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Heat transfer in the transition regime: Solution of boundary value problems
for Grad’s moment equations via kinetic schemes
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This paper presents a systematic approach to the calculation of heat transfer in rarefieKgadssn
numbers between 0.01 angl iy means of Grad’s moment method with high moment numbers, based on the
Boltzmann equation with linearized collision term. The problem of describing boundary conditions for the
moments is solved by the use of the so-called kinetic schemes that allow the implementation of the boundary
condition for the Boltzmann equation. The results, obtained with up to 48 one-dimensional moment equations,
exhibit temperature jumps at the walls with adjacent Knudsen boundary layers. For given wall temperatures
and Knudsen number, the results change with the number of moments, and converge if the number of moments

is increased.
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[. INTRODUCTION plex geometries and technical applications. As will become

clear in the course of the paper, this high number of moments

This paper deals with models for rarefied gases in thés mainly needed to avoid spurious jumps in the heat flux at

transition regime. Here, the relevant macroscopic lengtithe boundaries. Modified boundary conditions for the mo-

scales are of the order of the magnitude of the mean free pati€nts might be able to reduce the number of moments
of the gas particles, and the usual continuum models—Deeded considerably, e.g., see R8f. For the present paper,

Navier-Stokes and Fourier equations—are not applicabldlowever, we decided not to consider any modifications and

Typical problems are the reentry problem of space crafts, thto present the moment equations as they are. The solutions (_Jf
flow around very small objects, in particular, microelectro- "€ moment systems converge as the number of moments is
mechanical system@IEMS) and flow in microchannels. increased. It should be noted that,'to our best knowledge, the

Of particular interest are the forces and energy fluxes tharteSUItS presented below are the first systematic approach to
the gas exerts on the object. Their correct calculation re_solve boundary Va“.Je problems f(.)r extended sets of Grad-
quires an accurate description of the effects at the boun ype moment equations. For solutions of the moment equa-

: . : . ) jons in the bulk, i.e., under neglect of any boundary influ-
aries, i.e., temperature jumps, velocity slip, and Knudseqences see Reff10-12
boundary layers. X 1

. ) . Only few moments have an intuitive physical meaning,
Processes in rarefied gases are well described by tr]_ee” densityo, momentum densitpv,, energy densitpe,

Boltzmann equat!or[l,ZJ. The.numerical splution qf the pheat fluxg;, pressure tensqy;, and in an experiment only
Boltzmann equation, either directyg] or via the direct  some of these can be prescribed at the boundaries. In order to
simulation Monte Carlo methoi], is very time consuming  cjarify this point, let us consider the one-dimensional station-
[5], and there is a strong desire for accurate models thadry heat transfer problem between rigid walls, which will be
allow the calculation of processes in the transition regime agonsidered throughout this papéfig. 1). If the mass is
lower computational cost. fixed, we can successfully control four parameters: the wall

One approach towards this goal is the method of motemperature§, andT_, and the wall velocities ,=v =0.
ments, due to Grafb], in which the Boltzmann equation is By the physics of the problem, it is impossible to control
replaced by a set of moment equations. In the momentnore quantities. The heat flux, for instance, must be ad-
method one derives a set of first-order partial-differentialjusted so as to keep the temperatures constant and is not an
equations for the moments of the phase density; which anthdependent quantity in the stationary heat transfer experi-
how many moments are needed depends on the particularent. Alternatively, one might prescribe one of the tempera-
process. Experience shows that the number of moments mustres and the heat flux In this case, the second temperature
be increased with increasing Knudsen number(&w ratio  is not independent but will adjust itself. The mathematics of
between mean free path of the molecules and relevarthe moment equations, however, requires additional bound-
macroscopic length scalesometimes one will need several ary values for the moments and one faces the problem to
hundred momentf7,8]. prescribe these.

In this paper we shall solve moment systems for one-
dimensional stationary heat transfer with up to 48 moment

equations, corresponding to 430 moment equations in three- T(x=0)=T q Tx=L)=%
dimensional settings. The results exhibit temperature jumps v(x=0)=0 v(x=L)=0
at the walls and marked boundary layers. While for our prob- 0 I x

lem the treatment is rather straightforward, it is evident that
the number of moments is too high for applications in com- FIG. 1. Stationary heat transfer experiment between rigid walls.
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Recently Le Tallec and Perlg13] proposed a numerical One might expect that Chapman-Enskog expansions to
scheme for the moment equations of kinetic theory. The maitigher orders, i.e., the Burnett and Super-Burnett equations
ingredient of thiskinetic schemés the use of half-space mo- [2,21], are appropriate for the description of boundary value
ments of the phase density; the method was introduced bgroblems in rarefied gases. This, however, is not true: Apart
Perthame to solve the Euler equations, and other hyperbolitom the known problems of the Burnett equations, such as
conservation law$14]. A similar method was discussed by instability [22,23 and violations of the second laj24,25,
Junk [15]. Within these schemes it is easy to formulatethey do not describe linear boundary layg26] and must be
boundary conditions for the moments that follow directly supplemented by an appropriate boundary layer theory
from the boundary conditions for the Boltzmann equation. [1,27]. See also Ref28] for the asymptotic theory of bound-

While Le Tallec and Perlat use their scheme for the enary value problems for the Boltzmann equation.
tropy maximum closur¢l6], also known as Levermore sys-  In [5] the authors compute boundary layers from the Bur-
tem[17], the method can be applied to any moment methodhett equations. A closer examination shows that these are due
of kinetic theory, e.g., in the Grad moment metfj@édior in o nonlinear terms in the equations and can only be seen in
kinetic theory based extended thermodynanis the case of the strong gradients applied in that paper. The

In a previous paper, Ref9], we considered the most knydsen boundary layers, which we shall compute from the

$imple application: on.e—dimensional stationary heat transfefyoment equations, are due to linear terms and will be ob-
in a gas at rest, described by Grad’s moment system with 13,04 also if the gradients are weak.

and 14 moment$6,7]. This problem was well suited for Our approach focuses on the interplay between the bulk

;?g;kr:g? :itzlru;no'?\r/galesﬁ]hﬁ?;ei;'nmcoenflzan;g;nee%eq:rﬂz%%havior of the gas and the influences of the boundaries. In
Y y -np other papers, the authors try to extract the bulk behavior

lar, we showed that the distance of grid points must be con- .
siderably less than the mean free path—a fact that was n Jone[10-12,29,30 these results cannot be compared with

- : our results.
recognized i 13] and[15]. .

However, the cases with 13 and 14 moments are appro- The problem of _bounda_ry.values .for'hlgher moments can
priate for small deviations from equilibrium only and cannot alsc()j be' taclgled with ahmlnlma>((j \;/)\;lnuple forzthezentropy
be used for large Knudsen numbers. Therefore, the numeric fo UCt'_On’_ ueto S_truc trup anc eisdl, _see_[ 0,32-34
results of[9] for large Knudsen numbers are meaningless©" @pplications. This method gives qualitatively good re-

from the physical point of view. In particular, no Knudsen sults, but its status remains unclear, since so far it was not
boundary layers could be observed in these calculations. shown that the results are alspantitatively correct. The

In the present paper, we calculate the same process—on@SUItS presented here may be uged for comparison. It must
dimensional stationary heat transfer—for extended sets c}?e noted, howe\_/er,_that alr_eady In case of a IQW moment
moments. Our moment equations are based on the Bolti‘-L_’mber the apphc_atlo_n of this pr|n_C|pIe |s_forb|dd|ngly com-
mann equation with the linearized collision operator forphcated, and that it will be almost |mposs_|ble to use it in the
Maxwellian molecules. The number of moments is increase a§rehof the Ia_rge mo'”f.‘e”é nur?bl?ers Co_rr‘ﬁ'd?rﬁd here. .
until a further increase does not change the results consider- € paper Is organized as follows. he following sgcthn
ably. As one might expect, it turns out that the number ofJ1VeS @ brief introduction to moment systems of kinetic

moments must be larger for higher Knudsen numbers ang\w/eory. S_ection i deals Wi.th the heat transfer ex_perim_ent.
higher temperature gradients e simplify the equations, introduce appropriate dimension-

As in [9], our results exhibit temperature jumps at theless variables, and discuss the moment equations for 13 and

walls. A particular feature of the given results is the occur-z,6 mome”ts- In Sec. IV we .present our derivation of the
rence of boundary layer&nudsen layers[18,3], accompa- kinetic scheme. The appllca_ltlon of the scheme to the heat
nied by anisotropic stresses. These anisotropic stresses %@ns_fer PTOb'em_ with an arbitrary n_umber of moments and a
not driven by velocity gradients—the velocity is zero—so etailed dlscu_ssmn of the res_ults will be found in Sec. V. The
that this effect cannot be described within the Navier-StokesPaPer ends with our conclusions.
Fourier theory. A similar effect is a heat flux without tem-
perature gradient in the case of parallel Couette flow, see
[19,20. In our previous calculation®], the kinetic schemes Il. MOMENT SYSTEMS OF KINETIC THEORY
did not preserve the energy at the walls. We gave arguments
that this behavior should change when a larger number of ) o o
moments is taken into account and this is indeed the case, We consider one-atomic ideal gases. The objective of the
Still, one observes jumps in the heat flux at the walls, bukinetic theory of gases is the determination of the phase den-
while the jump is about 5% in the 13-moments casggfit  Sity f(Xi,t,¢;) that gives the number of particles in the phase
goes down to 0.3% for the 148-moment cé2é equations in  SPace elemerdx dc. Here,x; ,t denote space and time vari-
the one-dimensional problem ables, respectively, arg is the velocity of a particle of mass
Temperature jumps and slip are easily incorporated intd" The phase density is governed by the Boltzmann equation
the Navier-Stokes-Fourier theofg] that, however, does not [1.2]
describe Knudsen layers. The Navier-Stokes-Fourier theory
follows from the Chapman-Enskog expansion of the Boltz- —+c—=8(f), (1
mann equation into first order of the Knudsen nuniligg]. ot

A. Kinetic theory
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where the collision tern$(f) accounts for the change of the

phase density due to collisions among particles.

Once the phase density is known, one may calculate its

moments, for instance, the mass dengitythe momentum
densitypv;, and the energy densitye, given by

szffdc, Qvi=mf c;fdc,

3 k e , m( ,
QS—EQET-I-EU —ifc f dc. 2

In these definitionsk is Boltzmann’s constant,; denotes the
barycentric velocity of the gas ant denotes the tempera-
ture, which isdefinedhere.

Pressure tensqy;; and heat flux vectog; are given by

m
pij:p5ij+p<ii>:mf CiCjfdc, Qi=§f C?G fdc,

where Ci=c;—v; is the peculiar velocity. By comparison

with Egs.(2) the pressure is related to temperature and den-

sity by the ideal gas lavp= o (k/m)T. The pressure deviator

is denoted byp;;y ; the brackets label the traceless part of a

symmetric tensor.

B. Maxwell's boundary conditions

PHYSICAL REVIEW E 65 041204

Ofw+ (1= 0) Fr(—nCP),

fn(nCy), nCY<0,

n.Cyl'=0,

f= (3)

fw is the Maxwellian of the thermalized particles,

fW:fM(QW!TW!vi\N)
_e_w( [[m \

m
_ _ . W\ 2
Xexr{ 2kTW(Ck Ui

whereT,, denotes the temperature of the wall ang is the
density of the thermalized particles,, has be to determined

in order to ensure that the wall does not accumulate particles,
a condition that may be written as

mf fC\,f’nkdc=—mf fclngde. (@)
nCy =0 nkCy'=0

In the remainder of this paper we consider a gas at rest only,
so thatf fycyn,dc=0. Of course, in this case also the walls
are at restu}f’zo and the conditiori4) simplifies to

®

mJ fwCiny dc=mf fnckne de.
cn=0 ckn=0

C. Moments and moment equations

In moment methods one assumes that the state of the gas

For the calculation of boundary value problems, onejs satisfactorily described by a set of moments

needs boundary conditions for the phase derfsitjhe most
simple model for these goes back to Maxwdl|2]. He as-
sumes that the fraction (16) of the emerging particles is
reflected elastically at the wall. The remaining fractiéms

uA=f Wa(cy)f dc,

thermalized and leaves the wall in a Maxwellian distribution. WhereWa(cy) is a vector of polynomials of the microscopic

0 is called accommodation coefficient.
We denote the velocity of a particle oy and the velocity

velocity. Which moments one has to take into account de-
pends on the process under consideration. In Grad’s 13-

of the wall byv)", such that the particle has the velocity moment theory, one hak,=m{1c;,3¢%ccj,,3¢%ci}, i.e.,
C"=c;—v" in the frame where the wall is at rest. More- the moment®,0v;,0s,p;),q; defined above.

over, we choose the normal vector of the wall so that it
points inside the gas such that we hawg&C}'<0 for the
emerging particles and,C}'=0 for the particles that leave
the wall.

Furthermore,fN(C}N,xi ,t) denotes the phase density in-
side the gas in front of the wall. For our purposes it is con-
venient to writefy as a function of the tangential velocity

c’—nC¥n; and the normal velocityn,C}¥ as fy(CY
—nCPn; ,ni CY x;,1). In an elastic collision, the tangential

Multiplication of the Boltzmann Eq(1) by ¥, and sub-
sequent integration over velocity space yields the moment
equations

U
at

IF Ak .
+ (97 = PA with FAk: f ’\PACkf dC, (Ga)
k

PAZJ \I’ASf dC, (Gb)

velocity remains unchanged, while the normal velocitywhere we have introduced the fluxes of the moméngsand

changes its sign. So we have the phase densf{g€;"
—nCPn; . CY x; ,t) for the emerging particlesn(C}’
<0) andfy(C"—nCl¥n;,—nCY x; ,t) for the elastically
reflected particlesr(,C}'=0), respectively. In the following,

for simplicity of the notation, we suppress the tangential ve

locity as well as space and time in the list of argumentiof

and write the phase density directly at the wadiccording to
Maxwells boundary conditions as

their productionsP,. Note that the productions of mass,
momentum, and energy vanish.

The Egs.(6a) do not form a closed system of partial dif-
ferential equations for the moments since they contain the
fluxes and the productions which are reopriori related to
the moments. Here, a closure assumption is required, and it
is obvious that a phase density of the form

)

f(xk !tvck) = f(uA(Xk :t)!ck)
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serves for this purpose. In the sequel, a solution of this typenoment case, Grad’s 13-moment equations will be referred
will be called “moment solution.” There are several methodsto as the five-moment case and so on. In this paper we shall
to obtain a solution of this type. Grad found his momentnot go beyond the 48-moment case={11).

solution by an expansion around local equilibrium where the In the moment theory, one usually makes the barycentric
phase density is a Maxwellian. In recent years, the methodgelocity explicit, and builds up the moments with the pecu-
of maximizing the entropy16,17,27 and the equivalent liar velocity C;=c;—v;, instead of the particle velocity, .
method of extended thermodynamicd became more and We shall consider gases at rest exclusively, whereO at
more popular. These methods may lead to ill-posed problemall times. Then, obviously, both velocitie§; andc;, agree.
[15,35 and in Ref.[35] it is shown that the Grad method

gives results in accordance with the Boltzmann equation, E. Grad distribution

while the_ entropy maximum method (_joes n(_)t._One of the In Grad’s moment method, the phase density is related to
shortcomings of the moment theory is that it is not clear

which boundary conditions one has to choose for momenttshe moments as

without physical meaning, a problem that was addressed in
Ref. [31]. The numerical scheme of Le Tallec and Perlat, fl@ =1,
discussed in Sec. IV below, allows the use of boundary con-
dition (3) for the phase density in its implementation. Thus, it,yitn
will be possible to solve problems of kinetic theory with an
arbitrary number of moments.

1+§A‘, AgC')(uB)foSf))

Up= f v @fladc; 9)

D. Choice of moments . (a) . .
the coefficientsA i follow from the inversion of the last

The set of 13 moments contains the only moments thagqyation.f,, denotes the local Maxwellian, given by
have an intuitive physical meaning. With no physical mean-

ing for the other moments, it raises the question, which mo- o m |3 m )
ments one should consider for extended moment systdms. fM:E Vo kT exr{ - m(ck_vk)
priori, there are no restrictions on the choice of moments,

but in order to have a somewhat systematic approach wEquation(9) is the requested moment solution, and will be

choose the sets of moments by the following argument.  used to compute the constitutive functions for fluxes and
The basic quantities are the conserved quantities, masproductions as

tum, and . Qi b
momertim, and energy. gven by Fak(Xi,t) =Fax(ug(Xi 1)), Pa(Xi,t)=Pa(ug(x;,t)).

ugflzf wllfde with wBl=m{1¢,c?. The constitutive functions are local, i.e., depend only on the
local values of the moments,, and not on gradients or time

In order to close the system, we have either to find constituderivatives of the moments.

tive equations for pressure tensor and heat f48, or we
can add these to the list of variables, i.e., choose

F. One-dimensional processes

We shall consider only one-dimensional processes where
[13] _ [13] . (13] _ o 20 all fields depend on the space variakltle=x, and all fluxes
Ua f Watfde with W,"=m{1c;,cic;,coc;}. point in the same direction. We have to identify the relevant

o _variables for this case. To this objective, we decompose the
A closer look shows that in this case we need additionamomentsu . into their irreducible parts, i.e., into their
n

equations for the fluxes of heat flux and pressure tensor, i'etraces andll'érzé.c'é-free paf®,36]. We define
for [cgcjei f de and fc?cicy f dc. Again, we have either to ’

find constitutive equations for these fluxes, or we can add " - _
them to the list of variables. If we proceed in this manner, we Ui ~~~in):mf cocyj,-.ipf dc with
come to the following choices of moments:

k
us . o 5., =0
Wi=m{1c,cici, ... G Ci, -G €% Ci oG}, (fr 1)yl
and have
a=23,...,11 (8 /2|
. = b s ull ,

corresponding to 185), 26 (8), 45 (11), 71 (15), 105(19), Uiy, - iy= 2 Babl By B i,
148 (24), 201 (29), 265 (35), 341 (41), and 430(48) mo-
ments; the numbers in parentheses indicate the number of +- - (Pyterms],
partial-differential equations, which must be solved in the h K is th ; ¢ theth ¢
one-dimensional case. In the sequel, we shall identify th&/1€€ uid, .1, 1S the trace-free part of thkth trace o

sets of moment equations by the number of equations for thé;...; . The sum in the brackets extends over all different
one-dimensional case, i.e., the Euler equations are the threpermutations of the indices and
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1 The parametera(X) are functions of the moments¥) and
= ) follow from insertion of Eq.(13) in Eq. (118 and inversion.
IT en—k-j+1) The trace-free tensoxs!X) are related to spherical harmonics
j=0 [36], and are orthogonal with respect to integration over the
Maxwellian,fwa :,Z/ dc a,10nm- This property simpli-
fies the calculation of the coefficie ) considerably. We
shall not give any detail of these calculat|ons which were
performed bg means of the computer algebra system
MATHEMATICA

The producnonsP(ﬁ) depend on the choice of the colli-
_ _ sion termS(f). Here, we have adopted the linearized colli-
The first few tensorsy; ...; decompose according to sion term for Maxwell molecules, which is evaluated in Ref.
[36] via its eigenfunctiongSonine polynomials Our func-

oo
>

nl n even
(n—2k)!12kk!

I:>n,k:

~ N| >

n uneven.

I\) ‘

ui=uf) tions ) are linear combinations of the eigenfunctions, and
thus, the corresponding productions are linear combinations
Uij =U§3)>+ %U(l)ﬁij of the production terms for the eigenfunctions. These calcu-
lations were performed with anothetaTHEMATICA® pro-
Uij = Ufiky + £ (UD S+ uV s +ulM ). gram, developed by Au in the context of his the€3].

The computation of the production terms for other laws of
In the one-dimensional case, one needs to consider only thateraction between atoms, e.g., hard sphere molecules, or

X, ... X parts of the trace-free moments. Thus, we define Lenneard-Jones particles, is possible in principle. We chose
Maxwell molecules here, since the use of the eigenfunction
Il (=1 n! method allows a very fast and elegant approach to the com-
(k):mz C2(r+k)cn72r . ! . . .
i) =1 . X putation of production terms, while other interaction poten-
(n—=2r)!12r! . ; . X .
H (2n—2j—-1) tials require the term-by-term integration of the productions.

Ohwada[18] notices that the heat transfer problem is not
(10 influenced much by the change of the interaction potential.

This will be confirmed by the comparison of our results with
and have the variables, fluxes, and productions for the oneynwada’s in Sec. V C below.

dimensional case given by The computation of the productions is even more in-

volved for the full nonlinear Boltzmann collision term.
u(ﬂ u<xx x)_f w<n>fdc, (113 While, for Maxwell molecules, it is possible to compute the

productions without knowledge of the phase density, our at-
tempts to find a general equation for the nonlinear production

n times

for arbitrary moments failed so far. See REB8] for the
F%:J yinex fdc, (11  computation of nonlinear production terms for some higher
moments.
We shall not give details of the computation of the pro-
%:f yiRSdc. (119  ductions. However, in order to gain an idea of the form and

dimensions of the productions, it is useful to have a look on
the productions according to the BGK mod&l39]. If we

The choice(8) of moments corresponds to the set of Varl'adopt the mean collision frequency for Maxwell molecules,

ables the BGK collision term reads
n -— _
U ok » k=0,...5|. n=0....a S(H==ey(f=1w).
Here, y is a constant that follows from the calculation of the
w1 collision production for Maxwell molecules, angly is the
UEI;)+172k)v k= ’ collision frequency. Obviously, the productions for the BGK
model read
The one-dimensional moment equations read P{H=—0y(ul} —ufd ) (14)
Ul gER ul _ denotes the moments of the local Maxwelliap.is
<n> IFn) m|E g
n o =P{ (120 related to the heat conductivity by
o _ 15/ k\2T
and the phase density is how given by =7lm ; (15
1+2 )\(k) (13 where y is chosen in order to give the proper heat conduc-
tivity for Maxwell molecules. Note that the BGK-model
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gives the wrong Prandtl number ®¢5/2)(k/m)(u/«) Note, however, that there is no physical argument to assume
wherep is the viscosity. The Prandtl number for Maxwellian =0 even far away from any boundaries.

molecules is P£2/3 while the BGK model gives Prl. Henceforth, we shall not consider the nonstationary con-
Thus, with Eq.(15), the viscosity has an improper value. The servation laws for mass and momentum but replace them by
BGK production terms are not used for our numerical simu-their stationary form, i.e.,

lations below, which rely on the true productions of Maxwell

molecules. Po
v= ug(l’;: 0 and o= ugggz

— O

; (17
T

3~

IIl. STATIONARY HEAT TRANSFER
A. Basic equations the last equation follows from E@16) by means of the ideal
We consider the stationary heat transfer experiment, agas law. Accordingly, the balance of internal energy reads
depicted in Fig. 1. As in Ref[9], we shall compute the
stationary state via time stepping of the kinetic scheme. 3 dlnT oq
Therefore, we are interested in the time-dependent moment 5(Po—0) ——+— =0. (18)
equations. Following the same lines as in Réi, we shall

reduce the equations due to our knowledge of the St""t'on‘"‘rﬁ(lext, we introduce dimensionless variables. The length scale

resll:J'It.t ider the bal tions for th i§ defined by the wall distandg, and we choose a tempera-
IrSt, we consider the balance equations for the Conserveg, .o T, as the measure for temperature. In most of our cal-

g_uantm_es, Imass, trr:women:jum, and energy. In the Oneéulations,TO will be the temperature of the left wall. The
Imensional case, they rea constant of integratiop, defines the scale for the density as

d0  Jov 00=Po/(k/m)T,. The velocity scale is given by(k/m)T,
ot &_x:O’ and defines also the time scale biy/(k/m)T,. Altogether,

we introduce the following dimensionless quantities:

d d(ov2+p+
ov (ev+p 0):0, ”
ot X — Tyt
X m Ci T

3 ke,
d EQE +—v U+q+(p+0')l)

3 k - —  Ge=—— T=—
2 m /_TO
+ m

2 2
ot X

=0. (k)

~(k)
= .

Here, 0 =ufg) is the densityT = 5 ufg)/u(3)(k/m) is the tem- o K |22

peraturep =uf9} is the velocity,o=u() is the(xx) compo- Pol \/ =To

1) ) m

nent of the pressure tensor, age ;upyg is the(x) compo

nent of the heat flux. By means of mass and momentunq.qe dimensionless productions contain the Knudsen number

balance, the energy balance can be reduced to the balanceg(?ven by

internal energy, viz.,

3 k 3 k K1
ST T m 10

2m 2m q dv Kn=———. 19
+ov +5+(p+o)&=0. Lpoy (19

Y

ot X

Since the walls do not move, the gas will be at rest in theWe find the following dimensionless formulation: Velocity

stationary state, so that the velocity vanishes;0. Then, 2and density are eliminated by

the momentum balance reducesi{@+ o)/9x=0 and inte- .
ration gives ~ -~ 1-0o

e vul=0. o=

p+ g= po, (16)

wherepg is a constant of the dimension of pressure. Otherthe evolution of temperature follows from

authors solve the heat transfer problem in the hak—12, 3 nt -

i.e., without considering any boundary conditions, under the _(1_(})‘9 rlT + ‘9_?:0 (20)

assumption that the pressuypds constant so thatr=0. In 2 at X

our treatmentg is a variable in its own right and its values

will follow from the solution of the boundary value problem. all other moments obey the evolution equation
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oul  oFK 15
! n Eng —pY, a=-3 Kn(92—93). (23b)

and the phase density for the closure is given by The temperaturesiy,d, are not the temperatures of the
walls, but the temperatures of the gas directly at the walls
N 3 and differ from the wall temperaturég=1,T, . Indeed, in
. 1-0 1 .
t=— 7| A/ — (21)  the case of large Knudsen numbers one has to consider the
T 27T jump of the temperature at a wall and we proceed with its
calculation[2,9,3. To this end, we consider the boundary

%) is the same function ag{k} but with m=1 and the condition(3) for gas and boundary at rest, written in dimen-

~ 2
dimensionless velocitg;. The closure procedure is as be- Sionless form. The normal part of the energy flpc?c; f dc

fore: the dimensionless coefficienis¥) are computed by has to be continuous at the wall, a condition that we may

: 1r%-2 _1 2 H
insertion of Eq.(21) into Eq. (118 and then Eqs(11b),(11¢  Write asz Jfe e de=3[fyc e de or, with Eq.(3),
give the dimensionless constitutive equations.

e c22T

1+ R

For the BGK case the productions read Ef fC2c,n, de= Ef fuc2c de.  (24)
2 ngc =0 2 ngc =0
5(k) 11-0  -~m . ) .
P§n>:— ET(UEanEn)\E)- Now we consider Grad’s 13-moments phase density with

vanishing shear stresses, as it is appropriate in stationary heat

. . . . transfer, viz.,
We emphasize again that our numerical calculations rely on

the true productions of Maxwell molecules, the BGK terms 3 2
- . . 1 1 2 0yCyx lc
are only introduced to give a flavor of their dependence on fBl="/—— e 71— Z 21— = —|]|,
the variables. O N 2w 0 59
The hats that characterize the dimensionless quantities
will be omitted in the sequel. whered is the temperature of the gas at the wall. We obtain
from the conditions for conservation of mass and heat flux
B. Stationary heat transfer with five moments (5) and(24)
Before we consider the numerical solution of the moment
. R 1 1 1
equations via kinetic schemes, we study the heat transfer 2—QWW/TW= N
T a

with five and eight moments in some detail. For the purpose
of the following two sections, we consider complete accom-
modation, i.e.#=0. We start with the stationary state of the — \F 1
five-moment cas€Grad’s 13-moment cagewhere the mo- Qw Tw'= W\/5+ 2 OxMx-
ment equations for energy, pressure tensor, and heat flux read

Elimination of the densityo\, yields for the temperature

e

a_qzo jumps atx=0,x=1,
ax
1-9 1 [m q T -9 1\/% q
8dq_ 1d-9)g B 2V2(y, O 2V2 5.
15 ox Kn T (25)
d 4 (1-o0)q ¥ and 9, follow from Eq. (25) with Eq. (23b). In the re-
5(5-”2-'—0): “3Kn T mainder of the paper we shall calculate the stationary heat

transfer problem with numerical methods and we shall use

The first two equations show that the anisotropic stress varEds. (23@ and (23b) for comparison. Figure 2 shows the
ishes,o=0, and the equations reduce simply to the law oftémperature for various Knudsen numbgvall temperatures

Fourier To=1,T.=1.5). The jumps increase with increasing Knud-
sen number.
15 aT
a=- ZKn T& =const. (22) C. Stationary heat transfer with eight moments

Notice that the/dimensionlessheat conductivity:>Kn T de- Although _there are Jumps, no Knudsen bouno_lary layers
4 are present in the five-moment case. Indeed, while the tem-

pends on the temperature. We prescriliec=0)= 9, and perature jumps depend on the Knudsen nunflsee Eq.

T(x=1)=4¥, to obtain (25)], the temperature profile as given by E¢®3a is inde-
> —— pendent of the Knudsen number, that is, it depends only on
T=VI5+ (I~ Ip)x, (238 the temperatures,,d, at the wall, but has no explicit de-
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1.5 af9 \ 3 o 2 5T

Y | 35%] =" 2kn ¢ __SW\[X_ T-o0)],
Jdo 7

T1.3 5——m(¢—0)-

1.2 x and ¢ can easily be computed as

61
11 x=15T-o0), l,//=70'

and the remaining equations reduce to

0 0.2 0.4 0.6 0.8 1
X dg 1 P 26 41
FIG. 2. Temperature according to Fourier's law with tempera- X Kn? oox T+ 3_5‘7) T 1B
ture jumps for Knudsen numbers Ki®.01,0.05,0.1,0.2,0.5,1; wall
temperature§,=1, T, =1.5. 366 do 1
2450x  Kn™'

pendence on the Knudsen number. The curvature is solely

due to the temperature dependence of the heat conductivitgince the heat flux is constant, we can integrate the second
When more moments are taken into account, the tempergguation to

ture profile will again depend on the temperatures at the

walls (the temperature jumpsut will also contain contribu- T=K—- — — — — o, (27)

tions that areexplicit in the Knudsen number. This will be 15Kn 35

seen when we study the next member of our moment setgyhile the two other equations give for the stress

i.e., the eight moment cageorresponding to 26 moments in

three dimension$3D)]. The equations follow from the pro- 245x—0.5 ) 245x—0.5
cedures described above (@$ationary case o=Acosh\/zea—p—+Bsinhy/z——. (28
aq A, B, K, andq are the four constants of integration and four
(9_)(:0' boundary conditions are required for their determination.
Thus, the two boundary conditions for the wall
918 1 (1- temperatures—or the temperature jumps, respectively—are
o)o o ;
_<_q+ pl=—————, not sufficient for a complete solution of the problem.
x| 15 Kn T However, the boundary conditions are not necessary for a
general discussion of the result: The first two terms in Eq.
J (1 4 (1-0)q (27) give the solution of the linearized Fourier law, i.e., a
ox 13X L 3kKn T (26) straight temperature curve. The third term32o, gives the
deviation from the Fourier law, due to the influence of the

919 3 (1-0) higher moments. Our numerical results in Sec. V suggest that
R D D I S the leading term in the stress is given by
ax |35 2Kn T 7

p i [245X05
[1-0) 7= 725N 366 Kn

d 2
7 (280T)= — g =[x~ 15T(1- )],

and Fig. 3 shows this function for various Knudsen numbers
(arbitrary units, normalized It can be seen that this devia-

0 (112 T49To|=— (1—0)( To) tion has the form of a Knudsen boundary layer indeed. Evi-

ox| 159 ¢ 6Kn T y=To). dently, the thickness of the boundary layer increases with the
Knudsen number.

Here, we have introduced the abbreviatiops ugg; X It must be emphasized that in the case of one-dimensional

— (2 (D) ; ; " stationary heat transfer the Burnett equations for Maxwell
=Uu)y!, = Uy, . For now, we are interested only in the first- .
(0) ¥ =0z y moleculeq21] reduce to the Fourier la{22) and, therefore,

order deviations from a global equilibrium, whergg . ;
—1,0.=00e=0,0e=0,xye=154=0. That is, we consider gzg:lost describe a linear boundary layer, see 8] for

the linearized moment equations; numerical solutions of the
nonlinear moment equations will be presented later in this IV. KINETIC SCHEME
paper. Considering only first-order terms in deviations from

this equilibrium state, we find A. The scheme

We present our own derivation of the numerical scheme
_ d¢ _ _ 1 i E __ 4 [9]. While in Refs.[13,14] the authors start from the Boltz-
g=const, = o, Xt |=—5-q, : )
X Kn ax\3 3Kn mann equation, our argument is based on the moment equa-
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Here, the first integral describes the flux ¢f from x' to-
wardsx'*! and the second integral gives the flux froii
into x'.

The key step of the method is the assumption that the flux
out of x' is determined by the state in ce/lwhile the flux
into the celli is determined by the state in the neighboring
cell, i+1. This assumption may be written as

Q>

wACXfi+1/2dCZAiA, f Ol//ACXfi+l/2dC2 BE,_\+1 ,
CXS

=0
(31
0 02 04 06 038 1 where the half-fluxes in positive and negative directié&h\s
x andB), are defined as
FIG. 3. Functiong for various Knudsen numbers Karbitrary ) ) _ )
units) computed from the eight-moment case. Asz wac,f'dc, BIA:I wac,f dc. (32
c=0 c,<0

tions plus the definitions of moments, fluxes and producow, Eq.(30) reads

tions, and the knowledge of the moment solution for the e1p 1

phase density. Fi 2=Ap+Bj
For the discretization in space we consider an interval

e (0L) divided inn parts of lengthAx=L/n, with center and we obtain the space discretized moment equations as

points x', i=1,...n. We write the one-dimensional mo- ﬁuA 1 i1 . _
ment Eq.(12) as T (AA+ B 1-AL1-BY)=P,, i=1,...n.
U JFp (33
ot T ax TP Following Le Tallec and Perlat, we consider discrete times
=jAt with time stepAt and use a time-splitting method,
and integrate alondx to obtain i.e., we solve transport and relaxation consecutively. We de-
note uA(tJ) uy’. Then, the time splitting is as follows:
auh 1 (x+ax2dFp _ (@) Transport stepWith u}’ as initial condition solve
— —f —dx=P} (29
AXJyi—ax2 9% July

1 . .
-t —(AA+ BY '-A, '-BY)=0
with the cell averages

during At, with resultuy! **.
Ul = 1 fx *AX’ZuAdX and Pl,= 1 fx *AX/ZpAdX. (b) Relaxation stepwith Uy ** as initial condition solve
Ax x'—Ax/2 AX X —Ax/2 i
auy
, - : : - —==p!
The interval around' is associated with one valug, and at A

the moment solution for the phase densityAn is deter-

g+l
mined by this valuef = f(uAka) We consider the integral during At, with resultuA . Repeat both steps to go on in

time.
in Eq. (29), which yields , ) ;
a.(29 y The solution of the scheme for the variable§, i
i Axo OF =1, ..., requires:
f Z Agx= A S (i) Constitutive equations for the half-fluxes and the pro-
- Ax/2 X ductions
whereF ;" 2= F ,(x' + Ax/2) denote the fluxes at the borders Ap=Ap(Ug), Ba=Bj(Up), PR=Ppu(Up);

of the |nterval We consider the definitigBb) and decom-
pose the flux into its parts due to particles traveling in posi-
tive or negativex direction, respectively,

these follow from the definition§32) and (11) and the mo-
ment solution(13). _
(i) Initial values for the momentB'A'O.
(i) Boundary conditions, i.e., the half—fluxe@.% and
Fi 2= f WaCy F712dc BA"', which follow from the boundary conditions for the
phase density. According to the boundary conditi®n these
, , are the half-fluxes of the wall-distribution functio@fyy
=J ‘/’Acxf|+1/2dc+f yacyf' 2 dc. +(1— 0)fn(—nycy), wheref,, is the wall Maxwellian, and
=0 =0 f\ denotes the moment solution in front of the wall. One
(30 obtains
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AS=6ASY—(1— 6) paB3, 2(Ap—

A= OAL" — (1= 0)daBy W dFp  Ax &*(Ax—Bp) P 04D,
X 2 a2
BA 1= 6BR "W —(1—6) ppAR,
In Ref.[9] we showed that\x must be small compared to
i e the mean free path of the gas, so that the method can only be
wellians andga=a(—cy)/¥a(c,) (the entries ing, are  sed for relatively large Knudsen numbers. This fact is partly
either+1 or —1). . related to the kinetic schemes, but also reflects the stiffness

The constitutive equations for the half-fluxés(us),  of the moment equations. However, extended sets of moment

Ba(ug) as well as the boundary conditios; ,BR'* are  equations are required in the particular case of large Knudsen
computed from the phase density witMaTHEMATICA® pro-  numbers, so that the restriction is not severe. Moreover, the
gram, and directly saved asF@RTRAN subroutine. We shall  resolution of Knudsen boundary layers requires a grid size
not give any details on these functions, see Reffor de-  pelow the mean free path anyway.

whereASW ,BA "W are the half fluxes of the two wall Max-

tails of the 13- and 14-moment cases. . In the first-order scheme, moments and phase density are
Most of our numerical calculations are based on a firstapproximated as piecewise constant functions in space. A
order scheme, with a simple Euler time step, viz., second-order scheme can be obtained by constructing piece-
At wise linear functions with the minmod reconstructigt].
uil Tr=ukl+ AtPR - H(A‘A'j +By Y — Al Y By, We set
(34) i+1

minmod uj) = %[sgr( Up t—Up) +sgriup—up b))
The implementation of the semi-implicit scheme for the re-

laxation step used in Reff9,13] is too cumbersome for the Xxmin (ul ' —uly), (Uy—ul H]
large numbers of moments in questions, and was not used.

However, its implementation is easy for the BGK productionand

terms(14), and then it is the best choice.

The evolution of temperature follows from the balance of X=X

Ua(X) = Ul +minmod ul)

internal energy20), and its discretized form differs from Eq. Ax '’
(34, viz.,
Ax< et AXx
Xj— = <X<X{+ —.
Tt Thieyg — 2 2t _ 1 b2 b2
3AX 11—l

The schemd33) requires the half-fluxed,(ug),Ba(ug) at
. o o . the cell boundaries, see E@1). These are now obtained as
X(AY+B Y -ATY B | . ' A
Ap=Anluj+ sminmod up)],

In principle, it poses no problem to consider this finite
volume scheme—where only half-space moments of the
fluxes are used—for multidimensional processes. This fe
ture distinguishes the Grad method with kinetic schem
from other methods where half-space moments are take
variables, e.g., the Mott-Smith methdd0], or a similar
method that was used in Rg#1] for the simulation of the
heat transfer problem. Moreover, these methods are not ve
systematic, since it is not clearpriori which moment equa-
tions one should use in order to obtain the equations for th
half-space variables.

By =Ba[u5— minmod ul)].

or consistency, we used the modified Euler metfmeéthod
Edf Heun for second-order integration in time.

N3S |y the following section we shall present results with
Knudsen numbers kKn0.01,0.05,0.1,0.2,0.5,1. The second-
order scheme was used for K.01 with 200 grid points,
"¥nd for Kn=0.05 with 100 grid points. All other results rely
on the first-order scheme with 100 grid points. The CFL
fiumberAt/Ax was chosen between 0.05 and 0.1. The initial
values for the moments correspond to a global equilibrium
with the temperature of the left wall beifigy=1. The tem-

B. Accuracy and limitations perature of the right wall is increased linearly until the final
In order to show that the above discretization is of firsttemperaturdl_is reached. Then, the calculation is continued
order in space we expand until the stationary state is reached. The necessary number of
_ _ time stepsn varies with the Knudsen number, for Ki0.5
Up=Uax, Ax=Ax, we hadn=16000 (heating periodn/4) while n=160 000

was needed for K& 0.01 (heating perioch/2).

L aA 9?Ap (AX)?
A'A—1=AA_(9—XAAX+ A (4%)

ol 2 etc., C. Accuracy at the wall
In the case of one-dimensional stationary heat transfer the
and obtain withA,+Ba=F 4 from Eq. (33 heat flux should be constant in space. However, independent
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4 Kn=0.1 15 kn=0.1
M24,48
\

31" ms
)
:.E,z

! M8 M24

0

0 0.2 0.4 « 0.6 0.8 1 0 0.2 0.4 « 0.6 0.8 1
FIG. 4. Deviation of heat flux from its mean val(& %) for FIG. 5. Temperature curve for moment theories with 8, 24, 48
theories with 5, 8, and 24 moments, ¥0.1, To=1, T, =1.5. moments and Fourier solutigashedi Kn=0.1, To,=1, T, =1.5,

andf=1.

of the accuracy of the scheme, we observe jumps in the heat
flux at the wall, which stand in contradiction to the conser-
vation of energy. The jumps in the heat flux are a conse- A. Influence of the moment number

quence of the moment approximation and the Kkinetic e start the survey of our results with some figures that
schemes, and cannot be avoided. In order to see this, Wg,ow the influence of the number of moments. Again, we
study Eq.(33) for the left cell (=1) in the stationary state, consider the case with Kn0.1, To=1, T,=1.5T, and 6
=1. Figure 5 shows the temperature curves computed with
A,1\+ Bi—Ag_ B};=Ax p}\_ (35) 8, 24, and 48 moments in comparison to the Fourier solution
(23). There is no marked difference between the 24- and
48-moments cases, but the eight-moment case differs signifi-

If the fields were continuous between cells 1 and 2, we hadantly. T_zis de:]erence betcomes ?%/en morte aPpa;‘enty when
Bl—B, B2=~B,+dB./dxAx and for Ax—0 Eq. (35 W€ consider other moments, e.g., the anisotropic stresge
wguld AreduAce tg the Arequiremem,ﬁzAﬁ. 'I:ns g?ve(s ;S Fig. 6, or the nonequilibrium part of the fourth momeht

— (M i
many equations as there are variablesments, and ac- [ (i~ fw)dc, see Fig. 7.

dinaly th | £ all ts at th I For the discussion of the stress one should bear in
cordingly the values or all moments at the wall were pre'mind, thato=0 in the Navier-Stokes case. Nonzero values

scribed. In particular, the heat flux would assume differembf o therefore are related to Knudsen number effects, in our

values at the two walls. This is extremely unphysical: the.gse to the Knudsen boundary layer. Again, we find almost

heat flux must adjust itself to a constant value that dependg,e same results for moment numbers above 24 moments.
on the temperature difference between the walls. This diThe corresponding boundary layer structure is stretched far
lemma is avoided by jumps of the fields between the twointo the gas and is independent of the grid size. Notice, how-
cells next to the wall. ever, thato contributes less than 1% to the total stress
Our results show that the jumps in the heat flux becomey =1.
smaller with increasing number of moments. Figure 4 shows With eight and five moments we find smaller structures
the deviation of the heat flux from its mean value for variousclose to the wall, which depend on the grid size, and will
number of moments for the parameters=K01,T,=1,T reduce to jumps, if the grid is more and more refined. These
=1.5 (for full accommodation,#=1). With only five mo-  structures are a consequence of the jumps in the heat flux at
ments, the jump is about 4%, but it is less than 0.5% with 24
moments. With the present choice of parameters, a further

V. RESULTS AND DISCUSSION

i ; X M5 Kn=0.1
increase of the moment number leads to only small improve- 000781 \{~

ments. The profiles close to the wall follow from the finite 0.005 M

step sizeAx. With a finer grid, the curves reduce to a con- 0.0025

stant line with two jumps at the walls, see REJ] for cor-
responding results.

In order to understand the improvement due to the in- -0.0025
crease of the number of moments better, one has to recall
that the moment method assumes a moment sol#pim
all space points, i.e., a series. According to the boundary 00078
condition(3), the phase density at the wall is a discontinuous 0 0.2 0.4 06 0.8 1
function of the microscopic velocity. A series in polynomials, X
which pictures this discontinuity sufficiently, will require a  FIG. 6. Anisotropic stress for various numbers of moments,
large number of expansion coefficients, i.e., moments. Kn=0.1, To=1, T =1.5, andg=1.

0

-0.005 M24,48

041204-11



HENNING STRUCHTRUP PHYSICAL REVIEW E55 041204

0.5

Kn=0.1
0.4
0.3
M8
0.2
A
0.1 M24
0
M41,48
0.1
0 0.2 04 06 08 1 0 0.2 04 08 0.8 1
FIG. 7. Nonequilibrium partA of fourth moment for various FIG. 9. Temperature curve for Knudsen numbers Kn
numbers of moments, kn0.1, To=1, T, =1.5, andf=1. =0.01,0.05,0.1,0.2,0.5,1, wall temperatuiBg=1, T,=1.5, and

the walls, i.e., improper boundary conditions, and have no
physical meaning. Recall that should vanish in the five-
moment case.
The nonequilibrium pari\ of the fourth moment is an-
other quantity that will be zero in local equilibrium, i.e., in 0dd values ofa.
the range of validity of the Navier-Stokes theory. Figure 7 B. Influence of Knudsen number
shows thatA is considerably different from zero, and that it
is more sensitive to a change of the number of moments, the Now we turn our attention to the influence of the Knudsen
curves obtained with 24 and 48 moments now are Sllghtl)humber Figure 9 shows the temperature for a Variety of
different. The results converge with increasing number ofknydsen numbers between Ki®.01 and Kn=1, again for
moments: t_here is no visible discrepancy bgtween the resulipe wall temperature§,=1,T, = 1.5. All curves were calcu-
obtained with 41 and 48 moments, respectively. lated with sufficiently large moment numbers, so that the
Under_ the assumption .Of constant pressure, as in R‘E]C§esults did not change when more moments were added. The
[10-13, it follows that in dimensionless form figure must be compared with Fig. 2, which shows the results
6 for the Fourier case. Evidently, the moment solution gives
A= €q2:0.192= const, smaller jumps, and adds marked boundary layers.
In order to emphasize the difference between Fourier and

where the numerical value holds for the present example. ABioment solution, we show a direct comparison for Kn
can be seen, this value is realized in the bulk for the eight="0.01 and Kr=1 in Fig. 10. For the smaller Knudsen num-
moment case, while for h|gher moment numbersis a ber, Kn=0.01, there is no visible difference between the two
strictly descending function. Clearly, in our solutioh,is  results. The boundary layer effects can be ignored and also
dominated by boundary effects that were excluded in Refdhe jumps are negligible. We conclude that for Knudsen
[10-12. numbers Kr=0.01 the gas can be described by the Fourier

We already discussed the jumps of the heat flux in Secheory with sufficient accuracy. For higher Knudsen num-
IV C. Figure 8 shows the mean value @fs it changes with  bers, however, one has to account for the rarefaction of the
the number of moments as defined in E¢(8). One can see gas by more and more moments, since only then one can
the convergence of the heat flux towards a constant value for

increasing number of moments. The zig-zag shape of the
curve indicates some differences between sets with even and

1.5
-0.128 Kn=0.1
-0.129 1.4
0.13
13
0.131
9 T
-0.132 1.2
-0.133 11
0.134
2 4 6 8 10 0 0.2 0.4 0.6 0.8 1
o x
FIG. 8. Mean value of heat flux over number of momemt&q. FIG. 10. Comparison of moment solution with Fourier solution,
(8), Kn=0.1, Tp=1, T =1.5, andd=1. Kn=0.01 and Kn=1.
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0 of the equations, or of the equatioaad the use of the ki-
netic schemes.
-0.05|
-0.1 C. Comparison with the work by Ohwada
q 0.15 So far we have shown the general behavior of our ex-
tended moment systems. In this section we address the ques-
-0.2 tion whether our solutions correspond to solutions of the
0.25 N Moments Boltzmann equations. Although there are many papers avail-
S able, which address stationary heat transfer in rarefied gases,
es3y, . TT=~- we could not find a reference where exactly the same prob-
0 0.2 04 08 0.8 1 lem is solved, i.e., stationary heat transfer in a gas of Max-

wellian molecules with Maxwell boundary conditiofi44].

FIG. 11. Heat fluxg over Knudsen number Kn for wall tempera- Indeed, authors who use DSMC simulations or solve the
tures To=1, T =1.5. Continuous line, moment solution; discon- Boltzmann equation by other means prefer to consider hard
tinuous line, Fourier solutio25). sphere interaction between molecules, while authors working

with moment equations prefer Maxwellian molecules, as we
expect a proper description of the temperature jumps ando in the present work. With solutions for Maxwellian mol-
boundary layers. ecules lacking, we decided to compare our results with those

Figure 11 shows the heat flux as a function of the Knud-of Ohwada[18] for hard sphere molecules, obtained by a
sen number, again comparing Fourier case and many maliscretization method, developed by Sone and co-workers
ments. The Fourier law overestimates the heat flux by aboyg]. In our dimensionless units, Ohwada considers stationary
10% compared to the moment approach. heat transfer for wall temperature¥,=0.86T =1.14

The growth of the boundary layer with increasing Kn canwith accommodation coefficient=0.826 and/or §=0.5
best be seen from the curves of the anisotropic stresses for Knudsen numbers Ki¥=0.0658,0.1395,0.1942,
Fig. 12. With Kn=0.01 the stress indeed differs from zero 0.2994,0.7582. For hard sphere molecules, Knudsen number
only in a small layer at the walls. With increasing Kn the and heat conductivity are related (]
boundary layer expands more and more into the gas. Already
at Kn=0.1 both boundary layers meet, and the rarefied gas Hs 32\/5 Kk [m
effects dominate the anisotropic stresses Kn ~75 7 pol ET '

For Knudsen numbers Knal, collisions among the gas
particles are less frequent than interactions between particlgghile for Maxwellian molecules we obtain from Eqdl5)
and the walls, so that the transfer of heat is dominated by thgnd (19)
free flight of the gas particles between the walls. In this case,
the convergence of the moment equations with increasing 4 k
moment number is rather weak. According to our simula- Kn= 15 oL
tions, a number of 48 moments seems not to be sufficient in Po

the case Krr1. We wish to compare gases with the same heat conductivity,

Additionally, some of the moment systems become UN3nd thus we find for the relation between the Knudsen num-

stable for large Knudsen numbers, which leads to large 034,

cillations in the heat flux or complete breakdown of the code.

m
?To.

However, this happens only for the moment systégsvith 5 [
a even ande=6. Remember that already Fig. 8 indicated Kn= —\ﬁKnHS, (36)
that systems witlaw even or odd have different properties. At 8 V2

present it is not clear whether the instabilities are a property{h fis. | der 1o h " ble with th ¢
at is, in order to have results comparable wi ose 0

Ohwada, we have to consider the Knudsen numbers Kn
=0.05154,0.1093,0.1521,0.2345,0.5939. Figure 13 shows
the temperature curves from the moment the@t§ one-
dimensional momentsn juxtaposition to those of Ohwada.
The black dots on the right and left are an identical set, and
have been introduced to guide the eye. Obviously, for the
small Knudsen numbers (Kn0.05154,KhS=0.0658),
both methods give identical results. As the Knudsen numbers
are increased, we observe small differences between the two
sets of solutions, which are more marked directly at the wall.
These small differences might be due to an insufficient mo-
0 0.2 04 08 08 1 ment number, to the fact that we considered the linearized

collision term of the Boltzmann equation, or to the differ-
FIG. 12. Anisotropic stresses for various Kn. ences in the interaction potential.

0.01

0.005

-0.005

-0.01
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Kn=0.0658

1.1 Kn=0.05154 11t
0.1395

0.1942 FIG. 13. Temperature distribu-

tion for stationary heat transfer
between two plates with accom-
modation coefficient 6=0.826.
Left: Moment solutions for Max-
wellian molecules. Right: Solu-
tions of the Boltzmann equation
for hard sphere molecule&con-
tinuous line$ and BGK equation
(broken line by Ohwada[18].
The Knudsen numbers correspond
to the same heat conductivity, see
Eqg. (36). The black dots on the
right correspond to those on the
left.

T(x1)

0.9

-0.5 0 0.5

Figure 14 shows the density distribution for the samehappens, when the temperature ratio is increased. Figure 15
Knudsen numbers with accommodation coefficiertts  shows the temperature curve 6y /To=2.5 at Kn=0.1 for
=0.826 at the right wall, and/ =0.5 at the right wall. In several moment numbers up to 48. Our simulations indicate
order to compare our results with those of Ohwada, we plothat the results have not yet converged, and more moments
the rescaled densitg(x)/0(0.5). Again, we can observe a would be needed in order to describe the process properly.
good agreement between moment solutions and solutions ofote the marked difference between the moment solutions
the Boltzmann equation with small differences in the vicinity and the solution of the Fourier lagdashedl
of the walls and for larger Knudsen numbers. A further increase of the temperature ratio leads to a
breakdown of the code, and thus the method cannot be used
in these cases. The breakdown is probably due to an insuffi-

So far, we presented results for a moderate temperatui@ent resolution of the discontinuous phase density at the
ratio between the two wallg; /To=1.5. Now we ask what walls. It should be emphasized, however, that for applica-

D. Influence of temperature difference

Kn=0.05154
11 Kn=0.0658
0.1395
FIG. 14. Density distribution
for stationary heat transfer be-
tween two plates with accommo-
dation coefficientsdy=0.826, 6,
=0.5. Left: Moment solutions for
Maxwellian molecules. Right: So-
lutions of the Boltzmann equation
for hard sphere moleculegon-
tinuous line$ and BGK equation
(broken ling by Ohwada[18].
3 The Knudsen numbers correspond
to the same heat conductivity, see
L Eq. (36). The black dots on the
i right correspond to those on the
3 left.

plx1)
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spacecrafts, however, involves strong gradients, and requires
the resolution of shocks. There, the description with moment

equations requires a huge amount of equations, and the
method is more of theoretical than practical interest, e.g., see
[37] for the calculation of shock profiles.

However, our results show that one has to consider a rela-
tively large number of moments to obtain satisfactory results.
This will prevent the use of the method for more complicated
problems, e.g., problems involving complex geometries. The
large number is needed mostly in order to ensure the conser-
vation laws at the walls. It is likely, although not guaranteed,

0 0.2 0.4 . 0.6 0.8 1 that one can find alternative methods to implement the
boundary conditions, which might allow accurate simula-

FIG. 15. Temperature curve for moment theories with 8, 24, 41tions of jumps and boundary layers with a smaller number of
48 moments and Fourier solutig@ashed, Kn=0.1, To=1, T, moments. Only with these one will consider the moment
=25, andg=1. equations as a tool for technical applications. Modified
. . . .. boundary conditions will be discussed elsewhere.
tions in MEMS and microchannels the temperature ratio will g5,y problems with nonzero velocity are more important
be close to 1. o _ _in the simulation of MEMS and microchannels. Thus, the

Due to the restriction to relatively small temperature dif- oy step in line is to apply the Grad method with kinetic
ferences we cannot compare our results with those in Ref§-hemes to standard flow problems, e.g., Couette and Poi-
[5,29,30,41 where the authors consider temperature ratiogejjjie flow. For these, one will observe velocity slip at the
above 10. From these papers it seems that the linear boungzis and boundary layers in the velocity in addition to the
ary layers are less important at large temperature d'ﬁerencetémperature jumps and boundary layers of this paper; see
while the overall behavior is mostly driven by the nonlinear gt [20] for an account of boundary layers in the Couette

241 Kn=0.1

terms in the heat flux equation. flow for the 26-moment case and REB2] for a discussion
of slip in moment systems. The analysis of these flow prob-
VI. CONCLUSIONS lems will follow the same lines as outlined here for the heat

ntgansfer problem.
g n any case, our results show that Grad's moment

collision operator for Maxwellian molecules and closed bysystems—other than the Burnett equations—contain the im-

the method of Grad. We have solved the stationary hegportant features of boundary dominated processes in the tran-

transfer problem for the moment equations numerically withS1on régime, and we hope that they will play an important

the method of kinetic schemes. This method allows to imple_role in the future simulation of microscopic flow phenomena.

In the present paper, we considered moment equatio
that are based on the Boltzmann equation with the linearize

ment the boundary cond_mon for the Boltzmann equation, so ACKNOWLEDGMENTS
that the boundary conditions for the moments are well de-
fined for any set of moment equations. I wish to thank Dr. Joy Au (Technical University of Ber-

Our results show that the method gives satisfyinglin) for the code that was used in the calculation of the pro-
results—including temperature jumps and Knudsen boundduction terms. This study was carried out during a long-term
ary layers in fair agreement with direct solutions of thestay at the Institute for Mathematics and its Applications
Boltzmann equation—in the transition regim®&nudsen (IMA) during its program on “Reactive Flow and Transport
numbers 0.0%Kn=<1) at moderate temperature differencesPhenomena,” and | wish to thank the IMA for their hospital-
between the walls. These are the conditions one will meet ity and support. This research was supported by the Natural
the simulation of MEMS and microchannels, so that Grad'sSciences and Engineering Research Council of Canada
method may be a suitable tool here. The reentry problem ofNSERQ.
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