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NATIONAL ADVISORY COMITTEZ”TOR AERONAUTICS
,
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By H. Lat~ko

# The,theory of heat.transfer froin a solid body to a liq-

uid stream could he presented previous,3y** only with lirni%-

ing assumptions a%out the movement of the fluid ’(potential

flow$ l,aminar frictional flow). (See references 1, 2, and

3*)

l?or turbulent flow, the most important practical case,
the previous theoretical considerations did not go %eyond

dimensionless formulas and certain conclusions as to the

analogy %etween the friction factor and the unit therms?.

conductance, (See references 4, 5, 6, and 7,) In oi-der to”’

obtqin numerical resultst an” experimental treatment of the

pro’blem was resorted to, which gave rise to numerous inves%=

tigations because of “the importance of this problem in mant

%ranches of technology. Hoviever, ,the results of these in-

vestigations frequently deviate from ,one another. The ex-

perimental results are especially dependent upon the over-

all dimensions and the specific proportions of the equipment.

In the present work, the attempt will, %e made to devel-
Op systematica~~y the theory of the heat transfer and of the

dependence of tbe unit therma3 conductance upon shape and

dimensions, using as a basis the velocity distribution for

turtnzlent flow set up by PrandtL and Von K~rm&n.

*“Der W&rmetibergang an einen turbulenten Fltlssigk6its-

oder G.asstromifl (Abstract of a Dissertation -presented to the

F’hil.”FacuLty”of the Univ, of Vienna,) Z.f,a.M.i!., vol. 1,

no’. 4$ Aug. 1921, pp~ 268-290.

**As long as the velocities remain .much” below t%e veloc-
ity Of sound, compressible $luids (gases) and incompressible
fluids folzow, as is known$....,, approximately the same laws of
fii%%%~b~-e-ftir~; fin the f01Lo,w&ng..,.. .t~,~; .&cpmrzs si,on for the
flow,of fluids wilz be used for a“ctu~l Liquids”as vie~~”a”s

fox gases.

X?OT3J:Translation received from Univ$ of California,
3erkeley 4$”Cali$.
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1 ● HYDRODYNAMIC I?RINGIPIJES
-, ,—

.,.. =-—-..

First of all, the results of the Frandtl-Kdrm& theory

~g;~;~ence 8) which will be used constantly, will le set

.

For the distribution of the shear stress in the immedi-

ate vicinity of the wall, dimensional considerations (see
note 1 in the appendix) yield the expression:.

(1)

where the symbols are:

u velocity in the direction o: $Zow

.?0 shear stress at the ~rall

PJ absolute. viscosity

l?= W/p, kinematic viscosity

B constant (note 2), (8.82)*

Y distance from wall

P mass density

In the same region, when the shear stress at the wall

is assumed as known, the velocity follows from the equation
(note 3):

u= ‘ (:Y (:)’” ~ “
(2)

There are two methods (note 4) of obtaining the distri-
bution of velocity and shear stress for the entire region of

the fluid. Either one starts from equation (2) and sets

y?? .Ao .+ A,=y -!-A2y2 +(
,

‘u(y) = ..0
~ ).

(2a)

,.

*T~le va~u~-”o-f”-~er-’c’onstantcorresponds to the equation
for the ve2Qcity, distribution, which is used below. Compare
equation (8).

1 11¤ 11— ..- . -—., . . -
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in which the constant A. is determined from the req*~ire-
-. “~~~~ment ‘tilate~lation (i!a) i.s transformed, idu..equati.on ,(2) at ‘

small values of y, or the basic ,equation (1) for the shear

stress transmitted letween the individual layers can %e ex-

tended and equation (la) can ‘De written

r 6/

T 11=K Y(y)
7 ?)U

. F
(la)

in which Y must change to y in the vicinity of the wall,

With this l)asic equation the velocity field for turbulent

flow can be calculated as long as no separation frori the

boundary walls takes place.

$’or the special case of flow in a right circv.lar cylir.-
der it was shown by Von IC&rn& that the experimental reSUltS
on the velocity distribution can be reproduced with suffi-

cient accuracy if tile functiOil Y (y) is made, (called the
influence function).

y=r2-.~
2r

where F= r - Y.

For time and volume invariant, tile velocity distribu-
tion is then:

u = Umax [l.(EJ+

and final~y, the relation of the maximum velocity at the

(3)

axis of the tube umax to the ,average velocity ‘v irl the

\ cross section is

7
v=-

8 %lax (4)

2. 5?U1RB-ULE$TTZTK?WiJ+L CONVECTI.VITY .. ,

In the following, the transmission of heat by matter
only is considered, consequently limiting the study to a
temperature region in which the anQunt of heat carried oft

.

—
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by radiation is negligible in comparison with that carrted

off ‘b-y~+article+ of “~attera Fur+hermo.re$ t-hevelocity dis-

trilmtion shall be affected only by external conditions;

that is, the influence of the temperature field upon the ve-

loc-i’tyfield is disregarded, At relatively great velocities
of flow where. the motion is turbu~ent$ the resulting error

need not be t“~ken into a~count as long as the differences in

density in the cross section,, caused by temperature changes,

are not too greats

Cofirespondi,llgto the ideas taken from those on the Con-

duction of heat ip s61id bodies, a distinction is likely to
be. made in the case of heat transfer in fluids, in general

between the thermal ~onductivity$ which describes the heat

transported Xy molecular movement, and the so-called thermal

convection - that is, transfer of heat by movements of the
mass. T%e order of magnitude of the carrier of heat is thus

used as the %asis for distinction, A somewhat different
mode of consideration, which pushes into the foreground the

nature of the motion of “the carrier of heat, seems, however,
tO be more advantageous both for mathematical treatqent and
for comprehension of the process. Accordingly, by ‘tthermal
conduction~t in liquids is understood the transmission of heat

by the random motion of the molecules, as has been re.p??e-
sented by the concepts of the kinetic theory of gases. It

then will be regarded as characteristic of the molecular

movement of heat that it is a pl~re funotion of temperature

at a, fixed pressure and a fixed density of the fluid and

especially that it is not dependent upon the state of motion
of the fluid, !I!hermalconve~tiont on the other he:nd,
shall signify tbe transfer of heat which resul,ts when the

motton of the par~ieles is directed; In many textbooks of

physics $r%p convection is considered as the origination Of
a natural f~~w produqed by ,dif$e~ences of density under the

influence of the force of gravi’ty. ?his concept, then, is
contained in the ~~eeeding definitions I ,

$n the case of l“amina.rflow, all the heat transfer can
%e accounted for %y the foregoing concepts, I?or turbuient
flow, however, one manner of heat transfer is st$ll unnen-
%ioned. As is known, s4eady- state turbulent flow is repre-

,s$smt..e.das.llsyiqg,+at,eac~,po.int ,a cewrtaill,,ave,~agevelocity
vector upon which is superposed an6ther veloci”ty” vector,

varying in direction, and magnitude, having an a+orage value

Over a sufficient span of time equal to zero. According to

Ton K&rm& $his kinematic picture can be described. more ex-
actly %y the ~ep>~cs~~tation that vortex filaments with a

random motion $$oat $n the bulk of t~~ f~qi~$ which moves

,,,,,,,-,,,,m— —--- ....,.,.-. m... ... ....—— .... . .. ..
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along with a fixed time-average velocity distribution. The

“~o~e~ent-s’of- the vortex filaments_, as well as those of the

molecules, obey laws of statistics, The ’”flubtli”atin-gvG”l-Oc-

ity vector (time average is zero).is then defined at a point
of the fluid by the circulation and by the relat’ive position

of all the vortex filaments-

This concept leads to introduction, apart from the usu-

al thermal conductivity, which appears as.an expression for
the statistice,l law of molecular motion, of a conductivity

Of turbulent motion which expresses the statistical influe-

nce of vortex motion upon the transfer of heat. 1% then

wil~ depend primari~y upon the state of motion of the fluid,

,which is especially influenced by the .naturo of the %onndary

surfaces.

The method of accounting for this phenomenon by intro-
duction of an increased oonduc%ivity for turbulent motion is

known. Several authors nave proposed different basic equa-
tions in which the increased conductivity is regarded as an

empirical. function of the veloaity, Recognition of the true
circumstances Was partially clarified by the considerations
of Reynolds and J?randtl, Both began with the idea that tur-
bulent friction and turbulent heat transfer are analogous

Proce=es$ and that the same mechanism which in the first
case causes a “momentum transport 11leads to transfer of heat

in the second case. Reynolds (reference 4) in an intuitive

manner, according to this consideration, went directly from
the friction factor to the unit thermal conductance in cir-

cular tubes and compared, as i% were, the integral procosses.

on the other hand. ?randtl (reference 7) sets up the exact
con~itions uncier which q directl;~ analogous conclusion is

permissible; he shows that in certain cases the temperature
field is an exact image of tho velocity field, so that

knowledge of the motion permits direct conclusions a%out bho

thermal field. However, he shows that this is clearly not
the caso for right circulhr tubes; so that conclusions can
only be drawn p.s to the form of the relation between the

different parameters, since numerical results cannot be ob-
tained. Recent ad+ances (sec. 1) in the mathematical repre-
sentation of turbulent flow and the velocity distribution

Corresponding to it now make possible a more exact expres-

sion of the “el’’eti”entarylawlt for turbulenthe.a.t exchange, so

that the following statements start out “from Prandtlls re-

sults in two directions, %y first of all furnishing numeri-
cal res-~lts and then a$lowing a mathematical consideration

of the different arrangements in which there exists no ‘spa-

tial constancy of the velocity and temperature fields. Thi S



makes po”si$ible’a det.~tled &i-Scussion. of .e,xper$mental results

to exp~ain individual

3. THE YUI?DM4ENTAL

deviations,

LAW OF TURBULENT HllAT EXCHANGE

First of all, the processes of thought applied *O the
kinetic theory of gases, wh$oh lead to the differential la~

Of internal friction an# heat transfer by random motion Of

molecules, wilJ. be appli~d to the case of tur%ulenti exchan~e~

Consider a layer at a distance y from the-wall; there

the average velocity u prevails in the direction of flow

and let; Iwl %e the average absolute amount of the velocity

perpendicular to direction of flow. Then the average velo-

city of flow in two Xzyers at a dist:?,nce
.&~- from the layer
2

Y under consideration (where x is a kind of ‘rmean path” )
is:

!i’hemomentum t??arlsport per unit of surface perpendicu-

lar to the ~verage flow is given, introducing a proportion-

ality factor @ which depends upon the nature of the coher-

ent parts of the fluid and the fornation of the mean value “
with respect to time, by the expression:

f3pw*x=7 (5)

and is equal to the shear stress. 7 at y ,

If C %s the heat capacity of a unit volume, then, on

the other hand, the heat transyort q per unit of surface,

likewise perpendicular to the average flow, is given %Y:
.,.. ,-,. ,, ,—

q= $CirMx
dy

(6)

This states that the same fluid particles i~hich produce

the shear stress 7 by their transmission of momentum, also
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t ra’nsnri% the heat. !lWe proportion-of hea.~,.tran.srnitte~ can
he calculated by a kind of counting of these particles.

One such Ilcountingll iS given, as is “easily seen, by the

,product j3wx ,(called the coefficient of turbulence). The

coefficient of turbul~nce, tog~th~r wtth the constant C,

roprosents an expression for the statistical law of heat

transfer in the case of turbulent flow just as ‘does the con-

duc%%vity A in the case of no flow~

The coefficient of turbulence can he calculated from

previously obtained knowledg~ of the state of flow.

From equations (1) and (la)

T = (q)(y) *

from which (note 5)

(7)

The basic equation (1) expresses the total effect of

the molecular conduction of momentum (internal friction) and
of the momentum transport by eddy convection. Correspond-

ingly, the basic equation itself, as well as the velocitY

distribution originating from it, is to %e regarded only as

an expression which becomes asymptotic at very great

ReynoZds numbers, where the effect Qf the molecular conduc-
tion of momentum iS small in comparison with the secoild part

of the friction mechanism - that is, eiidy convectt.on’. How-

ever, it has been found that the proportionality between T

7/4
and v is a very good approximation even at values of the
Reynolds number which correspond to about five times the

critical velocity. From this, it is concluded that the sta-
tistical laws for the mo~ecu~ar and eddy transport of momen-

tum can he represented to a good approximation, even at

modorate Reynolds nunhe~s, by the general expression (1),
.,,-.. ,.,, ,,.

By referring to equation (1) ‘for calculation of PWX ,

it is assumed that all the heat transfer can %e expressed

also %y a general statistical law which summarizes molecular

and eddy processes, It has been assumed, therefore? that

there exists in the molequ~ar processes the same proportion-

ality between momentum aIJd energy transfer as exists in the
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eddy pr.O.~~e.ss_gs;.,that iS j it is assumed that the rat$.o %e -
tw”een A ~,nd p is the same as fliat h’et?veen:C and p,

The error committed is negligible for gases, as is
shown hy the following consideration, On the one hand, the
portion of heat carried over by pure’ turbulent convectio~ is

several times that transferred by molecular oondition, as is
Shown by a cOmpartson of unit thermal conductance for lami-

A&
nar and turbulent flow; on the other hand, the ratio

cp.

lies between 1425 and 0.97 according to the number of atoms

in the gas! that is, the molecular mechanisn of condition of
momentum (inteTnat friot~on) and that of conduction of heat

are essentially similar? Hence! for gases and supe~heated
steam, ~ractical and quantitatively correct results call he

expected from the calculation. Tbe fo$lowing derivations

AfJ
are to Ye understood in this sense. The case where

G

differs greatly from unity will be referred to once again at

the conclusion of the work.

3Y consideration of equations (6) and (7), there is ob-
tained for the total amount of heat q transferred throu{;h
a Unit surface Of ,2layer at a distance Y:

‘7(’)3/7‘o 9’7 ~
q.=:— W c Y

p) aY
(8)

In practice, the limiting value of q. for y = O w

that is, the amount of heat going out of the wall per unit
Of surface -’ will be calculated as follows: The velocity u
is represented by:

u(y) = yl’7

{

A. + Aly + JLaya + * ? 1

“J

The shear str’es6 ? has a’fixed lixniting.vaZue for.
Y = 0, and is a regular function of y in the vicinity of”

Y 0.
~ Therefore, T can be developed as a pOV~er series in

y*

T = @WXp &FTo+T$y+Tay2.+ . . .:
by
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Inserting b,
,-.-.-.., ,-. by . .... .. . . . ..... .. ,,,,

Tly + T# + , . .lTO+,
pwx =;- y ‘7

+Ao + +Aly +...

then developing this fractional expression according to

powers of y in the region y = O:

1
finally, considering ecluation (6), yields:

;!

1‘h(jli~rb$~,’)/ q.=p~o
1y=cl Gy

~~

9

(9)

/

I(

~: 4. IIEA!$3XCHANG3 IN TUBES

f

1

if! When there is steady-state flow $hrough a tube, two

,1
1

regions can %e distinguished:

1
q
Ii 1. 3h.zllydeveloped flow state - tizat is, one ir.which

the velocity--profile remains similar along tile direction of

1
fl Ow

/

/
2. The hydrodynamic calming length at the entrance to

the tuie

I
Assume, for example, that the fluid flows into the t-~be

through a smooth passage from a large reservoir; then at the

inlet cross section th+e streamlines will have approximately

equal velocityQ On progressing further, the layers near the

wall will be retarded by friction until the constant (with

length) velo~ity profile, which corresponds to the steady
state, has been developed. This part of the tube is Ofteil

,c,alledthe entrance ‘section.
, ,, .,

In the following sections the temperature field and the
heat transfer in the tube are Calculated for the case wi~ere

a temperature distribution for the entrance section is given

beforehand and the wall temperature is kept constant along
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the direction of flow.
*.

Separate solu-tions are set up for
“th”e”t~~~~’yegionsmewtioned, but by a contiguous transition

from the first solution to the second, they can satisfy-the

general function through summation of the partial solutions.

5, HEAT TRANSFER 3’OR THE CASE IN WHICH THE VELOCITY

DISTRIBUTION HAS

ENTRANCE TO

In order to set up

13W3N ESTA3LISIIED AT THE

THE THIWVIAL SECTION

the differential eluation for the

temperature field, -an element of volume? hounded on the
sides l)y two concentric cylindrical surfaces, parallel to

the walls of the tube, and bounded on the “ends 3Y the cross

sections perpendicular to them, is considered, In order *O

complete the representation it is assumed that a warm fluid
flows through a colder tube; that is, the flow of heat shall

be from the fluid to the wall, Furthermore, the constant

temperature of the tube is set equal to 0$ so that the fluid

temperature is the excess temperature above that of the wall.

However, since no assumption is made which distinguishes one
direction of heat flow from the other, all relations are

valid when $ changes its sign,

Xfz= coordinate of the direction Qf X1OW

7= distanoe from the axis (note 6)

C = heat cayacity per unit of volume ‘

then the heat bal~ance for the steady sta,te gives:

(lo)

??rom equations (3) and (4), u is replaced hy (note 7)

,,”
.,

,,,, ,,,,

u= ~ v $- (PJr

while q follows froti eauat~on (8); then, also considering’.
(la), (3), and (4)
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!l.=“’0.19’9’

4

If this equation (note 8) is introduced into equation

(10), there is finally obtained as the differential equation

for heat transfer when the conditions of flow are hy&rody-

namically complete:

where

(11)

(ha)

The boundary conditions are:

Id= Ofor~=r.

11. @s Ofor~= O, because of the universal symmetry,

~Y

III, The radial temperature distribution must he given

for Z=o.

Since the fluid ‘temperature approaches asymptotically

the. temperature of the wall., as the tube-length increases,

then the solution is of the form

If this expression is inserted into the equation, then

there is obtained for the function q the ordinary differ-

ential equation

which ~ after e~imination of the fractional exponents %y the

transformation

llmu 1 11 I ,- -—-.. , ,,,. ,., ,,,-. . . . . . . .. ——. —.... .— -
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.,

,,,,—

-,. .-. -.-, .. . ... .

becomes (note 9)

{ }
%(’-”%= -X&’g

where (note 10)
%7

w =
()

49kK r
z

.-

(12)

(12a)

The ‘ooundary conditions are now:

I,g=Oforx=O

II, ~ is finite for x = 1

An approximate solution iS obtained %y means of the

Ritz method (note 11), when tune problem is chan~ed to one in
the Calculus of

verified easily

1

f{

(1 -

“o

Variations (note-12); that is, is can be

(note 13) :

2

x’ )
()

dg 1
Z

- wx7g’2 ax
~

= minimum (13)

with the boundary conditions I and II as supplementary con-
ditions. Here the problem is one of finding the lfcharacter-
istic values, ” since equation (13) will have solutions which

also satisfy the boundary conditions, only for fixed values
of w, Substituting for g: “

g(x) = &“lpl(x) + i%2~3(x) + g3p5(x) + ● Q * (14)

in which gl? i?2s g3 are undetermined coefficients and
P l?3, and so fOrth are the Legendre spherical functions

(~~te 14) of the first kind, and taking only three terms
first, results,, for .w., at the minimal conditions; in an
equation of the ~hird’degi’se” the’ root-s of which are

w ~ = 8.712, W2 a ~64,36, W3 = 1700.40 (14a)

‘The characteristic functions are formalized, in con-

trast to the customary procedures so that

.-
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(15)

in order that the temperature at the axis of the tube will
become unity; g (Y) ?.s, therefore, the ratio of the tempera-
ture at the point under cQnsideratibn to the temperature at
the axis of the tube.. Thus the first ,characteristic func-

~~ tions are:

~x = 0.9703 PI + 0.0212 P= + 0P0085 P5

gII = -0.7312 PI + 0.9665 P3 + 0.7647 P5 (16)

~111 = 2.6552 PI - 6,1589 33 + 4.5037 P5

The choice of development according to spherical func-

tions nust be justified. Since it is a minimal problem, the

exact characteristic values can only ‘be less than the ap-

proximate yalueso The magnitudes of the characteristic val-
ues which are obtained according to the choice of the %asic

series equations for the function to %e varied$ form a suit-

able criterion for the validity of the approximation. I?ow$ “

it can be seen that, compared to a simple power equation in
x, as well as several i?ourier developments, the basic equa-
tion in spherical functions leads to the least characteristic

values. As to their behavio~’ on making further approxima-
tions, the first three apprO:{imatiol~s for the first charac-

teristic functions furnish, successively , for example, the

values 8,75, 8,67, 8,71; consequently the convergence of the
procedure ought to be satisfactory.

In order to oltain equally good results for the other

characteristic values, further approximations must naturally
be madq; the third characteristic value, iv particular, will

agree only in magnitude in the case of a three-member basic

equation. AS will be seen, however, this has only a slight
influence upon the results.

The particular merit of the spherical functions for the

problem in hand, also can be demonstrated by the following

simple consideration, which can at the same time dispel
doult c’ausred-by theincrease.of the ,se,cond coe.ffic,ients in.

the second characteristic function.. Considering figure 1,
it is Sqan that the characteristic values themselves show

gr’eat similarity to. spherical functions. If a form, like
that represented hy Qquation (~6), is now set up according

tO functions which are id~n~i~al w$th ~h~ characteristic
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vqlues, then the coeffi~ibnt the index of which is equal to..-.
the ‘“or?L’%i~S,~”riUrnb6?? of--the ch-aracteristic value ‘becomes equal

to unity,,.all others being eq~zal to zero, The characteristic

value concerned is already represented exactly by one memler

of the development~. If developed according to functions

which are not identical with t,he characteristic value%, hut

which have, however, a certain” similarity to them, then, in
the development the coefficient having an index equal iO the

ordinal number will be slightly greater. Clearly, such a

development will dlosely approximate, with relatively few

members,, the function ta be represented.

If the values of w from (i4a) are inserted into eaua-
tions (lla)”and (12a), then for-the-coefficients of the

ponents

.
ex-

(17)

The comylete solution of the partial differential equa-

tion (12) can he written as a development according to char-
acteristic functions

‘kaz + a~gIIIe
0 = algle-]cLz + a2g11e

.k3z
(18)

where the coefficients are to be determined so that the pre-

scribed temperature distribution is fulfilled for z = 0,

The calculation wilz be carried out finst for the case of

uniform temperature distribl~tion at the initial cross sec-

tion. Therefore al . .. fi$st must be determined so
that $ (Y) must be as cl~’s~3to = ,1 as possible.,. Every
other temperature then follows with the aid of a multiplicat-
ive constant,:. The least square error, yields the values:

al = 1..$29, a2, = -0.180, aa = O.048

*

Thus the final equation of the temperature field, for

turbulent flow in G hydrodynamically complete state in tubes

for th.ec.ase.wher.e..th.e.~.n,~.,~gy.~~emp,erat,ure ,~o ,prevails in

the initial cross section, is

.,,.
*
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114 ,2

-0.0 X,51.
()

r ‘ ,:,$q~” ‘~ ““

=-.- ... , .. =----- .

““ @3~Q<,,j!%?.g~:”
1,

,@:95,44 ,x~ OJ??l”;-k=+ 0,0668 X5]. ./”,
‘.vit$ ? ,:,,, ..

,. $j ~
,,

.( )
42,. e44 -L

,:,,,. v d
“iQT,$80 e ‘[?0.7472 x-., 4.275 X3+ 6.022 X5)

1/

()
4

+0.048 e
‘29’42’ &

,. }

3[2.0,34 X- 54,80 X3 + 35,47 X’]

.
.

(19)

$n which the similar powers of x are collected from the P

~Uegendre .pherical functions).

1% is also recognized now that an error in the third

~~ara’’c’teristicvalue and in the third characteristic func-

.,~onis of slight significance; even if the third exponent

L c@l.d %e still somewhat smaller, the third characteristic
f~~~tion dies out several centimeters from the %eginning 0?2

th~thermal effect, the error having no influence upon the
remaining yart of the tube. A fourth approximation always

can be calculated,

6. DISCUSSION 03’RESULTS AND AGRENNENT WITH EXPERIMENT

3y reference to figure l.$ the temperature distribution
over the cross section (of the f~uid stream) can be discussed.

For z = O, a square distribution was assumed; that is., the
fl~id erifers with a uniform temperature over the whcle cross.

seotion,

~
Xn the interval keiween O and 0.8 for r, the uni-

form temperature is represented to a maximum error of &2~a

(per 1000) %y equation (19),

~
For r l)et,ween 0.9 and 1 %he.re is a sharp temperature

. ... .. ... . ...
decrease.i- sixice’onlj~”%hre’&-term3’”W6k&”’Eoi~sidQrE&,” “Similar
situations also exist in reality, since the layers near the

wall wil~ undergo a change in temperature, due to radiation,
before making direct contact with the wa~l?, On moving far-
ther alo~g the tu%e, the temperature.gpadien~ a% the wall

levels out more” and moTe; the so-called fina~ temperature



di.stri%ytjoni-- .. which is represented by the first characteris-- .-.....’ .,..
tic function only, is reached w“he”nthe” ieco’nilcharacteristic
function has died away. From then on, all temperature pro-

files remain similar since all temperatures decrease in the

z--direction according to the same exponential function; the

“final temperature distribut,ionlf is to be under-expression

: stood in the above sense. As shown ‘by equation (16), the

first characteristic function and, consequently, the final

temperature distribution, differ but little from the velo-

~~city distribution in the hydrodynamical~y complete state.,

17ith the help of the” known temperature field the point

now is reached where all the questions about the heat trans-

fer can %e answered. For example, to calculate the unit

thermal convective conductance a, the ratio is set UT of

the amount of heat transferred per un~,i of wall surface for

the mixed-mean temperature difference at the cross section;

that 1s,

According to equation (9), q. is given by

and the average temperature am is defined by the equation:

r

Hence, the expression (note 15) for a is;

-kaz+ 0.980 .e

()

1.4 -k~ Z-klz+ oe134 e
a =C.0346 VC ~ 1.078 e

0:970 e
-~3z (21)

-klz+ 0Q024 e-kaz+ 0,006 e

,. .,..: ,.

!Fha analogous result for laminar

?Wsselt. (See reference 6,)

f~ow was calculated ‘by

Figure 2, which is calculated for the special value
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d vxl
= 0.,037, &liow”E””thevarftition of’the unit th’ermal

1,
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convective conductance with distance into the tube..” At
z= o, CL is infinite$ then, corresponding to the decrease
i.n the temperature difference at the wall;,. it decreases,..”
though consi~era”bly faster thtinit does wlien the flow is

“la,minar~ finally approaching a minimum value ~~n, Al-

though this least value is independent of the velocity in

the case of laminar flow, for ‘turbulent flow equation (21)
is changed into the form:

1/4

amin
()

= 0,0384 VC v
z

(21a)

1’
i Mquation (215.) is analogous to the equation developed

by Reynolds, “ Since,

I

as mentioned already, theeddy heat
,,

transfer in %urb~lent flow exceeds the molecular one by a

multiple, it seems justifi”@ble that only those magnitudes
f!,. which are determinative for the condition of flow and also

J for the eddy transport of heat should appear in the formula

‘y‘,

i

for the unit thermal convective condu.dtance, !!hese are ma.g-

‘f/
nitudes v, d, and v or C. The variation with tempera-

b ture depends “upon the values of the kinematic viscosity V..

&g 1 is considered,If the relation for gases
c~

it is o?3-

4
ri

f
served that equation (21a) likewise agrees 5.n form with the

h“, dimensionless formulas of Nusselt and ?randtl, .(Seo refer-
~, ences 2 and 7, respectively. )

!l?heexisting experimental material is not sufficient,

unfortunately, for an exact test of these results, since
average unit thermal convective eonducta,nces were always
—-.
measured and the “entrance sections!’ were not chosen long
enough so that in the measuring length a hydrodynamically

complete state with a temperature profile which remained.

similar’ could have been attained with certainty. . In most

cases the point at which the thermal affect began cannot

even be determined. O%vipusly this is an indication that
t,he exp,eri.qen,t?rs,possib,$y ,d~d goy ~+%y~<,a,cl,e~rconcept of...-
the influence of the arrangement updn the results of the

measurement. ,
,- ...... . ....... . ..—..... ..

~p‘!,
,, Nusselt, in a sh,ort ser%es of experiments*, ,connected a
‘4,!,.

*Rese~rch work pub~ish”ed in. reference 7, table 6.
1;1’
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piece of tubing 2 meters long in fro”nt of the actual experi-

‘“‘fiental s6Etio~:- “AccordinEto the calculations., whioh are
discussed in the next section, the state of flow was cer-

tainly complete. Besides$ since this” entrance section and
the heated experimental tube both were made of brass and

were joined firmly to one anoth’er metallically t’ne added.

‘“length of tubing likewise was heated, at least in the part

directly connecting with the experimental tube. The first

point of temperature measurement Was, on the average, ab out
15 centimeters downstream from the beginning of the test

$ectionl so that it can safely be assumed from the results
of equation (21) that the unit thermal convective conductw

anae had reached its minimum va~ueq These experiments were
checked, using the equation for Umin. The results are pre-

sented in tb.e following ta%le (p, air pressure, Y, unit

weight density of air):

-—

Exper-

iment

num-

ber

95

96

97

93

99

100

——

om I 1

I

--4----
I

39.0 ~0,6133

37*~ . 624?

,34.2 . 636g

31.5 I ,6438
~

55..6 ~1,0590

32.1 I 1+1300
,,

1.1611 1.273

~

1$1671 1.285
1

1.164’i 1.255

m63i 1.307

l,L64f 1.291

1.167[ L309

. -.

v

4,24

!5;75

s.2g

13.06

21,06

24.05

%eas

19;29

24. V5

32,75

46,g

65.3

7390

‘ficalc

20.09

25.36

32,57

47 ● 44

67.51

75.25

Differ-

ence

(percent)

4.14

1,64

-? 5

1*3

3*35

‘ 3*O

-—

Experiment 95, at a Reynolds qum”ber of 6100 (,about three to.
four tines the ~ritical veloc~ty,), was near the limit of the

region of the validity of the above-developed theory? Con-

sidering th~~imits cf thq .~ccumiaoy,o.f,measurements of this

kind, the agreement seems to be absolutely satisfactory.

In the fo~lowing sect,tons.~ the heat t?ansfer $n the

“caYping length of a tube :(that ~s. the heat transfer f~r the

5hydrodynamically i.ncjo~~le~e.s$h.tiq.~ill bQ investigated.,
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Inasmuch as a solution for the velocity field. in the calming
... ~~.~+.le,n.gth.9fa tube has-not been given previously, it must

first of all be determined.

.:.,

7. THE VELOCITY YIELD IN !I!HZ!lICALM.INGL13NGTH’1

,,.”
,.,,.
,.

In order to obtain an approximate ex~ression. for the

velocity field in “the calming length of tubes under condit-

ions of tu~bulent ‘flow (see reference 9, for the caso of
laminar flow), ,the momentum consideration introduced by

Von K4rm4n (reference 8, PP. 235 and 256) will be usedt

Consider a longitudinal seotion through the beginning
of the tu%e. At A, fluid from a large reservoir flows into
it with a uniform velocity d.istribution~ The layers near

the wall will b.e retarded under the influence of the viscos-
ity, and the thickness of the layer, in which the shear

stress is transferred (shown by the shaded lines in tho fig-
ure) will increase until the two bounda,ry layers meet. 1% om

then on, with the insertion of a short transition regions

the velocity distribution over the cross section” will remain

constant.

Hence, it is assumed that there is at the beginning Of

the tu%e, a region in the interior of the flowing fluid
where viscosity can be neglected, For this region, the va-

lidity of the Euler equation, formulated for frictionless

flow, is assumed.

If the steady state is assumed, a balance on an element

of the boundary layer ~S c~ns~dered.$ which has a ring-shape

structure’; abed in figure 3 represents a cross section

of this element.

Let

Q = the volume flowing through the cr~ss section in the
boundary layer per second

J = the transport of momentum per second in the direction
.,,., :.. of Slow.through $hs .c,r,os.s@-%q,sQ$?o.p@l$Wrface .

u = the velocity Qf free stream

.,
u’= velocity in the bowndary layer

*L, Schiiler, who most recently studied experimentally -

a theoretical explanation also was pub~isheb - the problem
of thh entra,nce section? treats onJ.y the laminar case,

,,,,,,,,,,,,, ,,,,, ,,,,, ,, ,,, ,.,..-—. ..- ...— —- .—-.
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v .,%average .ye.loc,ity .ove~ t,he cross section—

6 = thickness of the boundary layer

,,. ?2 = pressure

“Y = distance from the wall of the tu%e

To = shear stress at the wall

z = coordinate in the direction of flow

The equilibrium condition for the element of tho bound-

ary layer oan then he written as follows (note 16):

dJ
–-pU~=- =(2r6-62)m-2rn.o (22)

dz dz +Z

In addition, the following condition ap”pears: 23ecause of

continuity, the same amount of fluid must pass through all

cross sections of the tube, If, therefore, the layers at

the wall are retarded, then the velocity of the undisturbed
fluid (undisturbed always in, the sense that no shear stress

is transmitted) must increase. Then, according to the e~.’.a-

tion of motion for ideal fluids, this increase in VelOcitY

must be accompanied by a decrease in pressure. This fur-

nishes additional boundary equations:

2
‘~+ U(r-8)2m =Vr’rr (23)

dp au
+ Pu —= o (24)

z dz

l?rom equation (2a), U is set into the form:

.=uf$ {a+, ~))

,.. -. .,,.

(25)

and the coefficients a and @ are determined from the re-

quirements :

u= o. fory=O

I
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Then there results;

Results of TO from the condition at (~5a) must change

tO equation (2) for small values of y:

(26)

.

Consider the relation, which follows from equation (23),
between the velocity of the free stream U and. the average
velocity v:

u=
165V

(27)
4E2 - 22[ + 165

in which ~= ~; then the steady-state condition, yields an
r

ordinary differential equatioil in ~ with variables sepa-
rated. There is ohtainod then (note ~17):

1 64 3 100 a 206

j%
—t -—E -—

Xy E +

616~ //4
7/4

45 69 69 J v~
. —at=
o [4ga - 22~+ Z65]5’4 ()(lfk ; *=VO (2g)

Instead of d.eterminin~ the quadrature numerically, the fol-

lowing method of calculation is applied.

For small values of ~ t’~e”higher powers-of $ can
be neglected and there is ob~ained

4/5e
‘a

()
=I?”-”z
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... ~a”Q ., .pf #5
is’se+- equal to- t, then .E can he repre-

sented as a power series in t, Therefore :

E = At + B*2 +ct3 +....,

Write equation (28) in the form:

.

and introduce the above expression; then the fractional
powers of t drop out and, by developing in powers of t
and compariilg the coefficients on left and right revealing
the history of the boundary layer at the beginning of the

tube, there is obtained:

The series is ended at the third term.

In ‘figure 4 (note 18) g is presented as a function of

% 4/5

x= +-z J ~ = ~ for x = 0.686; thus the length of the

v d

%ube up to the section where the boundary layer fills the

tube is (note 19):
1/4

‘Q
()

= 0.625 d ~ (30)

With equation (29) the field of the average velooi,ties
in the .ent.ra.nces.ecti.on.is de.terrnined,~nd.,all,questions, for

which knowledge of its variatio~ is sufficient, can be an-

swered. Thu S , for example, one oltains the resistance of
the tube ~etiween two cross sections at ?J and za of the

initial length; that is, the integra~
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z~

w= J-2rw TO(z)az
●

z~

%y calculating the difference of momentum transport through

the cross sections Zz and 22 and calculating the pres-

sure difference tiqes the cross-sectional area and then add-
ing the two results.

8. HEAT TRANSFER IN THE EN!I!RANCN SECTION

~or the calclllatiofi of the temperature field a similar

consideration is employed by setting up a heat balanoe for

one element of the boundary layer. Again, let a warm fluid
flow into a tube with constant wall temperature *W = 0,

The only simplifying assumption made is that at a place

where shear stress is not transmitted, heat transfer will

not occur. In so doing the small auount of heat which is

continually carried away at the inner limit of the boundary

layer by molecular condition is neglected.. However, at that

plcice the temperature gradient iS so small, since the Calcu-

lation is carried out for velocities in excess of the criti-

cal, that the error committed can ye taken. directly intO

consideration. Thercforo it is ass~~mcd that in the region

whoro the undisturbed fluid flows with velocity U, tho

temperature always should he equal to the entrance tempera-

ture do, The heat balance for the” element considered is

then:

8

d

r

dQ
—, uCti 2w (r - y) dy . CtJo — . 2r~qo (31)
a.z” dz

o

Inasmuch as it already has been seen for hydrodynam-

ically coti’plete flQw that in the case of turbulence the tein-

perature distribution i~ very similar to the velocity dis-
tribution, 4 is given as:

,. ,..

(32)

—
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.

Corresponding to the above assumptions, the boundary

conditions are:

80 = for y = o

which permit reduction of the three coefficients a, l?l,V

tO a single one, Thus is obtainod

(32b)

The first term is identical with the equation for the
velocity distribution and the second can be interpreted as a

kind of correction term to the equation of the velocity dis-
tribution. This can be easily understood in a physical

senseC Aty= O, temyeratllre and velocity curves begin

with the same power of ‘y, At y = 6, both have horizontal
tangents. The curves must therefor~ have a simila,r charac-

ter in the intermediate region.

3’or q. it is found that:

(32a)

~quat$on (31) will now furnish, since the variation of

the boundary-layer thickness 6 is known, an ordinary lin-
ear differential eauation of the first order for deter minari
tion of Y. This differential equation can %e brought into
the form:

dY
~+ A(z)Y= B(z) ‘

The functions A and B are very unwieldy, however,
sO that the general integral of this first order differen-
tial “equation:

,
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. JM z ~ ~-jAdz
Y

f

~eliaz ---_
= Ke dz*

would require a very troublesome numerical calculatio:fi. A

graphical method is chosen, for it is still possible to ob-
tain far greater accuracy than corresponds to the physical

assumptions of the problem, If 8/r = ~ is introduced as a
new independent varia%le, the equation is essentially simp-
lified, the fractional powers of ( drop out, and after
some calculation there is o%tai,ned:

-0,1855 E3 + 1.477 ~a - 2,658 t
Y=

0.1623 53 - 0,701 ~2 - 23.05 ~ + 45,4

-0.269 E* + 2,390 ~3 - 16.10 ta + 37,59 f
yt (33)

0.1623 ~3 _ 00701 52 _ 23.05 t + 45.4

In this form equation (33) is directly suitable for

calculation of the directional field of the differential

equation which is given in figure 5a. The point 5 = O,
Y= O is the point of origin; all solution curves come from
plus or minus ~ up to a unique curve which leads to the
point O,Oe Since Y must likewise he finite for ~ = O.

25

f

!,

~:
then for the initial condition there is obtained - ‘

“f=o for g=O

This is likewise readj.ly landerst~ndable from a physical

viewpoint, As long as ~<< r, the immediate beginning of
the tube can differ, either in hydr’bdy’namical or thermal re-
spect, from ,the behavior of S.plate in a free stream. It

will be seen later that the velocity and temperature fields

are the same in the case of the plate, Accordingly, at the
%eginning of the tube (z = O), the temperature distribution

will cOincide with tbe velocity distribution,
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If equation (33”) is solved in terms of Y! and the

‘limiting”””Val.-uetotia~d which Yt ~endsfs considered, for

5 = Q, then there is found:

..
lim YI = -0.032

.

~=cl

All i.soclines begin at the point 0,0; the isocline for
yl = 0.032 with the slope assigned to it, runs into this

point; however, it is rather weakly concave toward the ab-

scissa. The isoclines of greater sloye lie entirely above

it; those.with a lesser slope lie below it. From this %e-

havior it follows that the solution curve sought must lie

for its entire length in the narrow striy between the iso-

cline y’: ~ -0,032 and its tangent at the zero point. The

line Y = -0.032’ E will, thorcforo, represent a first ap-
proximation with a maximum error of 12-X pcrccnt.

IQ order to oht,ain a second approximation, Y fs set

equal to -0.032 t + h(~) and this expression is introduced

into equation (33), which then changes into a differential
equation for h, the family of isoc$ines of which is shown
in fii~ure 5b. In “order to increase the accuracy, a thousand-
fold scale of ordinates is chosen.

The solution naturally begins with h = O for ~ = O.
..

If e is set equal to 1000 h, then this magnitude, as
is easily proved by plotting on a lo(yarithmic scale, is

given by the formula e = ~,48 ~1.P659 so that the following
expression for Y is finally obtained:

Y= ‘0.032 ~ + 0,00~48 [l”@e5 (34)

This function is given in figure 5a %y the deep, solid

line.

In this manner the tenporaturo field for the regibn Of

the simultaneous hydrodynamic and thermal Caltntilglength is

obtained. Then for $ may he written:

‘=;6’)s’’{?-55(1-$)2’0.00’48’1”8’5-0”03’”] ’35)
.,. ,.’. ,,.,/

,,. ,

!l?he values of 8“ and !~o;~e~ta~:; from’ equation (29)
and figure 4, respectively. = s $ becomes

E“ .
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that is, the final, temperature distribution for the hydrody -

‘“narni”c”a~s’te’ady”state-i-s’not attained. (fig, 6),”which was,

perhaps, to be expected

In order to get further agreement, every solution of

the differential equation for the temperature field beyond

the hydrodynamic calming section, which also satisfies the

initial condition (equation (35a)), is determined, To this

end the function represented by equation (35a) must be de-

veloped according to the characteristic functions. (See
equation (16)9) Since the tem~erature distrilmtion of.equa-

tion (35a) does not differ very much from the first charac-
teristic function (equation ($6)),, the development is c,arried

out with only two members.

The development naturally cannot represent the function

(35al quite exactly, because at one time the velocity dis-
tribution was established with the IIinfluence factor, tithe

other time with’ a power series development. However, in
order to obtain the best -possible transition from the one

solution to the other, it can be arranged that the two tem-

perature curves agree completely in important properties.

The heat transfer is lin,ited by the processes at the

wall; accordingly, it will be stipulated that: (1) both
curves begin with the same term of the development at the

wall of the tube, and (2) the flow of energy through the
whole cross section be equal,

This furnishes two equations of condition for determin-

ing the two coefficients of the development. Hence there is
Obtained. for the temperature field in the hydrodynamically

complete region

da=
o‘{1.016 e ‘klz [0.9544 x - 0.0212 X3 + 0.0668 X5]

L

- 0.05~ e-k2z [- 0e74~2 x - 4.275 X3 + 6.022 X5]
)

(36)
J

Knowledge of the temperature field first shall be used

for calculation of the unit thermal convective conductance.

The calming length first will be considered..

E’~u’ation’(36) ‘dlready has “giben an expression for, qo.

.The average. jempe,~ature of the ,cross section is then:

,{r

r

am=* i12n(r _ y) ity+ $0

J
,]

21T(r - y) dy

6
.-

_.. -- L-.—
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The expression for in the hydrodynarnicalq~ (%= ~
.,.,

‘“calming region) is then:

()
*

au % ‘1,340 Vc’ J&

..

The continuation in the second region (cza= a in

the hydrodynamic,al steady-state region) is:

~ ‘4 0.969 e

()

-kl Z

-+ 0.038 e
-kaz

aa = 0.03461 VC (3711)
vi -iclz

0.873 e
-kzz

+ 0.0066 e

The variation of the unit thermal convective conduct-

ance with location in the calming length of the tube is

shown in figure 7a (note 20), Write equation (37a) in the

form

then the factor K, Whi ch

plotted as ordinate, with

‘(kcalihr m2 ‘C)

is a pure function of 5, is

! as abscissa, Figure 7A (note

21), in combination with figu”re 4, from which the particular

values of 5 can be tak~n, covers all possible cases. in
figure 7B, with ~ as the abscissa scale, the variation of
a for a certain case is shown in comparison with the same

case. fo~ the com@16tely developed. hydrodynamic flow? It i,s

seen .t~at the &ecrease of a takes place less quickly in
the first case,.

Now comes the point ~lhere the heat transfer in a tube

can be surveyed in all particulars. The results will be

,, summarized briefly:.



.—
f“-

NACA TM NO, 1068 29

I

With respect to heat transfer, the following cases in
.... ...... which the.heat .transfer.,oleys differ.e~t laws are to %e dis-

tinguished o,ccording to the structure of i-lie”ielocity and
temperature fields.

1, Fully developed hydrodynamic and thermal fieldsa-

This condition is attained when the fl~id has passed through

a considerable portion of the tube length? The unit thermal
convective conductance is constant and is given hy equation

(21a),

2, Fully developed h~r,drodynamic flow field, temperature

uniform at entrance,. Realized by a connected entrance sec-

tion which is maintained at the original fluid temperature

by suitable heating. The unit thermal convective conduct-
ance is dependent upon the location in the tube, falls very

quickly from its ma,ximum value, and asymptotically approaches
a constant minimum value. (See equation (21).)

3. Uniform velocity and temperaiur~ distributions

across the section at entrance,- The unit thermal convective.—
conductance is likewise dependent upon the location in the

tube, bu,t falls to a minimum value more S1OW1Y. The point

unit thermal convective conductance is given %y equations

(37a and 37%),

4. The application of heat begins at a section somewhore

in the middle of the calming length.- Tor this last case a

gOOd approximation for the unit iherma]. convective conduct-

ance a is obtained by drt>wing the curves which represent

the variation of a with the, location in the tube for cases
2 and 3, in the same system of coordinates but with the zero

point of the allscissa} scale for aa (a fully developed hy -

drodynamic flow) displaced by the distance 1 betwee~ the
beginning of heating and the inlet section, Since the curve
for aa has a much steeper s~~pe, it will cut the curve for

~; the envelope (note 22) repres~nts (to a first approxima-
tion) the a distribution for this spec~al case. ,

The great differences in the results of the individual
‘> ,,

experimental vrorksar.e now understandable-, .,wereas Nusselt

ascri%qd this, at the conclusion of his work on heat trans-
fer in laminar flow, exclusively to the. conditions mentioned
under point 2, now the possi.hil$ty of a series of factors

which $.nfluence. the process ly interchangeable combinations
may be seen~
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*> T@e two most careful investigations known, those of

Nusselt and Jo’rdin (refel*enc~s 6 and 10, respectively), used

a right-angle gas approach to the measuring section. At the

%eginning of this section the flow was not completely devel-;
[ Oped. O?Iviously case 4 is to be considered here. No fur-

1
ther experimental data”, however, havo appeared to date. The

beginning of the thermal Action, as well as tho exact posi-
;.. tion of the first tom~or”ature-rneasuring station, cannot bo
,:

ascertained accurately.* An exact evaluation of the exper-
;, imental results on the basis of the above-mentioned theory

is not -possible for these oxpobiments. Novcrtheloss$ a
series of experiments by I?usselt were investigated to deter-
mine the magnitude of the measured unit thermal cohductancos

with rcspoct to the minimum m. The results arc compiled in
table 2, Considering the dimensions of Nusseltts apparatus,
it is seen that these fibnres are affected %y them, which is

to be expected according to tho above-mentioned derivations.

TABLE 2

r
num.

ber

7zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10

13

19

L

24

30

41

54

1

0 ● 5906

● 5983

, 5W0

.7870

.6022

.6s7tf

. 5gE%

.5863
.—

Pm

i=

1.152

1.171

2.050

1 ● %3

3.56

6.97

g.gg

“1

*
35.3 ~ 1.278

31.6 1.315

69.0, 2.050

30.4 i 2.122

3109 ~ 4.45

29.2 i 7.91

26.0 11.41
I

v

f3,~2

1$.33

27.2

g.g4

29.94

lo.t?7

9.27

10.04

%neas

3597

65.5

91.7

57*3

146.6

12U, Ef

162.9

233.O

%in

33.43

60.4

g2.6

50.9

127.2

lo3.g

1.41.6

lgg.o

Differ-

ente

)percent)

6.4

g.4

11.0

12.5

15.3

20.0

15.1

17.7

. If experiment 10, for example,. ware .,pvaluated with tho

assumptio~i that case 3 is to be considered here, which comes

C1OSC to tho cxpcrimontal conditio~s in any caso~ then a
,,.

*!Mlese resuZts are based on a letter” sent to Latzko by

Frof, NusseLt. .
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is obtained, which is 10.2 percent above am~~.

In reality the hydrodynarnical condition of uniform distribu-

tion of velocity at the first temperature-measuring station

r.as not completely ful$illod, so that the value of a must

falL somewhat lower; tho mcasurod valuo is 8.4 percent above

amin?

According to equation (23), the length of the calming
. section is proportional to $@; accordingly the ratio of

the calming length to the total length of the measuring sta-

tion mugt Increase with i.ncre~~j,ng velocity, and density and

theroforo the values of a also must increase somewhat.
Experiments 7, 10, and 13, in which the velocity is varied,
the other parameters being maintained reasonably constants

show this clearly, as do experiments 7, 19, 41$ and 54, in
which the values of p are changed up to a ratio of 1:10.

10. PRA,CTIC!AL COMPUTATION OF THE AMOUNT

OF HEAT TRANSFERR3K0

I?inally the question of the practical computation of

the amount of heat transferred in tubes must be discussed.

3ecause of the fact that two different solutions for the

temperature field have been obtained, depending upon whether
or not the hydrodynamic field is fully developed, it is Qec-

essary also, in the computation of the amount of heat trans-

ferred in a certain section of the tube, to determine in
whi~h region the flow takes place. However, several gener-

al remarks, which hold for both regions, must be prosonted

first.

The amount of heat transferred between two cross sec-

tions at an interval t = z3 - 22 can always be found. in
two ways.

1. The calculation is referred to the volume of fluid

passing through the cross section per unit time, Since the
voloctty and temperature distributions are known, then the

flow of heat which passes through the cross-sectional area

per unit of time can be obtained by integration? The amount

of heat transferred at a strip of wal~ of length 1 between

Z1 and za thus is given by the difference of two integrals :
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where df is an element of area in the cross section the
, ...--fo~m--o-f--wkichdepends- upo”n the ohoice of y.

2, Only the processes at the wall are considered. Yor

this purpose the equations for q. have been set up. With

the foregoing notation, the amount of heat transferred is
then:

22.—

Q= 2r7r
f

qo(z)dz

Z1

(39)

the term $0 in qo is replaced 3Y the difference at the

cross section Z1 between the wall temperature and the

temperature at the axis of the tube.

The expressions for go are, however, rather unwieldy,

so that equation (38) is usually preferable. As an example,

equati.oil (38) will be applied to the most important cases.

la, I?or the case where a uniform t~mperature distribu-

tion and a uniform velocity distribution prevail in the ini-

tial cross section, the heat transfer in the entire entrance

section is:

Q= 0.115 r2nvC80 (40)

The value is constant since the temperature and velocity

distributions coincide at the initial and the final cross

sectionsc The special cases differ in the length of th~
tuho section from the inlet op~ning to the fully dovoloped

hydrodynamic state.

lb. Considering a section of the tube from the inlet to

a cross section at a distance L and letting t be the

length of the entrance section, then, (using equation (36) ),
the total heat transferred in the length L- is:

f- -kl t=
Q=

-k~ lx

‘2*V%1” - ‘“886 G ---0’”0037 e }
(40a)

wh~rc Z1 = L - 1.

2. $n the fully developed hydrodynamic state the amount

of heat transferred frt?m the %eginning of the heating (z= 0)

to a cross section z at a distance 1 from it, comes to:

IL --
if? —. —
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{

Q=nr2vCil 1- 0.!38!5e-klt-0c013 e-kzZ-0,0022 e-kszo
1

(41)
.,.

lle ES!I?IMATION OF THE IITTERNAL HEATING

OF THE FLUID BY FRICTION

In the previous derivations the generation of heat in

the interior of fluids by friction was entirely disregarded.
An exact consideration of this iS not possible as long as

the pulsating velocities are not known individually, knowl-

edge of the distribution of the (time) average velocity be-

ing especially insufficient for this, since the pulsation

velocities contain the dissipation function in quadrature

terms. However, an attempt will be made to determine, by an
approximate consideration, in which velocity region the
shove-mentioned ne~lect of this term is allowable. In doirig

this, only processes in the fully developed hydrodynamic and

thermal states are considered; that is, the unit thermal con-
ductance must be independent of the location in the tutu.

It is assumed, for example, that a cold fluid flows

through a heated tube, an element of volume %ov.nd.edby the “

tube and two cross sections at a distance dz is considered.

Let t9w he the constant wall temperat-~re; let ii(z) be the

average temperature of the cross section at the position z;

and let the difference between wall and average temperature
in the initial cross section be designated bY O.. Then the

heat balance on the element reads:

where T is the thermal equivalent of work and ~ is the

ratio of the frictional resistance to the square of the ve-

locity. Equation (42) then is written in the form:

m ~ V3 has dimensj.ons of temperature;The term .
a,

T~v3 will be called the friction temperature and will be
a

designated by
%“
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z-> -With- cons.id.erati,on, og ,the ,i,nitial conditions at z = O,

the solution of the differential” ‘equation (’42)”is :

(43)

Hence, the temperature. of the fluid is proportional to
the wall temperature increased by the friction temperature.

~f, this relation is plotted in a system of coordinates
with 3 as ordinate and z as abscissa, then there is. ob-
tained the clear results of figure S, which are drawn for

the case of air flowing with

v= 2G0 m/see x = 0,025 u p= 1 atrn

c = 0.282 kcal/m3 v = 0.175 crn2/sec

The fluid temperature asymptotically approaches a limit

which is equal to the wall temperature plus tile friction

temperature. Since the a~ount of heat transferred is pro-

portional to the areas (which are crosshatched in fig. 8)

between the straight line $W = constant and the curve of

the temperature of the fluid, it is seen that there exists

such a relation between the length of the tube section and

the velocity of the stream that, for a given length, there

exists a certain. velocity and$ for a given velocity, there

exists a certain length of tube for which the maximum heat

is transferred.

The factor i
is then:

a

1= 0.103’ ~
a Tc

.and, therefore, if the slight variation of the heat capac-
ity with temperature is disregarded, it is s,function of ve-
,&Oc~ty alOQ:. For = 00238 ~ilocalorie per kilogram ‘C,

% for air ‘ha~’~~e~cca~culated fo.r..se~+,g~alvelocities and

compllod in the following table:

v= ~o 25 50 100 “ 150 200 rn/sec “

% = 0.102° 0.634° 2.54° ‘10.15° 22.80,0 .40.6° C
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. . .
Et can he seen that neglecting,, @R,, is d:rectiy permis-

sible in most practical cases. .,

~he heat carried away is obtained by substitution of

(43) into the equation:

dQ = a2rmdz ($W - $Z)

and integration between ~1 = O and Za = 1 to

(’ )2a,l

Q= $or2nvC 1 - e- =G - ~ dRr2nvC

()

=2

rv C

*

(44)

in which higher powers of
2a t
m

are neglected.

120 HEAT TRANSFER ON A FLAT PLATE

As a second geometric configuration for which the heat
transfer will be calculated, the flat plate parallel to the
direction of flow is chosen. The plate shall be so thin

that the influence of the forward edge can be neglected.
l?randtl, in ihe previously mentioned work, has already shown

that for the case of an infinite thin plate, which is moved

parallel to itself through a fluid, the velocity field and

temperature field agree, if the heat from tho internal fric-
tion is ileglectod.

If u denotes the velocity vector and p denotes the

pressure$ then~ for the time change of the momentum vector
Of an incompressible fluid referred to a unit of volume, the

r~sult is, neglecting gravity effects (note 23):

Du
p=. - grad p + WAU

>, D., L+uxg+u a “~

E=at 1.y.,.~+, u? ~~ ., ,>

#

(45)

On the oiher hand? the Kirchhoff differential equation for

the temperature field is:
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_,(46)
.

For the plate, p is a constant, in case it is infi-

nitely thin; ol*, in case the plate thickness is finite, the

average value of p over a certain region is still a con-

stant; grad p is, therefore~ equal to O and it may be seen

~hat the two equations (45) and (46) agree in form. When

—= 1,
epl

a solution of (“45) also will ‘be a solution of (46)*

If ,~~e is maa~ of this cona~tion when the- so3.utj.on fC)~

the velocity field, as given in the previous work by
Von KSrm&n, is accept~d, there results:

(47)

and correspondingly:

?9

The condition for

the boundary layer is:

8

thermal equilibrium in an element of

6

i%.p (Y’C’”(:)v’“ - “0 i%~”(is”“ +‘0=0
0

Introducing equation (47), solve for q. and obtain:

.

0
v5

~~ = 0.0285 $0 CU & (48)

The total amount of heat leaving a plate strip of unit

width is then (note 24):

1

f’ ()
%5

Q= qodz ‘= 0i0356 CUOOZ &...,,. ,

U2
6

(1 = length in the direction of flow).

(49)
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. . . ... . . .. .... . . .. . . . . . .. . . .. .
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In the p&eceding section It has been seen that the laws -

for the heat tr,ansfer in a turbulent fluid stream, derived

fOr the two most important %asic geom.ctric forms, lead,, in

‘the case of flowing gases (and superheated steam), to re-

sults which al’s’oagree well quantitatively with experiments.
Here the statistical %asi.s of the kinetic theory of gases

can he used to arrivo at a uniform concept of the molecular

prooossos as well as tho eddy proccssos in friction, on tho
one hand, and in heat transfer “on the other hando

Naturally, one cannot transfer the foregoing simple

considerations directly t~ liquids, where the effect Of the

molecular forces of cohesion may no longer be neglected.

Whereas the heat and momentum concoction through the eddy

system also represent here grocesses which are similar in

character’, this is no longer true of the molecular conduc-

tion of heat and momentum, which finds its expression in

that the ratio
Ap

is very different from 1. For waters
c

the magnitude of this ratio, which is quite dependent upon

temperature, iS about 0.1.

The mutual law for the molecular and eddy phenomena of

internal friction, which is represented by the coefficient
of turlmlence, will be appli.ca%le to the propagation of heat

only in that region in which eddy processes dominate. How-

ever, this is the case for the entire mass of fluid up to a
very thin Layer* at the w8XI. Accordingly, the differential

equations derived in the foregoing will maintain their va-
lidity everywhere except in this thin layer.

TO attain a suitable description of the heat transfer

in fluids, it will be necessary to seek a transition from

*Closer investigation shows that this layer is much

snaller than the boundary layer itself$ which was defined as

the r6g3.on,in which shear stresses are transmitted, For the

right circular tube, the thickness of this layer in the hy-....
d’i?odynwn-$cally~erfect state is.givenby.the q~press.ioq

#

6 = 5.51 -& where d is the diameter and R is the

Reynolds number.

.,,.,,. , . ......-—--
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the statistical law for the interior of the mass of fluid

(coefficient of tur?)ulence) to the “molecular-law in the very

neighborhood of the wall (thermal conductivity). Mathemati-

cally, this transition cap ‘be made by a modification of the

boundary conditions. This ex%onsiop of the theory shortly

will he discussed moro clos~ly. Still, it is to be noted

that oven the previous exporimon%al results of research,

which relate exclusively to heat transfer in water, show re-

sults deviating so much from one another that only with dif-

ficulty c~i~ a picture of the process bemade clear tO some

degree.

At cousiderahle’expenditure, Soennecken (1911) uder-
took experiments on the heat transfer of water in tubes-

These oxperbnents aro fro~u~nt~y cited in modern litoraturo

as auth.oritattvo. His results are summarized. in two formu-
las for the unit thermal conductance a:

1. Smooth surfaces:

vod9

a = 2020 ‘~ (1 + 0.014 Ti)
kcal

d hr m2 ‘C

2. Rough surfaces:

where

v water velocity, meters per second

d tube diameter, meters

v-.1 internal tube-wall temperature, degrees centigrade

By IIsmooth surface 1’is understood a seamless drawn-brass

tu’be; whereas the experiments with ltrough surfaces” were

~erformod with iron tubes. These formulas directly contra-

dict the fundamental id~a~ on tho nature of the heat transfer

presented hero. It is out of the q,uostion that%he unit

thermal conductance can be smaller in the case of rough sur-

faces than it is for smovth surfaces, Because of the in-

creased eddy formatim, the eddy transport is increased ancl
consequently the unit %hermal conductance is incroasod, TlnB

smal~or values which were measured in tho case of tho iron

-.
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If

IL>. tubes ar,e..post prolably ascribable to an incorrect determina-
i

1
tion of the actual’ w’all temperature due to. the-presence. of

~} layers of boiler scale and rust.
,’[ ,,

~~
;) Extensive experiments on condensers were performed by
1. Jesse in Charlottenlmrg. Jesse measured the over-all unit
!:

thermal conductance k of coniiensing steam to w~tor, which
is defined by the formula (reference 12):

where

al ,Cl@

A

6

Since

k=
1

1 &+,l
..-.!..+
al ti~

unit thermal condnctences of the fluids

thermal conductivity of the partition

thickness of the partition

Jesse substitutes for ~ and 6 the known values and
uses the figures of Nichol (about 4500 kcal/hr m2 ‘C), which

represent in magnitude a mean between the figures of

Soennecken for smooth and for rough surfaces, for the heat

transfer in the water, he obtains unusually high values for
the heat transfer from condensing steam %0 metals, Accord-

ing to these experiments the unit thermal conductance for

condensing steam would be about seven tim-os as large a,s that
for flowing water.

These results are likewise not understandable. Accord-
ing to Nusselt (reference 12), the process of condensation
on a cold perpendicular wall produces on the cold side of

the surface a film of water in which occurs all t~o drop

from steam to wall temperature. The film of water clings -to
the wall, the remaining layers flow downward under the ef-
fect of gravity. Since the thickness of the film of water
is very small in any case - fractions of a millimeter accord-
ing to Nusseltfs calculation - the flow obviously must be
laminar. lt is impossible to understand why the unit thermal
condu’c”tailcefrom water to th~ metallic. wall should be seven

t~mos greater on tho ono side of t~o wall (whoro the state

of flOw is Ls.minar) than on the other sid~ (where thero is

turbulent flow).
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>- .,.,, , .~h.aexpq.riqeqtal results’ of Jesse accordingly ought to

have some other explanation so-”that k, the-over-all unit

thermal ,conductance~ is represented by two terms, approxt-

matcly equal in magnitude, ~ and ~ where ax and %
al

are average values.

It seems quite probable that, for this reason, the unit

thermal conductance for water has higher values than were

frequently assumed previously. An extensive experimental
investigation of the heat transfer to fluids seems to be

urgently needed in order to be ablo to test tho accuracy of

tho thcorotical calculations. The difficulties which are
encountered due to formation of ru$t and scale when water is
used, suggest the use” of other fluids, such as oil, for ex-
ample.

Translation hy L. M. K..Eoeltor, -

GQ Young, and A. G, Guibert.
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-.. . . . .
--ExPLANATORY,,N~TES BY THE TRANSLATORS

... ,...,... ...

NOTE 1

? = ; (’ro)3’’(p)3’”(l.&)1’’(y”’” *

can Ie obtained in the following manner. Yostulate that the
l/7-powe:r equation for the velocity distribution holds near

the wall and that the shear stress at, and in the vicinity
of, tho wall is a function of y, the distance from the wall,

and of ~;, the> velocity gradient at that Point. Then,
.

T

()-=I’ y, h
P by

divide %y the particular velocity gradient, which gives

T

P

-x--=Fo
()

y, @

-
dy

I?rom the l/7-power equation (see note 3),

there is oltainod:

,.,, e=?(:FGY’w’”
or
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,....,,

In the vicinity near ..iheWall, let.
,., .-

3?0y.+ o ()
&

“by
therefore

T ~,

F P=

Latzko dropped the subscript (yao) and stipulated that the
equation is valid only in the vic5.nity of the wall,

Sydney Goldstein (Modern Developments in Fluid !lynamics,
Clarendon Press (Oxford), 1938, pp. 339-340) recommends a
ValU@ Of ~ = 8.7e

NOTE 3 “

For f~uid flow near the wall in smooth pipes the velo-

city u is determined ty the following variables: To, the

shear stress at the wall; y, the distance from the wall;

Pt the density of tho ’fluid; and v, the kinematic viscos-
ity of the fluid. By dimensional analysis there is o%%ained

~=.(q=fi!’jn’..
A comparison of this equat$o~ with the Blasius resistance
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. formula- (empirical) .f.,orf~ow in smooth Fipes (see Goldstein,

Modern Development in l?luid flyn”arnics,“pp. 339-340) al-lows
the determination of the magnitude of the exponent n and
K; so there results the,l/7-power equation for velocity
distribution~

=/7

7 Y)
u=

B(?f (~)

NOTE 4

As” an attempt to correlate the hydrodynamic principles

presented %y Latzko with the more recent knowledge of veloc-

ity and shear distributions, the Prandtl mixing length was
calculated from equation (7) and compared with those derived

from Prandtl~s and K~rman~s logarithmic formulas for veloc-

ity distribution and also with that o%tained from Nikuradsets

data. * Although there a~e some inconsistencies in Latzko!s
equation (inconsistencies also appear in Prandtlts and

K~rm&n~s equations), the variation of the mixing length does
have the same trend aS th:~t calculated from Nikuradsels ex-

perimental data and differs from it only hy a constant ratio

(1. (lfikurad~
of approximately 1.25

~ (Latzko) )
= 1.25 . The method of

calculation and the results are shown in table A-1 and fig-
ure A-1.

The most important inconsistency appears in the deter-
mination of the velocity distribution near the wall. Recent
developments indicate that the velocity is a linear function

(u=%’)of the distance from the wall in the larninar

sublayer. Latzko~s expression for the velocity distribution,
however, approaches the l/7-power equation near the wall and
would yield an infinite instead of a finite velocity gradi-

(1 Ient at ‘the wall’ ,&

)ayy=o=m”
Latzko may be.justified in

using such an expression by the fact that his expression for

*Seo Bakhmetev, Boris h, ; The Mechanics of Turbulent
Flow, Yr$nceton Univ, l?ress, 1941, p. 73.

k,

lit I
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,.
shear “~tress is T“=

~ (p)% .,&..

by ‘
which could yield a finite

value, for ?Ot however, because the product of zero and in-

finity is indeterminate.

NOTE 5

The term ~wx, called here the coefficient of turbu-

lence, is iden$ical with the modern term %ddy diffusivity~t “

c in

NOTX 6

From this point on, Latzko uses y for the distance

i?rom the pipe axis, Up to this point, however? he used Y

as the distance from the wall and 7 for the distance from

the axis. To avoid confusion, this translation continues to

use Y for the distance from the wall and T for tho dis-

tance from tho axis only. The equations that follow havo
been altered (from the original) to confor~ with these orig-

inal definitions.

The original, article gave the equation,

u=;v{l -@’~

.,

It should be

u= :V{l:(q’y

. . ... . ..... . ,. ,,.,.. .. . . ,,.. ,.. . . . .

~og~ $3

The derivation of

&\

\ ,..— . —
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. .... . . . ., .,.,. ,.

q =

from equations

Equation (8):

0.199 *- ~2 -“-’”~y
2r

(8), (2) , (3), and (4).

3* .$,. -< . . . . .

g

Equation (2):,

u“ B(%T’($’”
Equation [3):

EquatiOll (4):

7
v = - Umax

8

From equation (2) there is obtained

But hy equations (3) and (4)s

or
,.-., ,.. ,,, ,,

therefore

‘.,
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,.-,

Substituting into equation (8),

3438

0
3i4 Y

B;

i)y

74
= (7 x 83) ~3/4vI&

337’*

and s

thus

ince

Y

3/2~ 3/41/4

4 Vv c———

(2~) 3/28

and taking
e-~T8’1

s which is approximately true in

the vicinity ‘of the wall (y small), y!elds

3/4V*
0.199 y v

q=
..,, . (2r)v28

c ~yj% ~

,, ,..

NOTE 9

Yraasformation of equation (11) to equation (12).

IW$

!
.

}’

.,,-., n I--w -,,, . . . . 1., -.,,, , , —.--—. , - , ,.,--. ,. -. . . . . . . . ..—
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Equation (11):

where

K

Let

or

then

,,.W.,,, ...

. “. .

8 VV’ (2rj3”8-=

7 x 0,199 V44

4 =/3

al!
- ke-kzg(~)—=

az

Substituting in equation (11) yields

-a
Y = (1 -~’) #

27d~ ‘= - ra 7 x=ax

%

??2 7 X6dx

2y

3y substituting, there is obtained

Wx’g
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where

The original

It should read

o
9,

v= 49kK
?

NOTE 10

. .

a“iticle gave
,,

(a) Some references to the Ritz nethod Of SOIUtion ‘f
differential equations.

Ritz, Walter: fiber eine neue Methode zur L5sung

gewisser Variations”problem@ der mit~ematischen

Physik.., J. f. reine u. angew. Math~~ ‘~o~. 1~5!

19C8, ?T. 1-61. ,.,.

fiber eine neuo Me-bhode zur Lbsung gewisser Rand-

weytaufgabe’n. G~ttinger lTachrich,ten, 1908, PI?.

236-248,

Both in.!’Oeuvres de Waither Ritz: Paris, Gauthier-

Villars, 1917.

Timoshenka, S. : Vibration Problems in Engineering~

i), Van Nostrand CO., Ne%l York, 1928$ P. 2599

(b) The manipulations involved in the Ritz method, as ap-
plied to this probleti.

1. Insert the Legendre spherical functions of the

first kind into equation (14). Then ,
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(g(x) = g~ - ;6%+ )(~g3x+ :g2- )y g3 x’+ =- g3x5
8

2“. NOW differentiate equation (14) with resTect to x

to obtain ag

z

ag

( ?ga+ )(+’&=3 +3 ;W )
5.63

G=g=-2
: G3

X2 +

8
g3x*

3. Substitute into equation (13), the value of g and

bg

z obtained in steps (1) and (2) and integrate.

1 Then,

(xJO W 5.63

63*7” Nws?&sQ2+ m-g _i@2g3”-T’r&

~. Then differentiate the eqyation obtained in step (3) with

respect to gl, g2, ad g3~ yielding the three eqyations

aJ -~J , dJ

‘or ~’ -g
and -

ag=’
where

and set them equal to zero.
....,

~=
O= (1.75- 0.2 w)gl+(o.~T~_o,lz6T w)g2+(l.22- 0.0Jw)g3 .

—,-———— —
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W

~
=o=(o.q5-o.1167 W) gl+(6.q4-o. og2 W) ig2+(3.43-o.06 W) g~

~=0= (0.22-0.042 w) gl+(2.Jl-0.0s W) g2+(ll”.Js-0.()~Jw) g~

5.

6.

7.

8.

aJ at aJ
Set —--=

bgl - ag2
— = O;by setting the .determi-
ag~

nants of the three equations to zero, a third

degroc algebraic equation involving w is ob-

ta,inod;

109.3 - 13.3 w + 0.088 W2 - 0.000027 W3 = O

Solve this third-degree equation in w, to obtain

the three characteristic values, W1 = 8.712,
W2 = 164.36, and W3 = 1700.40 as given by

Latzkoe

Substitute these characteristic values into the

three equations in step (4) to obtain three sets

of El, !!32, and ~3 ; and insert these into
equation (14) to obtain equation (16) and thus

equation (18).

The values of al? aa , and as in equation (18)

are obtained ~y the r,ethod of least squares,

thus yielding equation (19).

References to Calculus of Variation:

1
-0

2.

Woods, Frederick S.: Advanced Calculus, Ginn & CO.,
1926.

Bliss, Gilbert A.: Calculus of Variations, 1925.

3TOTE 13

The function

11,
Ill ?
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()
a

Q
f (xlg~gl) = (1 - X7) ~x

7a
-Wxg

satisfies EuI.erls differential equation, which is the neces-
sary though not sufficient condition for a minimumt

()bf d ~ .0—..—

bg dx dgt

for

and

af= - 2wx7g
bg

af
()
ag

~
=2(1 .ZC7) —

ax)

2(%)=‘&{(l-“) (g)}
therefore

* and since

{
-&- (1 - X7) ~) = -Wx’g (12)

thu S,

()

afdaf=O

z-— ax ~

NOTE 14

References to Legendre:s Polynomials.

1, Jahnke, 3,, and Erode, Y. : I?unktionentafeln nit formeh.

un~ kurven. Dover Publications, 1943,

2. Woods, F. S,: Advanced Calculus. Ginn & Co., 1926.
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., .’.. . ... . .. NOTE 15 .. .,.,

T,#
u. ten Bosch “in ItDie l%rmetlbertragqn grt(Julius Springer

(Berlin) , 1936) rearranged equation (21) to yield:

‘2e7 Z

0.0384 T f
pr

}

.,

a=
oga5

‘-)1+ 0.1 e -f-”’”

He L

which when more terms are added becomes

{“
-.2.7’z -a9.a7 z ‘31.96 Z

0.0384 Vc
—.

1 + 0.1 c:=’x + 0.9 eFX

0025 d

- 0.023 eRe
1

cX#=— Reo025

L J

“ which is a more convenient form of equation (21). Noticet
however, that these equations do @ yield an infinite unit

thermal conductance at the entrance where z = O, which is
in contradiction to Latzkol~ st~tement in the paragraph fol-
lowing equation (21).

NOTE 16

The momentum equation,of the boundary layer can be

written

dJ dQ
—-pU==
dz

- ~ (2r8 - 62) m - 2rnTo (22)

Referring to figure 3, it can be determined that:

6

gaz=
~’C/’ )pu22n (r - y) dy dz

,

az
o

the flux of momentum across x that exceeds that across
—
ab

LJ=2

[{

2
1274—-w

d,z
.~.,nr%p U

’207 345
~
}
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. . . . . theinwarcl flux ofmonentum across. ~

PU ~ =+ 2pUnr2
[
U( t-1)

- 165v (8~-22)(1-2~+ ~2) d~

1——. -~ (2r6 - S2) dz
(452 - 22g + 165)2 az

difference in pressure between ~ and ~

retarding force at the wall

where

Q=~2n(r -y)udy

o

By substituting these values into equation (22), there is

obtained equation (28),

~hough the original article gave z in equation (28)-
it is obviously z. after considering the limits of the

integration.

NOTE 18>. ,. ..... . ,,., ,.

The original article indicates that the curve in figul”e
*
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,=- 4 is a gra.p~ of equation (29). However, on repotting the

expression? a discrepancy was found. ” It appears (see fig.,-
1., A~II) that the curve given by Lat~ko in figure 4 is in er-..

L

J
.,

.

i
I 3rom figure A.II, it is seen that for t 1, x = 0.686=
I

or

Latzko derived from figure 4, that

()
1.4

~
Zo = 0.693 d ~

ITOTE 20

This plot is given in the original article ‘under fig-

ure 7A with ordinate misrepresontod as K.

l?OTE 21

“A plot of K against t,

%Y fi=gure 7A, is missing in the

presented here in figure A-III.

which was to have been given

original article. It iS



.-

. .

,’

f

I

I

ai

!

I

I

I

,

L...

.. ,,, .

An example

\
t,

\

“\,

\

i-. —_-

i

‘\I

!‘.,

of

N.0T3.22-., . ..

case

-. - . ..— CLa=a for case 2

-— - -,.
% =a for case 3

ai = a for ca,se 4

56

The

should

— ——

z/d

NOTE 23

original article

Du

‘z”-

~~....,..

Ihl

?z=-

gave the

g~.ad p +

grad p +

equationj

@u

WAU
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. . . . . NOTE 24

This equation is derived for a fluid the Prandtl number

of which is unity. Colburn* gives an ex-pression for heat

t,ra,nsfer at plane surfaces which is valid

than unity.

Colburn~s equation is

which is practically the same as Latzkots
= 1

for Pr other.

equation for Pr

&

()
1/5

,0 a
— = 0.0356 ~

Cu = cu tu

*Colburn, Allan P,: A Method of Correlating Forced
Co~vecti,on Hea,t ~ransfe~ Data and a Comparison with J?l~id

l?ric%ion. Trans. Am. Inst.. Chem. Eng., vol. XXIX, 1933, p.
~99, equation (221.



*Y=++*
**For Re - 60aOOOt v = 0.175 X 10-3 W, K = 0.4.

Sec

J
***See fig.

Y
A-1 for plot of

E
against -.

r

Cn
OJ
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NO. 1068
Fig. 1

.,—, .. _,.,.

Figure IA.- !I’hethree

character-
istic functions a, b,

c plotted against x as

abscissa.

Figure D.- The sme

plotted
against y as abscissa,

d= initial distribu-

tion for z“= ().

I .

JH.gure lB.
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i?iguro2,- Variation of heat transfer coefficient along pipe len tk for

fhyiroiynamically fully ievelopeflstate (c = 0.304 Cal m3, v =

18.3 m/sec,v= 0.175 cm2/see, 3 = 2.2 cm).
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Figure 6.- End temperature distribution for hydroilynamicallydevaloped
state (e) and distribution at the end cross-section of the

entrance run (h),- “
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Figure 7A.
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Figure A-I.- Mixing length derived from differentformulae.
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