  As explained in the 

earlier work
(19)

, budgets in the no-rib case show that redistribution of energy goes from 

'u'u  to 'v'v  and 'w'w  through the pressure-strain correlation being finally dissipated to 

heat, and 'v'u  disappears through another role of the pressure-strain correlation, namely 

destruction of the correlation.  In all the budgets, diffusions are not important away from 

the wall, and the transport processes are in near local-equilibrium in major parts of the 

channel. 

The sampling planes for Reynolds-stress budgets in the ribbed channel are indicated in   

Fig. 18.  Figure 19 presents the budgets at x/δ = -1.0 in the ribbed channel.  In Fig. 19, 

budgets are similar to the driver part (Fig. 17), but each term is exaggerated.  Further 

decomposition of production of 'u'u  revealed that the major contribution was made by an 

increase of x/u'u'u2 ∂∂−  rather than y/u'v'u2 ∂∂− , and the exaggeration was suggested 

to occur due to the flow deceleration.  In the production of 'v'u , increase of 

x/v'u'u2 ∂∂−  was the most important among increases of x/u'v'u2 ∂∂− , x/v'u'u2 ∂∂− , 

y/u'v'v2 ∂∂−  and y/v'v'u2 ∂∂− , and it was suggested that displacement of mean flow 

increased the production. 

Figure 20 shows budgets at x/δ = -0.12, which is closer to the rib front. This plane still 

shows the essence of transport structures inherited from the driver part: redistribution 

occurs from 'u'u  to 'v'v  and 'w'w ; 'v'u  is destructed by the pressure-strain 

correlation.  However, each term of budgets is more complex than the far-field due to the 

circulating flow neighboring the rib front.  The diffusion terms (turbulent diffusion, 
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Fig. 17  Reynolds stress budgets normalized by Um
3
/δ in Case 3a at driver part: , production; , 

pressure strain; , pressure diffusion; , turbulent diffusion; , viscous diffusion; , 

dissipation; , residual. (a) 'u'u ; (b) 'v'v ; (c) 'w'w ; (d) 'v'u . 

 

 

Fig. 18  Sampling position for Reynolds-stress budgets. 

 
Fig. 19  Reynolds stress budgets normalized by Um

3
/δ in Case 3a at x/δ = -1: , production; , 

pressure strain; , pressure diffusion; , turbulent diffusion; , viscous diffusion; , 

dissipation; , convection; , residual. (a) 'u'u ; (b) 'v'v ; (c) 'w'w ; (d) 'v'u . 
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pressure diffusion and viscous diffusion) are remarkable, and spatial transport is thus strong 

near the rib surface.  In most parts of normal-stress budgets, diffusion terms or convections 

are larger than dissipation, and transport mechanisms are far from the local equilibrium. 

Budgets at x/δ = -0.02 are shown in Fig. 21.  In the figure, pressure-strain correlations 

are huge in budgets of normal stresses, and the flow splattering to the front wall is 

suggested to promote the redistribution.  Negative values in the production of 'u'u  and 

those in 'v'v  were confirmed to occur due to the flow acceleration.  This acceleration 

was thought to occur based on the flow contraction near the rib corner and the impingement 

to the rib front.  In all the budgets, diffusions or convection are important compared with 

the driver part, and the spatial transport is thus signified near the vertical wall. 

In Fig. 22, budgets at x/δ = 0.1 are depicted.  At this plane, gain by the production and 

loss by the convection are important in the budget of 'u'u .  Pressure-strain correlation 

is small in the budgets of normal stresses, and the redistribution is shown to be minor. 

 

 
Fig.20 Reynolds stress budgets at x/δ = -0.12 with the same captions as Fig. 19. 

 

 
Fig.21  Reynolds stress budgets at x/δ = -0.02 with the same captions as Fig. 19. 
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In budgets of 'v'v  and 'w'w , the convection and diffusions are important, and diffusions 

transport stresses away from the wall.  These are consistent with modest values of 'v'v  

and 'w'w  near the top wall of the rib compared with 'u'u  as shown in Fig. 10. 

Figure 23 shows the plane near the reattachment point, namely x/δ = 1.7.  Near the 

reattachment point, redistribution occurs in normal stresses and contributions from turbulent 

diffusion are conspicuous in budget of 'v'v .  Production of 'v'v  is high near the wall 

due to the deceleration of wall-normal velocity, and this contributes the high fluctuation 

which enhances scalar transport.  There are remarkable contributions from pressure-strain 

correlation and pressure diffusion of 'v'v , and contributions from those of 'v'u  near the 

wall.  Accordingly, splattering effects are suggested to occur due to the reattachment.  

These trends are similarly observed in cases of periodic fences
(8)

 and the backward step
(11)

, 

and the transport processes near the reattachment point are analogous in separated flows. 

 

 
Fig.22  Reynolds stress budgets at x/δ = 0.1 with the same captions as Fig. 19. 

 

 
Fig. 23  Reynolds stress budgets at x/δ = 1.7 with the same captions as Fig. 19. 
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3.5 Structures of Instantaneous Field 

An instantaneous flow is examined in order to understand turbulence structures related 

to the transport process.  In Fig. 24, vortices are visualized by iso-surfaces of the second 

invariant for the deformation tensor 
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to detect the spanwise rotation.  The figure includes contours of streamwise velocity 

fluctuation.  In the upstream of the rib, there are stripes of alternating low-speed streaks 

and high-speed islands, and streaky structures are branched as approaching the rib wall.  

The branching of structures is implied to occur due to flow deceleration, and this is 

suggested to correspond to turbulence enhancement described in the previous section.  

Near the front surface of the rib, longitudinal structures are rooted to streaks and stretched 

to the upper-downstream direction, which implies energy redistribution occurring from 

streamwise to secondary directions through longitudinal vortices.  There are longitudinal 

and spanwise structures near the top wall of the rib, and three-dimensional disturbance is 

suggested to occur in the mean flow.  Behind the rib, instability in the shear layer is highly 

complex and fully three-dimensional, and three-dimensionality near the rib corner is 

suggested to trigger smooth transition. 

Comparison between Figs. 24 and 4 reveals that high performance of heat transfer can 

be attributed to hydrodynamic mechanisms leading to strong fluctuation.  Turbulence near 

the front surface of the rib is intensified due to flow deceleration, and three-dimensionality 

near the rib corner induces fast transition of separated shear layer.  These structures are 

thought to induce powerful fluctuations near the wall, and activated transport of scalar is 

suggested to cause high values of Nusselt number. 

 

 

 

Fig. 24  Iso-surfaces of the second-invariant (Qδ2
/Um

2
 = 20) with Qz and contours of streamwise velocity 

fluctuation at y/δ ≒ 0.05 in Case 3a. 
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4. Conclusion 

Direct numerical simulation was performed for air flows and related heat transfer in a 

channel with a single rib attached to the channel wall.  The rib height was changed at   

H/δ = 0.05, 0.10, 0.20, 0.40 for the frictional Reynolds number, Reτ0, fixed at 150.  

Conclusions thus extracted are as follow. 

 For cases of H/δ = 0.2, four kinds of computation were made with changing 

spanwise length of computational domain and grid arrangement.  Computational 

results from these simulations show almost no difference, and there was essentially 

no dependence on domain size and grids.  In addition, in the case of the highest rib 

(H/δ = 0.4), there was close agreement of the mean pressure between the 

computation and the existing experiment. 

 The mean Nusselt number on the ribbed wall was about 1.3 times as large as the 

smooth wall for the same pumping power.  Single rib mounted on the wall was 

thus meaningful as a heat-transfer-enhancement technique. 

 The Reynolds normal stress was high near the front surface of the rib and around the 

reattachment region, which was well correlated with high values of the Nusselt 

number.  The streamwise and wall-normal turbulent heat fluxes were mostly 

consistent with enhancing heat transfer on the wall. 

 Budgets of Reynolds stresses revealed transport mechanisms: (1) The flow 

deceleration in the upstream of the rib results in the enhancement of streamwise 

normal stress; (2) Near the front surface of the rib, redistribution from streamwise to 

wall-normal and spanwise stresses were large due to spattering effect; (3) Near the 

reattachment point, production of wall-normal stress is high, and this enhances 

fluctuation by which heat transport is activated. 

 Instantaneous iso-surfaces of second invariant for deformation tensor and contours 

of streamwise fluctuation revealed: (1) The low-speed streaks branched as the flow 

approached the rib front surface, which was implied to enhance turbulence through 

accumulating fluctuations; (2) Near the leading edge of the rib, longitudinal eddies 

resulted in three-dimensional disturbance of the shear layer, corresponding to 

activation of redistribution; (3) In the downstream of the rib, there was highly 

three-dimensional turbulence in the separated shear layer. 

 Comparison between an instantaneous flow and distributions of the Nusselt number 

indicated that streamwise fluctuation near the rib’s front surface and fully developed 

turbulence in the separated shear layer are correlated well with high values of the 

Nusselt number.  Therefore, high performance of heat transfer in the ribbed 

channel is attributed to the mechanisms to induce strong fluctuation. 
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