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Abstract:

This work is aimed at the study and analysis of the heat transport on a metal bar of length L with a solid-solid

interface. The process is assumed to be developed along one direction, across two homogeneous and isotropic ma-

terials. Analytical and numerical solutions are obtained under continuity conditions at the interface, that is a perfect

assembly. The lateral side is assumed to be isolated and a constant thermal source is located at the left-boundary

while the right-end stays free allowing the heat to transfer to the surrounding fluid by a convective process. The

differences between the analytic solution and temperature measurements at any point on the right would indicate

the presence of discontinuities. The greater these differences, the greater the discontinuity in the interface due

to thermal resistances, providing a measure of its propagation from the interface and they could be modeled as

temperature perturbations. The problem of interest may be described by a parabolic equation with initial, interface

and boundary conditions, where the thermal properties, the conductivity and diffusivity coefficients, are piecewise

constant functions. The analytic solution is derived by using Fourier methods. Special attention is given to the

Sturm-Liouville problem that arises when deriving the solution, since a complicated eigenvalue equation must to

be solved. Numerical simulations are conducted by using finite difference schemes where its convergence and

stability properties are discussed along with physical interpretations of the results.

Key–Words: Heat equation, solid-solid interface, eigenvalues problems, mathematical modeling.

1 Introduction

Heat transfer problems in multilayer or solid-solid in-

terface materials have been arisen in a several appli-

cations in science and engineering [3]. Direct applica-

tions can be found in the industry [4], including met-

allurgical [6], aerospace [1], technological and elec-

tronic [2] and aviation [18]. A large number of arti-

cles are devote to the study of thermal, electromag-

netic and/or optical properties of composed materials,

among them [2]-[3], [5], [9]-[13], [17]-[23]. These

types of problems are generally approached experi-

mentally or through numerical simulations. Few arti-

cles are found in the literature that focus on mathemat-

ical models and analytical descriptions of the thermal

process, as in [4], where the model is described. In

[15], [16] the problem is approached analytically for

the steady-state. On the other hand, the evolutionary

state of the interface problem is studied in [5] for a

solid material of infinite length.

This work focus on the analytical solution to a

heat transfer problem that it is assumed to occur along

a bar composed by two different materials with conti-

nuity conditions at the solid-solid interface. A thermal

source is imposed at the left boundary (x = 0) while

free convection is assumed at the right side (x = L).

To the best of authors’ knowledge, the analytical solu-

tion to this problem is not published. In [8], the prob-

lem is stated with an strategy for solving the equa-

tion but is it not explicitly solved. The solution to

the perfectly assembly solid-solid interface problem

is important since the differences with observed data

it would provide a measure of the discontinuities due

to roughness and tension between the materials.

Here, an approach is presented for solving the
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problem analytically where the solution is obtained

as a combination of the steady-state solution and a

transient term, where the latter one is calculated using

Fourier techniques. This manner to present the solu-

tion is useful to better understand the physical tran-

sient behavior.

As in the case of a homogeneous bar, a Sturm-

Liouville (S-L) eigenvalue problem arises. Finding its

solution is complicated since the coefficients of the

equation are not constant but depend on the thermal

parameters of the materials involved. The existence of

an infinite number of solutions to the S-L equation is

demonstrated and an illustrative example is included.

This is the most important result of this work.

Numerical simulations of the temperature profile

are conducted using a finite difference scheme of sec-

ond order centered in space and first order forward

in time. The convergence and stability properties are

discussed along with physical interpretations of the

results. Analytical and numerical solutions to this

problem are useful to predict temperatures profiles un-

der different situations assuming perfect assembly be-

tween materials and hence, to detect discontinuities at

the interface.

In Section 2, the equations used to describe the

process is presented. Section 3 is aimed to the steady-

state heat transfer problem associated to the one of

interest. The corresponding transient problem is ad-

dressed in Section 4, where the eigenvalue problem

and the analytical solution is obtained. In Section 5,

some numerical examples of the temperature profile

for the discretized equation are included. Finally, con-

clusions and future worksare discussed.

2 Mathematical Framework

Consider a unidimensional heat transfer process on

a material, which is modeled as a bar whose lateral

surface is totally isolated, and it is made up of two

consecutive sections of different, perfectly assembly,

isotropic and homogeneous materials. This problem

can be described by coupled parabolic equations with

interface, initial and boundary conditions. At the left-

boundary of the bar, a constant thermal source is as-

sumed while the right-end is free allowing the convec-

tion process to occur (see Figure 1).

The system to be solved is given by the heat equa-

tions

Ut(x, t) = α2
1Uxx(x, t), 0 < x < l, (1)

Ut(x, t) = α2
2Uxx(x, t), l < x < L, (2)

Figure 1: Heat conduction problem with interface.

for t > 0, with initial temperature

U(x, 0) = Ta, 0 < x < L, (3)

and boundary conditions

U(0, t) = F, t > 0, (4)

k2 Ux(L, t) = −h (U(L, t)− Ta), t > 0, (5)

where L represents the length of the bar, Ta the tem-

perature of the surrounded fluid, F denotes the tem-

perature at x = 0, l the interface position (0 < l < L)

and h denotes the heat transfer coefficient due to con-

vection at x = L. The coefficients α2
1, k1 and α2

2,

k2 represent the diffusivity and the thermal conduc-

tivity for the materials at the left and right side of the

bar, respectively. For two perfectly assembled homo-

geneous materials, continuity conditions are given at

the interface position x = l, that is,

lim
x→l−

U(x, t) = lim
x→l+

U(x, t), (6)

lim
x→l−

k1Ux(x, t) = lim
x→l+

k2Ux(x, t), (7)

for t > 0. From now on, for simplicity we assume

that

F > Ta. (8)

3 The steady-state problem

The steady-state problem corresponding to the initial

and boundary problem with interface (1)-(7) is given

by the following equations

US
xx(x) = 0, 0 < x < l, (9)

US
xx(x) = 0, l < x < L, (10)

US(0) = F, (11)

−k2U
S
x (L) = h(US(L)− Ta), (12)

US(l−) = US(l+), (13)

k1U
S
x (l

−) = k2U
S
x (l

+), (14)

where US(l−) and US(l+) denote lim
x→l−

US(x) and

lim
x→l+

US(x), respectively.
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Lemma 1. The solution to the steady-state problem

(9)-(14) is given by the following expression:

US(x) =

{

F −Qµ 1
k1

x, 0 ≤ x ≤ l,

F −Qµ
(

1
k2
(x− l) + l

k1

)

, l < x ≤ L,

(15)

where Q = (F − Ta)h, and µ is the dimensionless

coefficient

µ =
1

1 + hL

k2
+
(

1
k1

− 1
k2

)

hl
=

k1k2
D

, (16)

being D = k1k2 + k1hL + (k2 − k1)hl,
k1, k2, h, l, L, Ta, F positive constants, L > l > 0.

Proof. Equations (9)-(10) imply that the solution is

a piecewise linear function. Imposing the boundary

and interface conditions (11)-(14) it follows that, after

algebraic computations, the solution can be written as

US(x) =























F −
Qk2
D

x, 0 ≤ x ≤ l,

F −
Qk1k2
D

(

x− l

k2
+

l

k1

)

, l < x ≤ L.

(17)

By using the dimensionless coefficient µ defined in

(16), the expression (15) is obtained.

This section is included for the sake of complete-

ness and no much detail or discussion is given here. In

[14], [15], [16] an equivalent expression can be found

for the solution to (9)-(14) and its consistency with

the corresponding one for an homogeneous bar with

the same boundary conditions.

Example 2. Consider the problem described by the

equations (9)-(14) with L = 1m, Ta = 25◦C, h =
10W/(m2◦C) and F = 100◦C.

Figure 2 shows the spatial profile of temperatures

for different materials and different interface points. It

can be seen that the solution is piecewise linear and,

since the thermal source is higher than the room tem-

perature, the temperature decreases as a function of

the distance from the source location. The less con-

ductive materials leads to a greater decrease in tem-

perature.

Figure 2: Temperature profiles for different contact

point positions (left) and different materials (right).

The plots on top show different situations for a

Fe-Pb or a Pb-Fe bar. It can be observed that in the

case of Fe-Pb, higher temperature values are achieved

for x < l = L/2. This is consistent with the analytical

solution since, in this case, it results

U s(l) = F −
F − Ta

(k1
k2

+ 1) + 2k1
hL

. (18)

Then, for the same pair of materials, the temperature

values at x = l are greater when the more conductive

material occupies the left half of the bar (i.e., k1 >
k2). On the other hand, if l = L/2 from (15) it follows

that

U s(L) = F −
F − Ta

1 + 2k1k2
hL(k1+k2)

. (19)

Then, the temperature value at x = L depends on k1+
k2 and k1k2, hence the relative location of the two

materials to the left or right (i.e. Fe-Pb and Pb-Fe)

does not influence the temperature value U(L) at the

right edge (see also [15]).

At the bottom of Figure 2, the temperature pro-

files for different interface locations and different ma-

terial pairs are shown. The materials were chosen so

that their thermal conductivities satisfy different rela-

tionships that are reflected in the slopes of the lines.
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Table 1: Thermal properties of different materials.

Material (Symbol) k(W/m◦C) α2 × 104(m2/s)

Lead (Pb) 35 0.23673

Nickel (Ni) 70 0.22660

Iron (Fe) 73 0.20451

Magnesium (Mg) 156 0.88300

Aluminium (Al) 204 0.84010

Cupper (Cu) 386 1.12530

Silver (Ag) 419 1.70140

For Fe-Cu: k1 < k2, Al-Mg: k1 ≃ k2 (thermally sim-

ilar), Ag-Pb: k1 > k2 (see Table 1).

4 The transient problem

In order to solve the problem (1)-(7), we consider

U(x, t) = U s(x)+ϕ(x, t), 0 ≤ x ≤ L, t ≥ 0, (20)

where U s(x) is given by (17) or (15)-(16) and ϕ(x, t)
satisfies the following initial and boundary problem

with interface for t > 0

ϕt(x, t) = α2
1 ϕxx(x, t), 0 < x < l, (21)

ϕt(x, t) = α2
2 ϕxx(x, t), l < x < L, (22)

ϕ(x, 0) = Ta − U s(x), 0 < x < L, (23)

ϕ(0, t) = 0, (24)

−k2ϕx(L, t) = hϕ(L, t), (25)

ϕ(l−, t) = ϕ(l+, t), (26)

k1ϕx(l
−, t) = k2ϕx(l

+, t). (27)

By using this representation, the transient terms can

be viewed as ” perturbations” to the steady-state.

The standard procedure of separation of variables

is used to find ϕ(x, t). Assuming the existence of

X(x) and T (t) that satisfy, for t > 0,

ϕ(x, t) =

{

X1(x).T (t), 0 ≤ x ≤ l,

X2(x).T (t), l < x ≤ L,
(28)

and the following equations and conditions are ob-

tained:

X ′′

1 (x)− ξ1X1(x) = 0, 0 < x < l, (29)

X ′′

2 (x)− ξ2X2(x) = 0, l < x < L, (30)

T ′(t) = ξ1α1T (t)

= ξ2α2T (t), t > 0, (31)

X1(0) = 0, (32)

k2X
′

2(L) + hX2(L) = 0, (33)

X1(l
−) = X2(l

+), (34)

k1X
′

1(l
−) = k2X

′

2(l
+). (35)

A solution to the above eigenvalue problem exists pro-

vided that ξi = −λ2
i
< 0, and it follows that

X1(x) = A1 sin(λ1x), (36)

X2(x) = A2 sin(λ2x) +B2 cos(λ2x), (37)

T (t) = C1e
−λ1α

2
1
t = C2e

−λ2
2
α2
2
t, (38)

where

λ1 = αλ2, α =

√

α2
2

α2
1

=
α2

α1
. (39)

From now on, we denote λ = λ2 and, without loss of

generality, it is assumed that A1 = 1. Setting A =
A2, B = B2 and C = C2 we have

X1(x) = sin(αλx), (40)

X2(x) = A sin(λx) +B cos(λx), (41)

T (t) = Ce−λ2α2
2
t, (42)

where λ > 0 must satisfy the eigenvalue equation

tan(xL) =
k2Ax+ hB

k2Bx−Ah
, x > 0, (43)

or equivalenty,

−
k2
h
x =

B +A tan(xL)

A−B tan(xL)
, x > 0. (44)

From the two interface conditions, and letting

k =
k1
k2

, (45)

it follows that

A = kα cos(αlx) cos(lx) + sin(αlx) sin(lx), (46)

B = sin(αlx) cos(lx)− lα cos(αlx) sin(lx). (47)
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Replacing (46)-(47) in equation (44), by algebraic

computation the eigenvalue equation (44) can be writ-

ten as

−
k2
h
x =

tan(αlx) + kα tan((L− l)x)

kα− tan(αlx) tan((L− l)x)
, (48)

for x > 0.

Lemmas 3- 5 show that the right hand side of the

above equation (48) may be written as the tangent of

a sum of two functions and, therefore, it has an infi-

nite number of essential discontinuities. These results

will be used in Theorem 6 to prove that there exist

infinitely many solutions to (48).

Lemma 3. For α, l, L, k > 0 with L > l, the function

f : D ⊂ (0,+∞) → IR defined by

f(x) = atan

(

tan(αlx)

kα

)

+ (L− l)x, (49)

satisfies IR+ ⊆ Im(f) where

D = [0,+∞)− {xn, n ∈ IN}, (50)

being

xn = −
π

2αl
+ n

π

αl
. (51)

Proof. Consider the one-sided limits at the disconti-

nuity points xn given in (51). Since

atan

(

tan(αlx)

kα

)

∈
(

−
π

2
,
π

2

)

, (52)

it results that

lim
x→x

−

n

f(x) =
π

2
+ (L− l)xn, (53)

lim
x→x

+
n

f(x) = −
π

2
+ (L− l)xn. (54)

Therefore,

lim
x→x

−

n

f(x) > lim
x→x

+
n

f(x) (55)

and since for x ∈ D

f ′(x) =
l

k

[

1 +
(

tan(αlx)
kα

)2
]

cos2(αlx)

+L− l > 0,

(56)

it follows that f is increasing in the interval (0, x1)
and in each interval (xn, xn+1), ∀n ∈ IN. On the

other hand, the first term of f is bounded, and L > l,
then

lim
x→+∞

f(x) = +∞. (57)

From (55), (56) and (57) it follows that all positive

real values are included in Im(f), and the proof is

completed.

Different parameter values will produce functions

f(x) defined in (49) having graphs of similar shape.

The example bellow illustrates the behaviour for a par-

ticular case.

Example 4. Consider the expression of the function f
given in (49) for the problem described by the equa-

tions (1)-(7) for a bar made of iron and lead (Fe-Pb).

The particular parameter values for this example are

included in Table 2.

Table 2: Parameter values for Example 4.

Parameter Value

L(m) 5

l(m) 2

k1(W/m◦C) 73

k2(W/m◦C) 35

α2
1(m

2/s) 0.20451× 10−4

α2
2(m

2/s) 0.23673× 10−4

h(W/(m2◦C)) 10

Figure 3 shows the plots of the piecewise contin-

uous function f given in (49) for this particular case

f(x) = atan

(

tan(1.85892x)

0.44562

)

+ 3x (58)

along with y = 3x and

atan

(

tan(1.85892x)

0.44562

)

. (59)

It can be seen that, although f has an infinite num-

ber of discontinuities due to the term
tan(1.85892x)

0.44562 , the

image of the function f (in red) includes all positive

values. This will be crucial to prove that the equation

(48) has infinitely many solutions.

Lemma 5. Given α,L, l, k > 0, it follows that, for

x > 0

tan(αlx) + kα tan((L− l)x)

kα− tan(αlx) tan((L− l)x)
= tan(f(x)), (60)

where f is defined in (49).
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Figure 3: Red line: f(x) = atan
(

tan(1.85892x)
0.44562

)

+3x,

Grey dotted lines: y = 3x and atan
(

tan(1.85892x)
0.44562

)

.

Proof. Consider f defined in (49). By using the for-

mula for the tangent of a sum and some algebraic

computations, it follows that

tan(f(x)) = tan

(

atan

(

tan(1.85892x)

0.44562

)

+ 3x

)

=
tan

(

atan
(

tan(αlx)
kα

))

+ tan((L− l)x)

1− tan
(

atan
(

tan(αlx)
kα

))

tan((L− l)x)

=
tan(αlx)

kα
+ tan((L− l)x)

1− tan(αlx)
kα

tan((L− l)x)
. (61)

The equation (60) is obtained after multiplying the nu-

merator and denominator in (61) by kα.

Theorem 6. Let k2, h, α, l, L, k > 0, with L > l. The

equation

−
k2
h
x =

tan(αlx) + kα tan((L− l)x)

kα− tan(αlx) tan((L− l)x)
, x > 0,

(62)

has infinitely many positive solutions 0 < x1 <
x2 · · · < xn < · · · .

Proof. Lemma 3 and Lemma 5 allow to write

−
k2
h
x = tan(f(x)), x > 0, (63)

where f is defined in (49). Lemma 3 ensures that

IR+ ⊆ Im(f) implying that tan(f(x)) has an infinite

number of branches that intersects the line y = −k2
h
x

for x > 0.

The following example illustrates solutions to

Equation (48) for different setups.

Example 7. As for the previous example, a bar made

of iron and lead (Fe-Pb) it is considered. All parame-

ter values for this example are included in Table 3.

Table 3: Parameter values for Example 7.

Parameter Value

L(m) 5

l(m) 2

k1(W/m◦C) 73

k2(W/m◦C) 35

α2
1(m

2/s) 0.20451× 10−4

α2
2(m

2/s) 0.23673× 10−4

h(W/(m2◦C)) 10

F (◦C) 150

Ta(
◦C) 20

Figure 4: Solutions to Eq. (48) associated to the heat

transfer with interface problem (1)-(8) for a Fe-Pb bar

and modeling parameter values given in Table 3 (Ex-

ample 7 ).

The eigenvalue problem (48) in this case becomes

− 7.3x =
tan(1.8589x) + 0.44563 tan(3x))

0.44563− tan(1.8589x) tan(3x)
, (64)

some of its solutions are shown in Figure 4. Similar

results are obtained for different bar compositions.

Figure 4 shows some of the solutions of the equa-

tions (64). These solutions might not be the first ones,

since it could exist discontinuities on the right side of

that do not appear in the plot due, for instance, to the

discretization step.

Theorem 8. The initial-boundary value problem with

a solid-solid interface, described by equations (1)-(7),

has a unique solution of the form

U(x, t) = U s(x)+ϕ(x, t), 0 ≤ x ≤ L, t ≥ 0, (65)
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where U s(x) is given by the expressions 17 (or 15-16)

and

ϕ(x, t) =











ϕ1(x, t), 0 ≤ x ≤ l,

ϕ2(x, t), l < x ≤ L,

(66)

for t > 0, being

ϕ1(x, t) =
∞
∑

n=1

Cn sin(αλnx)e
−λ2

n
α2
2
t, (67)

ϕ2(x, t) =
∞
∑

n=1

Cn[kα cos(αλnl) sin(λn(x− l))

+ sin(αλnl) cos(λn(x− l))]e−λ2
n
α2
2
t,

(68)

with

Cn = 2(Ta − F )

− sin(αλnl)

αλn

µh

k2
+ cos (αλnl)

(

−1 +
µh

k2
l

)

+ 1

αλnl − sin(αλnl) cos(αλnl)
,

(69)

for n ∈ N where λn are the solutions to the equation

(48) and µ is defined in (16).

Proof. Equations (28), (39)-(42), (45)-(48) and the

superposition principle lead to Equations (66)-(68).

From the initial condition (3) it follows that

Ta − U s(x) =

∞
∑

n=1

Cn sin(αλnx), 0 ≤ x ≤ l,

(70)

where the Fourier coefficients Cn are given by

Cn =

∫

l

0
(Ta − U s(x)) sin(αλnx)dx

∫

l

0
sin2(αλnx)dx

. (71)

Using the dimensionless coefficient µ defined in (16)

and after some calculations, the equation (69) is ob-

tained.

5 Numerical simulations

The aim of this section is to illustrate the temperature

behavior for the heat transfer process given by (1)-(7).

The numerical solutions presented here are obtained

by using a finite difference of second order centered

in space and forward in time.This explicit method is

stable and convergent for

max{α2
1, α

2
2} <

(∆x)2

2∆t
, (72)

where ∆x and ∆t are the discretization steps for the

space and time, respectively [7].

A computational non-parallel scheme was pro-

grammed in Matlab. A regular partition is consid-

ered in space and time to discretize the equations, tak-

ing ∆x = 0.01m. and ∆t = 0.1s. so that
(∆x)2

2∆t
=

5×10−4 which is greater that all possible thermal dif-

fusivity coefficients α2
1, α2

2 considered for this work

(see Table 1). The simulations are obtained in few

seconds when using an Intel(R) Core(TM) i7-6700K

4.GHz machine.

Example 9. Consider the problem described by the

equations (1)-(8) with L = 1m, where the solid-solid

interface is located at l = 0.3m, the heat transfer

coefficient is h = 10W/(m2◦C), Ta = 25◦C, and

the thermal source is F = 100◦C.

Figures 5-6 show the plots for the temperature

profiles at the interface x = l and at the right bound-

ary x = L, respectively, for a bar composed by dif-

ferent pairs of materials where the material at the left

side of the bar is Pb (top) and Ag (bottom). From

these figures, it can be seen that U(l, t) > U(L, t)
for all t > 0, that agrees with the analytical solution

given in (68). It is also observed that in all cases it

requires some hours to achieve the steady-state, and

it is reached earlier when more diffusive materials are

involved. These observations are also consistent with

the analytical solution, since the transient terms of the

solution, (67)-(68) (and (38), (39), (42)) decay expo-

nentially with the diffusivity coefficients which are of

the order of 10−4.

In Figure 7 temperature profiles on the bar at

t = 1h and at t = 15h are shown. Note that for the

latter, the curves resemble piecewise linear functions,

which correspond to the steady-state as shown in the

analytical formula given in (17) and it is illustrated in

Figure 3. The slopes depend on a particular combi-

nation of the conductivity values of the materials, the
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Figure 5: Temperature profiles at the interface point

(l = 0.3m) for the Example 9 where the material at

the left side of the bar is Pb (top) and Ag (bottom).

Figure 6: Temperature profiles at the free-end (x = L)

for the Example 9 where the material at the left side

of the bar is Pb (top) and Ag (bottom).

Figure 7: Bar temperature at t = 1h (top) and t = 15h
(bottom) for the Example 9.

Figure 8: Temperature as function of space and time

for the Example 9. Pb-Ag (top), Ag-Pb (bottom).
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location of the interface and the source and room tem-

peratures. This also agree with the analytical solution

given in (17), (65)-(68) since the transitory terms ap-

proaches zero with time.

Finally, in Figure 8 the temperatures for Pb-Ag

(top) and Ag-Pb (bottom) as functions of space and

time are plotted, where the horizontal axis represents

the time in hours and the vertical axis represents the

distance from the left boundary in meters. That is, for

a fixed value of t, the temperature distribution of the

bar at that time can be seen vertically, from the left

edge x = 0 (bottom line of the graph) to the right one,

x = L (top line of the graph). On the other hand,

taking a fixed value of x, one can see the evolution

of the temperature at that point by looking at the cor-

responding horizontal line. Notice, in both cases, a

change in the temperature behavior at the interface

point (x = 0.3m). Moreover, for x ≤ 0.3m, the

plot on bottom (Ag-Pb) shows that the temperature

achieves higher values in a shorter period of time than

for the corresponding one for Pb-Ag (top) under the

same conditions. This observation is physically con-

sistent to the fact that Ag is a more diffusive material

than Pb. The materials for this example were chosen

so that the differences in the behavior of the temper-

ature function can be easily observed due to the large

difference in their respective thermal diffusivities.

6 Conclusion

In this work, the solution to a heat transfer problem

along a bar with a solid-solid interface is considered.

This study pursues to provide a theoretical basement

that can help to gain insight into the effect of in-

terfaces on heat transfer processes, from the mathe-

matical point of view. A perfect assembly between

the two parts are considered, so that differences be-

tween the analytical solution and experimental mea-

surements will provide an amount of thermal dissipa-

tion between the two materials, that would be useful

to model tension and roughness at the interface as well

as solid-solid thermal resistance. The problem is de-

scribed by an initial value parabolic partial differen-

tial equation with interface and Dirichlet and Robin

boundary conditions. The analytical expression for

the solution is derived where the steady-state form is

explicitly included. The transient part of the solution

is obtained which depends on the solution of a Sturm-

Liouville problem. The existence of an infinite num-

ber of solutions to the eigenvalue problem is demon-

strated and it is the most important result of this work.

Also, an illustrative example is included.

Numerical simulations are conducted by using

an explicit finite difference scheme where its conver-

gence and stability properties are discussed. Numeri-

cal results are consistent with analytical solutions and

physical interpretations.

Future works might include, among others, the

study of mathematical models for the thermal be-

havior at the interface and how the imperfections or

roughness at the solid-solid interface can change the

temperature distribution at the bar. Also, extensions

to 2D and 3D analysis and/or the problem for two or

more interfaces can be conducted.
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