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Heat transfer control using a thermal analogue of
coherent perfect absorption
Ying Li 1,2,3,7✉, Minghong Qi1,2,3,7, Jiaxin Li4,5, Pei-Chao Cao6, Dong Wang1,2,3, Xue-Feng Zhu6,

Cheng-Wei Qiu 5✉ & Hongsheng Chen 1,2,3✉

Recent investigations on non-Hermitian physics have unlocked new possibilities to manip-

ulate wave scattering on lossy materials. Coherent perfect absorption is such an effect that

enables all-light control by incorporating a suitable amount of loss. On the other hand,

controlling heat transfer with heat may empower a distinct paradigm other than using

thermal metamaterials. However, since heat neither propagates nor carries any momentum,

almost all concepts in wave scattering are ill-defined for steady-state heat diffusion, making it

formidable to understand or utilize any coherent effect. Here, we establish a scattering theory

for heat diffusion by introducing an imitated momentum for thermal fields. The thermal

analogue of coherent perfect absorption is thus predicted and demonstrated as the perfect

absorption of exergy fluxes and undisturbed temperature fields. Unlike its photonic coun-

terpart, thermal coherent perfect absorption can be realized for regular thermal materials,

and be generalized for various objects.
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Manipulating heat transfer has a fundamental importance
in thermal energy utilization1–3, thermal management4,5,
and infrared signal processing6,7. For this purpose, var-

ious kinds of thermal metamaterials have been designed8,9, whose
functionalities are often achieved by meticulously patterning their
thermal conductivity (κ) distributions10–13. However, some fun-
damental limitations come with the approach. The availability of
materials in nature strongly restricts the range of effective κ that
can be realized14. In addition, after being fabricated, it is very dif-
ficult to modify the functionality of the thermal metamaterial,
because the material thermal conductivity can hardly be tuned
without using phase transition15–17 or mechanical motion18–21. As
an exemplary illustration, consider the effect of thermal
transparency22,23. For the heat transfer in a common background
material with thermal conductivity κ0, any object inside the back-
ground will generally distort the temperature field if its thermal
conductivity κ is different from κ0. A landmark achievement of
thermal metamaterial is to achieve the transparent effect by sur-
rounding the object with a thermal cloak10,11, which can be
designed based on the transformation theory10–12,24 or the direct
solutions14,25,26. Either theoretical method requires an effective
κ(r,κ0) that depends on both the position r and the background
host material’s κ0. It will be intrinsically challenging, if not
impossible, to adapt to a different functionality or a different
background κ0 in a post-fabrication fashion.

An alternative route is thus needed to break the restriction
of effective parameters and increase flexibility. Recently, it was
proposed that heat transfer systems could be a unique plat-
form to study non-Hermitian physics27–33, which is originally
used to describe dissipative wave systems34–36. Under this
perspective, the effective Hamiltonian is used as a new tool to
design heat transfer systems and realize unconventional
functionalities. Despite the progress, this method is only
applicable to the time-evolution of isolated systems. To study
the more common steady-state response of a system to
external heat sources, another important tool—the scattering
theory is needed.

A representative application of scattering theory on non-
Hermitian wave systems is the coherent perfect absorption
(CPA)37–41 of electromagnetic (EM) waves on lossy materials.
Basically, it is destructive interference between the scattered
waves from multiple sources, which provides a convenient
method to control light with light. It would be highly desirable to
be able to control heat with heat, namely by introducing addi-
tional heat sources into the system to avoid the use of complex
and fixed structures. However, since there is no thermal field
propagation in steady-state heat diffusion, all momentum-related
concepts like wavenumber, interference, and reflection are absent.
The establishment of a thermal scattering theory is thus chal-
lenging and highly nontrivial.

Here, we propose a method to build a correspondence between
heat transfer and EM wave scattering in different dimensions. It
introduces an “imitated momentum” for steady-state heat diffu-
sion which is transported along a pseudo time. The thermal
analogue of CPA in photonics is thus discovered. It is further
identified as the perfect absorption of the exergy flux42,43. Based
on it, thermal transparency can be achieved for naturally occur-
ring materials by simply choosing adequate thermal inputs. Our
theory offers strong flexibility in heat transfer control and is
expected to inspire much broader domains of research in diffu-
sive processes.

Results
Thermal scattering theory. For heat diffusion, we are mostly
interested in the steady-state temperature fields T(r) that follows

Fourier’s law

κ∇2T ¼ 0 ð1Þ
assuming a uniform κ. In one dimension, the equation is simply
T’’(x) = 0, and it is obvious that there is no directionality in the
solution T(x) = Ax (we set the constant term T0 to zero
throughout the theoretical derivation) because it cannot be
decomposed into forward and backward parts.

To tackle the problem, we note that the essential difference
between Eq. (1) and the governing equation for wave (Fig. 1a)
comes from the time-harmonic oscillation of EM fields. There-
fore, our idea is to add an auxiliary spatial dimension to Eq. (1) as
pseudo time, and impose the temperature field to be periodic on
it. As a concrete example (see Methods for more general
discussions), consider the model in Fig. 1b, where the object is
a circular ring with exterior and interior radius r1 and r2,
respectively. The background is a rectangle with width L = 2r0.
The thermal conductivities of the object and background are κ
and κ0. In the polar coordinate system (r,θ) with origin at the
center of the object, the Fourier’s law is now written as

κ
∂2T
∂r2

þ 1
r
∂T
∂r

þ 1
r2
∂2T

∂θ2

� �
¼ 0 ð2Þ

It has a fundamental solution T(r,θ) = Re[F(r)eimθ], here we
focus on the common case with m = 1 (see Supplementary Note 1
for general results), which gives

FðrÞ ¼ Ar þ B=r; r2 ≤ r ≤ r1 ð3Þ

F1ðrÞ ¼ A1r=r1 þ B1r1=r; r ≥ r1 ð4Þ

F2ðrÞ ¼ A2r2=r þ B2r=r2; r ≤ r2 ð5Þ
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Fig. 1 Correspondence between two distinct processes. a Scattering of
electromagnetic waves in one-dimension. b Steady-state heat diffusion in
two-dimension. An object (light blue) is put in a background (beige). The
black arrows represent incoming waves (fields) with amplitudes A1 and A2.
The grey arrows represent outgoing waves (fields) with amplitudes B1 and
B2. A polar coordinate system (r,θ) is built in b (green lines).
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where the amplitudes A, B, A1,2, and B1,2 can be complex
numbers to incorporate phases in the fields. A key operation here
is to introduce a variable change: r = eikx = ex with a
“wavenumber” k = −i, which is an imaginary number. Such an
extended definition of wavenumber is commonly used in wave
physics44 to describe evanescent waves. By doing this, Eqs. (2)
and (3)-(5) have the same form as for 1D wave scattering (see
Supplementary Note 1 for the comparison). The two components
of the field F(x) appear to carry imitated momentums in the x and
−x directions. The continuity of the temperature field and the
heat flux require the following matching conditions

F1;2ðx1;2Þ ¼ Fðx1;2Þ ð6Þ

κ0F
0
1;2ðx1:2Þ ¼ κF0ðx1;2Þ ð7Þ

where x1,2 = lnr1,2. Equations (6) and (7) have the same form as
the matching conditions for the 1D EM wave scattering (see
Supplementary Note 1 for the comparison). Therefore, it is
natural for us to regard the original problem as 1D scattering in
the r-direction, for which the r- and r−1-components are the
“forward” and “backward” parts, while θ is the pseudo time
(Fig. 1b). Moreover, it can be shown that the two components
actually carry exergy fluxes in the −r and r directions (see
Supplementary Note 2). The exergy is a thermodynamic quantity
defined as the maximum useful work a system can do by bringing
it into thermodynamic equilibrium with the environment41. In
our case, the useful work comes from the temperature difference
between any local point in the system and the environment42,
meaning that one can extract work by putting a heat engine
between them. Therefore, our decomposition of the temperature
field gives important information about how the potentially useful
thermal energy is distributed and transferred in the system.

We can study the thermal scattering problem through the
transfer matrix M, which is defined based on the amplitudes of
the forward and backward fields:

B2

A2

� �
¼ M

A1

B1

� �
ð8Þ

The transfer matrix can be calculated by substituting Eqs. (3)-
(5) into Eqs. (6) and (7)

M ¼ 1 1

κ0 �κ0

� ��1 coshΔx 1
κ sinhΔx

κsinhΔx coshΔx

� �
1 1

κ0 �κ0

� �
ð9Þ

where Δx = x2 − x1. By comparing Eq. (9) with the transfer
matrix for the electric fields in wave scattering, we see that the
thermal conductivity κ in heat diffusion corresponds to the
admittance Y = (ε/μ)1/2 (ε is the permittivity and μ is the
permeability) for EM waves (see Supplementary Note 1). A
rearrangement of Eq. (9) gives the scattering matrix S between the
incoming and outgoing fields.

B1

B2

� �
¼ S

A1

A2

� �
¼ 1

M22

�M21 1

detM M12

� �
A1

A2

� �
¼ r11 t12

t21 r22

� �
A1

A2

� � ð10Þ

The entries of S are the reflection (r11 and r22) and
transmission (t12 and t21) coefficients, which can be determined
through the entries of M. Since M12 = −M21, the reflection
coefficients of the scattering matrix S are equal (r11 = r22).
Despite of the imaginary wavenumber k = −i, we still have det
M = cosh2Δx − sinh2Δx = 1. Therefore, the heat transfer is
reciprocal45,46 (t12 = t21). Together, the system preserves a parity
symmetry, meaning that the temperature field is unchanged if
we swap the exterior and interior parts of the object (A1↔ A2,

x↔ x1 + x2 − x). This symmetry is unobvious because it is based
on the logarithmic coordinate x. We explicitly write out S as

S ¼ er etet er
 !

¼ cothΔx � coshγ
� ��1 sinhγ cschΔx

cschΔx sinhγ

� �
ð11Þ

where γ = ln(κ/κ0).

Thermal CPA and one-side CPA. For the 1D wave scattering in
Fig. 1a, when the material of the scatterer is lossless, it is easy to
verify that the scattering matrix SEM satisfies |det SEM |= 1, which
is a result of energy conservation. When the material is lossy, n is
a complex number, and |det SEM | < 1. Therefore, it is possible to
add a suitable amount of loss into the material to meet the CPA
condition det SEM = 0.

For heat transfer, the scattering matrix in Eq. (11) naturally
satisfies |det S | < 1. Since the total exergy flux entering or
leaving the object is proportional to the squared amplitude,
|det S | < 1 means that the exergy is dissipated in the object, due to
the local entropy generation (see Supplementary Note 2).
Thermal CPA (det S = 0) can be reached by tuning γ (which is
a real number) to completely absorb the exergy flux entering the
object. In addition, the magnitude of the heat flux will be θ-
independent under the condition (see Supplementary Note 2).

Setting det S = 0 gives

κ ¼ κ±
� ¼ κ0

r1 ± r2
r1 � r2

ð12Þ

S ¼ r1r2
r12 þ r22

�1 1

1 �1

� �
ð13Þ

The eigenvalues of S are s1 = 0 and s2 = 2r1r2/(r12 + r22). The
thermal CPA condition is reached when the inputs meet the
eigenvector (A1, ±A1) corresponding to s1. Unlike in photonics
that loss must be introduced, the thermal counterpart is readily
realizable with normal materials. The inputs are simply
symmetric or anti-symmetric, demonstrating the hidden parity
symmetry of the system. The next question is how to generate the
“incident” fields or input-1: A1r/r1 and input-2: A2r2/r. Heat
transfer through a conductive system is usually studied by
maintaining constant temperatures at the left and right sides (T =
±A1r0/r1 at rcosθ = ±r0) and thermally insulating the upper and
lower sides. If the object is absent, the temperature field is exactly
the required A1(r/r1)cosθ, so the boundary condition can be
regarded as the source of input-1 outside the object. On the other
hand, consider a circle inside the object with radius r3 < r2. We
apply a constant temperature distribution T = A2(r2/r3)cosθ on it.
For this boundary condition, if the object is absent and the entire
system is large (so that the effects of the outer boundaries are
negligible), the temperature field outside r3 will be A2(r2/r)cosθ,
whose radial component meets input-2. Thus, the source for the
input-2 inside the object is also found.

In photonics, the other eigenvector corresponding to the
nonzero eigenvalue of S will lead to constructive interference of
the scattered waves. Similarly, input fields that coincide with the
other eigenvector corresponding to s2 will lead to large outgoing
fields. Note that this input can be realized by inverting the
orientation of input-2. More generally, we can introduce a phase
difference α between the two input fields in their θ-dependences,
such that A2 = ±A1eiα. The effects of such a phase difference are
discussed in Supplementary Note 3 (also see Supplementary
Fig. 1), where it is confirmed that the outgoing exergy flux is
maximized at α = ±π. We also note that in photonics, CPA is the
time-reversed process of lasing. One might thus be interested in
the possibility of a thermal analogue of lasing36. However, the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30023-1 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2683 | https://doi.org/10.1038/s41467-022-30023-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


time-reversed process of heat diffusion requires a material with
negative thermal diffusivity as the gain medium, which has not
been realized.

For CPA, the input fields from both sides are completely
absorbed. In many cases such as thermal transparency and
thermal cloaking, we are interested in the field outside the object.
Therefore, we study the condition for no outgoing field on just
one side of the object. We refer to this effect as one-side CPA,
which is an analogue of unidirectional absorption in photonics.
Since B2 does not have to be zero, one may expect that the
condition for one-side CPA is simply B1 = 0. However, the field
with nonzero B2 will be “reflected” at the boundary of heat input-
2, then “transmitted” through the object to contribute to an
outgoing field in region r ≥ r1. Thus, we must consider all the
outgoing fields after multiple scatterings and require that they are
added to be zero.

To fully tackle the problem, we need to obtain the reflection
coefficients at the two boundaries of heat inputs. We denote
another scattering matrix D as

C1

C2

� �
¼ D

B1

B2

� �
¼ era 0

0 erb
� �

B1

B2

� �
ð14Þ

where C1 and C2 are the amplitudes of the “reflected” fields
outside and inside the object. The constant boundary conditions
require that the boundary temperatures are not changed by this
process, so B1r1/r0 + C1r0/r1 = 0 and B2r3/r2 + C2r2/r3 = 0. For
simplicity, we have changed the actual boundary conditions at the
left and right sides to the more symmetric condition (T =
A1r0cosθ/r1 at r = r0). The reflection coefficients are era ¼ �r21=r

2
0

and erb ¼ �r23=r
2
2. The total magnitudes Z1 and Z2 of the outgoing

fields can be expressed as the infinite sequence

Z1

Z2

� �
¼ S0

A1

A2

� �
¼ ðSþ SDSþ SDSDSþ � � �Þ A1

A2

� �
ð15Þ

The new scattering matrix S′ can be explicitly solved by
diagonalizing SD

S0 ¼ er �erbðer2 �et2Þ etet er �eraðer2 �et2Þ
 !

ð16Þ

The result is remarkably compact. We note that S′ is still
symmetric, but the parity symmetry is only preserved when era ¼erb (i.e., r1/r0 = r3/r2). The requirement is a geometric mirror
symmetry for variable x = lnr: x0 – x1 = x2 – x3. For CPA outside

the object, A2 ¼ A1 erb er2 �et2� �
�erh i

=et, which is even indepen-

dent of the size of the background. Another great advantage of
the one-side CPA condition is that it does not impose any
restriction on the materials of the object and the background. A
solution can be found for any values of κ and κ0. The limitations
of conventional thermal metamaterials can thus be avoided,
especially the fixed and restricted parameters.

Numerical demonstration of thermal CPA and one-side CPA.
Based on the analytical results, we build a 2D finite-element
model to verify and demonstrate the predicted effects. We first
study the thermal CPA conditions in Eq. (12). The results are
shown in Fig. 2. A Cartesian coordinate system (w,h) is built with
its origin at r = 0 to facilitate the display. Under thermal CPA,
there should be no outgoing field on both sides of the object, such
that the temperature distributions outside and inside the object
should meet input-1 and input-2, respectively. The temperature
distributions in Fig. 2a, b meet this condition for both κ > κ0 and
κ < κ0. For comparison, the temperature distributions with input-
2 alone are simulated and plotted in Fig. 2c, d. The distribution
for input-1 is not plotted, since it is simply a linear profile and

obviously meets the temperature profiles outside the object in
Fig. 2a, b. For input-2, the reflection at the outer boundary is
effectively removed by enlarging the size of the background to
L = 1 m, thereby making the reflected field negligible in the dis-
played part. It is easy to identify the same pattern inside the object
in Fig. 2a, b as the corresponding part of the input-2 fields in
Fig. 2c, d (the other parts are made translucent). We further verify
the effects by extracting the temperature distributions on the cut
line h = 0 across the system and plot the results in Fig. 2e, f
(scatters). In the intervals of the background (shaded by light
orange), the numerical results overlap with the theoretical r-
dependence for input-1 and input-2 (solid lines), so there is indeed
no outgoing field with both incident fields perfectly absorbed.

The one-side CPA condition can be similarly studied with
numerical simulations on the same model. Since it can be realized
for any background and object material, we fix the thermal
conductivity of the object κ and choose two representative values
of κ0 = κ/2.4 and κ/0.3. According to Eq. (11), the reflection
coefficients are er = −0.27 and 0.37; the transmission coefficients
are et = 0.56 and 0.5. The ratio κ/κ0 = 2.4 and 0.3 do not match
the CPA condition (κ/κ0 = 4.33 and 0.23). Therefore, the
scattering cannot be completely suppressed on both sides.

Thermal transparency outside the object is achieved when A2 ¼
A1 erb er2 �et2� �

�erh i
=et = 2.76 K and −3.52 K, based on Eq. (15).

The temperature distributions in these cases are plotted in Fig. 3a,
b. The one-side CPA is confirmed that the fields outside the
object are identical to the input-1 field in Fig. 2c, but the fields
inside the object are different from the input-2 field in Fig. 2d.
This is clearer by looking at the extracted temperature
distributions on cutline h = 0 (Fig. 3c, d).

It is worth mentioning that a highly conductive background
often requires an unreachable effective κ for conventional thermal
metamaterials to function14, but our approach works for any
values of κ0 and κ. To further illustrate this, we plot in Fig. 3e the
dependence of scattering coefficients er and et, and the ratio A2/A1

required for one-side CPA on the ratio κ/κ0. The abscissa is
chosen to be γ = ln(κ/κ0) to cover a wide range, and to
demonstrate the antisymmetric (symmetric) dependence of er (et)
on it. The required input ratio is not symmetric due to multiple
scatterings on the inner boundary. In particular, A2 = 0.1A1 ≠ 0
for κ = κ0 when the central void becomes the scatterer.

We note that the other one-side CPA condition for the field
inside the object is also achievable, but one should be careful
about the effects of the outer boundaries without rotational
symmetry.

Experimental demonstration of thermal CPA. Our theoretical
predictions can be experimentally realized with setups as shown
in Fig. 4a, b (see Supplementary Fig. 4 for the photograph of the
actual setup), where four aluminum heat sinks are used to
maintain constant temperatures: T1, T2, T3, and T4. We use a
copper bridge to connect the two central heat sinks and generate
a linear temperature gradient on its top surface. To generate the
desired input-2, the inner boundary of the background is made in
contact with the copper bridge through a ring-shaped step with
radius r3. The orientation of the copper bridge can be rotated to
introduce a phase into input-2 and thereby a phase difference
between the two input fields.

The measured temperature distributions for the two CPA
conditions are shown in Fig. 4c, d. It is easy to check that thermal
transparency outside the object has been achieved in both cases.
To confirm the thermal transparency inside the object, we plot
the temperature distributions along a cutline at h = 0 (black
dashed lines in Fig. 4c, d) in Fig. 4e, f. The measured temperatures
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outside (inside) the object (scatters) are consistent with the input-
1 (input-2) field (solid lines), indicating no outgoing field on
either side of the object. The results are similar to the numerical
results in Fig. 2e, f.

Discussion
In conclusion, we propose a method to impart heat transfer
processes with the concept of an “imitated momentum” and

establish the theory of thermal scattering. The temperature field
outside a ring-shaped normal material is found to be decomposed
into two parts that carry exergy fluxes in opposite directions. The
thermal scattering matrix for it is reciprocal and parity symmetric
with real reflection and transmission coefficients, but the absolute
value of its determinant is smaller than one due to entropy
generation. It indicates the possibility to realize the thermal
analogue of coherent perfect absorption (CPA). We numerically
and experimentally verified the thermal CPA effect and
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demonstrated that it can be realized in various situations. The
approach is suitable for thermal management applications with
high flexibility and tunability. The work provides a powerful
theoretical framework for studies on various diffusive processes
not limited to heat transfer.

Methods
Constructing thermal scattering in general curvilinear systems. For simplicity,
we start from a 1D temperature field T(ξ). Our auxiliary dimension can be chosen

as another spatial direction η that is orthogonal to ξ. Considering the periodicity of
T(ξ,η) on η, the η axis is generally a closed curve in physical space. We thus assume
that (ξ,η) form a 2D orthogonal curvilinear coordinate system, on which Eq. (1)
can be explicitly written as

g11
∂2T

∂ξ2
þ � g11

2g11

∂g11
∂ξ

þ g22

2g11

∂g22
∂ξ

� �
∂T
∂ξ

þ g11

2g22

∂g11
∂η

� g22

2g22

∂g22
∂η

� �
∂T
∂η

þ g22
∂2T
∂η2

¼ 0

ð17Þ
where we have eliminated κ. gij and gij are the contravariant and covariant com-
ponents of the metric tensor, respectively. Now that we treat η as pseudo time, the
“time-harmonic” solution to Eq. (17) should have form T(ξ,η) = Re[F(ξ)eiωη]. If
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distributions along the line h = 0. The regions of the background (beige) and the object (light blue) are shaded. The incident fields input-1 (red) and input-2
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such a solution exists, F(ξ) satisfies
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iω� g22ω2

� 	
F ¼ 0

ð18Þ
where the coefficients must be independent of η. As a second-order ordinary
differential equation, Eq. (18) has two linearly independent solutions f(ξ) and g(ξ).
The trivial constant solution can be excluded if the coefficient before F is nonzero.
It is thus possible to construct the “forward” and “backward” fields in ξ direction
through different linear combinations of f(ξ) and g(ξ).

We will then treat the problem of 2D heat transfer through an object as a 1D
scattering problem. It is assumed that the object and the background are isotropic
and homogeneous with thermal conductivities κ and κ0. Also, the shape of the
object is defined by [ξ1,ξ2]. Combining the general solution F(ξ) with the matching

conditions, we can formally calculate the transfer matrixM and scattering matrix S,
just like for Eqs. (3)-(7). The results are physically meaningful only when the
forward (backward) field corresponds to the real input. We thus require them to
meet with the steady-state field (up to a scaling factor) on the background when
heat is launched from one side ξ < ξ1 (ξ > ξ2) and both the object and the boundary
of the background on the other side are absent. According to the detailed ways of
launching heat, one choice of the forward and backward fields on one side may be
unsuitable on the other side, where different linear combinations of f(ξ) and g(ξ)
must be used (for example, see Supplementary Note 4 for the case of an elliptic
object).

Numerical simulations. The parameters are set as r0 = L/2 = 7 cm, r1 = 4 cm,
r2 = 2.5 cm, and r3 = 1 cm. The height of the background is also L. The tem-
perature boundary conditions are applied around temperature T0 = 293.15 K. The
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setup. c, d Measured temperature profiles of the system when the thermal conductivity of the object (indicated with white dashed lines) κ is (c) larger and
(d) smaller than that of the background κ0. e, f Measured temperature distributions along the line h = 0 (black dashed lines in c and d). The regions of the
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magnitude of input-1 is A1 = 5 K. Therefore, the right and left sides of the
background are maintained at constant temperatures T0 ± A1r0/r1 = 301.9 K and
284.4 K. The upper and lower boundaries are thermally insulated. Steady-state
simulations were performed with COMSOL Multiphysics. For thermal CPA, the
background thermal conductivity is set as κ0 = 90Wm−1 K−1, which gives κ =
κ+* = 390Wm−1 K−1 with A2 = A1 = 5 K and κ = κ−* = 20.769Wm−1 K−1

with A2 = −A1 = −5 K. For thermal one-side CPA, the thermal conductivity of the
object is κ = 120Wm−1 K−1. The background thermal conductivity is set as κ0 =
50Wm−1 K−1 and 400Wm−1 K−1.

Experiments. The system has the same geometry as in the numerical simulations
with a thickness of 2 mm. For the first CPA condition, the background is carbon steel
with κ0 = 50Wm−1 K−1. The object is aluminum with κ = 217Wm−1 K−1. The
temperatures of the left and right edges of the background are maintained at T1 =
296.65 K and T4 = 303.65 K, respectively. The temperatures of the left and right
copper pillars are maintained at T2 = 284.15 K and T3 = 316.15 K, respectively. The
central temperature is T0 = 300.15 K. For the second CPA condition, the object is
carbon steel, and the background is aluminum. The temperatures are T1 = 298.15 K,
T2 = 304.15 K, T3 = 283.15 K, and T4 = 319.15 K. The central temperature is T0 =
301.15 K. The entire system is covered by a thin polypropylene film to ensure a high
thermal emissivity (0.97) for the measurement with an infrared camera.

Data availability
Data presented in this publication is available on Figshare with the following identifier.
https://doi.org/10.6084/m9.figshare.19242786.v1

Code availability
The codes used in the current study are available from the corresponding authors upon
reasonable request.
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