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Heat transfer in the transition regime: Solution of boundary value problems
for Grad’s moment equations via kinetic schemes

Henning Struchtrup
Department of Mechanical Engineering, University of Victoria, Victoria British Columbia, Canada V8W 3P6

~Received 31 October 2001; published 3 April 2002!

This paper presents a systematic approach to the calculation of heat transfer in rarefied gases~Knudsen
numbers between 0.01 and 1! by means of Grad’s moment method with high moment numbers, based on the
Boltzmann equation with linearized collision term. The problem of describing boundary conditions for the
moments is solved by the use of the so-called kinetic schemes that allow the implementation of the boundary
condition for the Boltzmann equation. The results, obtained with up to 48 one-dimensional moment equations,
exhibit temperature jumps at the walls with adjacent Knudsen boundary layers. For given wall temperatures
and Knudsen number, the results change with the number of moments, and converge if the number of moments
is increased.
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I. INTRODUCTION

This paper deals with models for rarefied gases in
transition regime. Here, the relevant macroscopic len
scales are of the order of the magnitude of the mean free
of the gas particles, and the usual continuum model
Navier-Stokes and Fourier equations—are not applica
Typical problems are the reentry problem of space crafts,
flow around very small objects, in particular, microelectr
mechanical systems~MEMS! and flow in microchannels.

Of particular interest are the forces and energy fluxes
the gas exerts on the object. Their correct calculation
quires an accurate description of the effects at the bou
aries, i.e., temperature jumps, velocity slip, and Knud
boundary layers.

Processes in rarefied gases are well described by
Boltzmann equation@1,2#. The numerical solution of the
Boltzmann equation, either directly@3# or via the direct
simulation Monte Carlo method@4#, is very time consuming
@5#, and there is a strong desire for accurate models
allow the calculation of processes in the transition regime
lower computational cost.

One approach towards this goal is the method of m
ments, due to Grad@6#, in which the Boltzmann equation i
replaced by a set of moment equations. In the mom
method one derives a set of first-order partial-differen
equations for the moments of the phase density; which
how many moments are needed depends on the partic
process. Experience shows that the number of moments
be increased with increasing Knudsen number Kn~the ratio
between mean free path of the molecules and relev
macroscopic length scale!; sometimes one will need sever
hundred moments@7,8#.

In this paper we shall solve moment systems for o
dimensional stationary heat transfer with up to 48 mom
equations, corresponding to 430 moment equations in th
dimensional settings. The results exhibit temperature jum
at the walls and marked boundary layers. While for our pr
lem the treatment is rather straightforward, it is evident t
the number of moments is too high for applications in co
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plex geometries and technical applications. As will beco
clear in the course of the paper, this high number of mome
is mainly needed to avoid spurious jumps in the heat flux
the boundaries. Modified boundary conditions for the m
ments might be able to reduce the number of mome
needed considerably, e.g., see Ref.@9#. For the present paper
however, we decided not to consider any modifications a
to present the moment equations as they are. The solution
the moment systems converge as the number of momen
increased. It should be noted that, to our best knowledge,
results presented below are the first systematic approac
solve boundary value problems for extended sets of Gr
type moment equations. For solutions of the moment eq
tions in the bulk, i.e., under neglect of any boundary infl
ences, see Refs.@10–12#.

Only few moments have an intuitive physical meanin
i.e., density%, momentum density%v i , energy density%e,
heat fluxqi , pressure tensorpi j , and in an experiment only
some of these can be prescribed at the boundaries. In ord
clarify this point, let us consider the one-dimensional statio
ary heat transfer problem between rigid walls, which will
considered throughout this paper~Fig. 1!. If the mass is
fixed, we can successfully control four parameters: the w
temperaturesT0 andTL , and the wall velocitiesv05vL50.
By the physics of the problem, it is impossible to contr
more quantities. The heat fluxq, for instance, must be ad
justed so as to keep the temperatures constant and is n
independent quantity in the stationary heat transfer exp
ment. Alternatively, one might prescribe one of the tempe
tures and the heat fluxq. In this case, the second temperatu
is not independent but will adjust itself. The mathematics
the moment equations, however, requires additional bou
ary values for the moments and one faces the problem
prescribe these.

FIG. 1. Stationary heat transfer experiment between rigid wa
©2002 The American Physical Society04-1
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HENNING STRUCHTRUP PHYSICAL REVIEW E65 041204
Recently Le Tallec and Perlat@13# proposed a numerica
scheme for the moment equations of kinetic theory. The m
ingredient of thiskinetic schemeis the use of half-space mo
ments of the phase density; the method was introduced
Perthame to solve the Euler equations, and other hyperb
conservation laws@14#. A similar method was discussed b
Junk @15#. Within these schemes it is easy to formula
boundary conditions for the moments that follow direc
from the boundary conditions for the Boltzmann equation

While Le Tallec and Perlat use their scheme for the
tropy maximum closure@16#, also known as Levermore sys
tem @17#, the method can be applied to any moment meth
of kinetic theory, e.g., in the Grad moment method@6# or in
kinetic theory based extended thermodynamics@7#.

In a previous paper, Ref.@9#, we considered the mos
simple application: one-dimensional stationary heat tran
in a gas at rest, described by Grad’s moment system with
and 14 moments@6,7#. This problem was well suited fo
checking the numerical scheme, since the moment equa
are analytically solvable in the 13-moment case. In parti
lar, we showed that the distance of grid points must be c
siderably less than the mean free path—a fact that was
recognized in@13# and @15#.

However, the cases with 13 and 14 moments are ap
priate for small deviations from equilibrium only and cann
be used for large Knudsen numbers. Therefore, the nume
results of @9# for large Knudsen numbers are meaningle
from the physical point of view. In particular, no Knudse
boundary layers could be observed in these calculations

In the present paper, we calculate the same process—
dimensional stationary heat transfer—for extended sets
moments. Our moment equations are based on the B
mann equation with the linearized collision operator
Maxwellian molecules. The number of moments is increa
until a further increase does not change the results cons
ably. As one might expect, it turns out that the number
moments must be larger for higher Knudsen numbers
higher temperature gradients.

As in @9#, our results exhibit temperature jumps at t
walls. A particular feature of the given results is the occ
rence of boundary layers~Knudsen layers! @18,3#, accompa-
nied by anisotropic stresses. These anisotropic stresse
not driven by velocity gradients—the velocity is zero—
that this effect cannot be described within the Navier-Stok
Fourier theory. A similar effect is a heat flux without tem
perature gradient in the case of parallel Couette flow,
@19,20#. In our previous calculations@9#, the kinetic schemes
did not preserve the energy at the walls. We gave argum
that this behavior should change when a larger numbe
moments is taken into account and this is indeed the c
Still, one observes jumps in the heat flux at the walls,
while the jump is about 5% in the 13-moments case of@9#, it
goes down to 0.3% for the 148-moment case~24 equations in
the one-dimensional problem!.

Temperature jumps and slip are easily incorporated
the Navier-Stokes-Fourier theory@2# that, however, does no
describe Knudsen layers. The Navier-Stokes-Fourier the
follows from the Chapman-Enskog expansion of the Bo
mann equation into first order of the Knudsen number@1,2#.
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One might expect that Chapman-Enskog expansions
higher orders, i.e., the Burnett and Super-Burnett equat
@2,21#, are appropriate for the description of boundary va
problems in rarefied gases. This, however, is not true: Ap
from the known problems of the Burnett equations, such
instability @22,23# and violations of the second law@24,25#,
they do not describe linear boundary layers@26# and must be
supplemented by an appropriate boundary layer the
@1,27#. See also Ref.@28# for the asymptotic theory of bound
ary value problems for the Boltzmann equation.

In @5# the authors compute boundary layers from the B
nett equations. A closer examination shows that these are
to nonlinear terms in the equations and can only be see
the case of the strong gradients applied in that paper.
Knudsen boundary layers, which we shall compute from
moment equations, are due to linear terms and will be
served also if the gradients are weak.

Our approach focuses on the interplay between the b
behavior of the gas and the influences of the boundaries
other papers, the authors try to extract the bulk behav
alone@10–12,29,30#; these results cannot be compared w
our results.

The problem of boundary values for higher moments c
also be tackled with a minimax principle for the entrop
production, due to Struchtrup and Weiss@31#, see@20,32–34#
for applications. This method gives qualitatively good r
sults, but its status remains unclear, since so far it was
shown that the results are alsoquantitativelycorrect. The
results presented here may be used for comparison. It m
be noted, however, that already in case of a low mom
number the application of this principle is forbiddingly com
plicated, and that it will be almost impossible to use it in t
case of the large moment numbers considered here.

The paper is organized as follows. The following secti
gives a brief introduction to moment systems of kine
theory. Section III deals with the heat transfer experime
We simplify the equations, introduce appropriate dimensi
less variables, and discuss the moment equations for 13
26 moments. In Sec. IV we present our derivation of t
kinetic scheme. The application of the scheme to the h
transfer problem with an arbitrary number of moments an
detailed discussion of the results will be found in Sec. V. T
paper ends with our conclusions.

II. MOMENT SYSTEMS OF KINETIC THEORY

A. Kinetic theory

We consider one-atomic ideal gases. The objective of
kinetic theory of gases is the determination of the phase d
sity f (xi ,t,ci) that gives the number of particles in the pha
space elementdx dc. Here,xi ,t denote space and time var
ables, respectively, andci is the velocity of a particle of mas
m. The phase density is governed by the Boltzmann equa
@1,2#

] f

]t
1ck

] f

]xk
5S~ f !, ~1!
4-2
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HEAT TRANSFER IN THE TRANSITION REGIME: . . . PHYSICAL REVIEW E 65 041204
where the collision termS( f ) accounts for the change of th
phase density due to collisions among particles.

Once the phase density is known, one may calculate
moments, for instance, the mass density%, the momentum
density%v i , and the energy density%«, given by

%5mE f dc, %v i5mE ci f dc,

%«5
3

2
%

k

m
T1

%

2
v25

m

2 E c2f dc. ~2!

In these definitions,k is Boltzmann’s constant,v i denotes the
barycentric velocity of the gas andT denotes the tempera
ture, which isdefinedhere.

Pressure tensorpi j and heat flux vectorqi are given by

pi j 5pd i j 1p^ i j &5mE CiCj f dc, qi5
m

2 E C2Ci f dc,

where Ci5ci2v i is the peculiar velocity. By compariso
with Eqs.~2! the pressure is related to temperature and d
sity by the ideal gas law,p5%(k/m)T. The pressure deviato
is denoted byp^ i j & ; the brackets label the traceless part o
symmetric tensor.

B. Maxwell’s boundary conditions

For the calculation of boundary value problems, o
needs boundary conditions for the phase densityf. The most
simple model for these goes back to Maxwell@1,2#. He as-
sumes that the fraction (12u) of the emerging particles is
reflected elastically at the wall. The remaining fractionu is
thermalized and leaves the wall in a Maxwellian distributio
u is called accommodation coefficient.

We denote the velocity of a particle byci and the velocity
of the wall by v i

W , such that the particle has the veloci
Ci

W5ci2v i
W in the frame where the wall is at rest. More

over, we choose the normal vectorni of the wall so that it
points inside the gas such that we havenkCk

W<0 for the
emerging particles andnkCk

W>0 for the particles that leave
the wall.

Furthermore,f N(Ci
W ,xi ,t) denotes the phase density i

side the gas in front of the wall. For our purposes it is co
venient to writef N as a function of the tangential velocit
Ci

W2nkCk
Wni and the normal velocitynkCk

W as f N(Ci
W

2nkCk
Wni ,nkCk

W ,xi ,t). In an elastic collision, the tangentia
velocity remains unchanged, while the normal veloc
changes its sign. So we have the phase densitiesf N(Ci

W

2nkCk
Wni ,nkCk

W ,xi ,t) for the emerging particles (nkCk
W

<0) and f N(Ci
W2nkCk

Wni ,2nkCk
W ,xi ,t) for the elastically

reflected particles (nkCk
W>0), respectively. In the following,

for simplicity of the notation, we suppress the tangential
locity as well as space and time in the list of arguments off N

and write the phase density directly at the wallf̂ according to
Maxwells boundary conditions as
04120
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f̂ 5H u f W1~12u! f N~2nkCk
W!, nkCk

W>0,

f N~nkCk
W!, nkCk

W<0,
~3!

f W is the Maxwellian of the thermalized particles,

f W5 f M~%W ,TW ,v i
W!

5
%W

m SA m

2pkTW
D 3

3expF2
m

2kTW
~ck2vk

W!2G ,
whereTW denotes the temperature of the wall and%W is the
density of the thermalized particles.%W has be to determined
in order to ensure that the wall does not accumulate partic
a condition that may be written as

mE
nkCk

W>0
f̂ Ck

Wnk dc52mE
nkCk

W<0
f̂ Ck

Wnk dc. ~4!

In the remainder of this paper we consider a gas at rest o
so that* f Ncknk dc50. Of course, in this case also the wa
are at rest,vk

W50 and the condition~4! simplifies to

mE
cknk>0

f Wcknk dc5mE
cknk>0

f Ncknk dc. ~5!

C. Moments and moment equations

In moment methods one assumes that the state of the
is satisfactorily described by a set of moments

uA5E CA~ck! f dc,

whereCA(ck) is a vector of polynomials of the microscop
velocity. Which moments one has to take into account
pends on the process under consideration. In Grad’s

moment theory, one hasCA5m$1,ci , 1
2 c2,c^ icj & , 1

2 c2ci%, i.e.,
the moments%,%v i ,%«,p^ i j & ,qi defined above.

Multiplication of the Boltzmann Eq.~1! by CA and sub-
sequent integration over velocity space yields the mom
equations

]uA

]t
1

]FAk

]xk
5PA with FAk5E CAck f dc, ~6a!

PA5E CASf dc, ~6b!

where we have introduced the fluxes of the momentsFAk and
their productionsPA . Note that the productions of mas
momentum, and energy vanish.

The Eqs.~6a! do not form a closed system of partial di
ferential equations for the moments since they contain
fluxes and the productions which are nota priori related to
the moments. Here, a closure assumption is required, an
is obvious that a phase density of the form

f ~xk ,t,ck!5 f „uA~xk ,t !,ck… ~7!
4-3
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HENNING STRUCHTRUP PHYSICAL REVIEW E65 041204
serves for this purpose. In the sequel, a solution of this t
will be called ‘‘moment solution.’’ There are several metho
to obtain a solution of this type. Grad found his mome
solution by an expansion around local equilibrium where
phase density is a Maxwellian. In recent years, the meth
of maximizing the entropy@16,17,27# and the equivalen
method of extended thermodynamics@7# became more and
more popular. These methods may lead to ill-posed probl
@15,35# and in Ref.@35# it is shown that the Grad metho
gives results in accordance with the Boltzmann equat
while the entropy maximum method does not. One of
shortcomings of the moment theory is that it is not cle
which boundary conditions one has to choose for mome
without physical meaning, a problem that was addresse
Ref. @31#. The numerical scheme of Le Tallec and Perl
discussed in Sec. IV below, allows the use of boundary c
dition ~3! for the phase density in its implementation. Thus
will be possible to solve problems of kinetic theory with a
arbitrary number of moments.

D. Choice of moments

The set of 13 moments contains the only moments
have an intuitive physical meaning. With no physical mea
ing for the other moments, it raises the question, which m
ments one should consider for extended moment systemA
priori , there are no restrictions on the choice of momen
but in order to have a somewhat systematic approach
choose the sets of moments by the following argument.

The basic quantities are the conserved quantities, m
momentum, and energy, given by

uA
[5]5E CA

[5] f dc with CA
[5]5m$1,ci ,c2%.

In order to close the system, we have either to find const
tive equations for pressure tensor and heat flux@43#, or we
can add these to the list of variables, i.e., choose

uA
[13]5E CA

[13] f dc with CA
[13]5m$1,ci ,cicj ,c2cj%.

A closer look shows that in this case we need additio
equations for the fluxes of heat flux and pressure tensor,
for *c^ icj &ck f dc and*c2cick f dc. Again, we have either to
find constitutive equations for these fluxes, or we can a
them to the list of variables. If we proceed in this manner,
come to the following choices of moments:

CA
(a)5m$1,ci ,cicj , . . . ,ci 1

ci 2
•••ci a

,c2ci 1
ci 2

•••ci a21
%,

a52,3, . . . ,11 ~8!

corresponding to 13~5!, 26 ~8!, 45 ~11!, 71 ~15!, 105 ~19!,
148 ~24!, 201 ~29!, 265 ~35!, 341 ~41!, and 430~48! mo-
ments; the numbers in parentheses indicate the numbe
partial-differential equations, which must be solved in t
one-dimensional case. In the sequel, we shall identify
sets of moment equations by the number of equations for
one-dimensional case, i.e., the Euler equations are the th
04120
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moment case, Grad’s 13-moment equations will be refer
to as the five-moment case and so on. In this paper we s
not go beyond the 48-moment case (a511).

In the moment theory, one usually makes the barycen
velocity explicit, and builds up the moments with the pec
liar velocity Ci5ci2v i , instead of the particle velocityci .
We shall consider gases at rest exclusively, wherev i50 at
all times. Then, obviously, both velocities,Ci andci , agree.

E. Grad distribution

In Grad’s moment method, the phase density is relate
the moments as

f (a)5 f MS 11(
A

LA
(a)~uB!CA

(a)D
with

uA5E CA
(a) f (a)dc; ~9!

the coefficientsLA
(a) follow from the inversion of the last

equation.f M denotes the local Maxwellian, given by

f M5
%

m SA m

2pkTD 3

expF2
m

2kT
~ck2vk!

2G .
Equation~9! is the requested moment solution, and will b
used to compute the constitutive functions for fluxes a
productions as

FAk~xi ,t !5FAk„uB~xi ,t !…, PA~xi ,t !5PA„uB~xi ,t !….

The constitutive functions are local, i.e., depend only on
local values of the momentsuA , and not on gradients or time
derivatives of the moments.

F. One-dimensional processes

We shall consider only one-dimensional processes wh
all fields depend on the space variablex15x, and all fluxes
point in the same direction. We have to identify the releva
variables for this case. To this objective, we decompose
momentsui 1i 2 . . . i n

into their irreducible parts, i.e., into thei
traces and trace-free parts@8,36#. We define

u^ i 1i 2••• i n&
(k) 5mE c2kc^ i 1••• i n& f dc with

u^ i 1i 2••• i n&
k d i j i k

50

and have

ui 1i 2 , . . . ,i n
5 (

k50

in/2i

b̂n,k@d i 1i 2
•••d i 2k21i 2k

u^ i 2k11••• i n&
(k)

1•••~Pnkterms!# ,

where u^ i 2k11••• i n&
(k) is the trace-free part of thekth trace of

ui 1••• i n
. The sum in the brackets extends over all differe

permutations of the indices and
4-4
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HEAT TRANSFER IN THE TRANSITION REGIME: . . . PHYSICAL REVIEW E 65 041204
b̂n,k5
1

)
j 50

k21

~2~n2k2 j !11!

,

Pn,k5
n!

~n22k!!2kk!
, In

2I5H n

2
, n even

n21

2
, n uneven.

The first few tensorsui 1••• i n
decompose according to

ui5u^ i &
(0)

ui j 5u^ i j &
(0) 1 1

3 u(1)d i j

ui jk5u^ i jk &
(0) 1 1

5 ~ui
(1)d jk1uj

(1)d ik1uk
(1)d i j !.

In the one-dimensional case, one needs to consider only
x, . . . ,x parts of the trace-free moments. Thus, we defin

c^n&
(k)5m(

r 50

in/2i
~21!r

)
j 50

r 21

~2n22 j 21!

n!

~n22r !!2 r r !
c2(r 1k)cx

n22r

~10!

and have the variables, fluxes, and productions for the o
dimensional case given by

~11a!

F ^n&
(k)5E c^n&

(k)cx f dc, ~11b!

P^n&
(k)5E c^n&

(k)S dc. ~11c!

The choice~8! of moments corresponds to the set of va
ables

u^n22k&
(k) , k50, . . . ,In

2I , n50, . . . ,a

u^a1122k&
(k) , k51, . . . ,Ia11

2 I .

The one-dimensional moment equations read

]u^n&
(k)

]t
1

]F ^n&
(k)

]x
5P^n&

(k) ~12!

and the phase density is now given by

f 5 f MS 11(
k,n

l^n&
(k)c^n&

(k) D . ~13!
04120
he
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The parametersl^n&
(k) are functions of the momentsu^n&

(k) and
follow from insertion of Eq.~13! in Eq. ~11a! and inversion.
The trace-free tensorsc^n&

(k) are related to spherical harmonic
@36#, and are orthogonal with respect to integration over
Maxwellian,* f Mc^n&

(k)c^m&
( l ) dc5akldnm . This property simpli-

fies the calculation of the coefficientsl^n&
(k) considerably. We

shall not give any detail of these calculations, which we
performed by means of the computer algebra sys
MATHEMATICA ®.

The productionsP^n&
(k) depend on the choice of the coll

sion termS( f ). Here, we have adopted the linearized co
sion term for Maxwell molecules, which is evaluated in R
@36# via its eigenfunctions~Sonine polynomials!. Our func-
tions c^n&

(k) are linear combinations of the eigenfunctions, a
thus, the corresponding productions are linear combinati
of the production terms for the eigenfunctions. These cal
lations were performed with anotherMATHEMATICA ® pro-
gram, developed by Au in the context of his thesis@37#.

The computation of the production terms for other laws
interaction between atoms, e.g., hard sphere molecules
Lenneard-Jones particles, is possible in principle. We ch
Maxwell molecules here, since the use of the eigenfunct
method allows a very fast and elegant approach to the c
putation of production terms, while other interaction pote
tials require the term-by-term integration of the productio
Ohwada@18# notices that the heat transfer problem is n
influenced much by the change of the interaction potent
This will be confirmed by the comparison of our results w
Ohwada’s in Sec. V C below.

The computation of the productions is even more
volved for the full nonlinear Boltzmann collision term
While, for Maxwell molecules, it is possible to compute th
productions without knowledge of the phase density, our
tempts to find a general equation for the nonlinear produc
for arbitrary moments failed so far. See Ref.@38# for the
computation of nonlinear production terms for some high
moments.

We shall not give details of the computation of the pr
ductions. However, in order to gain an idea of the form a
dimensions of the productions, it is useful to have a look
the productions according to the BGK model@1,39#. If we
adopt the mean collision frequency for Maxwell molecule
the BGK collision term reads

S~ f !52%g~ f 2 f M !.

Here,g is a constant that follows from the calculation of th
collision production for Maxwell molecules, and%g is the
collision frequency. Obviously, the productions for the BG
model read

P^n&
(k)52%g~u^n&

(k)2u^n&uE
(k) !; ~14!

u^n&uE
(k) denotes the moments of the local Maxwellian.g is

related to the heat conductivityk by

k5
15

4 S k

mD 2 T

g
, ~15!

whereg is chosen in order to give the proper heat cond
tivity for Maxwell molecules. Note that the BGK-mode
4-5
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HENNING STRUCHTRUP PHYSICAL REVIEW E65 041204
gives the wrong Prandtl number Pr5(5/2)(k/m)(m/k)
wherem is the viscosity. The Prandtl number for Maxwellia
molecules is Pr52/3 while the BGK model gives Pr51.
Thus, with Eq.~15!, the viscosity has an improper value. Th
BGK production terms are not used for our numerical sim
lations below, which rely on the true productions of Maxw
molecules.

III. STATIONARY HEAT TRANSFER

A. Basic equations

We consider the stationary heat transfer experiment
depicted in Fig. 1. As in Ref.@9#, we shall compute the
stationary state via time stepping of the kinetic schem
Therefore, we are interested in the time-dependent mom
equations. Following the same lines as in Ref.@9#, we shall
reduce the equations due to our knowledge of the station
result.

First, we consider the balance equations for the conse
quantities, mass, momentum, and energy. In the o
dimensional case, they read

]%

]t
1

]%v
]x

50 ,

]%v
]t

1
]~%v21p1s!

]x
50 ,

]S 3

2
%

k

m
T1

%

2
v2D

]t
1

]F S 3

2
%

k

m
T1

%

2
v2D v1q1~p1s!vG
]x

50.

Here,%5u^0&
(0) is the density,T5 1

3 u^0&
(1)/u^0&

(0)(k/m) is the tem-
perature,v5u^1&

(0) is the velocity,s5u^2&
(0) is the^xx& compo-

nent of the pressure tensor, andq5 1
2 u^1&

(1) is the ^x& compo-
nent of the heat flux. By means of mass and momen
balance, the energy balance can be reduced to the balan
internal energy, viz.,

%

]
3

2

k

m
T

]t
1%v

]
3

2

k

m
T

]x
1

]q

]x
1~p1s!

]v
]x

50.

Since the walls do not move, the gas will be at rest in
stationary state, so that the velocity vanishes,v50. Then,
the momentum balance reduces to](p1s)/]x50 and inte-
gration gives

p1s5p0 , ~16!

wherep0 is a constant of the dimension of pressure. Ot
authors solve the heat transfer problem in the bulk@10–12#,
i.e., without considering any boundary conditions, under
assumption that the pressurep is constant so thats50. In
our treatment,s is a variable in its own right and its value
will follow from the solution of the boundary value problem
04120
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Note, however, that there is no physical argument to ass
s50 even far away from any boundaries.

Henceforth, we shall not consider the nonstationary c
servation laws for mass and momentum but replace them
their stationary form, i.e.,

v5u^1&
(0)50 and %5u^0&

(0)5
p02s

k

m
T

; ~17!

the last equation follows from Eq.~16! by means of the idea
gas law. Accordingly, the balance of internal energy read

3

2
~p02s!

] ln T

]t
1

]q

]x
50. ~18!

Next, we introduce dimensionless variables. The length s
is defined by the wall distanceL, and we choose a tempera
ture T0 as the measure for temperature. In most of our c
culations,T0 will be the temperature of the left wall. Th
constant of integrationp0 defines the scale for the density a
%05p0 /(k/m)T0. The velocity scale is given byA(k/m)T0

and defines also the time scale byL/A(k/m)T0. Altogether,
we introduce the following dimensionless quantities:

x̂5
x

L
, t̂5

Ak

m
T0t

L
, ĉi5

ci

Ak

m
T0

, T̂5
T

T0

,

û^n&
(k)5

u^n&
(k)

p0SAk

m
T0D 2k1n22 .

The dimensionless productions contain the Knudsen num
given by

Kn5

Ak

m
T0

3

Lp0g
. ~19!

We find the following dimensionless formulation: Velocit
and density are eliminated by

v̂5u^1&
(0)50, %̂5

12ŝ

T̂
;

the evolution of temperature follows from

3

2
~12ŝ !

] ln T̂

] t̂
1

]q̂

] x̂
50, ~20!

all other moments obey the evolution equation
4-6
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]û^n&
(k)

] t̂
1

]F̂ ^n&
(k)

] x̂
5 P̂^n&

(k) ,

and the phase density for the closure is given by

f̂ 5
12ŝ

T̂
SA 1

2pT̂
D 3

e2 ĉ2/2T̂S 11(
k,n

l̂^n&
(k) ĉ^n&

(k) D . ~21!

ĉ^n&
(k) is the same function asc^n&

(k) but with m51 and the

dimensionless velocityĉi . The closure procedure is as b
fore: the dimensionless coefficientsl̂^n&

(k) are computed by
insertion of Eq.~21! into Eq.~11a! and then Eqs.~11b!,~11c!
give the dimensionless constitutive equations.

For the BGK case the productions read

P̂^n&
(k)52

1

Kn

12ŝ

T̂
~ û^n&

(k)2û^n&uE
(k) !.

We emphasize again that our numerical calculations rely
the true productions of Maxwell molecules, the BGK term
are only introduced to give a flavor of their dependence
the variables.

The hats that characterize the dimensionless quant
will be omitted in the sequel.

B. Stationary heat transfer with five moments

Before we consider the numerical solution of the mom
equations via kinetic schemes, we study the heat tran
with five and eight moments in some detail. For the purp
of the following two sections, we consider complete acco
modation, i.e.,u50. We start with the stationary state of th
five-moment case~Grad’s 13-moment case!, where the mo-
ment equations for energy, pressure tensor, and heat flux

]q

]x
50,

8

15

]q

]x
52

1

Kn

~12s!s

T
,

]

]x
~5T12Ts!52

4

3Kn

~12s!q

T
.

The first two equations show that the anisotropic stress v
ishes,s50, and the equations reduce simply to the law
Fourier

q52
15

4
Kn T

]T

]x
5const. ~22!

Notice that the~dimensionless! heat conductivity15
4 Kn T de-

pends on the temperature. We prescribeT(x50)5q0 and
T(x51)5qL to obtain

T5Aq0
21~qL

22q0
2!x, ~23a!
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q52
15

8
Kn~qL

22q0
2!. ~23b!

The temperaturesq0 ,qL are not the temperatures of th
walls, but the temperatures of the gas directly at the w
and differ from the wall temperaturesT051,TL . Indeed, in
the case of large Knudsen numbers one has to conside
jump of the temperature at a wall and we proceed with
calculation@2,9,32#. To this end, we consider the bounda
condition~3! for gas and boundary at rest, written in dime
sionless form. The normal part of the energy flux1

2 *c2ci f dc
has to be continuous at the wall, a condition that we m
write as 1

2 * f̂ c2cknk dc5 1
2 * f Nc2cknk dc or, with Eq. ~3!,

1

2Enkck>0
f Wc2cknk dc5

1

2Enkck>0
f Nc2ck dc. ~24!

Now we consider Grad’s 13-moments phase density w
vanishing shear stresses, as it is appropriate in stationary
transfer, viz.,

f [5]5
1

q
A 1

2pq

3

e2c2/2qF12
qxcx

q S 12
1

5

c2

q D G ,
whereq is the temperature of the gas at the wall. We obt
from the conditions for conservation of mass and heat fl
~5! and ~24!

A 1

2p
%WATW5A 1

2p
A1

q
,

%WA2

p
ATW

35A2

p
Aq1

1

2
qxnx .

Elimination of the density%W yields for the temperature
jumps atx50, x51,

12q0

q0
5

1

2
Ap

2

q

Aq0

,
TL2qL

qL
52

1

2
Ap

2

q

AqL

.

~25!

q0 and qL follow from Eq. ~25! with Eq. ~23b!. In the re-
mainder of the paper we shall calculate the stationary h
transfer problem with numerical methods and we shall
Eqs. ~23a! and ~23b! for comparison. Figure 2 shows th
temperature for various Knudsen numbers~wall temperatures
T051,TL51.5). The jumps increase with increasing Knu
sen number.

C. Stationary heat transfer with eight moments

Although there are jumps, no Knudsen boundary lay
are present in the five-moment case. Indeed, while the t
perature jumps depend on the Knudsen number@see Eq.
~25!#, the temperature profile as given by Eqs.~23a! is inde-
pendent of the Knudsen number, that is, it depends only
the temperaturesq0 ,qL at the wall, but has no explicit de
4-7
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HENNING STRUCHTRUP PHYSICAL REVIEW E65 041204
pendence on the Knudsen number. The curvature is so
due to the temperature dependence of the heat conduct

When more moments are taken into account, the temp
ture profile will again depend on the temperatures at
walls ~the temperature jumps! but will also contain contribu-
tions that areexplicit in the Knudsen number. This will be
seen when we study the next member of our moment s
i.e., the eight moment case@corresponding to 26 moments i
three dimensions~3D!#. The equations follow from the pro
cedures described above as~stationary case!

]q

]x
50,

]

]x S 8

15
q1w D52

1

Kn

~12s!s

T
,

]

]x S 1

3
x1c D52

4

3Kn

~12s!q

T
, ~26!

]

]x S 9

35
c D52

3

2Kn

~12s!w

T
,

]

]x
~28qT!52

2

3Kn

@12s!

T
@x215T~12s!#,

]

]x S 112

15
qT19Tw D52

7

6Kn

~12s!

T
~c2Ts!.

Here, we have introduced the abbreviationsw5u^3&
(0) ,x

5u^0&
(2) ,c5u^2&

(1) . For now, we are interested only in the firs
order deviations from a global equilibrium, whereTE
51,sE50,qE50,wE50,xE515,cE50. That is, we conside
the linearized moment equations; numerical solutions of
nonlinear moment equations will be presented later in
paper. Considering only first-order terms in deviations fro
this equilibrium state, we find

q5const,
]w

]x
52

1

Kn
s,

]

]x S 1

3
x1c D52

4

3Kn
q ,

FIG. 2. Temperature according to Fourier’s law with tempe
ture jumps for Knudsen numbers Kn50.01,0.05,0.1,0.2,0.5,1; wa
temperaturesT051, TL51.5.
04120
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e
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]

]x S 9

35
c D52

3

2Kn
w, 052

2

3Kn
@x215~T2s!#,

9
]w

]x
52

7

6Kn
~c2s! ,

x andc can easily be computed as

x515~T2s!, c5
61

7
s

and the remaining equations reduce to

]w

]x
52

1

Kn
s,

]

]x S T1
26

35
s D52

4

15

1

Kn
q,

366

245

]s

]x
52

1

Kn
w.

Since the heat flux is constant, we can integrate the sec
equation to

T5K2
4

15

qx

Kn
2

26

35
s, ~27!

while the two other equations give for the stress

s5A coshA245

366

x20.5

Kn
1B sinhA245

366

x20.5

Kn
. ~28!

A, B, K, andq are the four constants of integration and fo
boundary conditions are required for their determinatio
Thus, the two boundary conditions for the wa
temperatures—or the temperature jumps, respectively—
not sufficient for a complete solution of the problem.

However, the boundary conditions are not necessary f
general discussion of the result: The first two terms in E
~27! give the solution of the linearized Fourier law, i.e.,
straight temperature curve. The third term,2 26

35 s, gives the
deviation from the Fourier law, due to the influence of t
higher moments. Our numerical results in Sec. V suggest
the leading term in the stress is given by

ŝ52B sinhA245

366

x20.5

Kn

and Fig. 3 shows this function for various Knudsen numb
~arbitrary units, normalized!. It can be seen that this devia
tion has the form of a Knudsen boundary layer indeed. E
dently, the thickness of the boundary layer increases with
Knudsen number.

It must be emphasized that in the case of one-dimensio
stationary heat transfer the Burnett equations for Maxw
molecules@21# reduce to the Fourier law~22! and, therefore,
cannot describe a linear boundary layer, see Ref.@26# for
details.

IV. KINETIC SCHEME

A. The scheme

We present our own derivation of the numerical sche
@9#. While in Refs.@13,14# the authors start from the Boltz
mann equation, our argument is based on the moment e

-

4-8
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HEAT TRANSFER IN THE TRANSITION REGIME: . . . PHYSICAL REVIEW E 65 041204
tions plus the definitions of moments, fluxes and prod
tions, and the knowledge of the moment solution for t
phase density.

For the discretization in space we consider an intervax
P(0,L) divided in n parts of lengthDx5L/n, with center
points xi , i 51, . . . ,n. We write the one-dimensional mo
ment Eq.~12! as

]uA

]t
1

]FA

]x
5PA

and integrate alongDx to obtain

]uA
i

]t
1

1

DxExi2Dx/2

xi1Dx/2]FA

]x
dx5PA

i ~29!

with the cell averages

uA
i 5

1

DxExi2Dx/2

xi1Dx/2
uA dx and PA

i 5
1

DxExi2Dx/2

xi1Dx/2
PA dx.

The interval aroundxi is associated with one valueuA
i and

the moment solution for the phase density inDx is deter-
mined by this value,f i5 f (uA

i ,ck). We consider the integra
in Eq. ~29!, which yields

E
xi2 Dx/2

xi1Dx/2 ]FA

]x
dx5FA

i 11/22FA
i 21/2,

whereFA
i 61/25FA(xi6Dx/2) denote the fluxes at the borde

of the interval. We consider the definition~6b! and decom-
pose the flux into its parts due to particles traveling in po
tive or negativex direction, respectively,

FA
i 11/25E cAcx f i 11/2dc

5E
cx>0

cAcxf i 11/2dc1E
cx<0

cAcxf i 11/2dc.

~30!

FIG. 3. Functionŝ for various Knudsen numbers Kn~arbitrary
units! computed from the eight-moment case.
04120
-
e

i-

Here, the first integral describes the flux ofcA from xi to-
wardsxi 11 and the second integral gives the flux fromxi 11

into xi .
The key step of the method is the assumption that the

out of xi is determined by the state in celli, while the flux
into the cell i is determined by the state in the neighbori
cell, i 11. This assumption may be written as

E
cx>0

cAcxf i 11/2dc.AA
i , E

cx<0
cAcxf i 11/2dc.BA

i 11 ,

~31!

where the half-fluxes in positive and negative directionsAA
i

andBA
i are defined as

AA
i 5E

cx>0
cAcxf idc, BA

i 5E
cx<0

cAcxf i dc. ~32!

Now, Eq. ~30! reads

FA
i 11/25AA

i 1BA
i 11

and we obtain the space discretized moment equations a

]uA
i

]t
1

1

Dx
~AA

i 1BA
i 112AA

i 212BA
i !5PA

i , i 51, . . . ,n.

~33!

Following Le Tallec and Perlat, we consider discrete tim
t j5 j Dt with time stepDt and use a time-splitting method
i.e., we solve transport and relaxation consecutively. We
noteuA

i (t j )5uA
i , j . Then, the time splitting is as follows:

(a) Transport step.With uA
i , j as initial condition solve

]uA
i

]t
1

1

Dx
~AA

i 1BA
i 112AA

i 212BA
i !50

during Dt, with resultũA
i , j 11 .

(b) Relaxation step.With ũA
i , j 11 as initial condition solve

]uA
i

]t
5PA

i

during Dt, with resultuA
i , j 11 . Repeat both steps to go on i

time.
The solution of the scheme for the variablesuA

i , i
51, . . . ,n requires:

~i! Constitutive equations for the half-fluxes and the p
ductions

AA
i 5AA

i ~uB
i !, BA

i 5BA
i ~uB

i !, PA
i 5PA

i ~uB
i !;

these follow from the definitions~32! and ~11! and the mo-
ment solution~13!.

~ii ! Initial values for the momentsuA
i ,0 .

~iii ! Boundary conditions, i.e., the half-fluxesAA
0 and

BA
n11 , which follow from the boundary conditions for th

phase density. According to the boundary condition~3!, these
are the half-fluxes of the wall-distribution functionu f W
1(12u) f N(2nkck), wheref W is the wall Maxwellian, and
f N denotes the moment solution in front of the wall. O
obtains
4-9
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AA
05uAA

0,W2~12u!fABA
1 ,

BA
n115uBA

n11,W2~12u!fAAA
n ,

whereAA
0,W ,BA

n11,W are the half fluxes of the two wall Max
wellians andfA5cA(2cx)/cA(cx) ~the entries infA are
either11 or 21).

The constitutive equations for the half-fluxesAA(uB),
BA(uB) as well as the boundary conditionsAA

0 ,BA
n11 are

computed from the phase density with aMATHEMATICA ® pro-
gram, and directly saved as aFORTRAN subroutine. We shal
not give any details on these functions, see Ref.@9# for de-
tails of the 13- and 14-moment cases.

Most of our numerical calculations are based on a fi
order scheme, with a simple Euler time step, viz.,

uA
i , j 115uA

i , j1DtPA
i , j2

Dt

Dx
~AA

i , j1BA
i 11,j2AA

i 21,j2BA
i , j !.

~34!

The implementation of the semi-implicit scheme for the
laxation step used in Refs.@9,13# is too cumbersome for the
large numbers of moments in questions, and was not u
However, its implementation is easy for the BGK producti
terms~14!, and then it is the best choice.

The evolution of temperature follows from the balance
internal energy~20!, and its discretized form differs from Eq
~34!, viz.,

Ti , j 115Ti , jexpF2
2

3

Dt

Dx

1

12s i , j

3~A«
i , j1B«

i 11,j2A«
i 21,j2B«

i , j !G .

In principle, it poses no problem to consider this fin
volume scheme—where only half-space moments of
fluxes are used—for multidimensional processes. This
ture distinguishes the Grad method with kinetic schem
from other methods where half-space moments are take
variables, e.g., the Mott-Smith method@40#, or a similar
method that was used in Ref.@41# for the simulation of the
heat transfer problem. Moreover, these methods are not
systematic, since it is not cleara priori which moment equa-
tions one should use in order to obtain the equations for
half-space variables.

B. Accuracy and limitations

In order to show that the above discretization is of fi
order in space we expand

uA
i 5uA , AA

i 5AA ,

AA
i 615AA6

]AA

]x
Dx1

]2AA

]x2

~Dx!2

2
, etc. ,

and obtain withAA1BA5FA from Eq. ~33!
04120
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]uA

]t
1

]FA

]x
2

Dx

2

]2~AA2BA!

]x2
5PA1O„~Dx!2

….

In Ref. @9# we showed thatDx must be small compared t
the mean free path of the gas, so that the method can onl
used for relatively large Knudsen numbers. This fact is pa
related to the kinetic schemes, but also reflects the stiffn
of the moment equations. However, extended sets of mom
equations are required in the particular case of large Knud
numbers, so that the restriction is not severe. Moreover,
resolution of Knudsen boundary layers requires a grid s
below the mean free path anyway.

In the first-order scheme, moments and phase density
approximated as piecewise constant functions in space
second-order scheme can be obtained by constructing p
wise linear functions with the minmod reconstruction@42#.
We set

minmod~uA
i !5

1

2
@sgn~uA

i 112uA
i !1sgn~uA

i 2uA
i 21!#

3min@~uA
i 112uA

i !,~uA
i 2uA

i 21!#

and

uA~x!5uA
i 1minmod~uA

i !
x2xi

Dx
,

xi2
Dx

2
,x,xi1

Dx

2
.

The scheme~33! requires the half-fluxesAA(uB),BA(uB) at
the cell boundaries, see Eq.~31!. These are now obtained a

AA
i 5AA@uB

i 1 1
2 minmod~uB

i !#,

BA
i 5BA@uB

i 2 1
2 minmod~uB

i !#.

For consistency, we used the modified Euler method~method
of Heun! for second-order integration in time.

In the following section we shall present results wi
Knudsen numbers Kn50.01,0.05,0.1,0.2,0.5,1. The secon
order scheme was used for Kn50.01 with 200 grid points,
and for Kn50.05 with 100 grid points. All other results rel
on the first-order scheme with 100 grid points. The C
numberDt/Dx was chosen between 0.05 and 0.1. The init
values for the moments correspond to a global equilibri
with the temperature of the left wall beingT051. The tem-
perature of the right wall is increased linearly until the fin
temperatureTL is reached. Then, the calculation is continu
until the stationary state is reached. The necessary numb
time stepsn varies with the Knudsen number, for Kn50.5
we hadn516 000 ~heating periodn/4) while n5160 000
was needed for Kn50.01 ~heating periodn/2).

C. Accuracy at the wall

In the case of one-dimensional stationary heat transfer
heat flux should be constant in space. However, indepen
4-10
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HEAT TRANSFER IN THE TRANSITION REGIME: . . . PHYSICAL REVIEW E 65 041204
of the accuracy of the scheme, we observe jumps in the
flux at the wall, which stand in contradiction to the cons
vation of energy. The jumps in the heat flux are a con
quence of the moment approximation and the kine
schemes, and cannot be avoided. In order to see this
study Eq.~33! for the left cell (i 51) in the stationary state

AA
11BA

22AA
02BA

15DxPA
i . ~35!

If the fields were continuous between cells 1 and 2, we
BA

15BA , BA
2.BA1dBA /dx Dx and for Dx→0 Eq. ~35!

would reduce to the requirementAA
15AA

0 . This gives as
many equations as there are variables~moments!, and ac-
cordingly the values of all moments at the wall were p
scribed. In particular, the heat flux would assume differ
values at the two walls. This is extremely unphysical: t
heat flux must adjust itself to a constant value that depe
on the temperature difference between the walls. This
lemma is avoided by jumps of the fields between the t
cells next to the wall.

Our results show that the jumps in the heat flux beco
smaller with increasing number of moments. Figure 4 sho
the deviation of the heat flux from its mean value for vario
number of moments for the parameters Kn50.1,T051,TL

51.5 ~for full accommodation,u51). With only five mo-
ments, the jump is about 4%, but it is less than 0.5% with
moments. With the present choice of parameters, a fur
increase of the moment number leads to only small impro
ments. The profiles close to the wall follow from the fini
step sizeDx. With a finer grid, the curves reduce to a co
stant line with two jumps at the walls, see Ref.@9# for cor-
responding results.

In order to understand the improvement due to the
crease of the number of moments better, one has to re
that the moment method assumes a moment solution~7! in
all space points, i.e., a series. According to the bound
condition~3!, the phase density at the wall is a discontinuo
function of the microscopic velocity. A series in polynomia
which pictures this discontinuity sufficiently, will require
large number of expansion coefficients, i.e., moments.

FIG. 4. Deviation of heat flux from its mean value~in %! for
theories with 5, 8, and 24 moments, Kn50.1, T051, TL51.5.
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V. RESULTS AND DISCUSSION

A. Influence of the moment number

We start the survey of our results with some figures t
show the influence of the number of moments. Again,
consider the case with Kn50.1, T051, TL51.5T, and u
51. Figure 5 shows the temperature curves computed w
8, 24, and 48 moments in comparison to the Fourier solu
~23!. There is no marked difference between the 24- a
48-moments cases, but the eight-moment case differs sig
cantly. This difference becomes even more apparent, w
we consider other moments, e.g., the anisotropic stresss, see
Fig. 6, or the nonequilibrium part of the fourth momentD
5*c4(f2fM)dc, see Fig. 7.

For the discussion of the stresss one should bear in
mind, thats50 in the Navier-Stokes case. Nonzero valu
of s therefore are related to Knudsen number effects, in
case to the Knudsen boundary layer. Again, we find alm
the same results for moment numbers above 24 mome
The corresponding boundary layer structure is stretched
into the gas and is independent of the grid size. Notice, h
ever, thats contributes less than 1% to the total stre
p051.

With eight and five moments we find smaller structur
close to the wall, which depend on the grid size, and w
reduce to jumps, if the grid is more and more refined. Th
structures are a consequence of the jumps in the heat flu

FIG. 5. Temperature curve for moment theories with 8, 24,
moments and Fourier solution~dashed!, Kn50.1, T051, TL51.5,
andu51.

FIG. 6. Anisotropic stresss for various numbers of moments
Kn50.1, T051, TL51.5, andu51.
4-11
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HENNING STRUCHTRUP PHYSICAL REVIEW E65 041204
the walls, i.e., improper boundary conditions, and have
physical meaning. Recall thats should vanish in the five-
moment case.

The nonequilibrium partD of the fourth moment is an
other quantity that will be zero in local equilibrium, i.e.,
the range of validity of the Navier-Stokes theory. Figure
shows thatD is considerably different from zero, and that
is more sensitive to a change of the number of moments,
curves obtained with 24 and 48 moments now are sligh
different. The results converge with increasing number
moments: there is no visible discrepancy between the res
obtained with 41 and 48 moments, respectively.

Under the assumption of constant pressure, as in R
@10–12#, it follows that in dimensionless form

D5
56

5
q2.0.1925const,

where the numerical value holds for the present example
can be seen, this value is realized in the bulk for the eig
moment case, while for higher moment numbersD is a
strictly descending function. Clearly, in our solution,D is
dominated by boundary effects that were excluded in R
@10–12#.

We already discussed the jumps of the heat flux in S
IV C. Figure 8 shows the mean value ofq as it changes with
the number of momentsa as defined in Eq.~8!. One can see
the convergence of the heat flux towards a constant value

FIG. 7. Nonequilibrium partD of fourth moment for various
numbers of moments, Kn50.1, T051, TL51.5, andu51.

FIG. 8. Mean value of heat flux over number of momentsa Eq.
~8!, Kn50.1, T051, TL51.5, andu51.
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increasing number of moments. The zig-zag shape of
curve indicates some differences between sets with even
odd values ofa.

B. Influence of Knudsen number

Now we turn our attention to the influence of the Knuds
number. Figure 9 shows the temperature for a variety
Knudsen numbers between Kn50.01 and Kn51, again for
the wall temperaturesT051,TL51.5. All curves were calcu-
lated with sufficiently large moment numbers, so that t
results did not change when more moments were added.
figure must be compared with Fig. 2, which shows the res
for the Fourier case. Evidently, the moment solution giv
smaller jumps, and adds marked boundary layers.

In order to emphasize the difference between Fourier
moment solution, we show a direct comparison for K
50.01 and Kn51 in Fig. 10. For the smaller Knudsen num
ber, Kn50.01, there is no visible difference between the tw
results. The boundary layer effects can be ignored and
the jumps are negligible. We conclude that for Knuds
numbers Kn<0.01 the gas can be described by the Four
theory with sufficient accuracy. For higher Knudsen nu
bers, however, one has to account for the rarefaction of
gas by more and more moments, since only then one

FIG. 9. Temperature curve for Knudsen numbers
50.01,0.05,0.1,0.2,0.5,1, wall temperaturesT051, TL51.5, and
u51.

FIG. 10. Comparison of moment solution with Fourier solutio
Kn50.01 and Kn51.
4-12
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HEAT TRANSFER IN THE TRANSITION REGIME: . . . PHYSICAL REVIEW E 65 041204
expect a proper description of the temperature jumps
boundary layers.

Figure 11 shows the heat flux as a function of the Knu
sen number, again comparing Fourier case and many
ments. The Fourier law overestimates the heat flux by ab
10% compared to the moment approach.

The growth of the boundary layer with increasing Kn c
best be seen from the curves of the anisotropic stresse
Fig. 12. With Kn50.01 the stress indeed differs from ze
only in a small layer at the walls. With increasing Kn th
boundary layer expands more and more into the gas. Alre
at Kn50.1 both boundary layers meet, and the rarefied
effects dominate the anisotropic stressess.

For Knudsen numbers Kn>1, collisions among the ga
particles are less frequent than interactions between part
and the walls, so that the transfer of heat is dominated by
free flight of the gas particles between the walls. In this ca
the convergence of the moment equations with increas
moment number is rather weak. According to our simu
tions, a number of 48 moments seems not to be sufficien
the case Kn51.

Additionally, some of the moment systems become
stable for large Knudsen numbers, which leads to large
cillations in the heat flux or complete breakdown of the co
However, this happens only for the moment systems~8! with
a even anda>6. Remember that already Fig. 8 indicat
that systems witha even or odd have different properties. A
present it is not clear whether the instabilities are a prop

FIG. 11. Heat fluxq over Knudsen number Kn for wall tempera
tures T051, TL51.5. Continuous line, moment solution; disco
tinuous line, Fourier solution~25!.

FIG. 12. Anisotropic stresses for various Kn.
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of the equations, or of the equationsand the use of the ki-
netic schemes.

C. Comparison with the work by Ohwada

So far we have shown the general behavior of our
tended moment systems. In this section we address the q
tion whether our solutions correspond to solutions of
Boltzmann equations. Although there are many papers av
able, which address stationary heat transfer in rarefied ga
we could not find a reference where exactly the same pr
lem is solved, i.e., stationary heat transfer in a gas of M
wellian molecules with Maxwell boundary conditions@44#.
Indeed, authors who use DSMC simulations or solve
Boltzmann equation by other means prefer to consider h
sphere interaction between molecules, while authors work
with moment equations prefer Maxwellian molecules, as
do in the present work. With solutions for Maxwellian mo
ecules lacking, we decided to compare our results with th
of Ohwada@18# for hard sphere molecules, obtained by
discretization method, developed by Sone and co-work
@3#. In our dimensionless units, Ohwada considers station
heat transfer for wall temperaturesT050.86,TL51.14
with accommodation coefficientu50.826 and/oru50.5
for Knudsen numbers KnHS50.0658,0.1395,0.1942
0.2994,0.7582. For hard sphere molecules, Knudsen num
and heat conductivity are related by@2#

KnHS5
32

75
A2

p

k

p0L
Am

k
T0,

while for Maxwellian molecules we obtain from Eqs.~15!
and ~19!

Kn5
4

15

k

p0L
Am

k
T0.

We wish to compare gases with the same heat conducti
and thus we find for the relation between the Knudsen nu
bers,

Kn5
5

8
Ap

2
KnHS, ~36!

that is, in order to have results comparable with those
Ohwada, we have to consider the Knudsen numbers
50.051 54,0.1093,0.1521,0.2345,0.5939. Figure 13 sh
the temperature curves from the moment theory~48 one-
dimensional moments! in juxtaposition to those of Ohwada
The black dots on the right and left are an identical set, a
have been introduced to guide the eye. Obviously, for
small Knudsen numbers (Kn50.051 54,KnHS50.0658),
both methods give identical results. As the Knudsen numb
are increased, we observe small differences between the
sets of solutions, which are more marked directly at the w
These small differences might be due to an insufficient m
ment number, to the fact that we considered the lineari
collision term of the Boltzmann equation, or to the diffe
ences in the interaction potential.
4-13



-
r
-

d
e

e

HENNING STRUCHTRUP PHYSICAL REVIEW E65 041204
FIG. 13. Temperature distribu
tion for stationary heat transfe
between two plates with accom
modation coefficient u50.826.
Left: Moment solutions for Max-
wellian molecules. Right: Solu-
tions of the Boltzmann equation
for hard sphere molecules~con-
tinuous lines! and BGK equation
~broken line! by Ohwada @18#.
The Knudsen numbers correspon
to the same heat conductivity, se
Eq. ~36!. The black dots on the
right correspond to those on th
left.
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Figure 14 shows the density distribution for the sa
Knudsen numbers with accommodation coefficientsu0
50.826 at the right wall, anduL50.5 at the right wall. In
order to compare our results with those of Ohwada, we p
the rescaled density%̂( x̂)/%̂(0.5). Again, we can observe
good agreement between moment solutions and solution
the Boltzmann equation with small differences in the vicin
of the walls and for larger Knudsen numbers.

D. Influence of temperature difference

So far, we presented results for a moderate tempera
ratio between the two walls,TL /T051.5. Now we ask what
04120
e

t

of

re

happens, when the temperature ratio is increased. Figur
shows the temperature curve forTL /T052.5 at Kn50.1 for
several moment numbers up to 48. Our simulations indic
that the results have not yet converged, and more mom
would be needed in order to describe the process prop
Note the marked difference between the moment soluti
and the solution of the Fourier law~dashed!.

A further increase of the temperature ratio leads to
breakdown of the code, and thus the method cannot be u
in these cases. The breakdown is probably due to an ins
cient resolution of the discontinuous phase density at
walls. It should be emphasized, however, that for appli
-
-

d
e

e

FIG. 14. Density distribution
for stationary heat transfer be
tween two plates with accommo
dation coefficientsu050.826, uL

50.5. Left: Moment solutions for
Maxwellian molecules. Right: So-
lutions of the Boltzmann equation
for hard sphere molecules~con-
tinuous lines! and BGK equation
~broken line! by Ohwada @18#.
The Knudsen numbers correspon
to the same heat conductivity, se
Eq. ~36!. The black dots on the
right correspond to those on th
left.
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tions in MEMS and microchannels the temperature ratio w
be close to 1.

Due to the restriction to relatively small temperature d
ferences we cannot compare our results with those in R
@5,29,30,41# where the authors consider temperature ra
above 10. From these papers it seems that the linear bo
ary layers are less important at large temperature differen
while the overall behavior is mostly driven by the nonline
terms in the heat flux equation.

VI. CONCLUSIONS

In the present paper, we considered moment equat
that are based on the Boltzmann equation with the linear
collision operator for Maxwellian molecules and closed
the method of Grad. We have solved the stationary h
transfer problem for the moment equations numerically w
the method of kinetic schemes. This method allows to imp
ment the boundary condition for the Boltzmann equation,
that the boundary conditions for the moments are well
fined for any set of moment equations.

Our results show that the method gives satisfy
results—including temperature jumps and Knudsen bou
ary layers in fair agreement with direct solutions of t
Boltzmann equation—in the transition regime~Knudsen
numbers 0.01<Kn<1) at moderate temperature differenc
between the walls. These are the conditions one will mee
the simulation of MEMS and microchannels, so that Gra
method may be a suitable tool here. The reentry problem

FIG. 15. Temperature curve for moment theories with 8, 24,
48 moments and Fourier solution~dashed!, Kn50.1, T051, TL

52.5, andu51.
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spacecrafts, however, involves strong gradients, and requ
the resolution of shocks. There, the description with mom
equations requires a huge amount of equations, and
method is more of theoretical than practical interest, e.g.,
@37# for the calculation of shock profiles.

However, our results show that one has to consider a r
tively large number of moments to obtain satisfactory resu
This will prevent the use of the method for more complicat
problems, e.g., problems involving complex geometries. T
large number is needed mostly in order to ensure the con
vation laws at the walls. It is likely, although not guarantee
that one can find alternative methods to implement
boundary conditions, which might allow accurate simu
tions of jumps and boundary layers with a smaller numbe
moments. Only with these one will consider the mome
equations as a tool for technical applications. Modifi
boundary conditions will be discussed elsewhere.

Flow problems with nonzero velocity are more importa
in the simulation of MEMS and microchannels. Thus, t
next step in line is to apply the Grad method with kine
schemes to standard flow problems, e.g., Couette and
seuille flow. For these, one will observe velocity slip at t
walls and boundary layers in the velocity in addition to t
temperature jumps and boundary layers of this paper;
Ref. @20# for an account of boundary layers in the Coue
flow for the 26-moment case and Ref.@32# for a discussion
of slip in moment systems. The analysis of these flow pr
lems will follow the same lines as outlined here for the he
transfer problem.

In any case, our results show that Grad’s mom
systems—other than the Burnett equations—contain the
portant features of boundary dominated processes in the
sition regime, and we hope that they will play an importa
role in the future simulation of microscopic flow phenomen
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