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Abstract 

The problem of nonlinear heat transfer through a rarefied gas confined between 

concentric cylinders maintained at different temperatures is investigated. The 

formulation is based on the nonlinear Shakhov kinetic model subject to Cercignani-

Lampis boundary conditions, while molecular interaction is modelled by the inverse 

power law. The detailed behaviour of the radial heat flow, density, temperature and 

pressure distributions in terms of the normalized temperature difference between the 

cylindrical walls, the ratio of the two cylindrical radii and the gas rarefaction is 

investigated and certain interesting characteristics are revealed. The study includes 

small, moderate and large temperature differences and various radius ratios and is 

extended in the whole range of the Knudsen number. It is verified that the type of 

molecular interaction plays an important role when the heat transfer configuration 

becomes strongly nonlinear, while the influence of the gas-surface scattering law has 

similar effects both in linear and nonlinear conditions. By comparing linear and 

nonlinear results corresponding to the same conditions, it is concluded that linearized 

analysis can capture the correct behaviour of the heat flow configuration not only for 

infinitesimally small but also for finite temperature differences and that its range of 

applicability is wider than expected. 
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1. Introduction 
The problem of heat transfer through rarefied gases, confined between coaxial 

cylindrical surfaces at different temperatures, has been theoretically investigated, 

based on kinetic theory, by many researchers [1-10]. However, in most cases, only 

small values of the normalized temperature difference are considered and linearization 

of the governing kinetic equations is accordingly introduced [1-5, 8, 10]. The 

corresponding works with a finite temperature difference are limited [6, 7, 9] and, in 

most cases, results are provided only within a certain range of the rarefaction, thermal 

and geometrical parameters involved in the problem. In addition, the influence of the 

implemented intermolecular potential and gas-surface interaction modelling on the 

macroscopic quantities are usually not considered in depth. 

This simple heat transfer configuration is very common in several technological 

applications including the Pirani gauges [11] for monitoring pressure in vacuum 

technology, the multilayer insulation blankets [12] used in space vehicles and 

cryogenic systems and micro heat exchangers in microfluidics. Also, it has been used 

for a long time to determine the thermal conductivity of gases and to study 

temperature jump and energy accommodation at the inner cylinder. 

Thus, a complete and accurate solution of the cylindrical heat transfer problem for 

a wide range of all involved parameters is needed. It can be obtained by solving 

directly a set of nonlinear kinetic equations, based on the discrete velocity (or 

ordinates) method, for the unknown distribution function, subject to suitable boundary 

conditions. Such treatment of the heat transfer problem under consideration has been 

successfully applied only in the case of small temperature differences based on 

linearized kinetic theory [10]. 

In the present work, the problem of heat transfer through a rarefied gas between 

two coaxial cylinders is solved based on the nonlinear form of the Shakhov kinetic 

model [13, 14], subject to Cercignani-Lampis (CL) boundary conditions [15, 16]. The 

Shakhov model, unlike the BGK model, provides simultaneously the correct 

expressions for the heat conduction and viscosity transport coefficients. Also, as it is 

well known, the CL scattering kernel contains two free parameters providing the 

possibility to distinguish between tangential momentum and normal kinetic energy 

accommodation. Therefore, a sufficient physical description of the gas-surface 

interaction is deduced. For specific values of the two parameters, the commonly used 
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Maxwell diffuse boundary conditions are recovered as a special case. Intermolecular 

interactions are simulated based on the Inverse Power Law (IPL) [17, 18]. By varying 

the viscosity dependence on temperature according to the IPL model, various 

intermolecular potentials have been considered. The two limiting cases of the IPL 

interaction, namely the Maxwell and the hard sphere interaction are examined in 

detail. The numerical solution is based on an advanced discrete velocity algorithm 

providing accurate results with modest computational effort. Macroscopic quantities 

are provided in the whole range of the Knudsen number for several values of the 

radius ratio and for small, moderate and large temperature differences. The influence 

of the gas-surface and intermolecular interaction models are investigated. The 

numerical results are in very good agreement with the corresponding nonlinear BGK 

results, provided that the collision frequency of the latter model is properly chosen to 

yield the correct expression for the heat conduction transport coefficient. Even more, 

in the case of very small temperature differences the results obtained by the nonlinear 

Shakhov model are in excellent agreement with previously reported results, based on 

the linearized Shakhov model [10]. Based on this comparison the range of validity of 

the linearized kinetic analysis is discussed. 

 

2. Formulation of the problem 
 

2.1 Cylindrical heat flow configuration and governing model equation 

Consider two concentric stationary cylinders of infinite length, with radii AR  and 

BR  and the annular region ˆA BR r R< <  filled with a monatomic gas at rest and at 

arbitrary density level. The cylinders are maintained at different temperatures  and 

, with . Also, the cylinders are considered long and end effects in the axial 

direction are negligible. Due to the temperature difference 

AT

BT AT T> B

A BT T TΔ = − , which may be 

arbitrarily large in magnitude, there is a radial heat flow through the rarefied gas from 

the hot towards the cold cylinder. The problem is axially symmetric and its 

configuration is shown in Fig. 1, where it is seen that the letters  and A B  refer to the 

inner (hot) and outer (cold) cylinders respectively. The objective is to estimate all 

macroscopic distributions in terms of the three parameters governing this heat transfer 
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problem, namely the temperature difference between the cylindrical walls, the ratio of 

the two cylindrical radii and the degree of gas rarefaction. 

It is convenient to introduce these three parameters in dimensionless form, taking 

the quantities at the outer cylinder as reference quantities. In particular 

A B

B

T T
T

β −
=  (1) 

is the dimensionless temperature difference, 

A

B

R
R

γ =  (2) 

is the radius ratio and 

0
0

1~B B

B B

R P
Kn

=δ
μ υ

 (3) 

is the reference rarefaction parameter. In the latter expression,  is the reference gas 

pressure, measured when the system is in equilibrium (

BP

A BT T= ), Bμ  is the gas 

viscocity at reference temperature  and BT 2 /B B Bk T mυ = , with  being the 

Boltzmann constant and m  the molecular mass, is the most probable molecular 

velocity. The rarefaction parameter is proportional to the inverse of the Knudsen 

number and therefore as 

Bk

0δ  is increased the atmosphere becomes more dense (or less 

rarefied). The cases of 0 0δ =  and 0δ →∞  correspond to the free molecular and 

hydrodynamic limits respectively. 

The governing equation is the nonlinear Shakhov kinetic model, which, taking 

into account the symmetries of the problem under consideration, is written as [13, 14] 

(
sin

cos
ˆ ˆ

p S
p

f f P )f f
r r

ξ θ
ξ θ

θ μ
∂ ∂− =
∂ ∂

− , (4) 

where 

( )
2

2
21 cos

2 215
S M

p
BB

mmf f Q
k Tn k T
ξξ θ

⎡ ⎤⎛
= + −⎢ ⎜

⎝ ⎠⎣ ⎦

5⎞
⎥⎟  (5) 

with 
3/2 2

exp
2 2

M

B B

mf n
k T k T

mξ
π

⎛ ⎞ ⎛
= ⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
− ⎟

⎠
 (6) 
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being the local Maxwellian. Here, ( ),f f r= ξ  is the unknown distribution function, 

 is the radial spatial coordinate and r̂ ( ) ( ), , cos , sin ,r z p pθ zξ ξ ξ ξ θ ξ θ ξ= =ξ  is the 

molecular velocity vector, while ( ),p r θξ ξ=ξ , shown in Fig. 1, is the planar velocity 

vector, with pξ = pξ . Also, n , T  and  are the macroscopic distributions of number 

density, temperature and radial heat flow respectively, which may be obtained by the 

moments of the distribution function according to  

Q

( ) p p zn r f d d dξ ξ θ ξ= ∫ ∫ ∫  (7) 

( ) ( ) ( )2 2

3
p z p p

B

mT r f d d d
n r k

= +∫ ∫ ∫ zξ ξ ξ ξ θ ξ  (8) 

and 

( ) ( )( )2 2 cos
2 p z p p p
mQ r f d d d= +∫ ∫ ∫ zξ ξ ξ θ ξ ξ θ ξ , (9) 

Furthermore, μ  is the viscocity of the gas at local temperature T , while  is the 

local pressure of the gas given by the equation of state 

P

BP nk T= . (10) 

It is noted that, even though the Shakhov model fulfils the collision invariants and 

provides correct expressions of the transport coefficients, there is no proof so far that 

it satisfies the H-theorem. This is a drawback for the Shakhov model. However, this 

unresolved issue produces no numerical problems or unphysical findings (e.g. 

negative distributions). Furthermore, it has been chosen between several nonlinear 

kinetic models, mainly due to the fact that the corresponding linearized solution for 

the specific heat transfer problem is available in the literature [10], allowing a direct 

comparison between the linear and nonlinear solutions at small temperature 

differences. This is important, in order to benchmark the nonlinear results in the linear 

limit and also to check the range of validity of the linearized theory. As mentioned 

before, all results are in good agreement with the corresponding nonlinear BGK 

results provided that in the BGK model  

(
sin

cos
ˆ ˆ

p M
p

f f )f f
r r

ξ θ
ξ θ ν

θ
∂ ∂− =
∂ ∂

−  (11) 

the collision frequency is accordingly chosen as ( ) ( )2 / 3Pν μ=  in order to obtain the 

correct heat conduction transport coefficient. 
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2.2 Reduced non-dimensional kinetic equations and quantities 

The unknown distribution function introduced in the previous section depends on 

four independent variables (one in the physical space and three in the velocity space). 

Following a typical projection procedure, it is possible to eliminate the component 

of the molecular velocity vector. By reducing the number of independent variables 

from four to three the associated computational effort is significantly reduced. Also, 

for practical reasons all equations and quantities are non-dimensionalized. 

z −

The following dimensionless quantities are introduced: 

( )
3

 , B

B

fg r
n
υ

=c , 
ˆ

B

rr
R

= , 
Bυ

=
ξc ,  

 
B

n
n

ρ = , 
B

T
T

τ = , 
B B

Qq
Pυ

= , 
B

Pp
P

= . (12) 

All quantities with the subscript B  are considered as reference quantities. Here, 

 is a dimensionless distribution function, with ( ,g r c) 1rγ ≤ ≤  and  

denoting the independent variables (

( ), ,r zc c cθ=c

cosrc ζ θ= , sincθ ζ θ= ), while ζ  denotes the 

magnitude of the dimensionless molecular planar velocity vector. Furthermore, ρ , τ , 

, and q p  are the dimensionless distributions of number density, temperature, radial 

heat flow and gas pressure respectively. 

Then, to proceed with the mathematical manipulation, molecular interaction must 

be specified. The IPL interaction, where the repulsive force between two molecules is 

proportional to the inverse of the n − th power of the distance between their centers, is 

introduced. The IPL interaction yields a viscocity of the form [17, 18] 

( /B BT T )ωμ μ= , (13) 

where . The parameter ( )1/ 2 2 / 1nω = + −⎡⎣ ⎤⎦ ω  takes the values of 1/  and 1 for the 

hard sphere ( ) and Maxwell (

2

n →∞ 5n = ) interactions respectively, which are the 

two limiting cases. Based on the above it is easily deduced that the local rarefaction 

parameter, defined as ( ) ( )/BPR=δ μυ , is given by 

1
0

ωδ δ ρτ −= , (14) 

where 0δ  is the reference rarefaction parameter defined in Eq. (3). 

The quantities given by Eqs. (12) and (14) are introduced into Eqs. (4-6), to yield 

the dimensionless nonlinear Shakhov kinetic model equation 

 6



(1
0

sincos Sg g g g
r r

ω )ζ θζ θ δ ρτ
θ

−∂ ∂
− =

∂ ∂
− , (15) 

where 
2

2

4 1 51 cos
15 2

S M cg g qζ θ
ρτ τ

⎡ ⎤⎛ ⎞
= + −⎢ ⎜

⎝ ⎠⎣ ⎦
⎥⎟ , (16) 

with 

( )
( )2

3/2 exp /Mg cρ τ
πτ

= −                 (17) 

being the dimensionless local Maxwellian. Since the Shakhov collision model 

satisfies, as it should, the collisional invariants of mass, momentum and energy, the 

corresponding conservation equations may be obtained by operating accordingly on 

Eq. (15). The detailed derivation is contained in Appendix A. The mass equation 

implies that ( ) 0u r =  is always satisfied, while the energy equation yields that the 

product  is constant at any position ( )q r r 1rγ ≤ ≤  between the cylinders. Both 

conditions are implemented to benchmark the accuracy of the computed distribution 

function. Also, from the momentum equation it is deduced that the gradient 

 is different than zero. Thus, there is a pressure gradient due to heat flow and 

not due to fluid flow. This is a non-equilibrium cross effect, which becomes stronger 

as the temperature difference between the cylinders and the gas rarefaction are 

increased, while it is completely eliminated in the hydrodynamic limit.  

r −

/dp dr

Next, the projection procedure is introduced by defining the reduced distribution 

functions 

( ), , zr gdcφ ζ θ = ∫     and     ( ) 2, , zr c gdczψ ζ θ = ∫ . (18) 

Then, by operating successively on Eq. (15-17) with the integral operators and 

, the following two coupled integro-differential equations are obtained for 

the unknowns 

( ). zdc∫
( ) 2. zc dc∫ z

φ  and ψ :  

(1
0

sincos S

r r
ω )φ ζ θ φζ θ δ ρτ

θ
−∂ ∂

− =
∂ ∂

φ φ−  (19) 

(1
0

sincos S

r r
ω )ψ ζ θ ψζ θ δ ρτ

θ
−∂ ∂

− =
∂ ∂

ψ ψ−  (20) 

Here, 
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2

2

4 11 cos
15

S M q ζφ φ ζ θ
ρτ τ

⎡ ⎤⎛
= + −⎢ ⎜

⎝ ⎠⎣ ⎦
2
⎞
⎥⎟  (21) 

and 
2

2

4 11 cos
15

S M q ζ 1ψ ψ ζ θ
ρτ τ

⎡ ⎤⎛ ⎞
= + −⎢ ⎜

⎝ ⎠⎣ ⎦
⎥⎟ , (22) 

while 

( 2exp /M )ρφ ζ τ
πτ

= −         and        ( 2exp /
2

M )ρψ ζ τ
π

= −  (23) 

are the local Maxwellians. The same non-dimensionalization and projection 

procedures are applied to the moments (7-9), to find that the macroscopic quantities 

are given, in terms of φ  and ψ , according to 

( )
2

0 0

r d
π

dρ φζ ζ θ
∞

= ∫ ∫ , (24) 

( ) ( ) ( )
2

2

0 0

2
3

r
r

π

d dτ ζ φ ψ ζ ζ θ
ρ

∞

= +∫ ∫  (25) 

and 

( ) ( )( )
2

2

0 0

cosq r d d
π

ζ θ ζ φ ψ ζ ζ θ
∞

= +∫ ∫ . (26) 

Also, gas pressure is given by ( ) ( ) ( )p r r rρ τ= . Equations (19-23), along with the 

associated moments (24-26) constitute the basic set of equations to be solved. 

 

2.3 The Cercignani-Lampis boundary conditions 

Having established the set of governing equations, we turn next to the important 

issue of deriving the appropriate boundary conditions for the outgoing distributions at 

the inner ( r γ= ) and outer ( 1r = ) walls. In general, the boundary conditions are 

imposed using the expression [14] 

( ) ( ) ( )
'

'

0n

n nf R f
ξ

ξ ξ
<

= →∫ ' ' d 'ξ ξ ξ ξ ξ . (27) 

The prime superscript denotes particles impinging to the surface, while un-primed 

quantities concern the departing molecules. The  subscript refers to the direction 

normal to the wall surface. The symbol 

n

( )R →'ξ ξ  represents the scattering kernel, 
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i.e. the probability density for a molecule approaching a wall with velocity 'ξ  and 

being reflected with velocity ξ .  

In the present work the CL scattering kernel is implemented [15, 16, 19] and it is 

written as  

( )
( )( )

( )

( )
( )

2 '22

2

2' '

0

1
exp

22 2

1 1
exp

2 2

n n nn

B w nn t t B w

t t t n n n

B w t t n B w

mmR
k Tk T

m m
I

k T k T

⎧ ⎫⎡ ⎤+ −⎪ ⎪⎣ ⎦→ = −⎨ ⎬
− ⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤ ⎛ ⎞− − −⎪ ⎪⎣ ⎦− ⎜ ⎟⎨ ⎬ ⎜ ⎟−⎪ ⎪ ⎝ ⎠⎩ ⎭

ξ α ξξ
απα α α

α α ξ ξ
α α α

ξ ξ

ξ ξ

'

 (28) 

Here,  is a wall temperature and wT ( ) ( )
2

0 0

1 exp cos
2

I x x
π

dϕ ϕ
π

= ∫  is the modified 

Bessel function of the first kind and zeroth order and the t  subscript refers to the 

direction tangential to the wall surface. As it is seen, the CL model includes two free 

parameters, namely 0 2tα< ≤  and 0 1nα< ≤ , which are the accommodation 

coefficients of tangential momentum and kinetic energy due to the normal molecular 

velocity, respectively. In the cases of 1t nα α= =  and 0t nα α= = , the CL scattering 

kernel is reduced to the purely diffuse and specular Maxwell scattering kernels, 

respectively. Even more, the so-called backscattering, which may be present on 

particularly rough surfaces, can be simulated with 2tα →  and 0nα → . For various 

values of tα  and nα , the model produces lobular distributions of the re-emitted 

particles, which are in good agreement with molecular beam experiments [15]. 

Overall, it provides a reasonable physical description of the gas-surface interaction. 

Over the years, the CL model has been successfully applied in rarefied gas dynamics 

[20-25]. 

So far most of the work has been based on the linearized CL model. The reduced 

nonlinear CL boundary conditions, implemented in the present work, are formulated 

as follows. First, Eq. (27) and (28) are non-dimensionalized according to Eq. (12) and 

then the projection procedure on the resulting equations, as defined by the integral 

expressions (18), is introduced. After applying this mathematical manipulation the 

following boundary conditions for the outgoing reduced distribution functions are 

deduced at the inner wall ( r γ= ): 

( )
( ) ( )

( ) (
3 /2

' ' '
3/2

/2 0

2, , cos , ,
1 2n t t

∞

=−
+ − ∫ ∫

π

π

)'φ γ ζ θ ζ θ φ γ ζ θ
α β πα α
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( ) ( )( )
( )

( ) ( )( )[ ]
( ) ( )

222 ' '' ' sin 1 sincos 1 cos
exp exp

1 1
tn

n t 2 t

⎡ ⎤⎡ ⎤ − −+ −
− −⎢ ⎥⎢ ⎥

+ +⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

ζ θ α ζ θζ θ α ζ θ
β α β α α

  

( )( )
( )

' ' '
' '

0

2 1 cos cos
1

n

n

'I d d
α ζ θ ζ θ

ζ ζ θ
β α

⎡ ⎤−
⎢ +⎣ ⎦

⎥  (29) 

 

( )
( ) ( )

( ) ( ) ( ) ( ) ( )
3 /2

2' ' ' ' ' '
3/2

/2 0

12, , cos 1 , , 2 , ,
21 2 t t t

n t t

∞ +⎡ ⎤=− − + −⎢ ⎥⎣ ⎦+ − ∫ ∫
π

π

βψ γ ζ θ ζ θ α ψ γ ζ θ α α φ γ ζ θ
α β πα α

 

( )( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( ) ( )

22 2 ' ' '' ' ' ' sin 1 cos sincos cos 1 cos cos
exp exp

1 1
tn

n t 2 t

⎡ ⎤⎡ ⎤ − −+ − ⎡ ⎤⎣ ⎦− −⎢ ⎥⎢ ⎥
+ + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

ζ θ α ζ θ θζ θ θ α ζ θ θ
β α β α α

 

( )( )
( )

' '
' ' '

0

2 1 cos cos
1

n

n

d d
α ζ θ ζ θ

I ζ ζ θ
β α

⎡ ⎤−
⎢ ⎥+⎣ ⎦

 (30) 

The above expressions are valid for [ ]/ 2, / 2θ π π∈ − . 

It is noted that, even though gas-surface interaction is correctly described with the 

CL model, the involved computational effort is significantly increased. Thus, for the 

present heat transfer problem, only purely diffuse boundary conditions ( 1t nα α= = ) 

are applied on the outer wall ( 1r = ). This choice is also justified by the fact that one 

of the main purposes of this heat transfer configuration is to provide a methodology 

for determining the accommodation coefficients of the filament. Thus, a technical 

surface with no exceptional treatment would suffice for the outer cylinder and, as a 

result, purely diffuse boundary conditions should be adequate. Moreover, a larger 

impact of the scattering kernel is expected on the inner cylinder due to temperature 

variation. Based on the above, the following boundary conditions are applied for the 

reduced distribution functions at the outer wall ( 1r = ): 

( ) ( )211, , expφ ζ θ ζ
π

= −   (31) 

( ) ( 211, , exp
2 )ψ ζ θ ζ
π

= −  (32) 

The above expressions are valid for [ ]/ 2,3 / 2θ π π∈ . 

The nonlinear set of Eqs. (19-26) along with the boundary conditions (29-32) 

provide a theoretically well-established kinetic formulation for the heat transfer 

problem under consideration.  
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3. Computational scheme 

Both the molecular velocity space ( ),ζ θ , with [ )0,ζ ∈ ∞  and [ ]0, 2θ π∈ , and the 

physical space [ ],1r γ∈  are discretized. The continuum spectrum of magnitudes of 

the molecular velocity vector is replaced by a set of discrete magnitudes 

[ ]max0,mζ ζ∈ , 1, 2,...,m M= , which are taken to be the roots of the Legendre 

polynomial of order M  accordingly mapped from [ ]1,1−  to [ ]max0,ζ . It is obvious 

that the choice of this discrete set is directly connected to the implemented numerical 

integration over the molecular velocity space. Although, various discrete velocity sets 

may be applied, it has been found that the Gauss-Legendre integration provides 

reliable results with less computational effort in the whole range of the Knudsen 

number without changing the integration rule depending upon the gas rarefaction. The 

numerical parameters related to the choice of the discrete velocity magnitudes used in 

the present work are provided in Table 1. Also, by using a uniform grid, the angular 

space is divided into  intervals. Each of the angular intervals is defined by its angle N

nθ , . Finally, the distance between the two cylinders is divided into 1,2,...,n = N I  

equal segments, defined by , ir 1,2,..., 1i I= + .  

The governing kinetic Eqs. (19) and (20) are discretized in the variable ζ  and the 

resulting equations are integrated over each spatial and angular interval, [ ]1/2 1/2,i ir r− +  

and [ ]1/2 1/2,n nθ θ− + . The first and the second term at the left hand side of the kinetic 

equations are integrated analytically in terms of  and r θ  respectively and then the 

integration in terms of the remaining variable is performed based on the trapezoidal 

rule. The resulting discrete equation for φ  is 

0 01 1
1 1 1 1 1 1 1 1, , ,, ,
2 2 2 2 2 2 2 21 1

2 2

cos sin cos sin
2 2 4 2 2 4

m n m n m n m n
m n i i i m n i i i

i i
r r r r

ω ωζ θ ζ θ δ ζ θ ζ θ δφ ρ τ φ
θ θ

− −
+ + + + − + + +

+ +

⎡ ⎤ ⎡
⎢ ⎥ ⎢− + + + +⎢ ⎥ ⎢Δ Δ Δ Δ
⎢ ⎥ ⎢⎣ ⎦ ⎣

ρ τ
⎤
⎥+⎥
⎥⎦

  

0 01 1
1 1 1 1 1 1 1 1, , , ,
2 2 2 2 2 2 2 21 1

2 2

cos sin cos sin
2 2 4 2 2 4

m n m n m n m n
m n i i i m n i i i

ii i
r r r r

ω ωζ θ ζ θ δ ζ θ ζ θ δφ ρ τ φ
θ θ

− −
+ − − − − − − −

− −

⎡ ⎤ ⎡
⎢ ⎥ ⎢− − + + − + +⎢ ⎥ ⎢Δ Δ Δ Δ
⎢ ⎥ ⎢⎣ ⎦ ⎣

ρ τ
⎤
⎥ =⎥
⎥⎦

             0 1 1
1 1 1 1 1 1 1 1 1 1 1 1, , , , , , , ,
2 2 2 2 2 2 2 2 2 2 2 24

S S S S
i i m n i m n i i i m n i m n i

ω ωδ ρ τ φ φ ρ τ φ φ− −
+ + + + − + − − + − − −

⎡ ⎤⎛ ⎞ ⎛= + + +⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦

⎞
⎟
⎠

, (33) 

where 
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(
2

2
, , 2

4 11 cos 2 exp /
15

m iS
m n i i m n i

i i i i

q ζ ρ )φ ζ θ ζ τ
ρτ τ πτ

⎡ ⎤⎛ ⎞
= + − −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦
. (34) 

The corresponding equation for ψ  is derived in a similar manner and is omitted here. 

Due to the trapezoidal integration, the error is of ( )2 2,O r θΔ Δ  and its form is known.  

The discretized equations for ,, ,m n iφ  and ,, ,m n iψ  and the associated discretized 

moments (24-26) for iρ , iτ  and  are solved in an iterative manner. Based on the 

computed values of 

iq

iρ , iτ  and  of the previous iteration (or on a reasonable initial 

assumption at the beginning), the kinetic equations are solved for 

iq

,, ,m n iφ  and ,, ,m n iψ . 

Then, updated values of iρ , iτ  and  are obtained by introducing in the moments the 

computed distribution functions. The new values of the bulk quantities are used to 

initiate the next iteration. This iteration process is terminated when some convergence 

criteria imposed on the macroscopic quantities is fulfilled and is named in this text the 

typical iteration algorithm. The flow diagram of this algorithm is shown in Fig. 2. 

iq

The typical iteration algorithm has been upgraded by implementing the Romberg 

integration rule and the Wynn-epsilon (We) acceleration algorithm [27, 28]. In 

particular, the Romberg rule provides very accurate estimates of integration in the 

macroscopic quantities and in the boundary conditions, even when coarse angle and 

spatial grids are used, while the We algorithm speeds up the slow convergence of the 

typical iteration scheme. Both methodologies result to a significant reduction of CPU 

time. The flow diagram of the upgraded algorithm is shown in Fig. 3. 

The Romberg integration rule is carried out by the expression  

( ) ( ) ( )1 14 2
,

4 1

k
k k

k k

T m T m
T m − −−

=
−

       1, 2,3...k = , (35) 

where  denotes the estimation of an integral with  intervals after  

integration steps, while  is the original trapezoidal rule with  intervals. This 

treatment can be implemented in both the spatial and angular domains and the 

resulting accuracy is of . The Romberg rule is applied twice. First, 

at the Cercignani-Lampis boundary conditions (29) and (30), when integration with 

respect to the angle 

( )kT m m k

( )0T m m

( 2 2 2 2,k kO r θ+ +Δ Δ )

θ , is performed. The trapezoidal estimates are obtained initially 

on a coarse grid of  angles, which is doubled repeatedly until the total number of  

angles is reached. Secondly, at the macroscopic quantities (24-26), where the 

n N
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computation is performed initially on a coarse spatial and angular grid and, after 

convergence has been reached, it is repeated in a refined mesh, where the grid 

parameters have been doubled. This refinement is repeated 1k −  times and the results 

are combined according to Eq. (35) at each spatial point until the final number of  

angles and 

N

I  space nodes is reached. 

It is also noted that in each grid refinement the results of the previous grid have 

been used as an initial condition to speed up convergence. This procedure has lead to 

an accurate solution with a moderately dense grid. In particular, the initial number of 

angular and spatial intervals are 24N =  and 51I =  respectively. Then, the Romberg 

rule is applied four times ( ) in the angular space and two times ( ) in the 

physical space, leading to the final values of 

5k = 3k =

192N =  and 201I = . The above 

parameters are used for all values of the rarefaction parameter 0δ  

The We acceleration is a strongly nonlinear sequence accelerator that can exhibit 

spectacular acceleration for some sequences and has been described as the most 

elegant of all convergence acceleration methods [29]. The convergence of a series , jS

1,...,j J= , can be accelerated by forming a tableau whose even columns are 

estimations of the sequence limit 

( ) ( ) ( ) ( ) 11 1
1 1
j j j j

l l l lε ε ε ε
−+ +

+ −
⎡= + −⎣

⎤
⎦ , (36) 

with ( )
1 0jε− =  and ( )

0
j

jSε = . This algorithm is imposed inside the typical iteration loop 

to all macroscopic quantities, iρ , iτ  and . Thus, a value of each sequence is stored 

in regular intervals between the iterations and a transitional stage is allowed before 

each application of the algorithm. It is important to numerically monitor the values of 

each sequence and ensure that the series is converging. Then, the We acceleration is 

implemented. If the series is diverging then the We acceleration is not used within this 

iteration loop and the last estimation obtained by the typical iterative scheme is kept. 

Also, in general, the upgraded iterative method with the We acceleration scheme is 

stable and converges in the whole range of the 

iq

δ . Attention is needed in the 

hydrodynamic regime, where the parameters of the We scheme must be chosen after 

some numerical trials in order to optimize performance. In the calculations, a total of 

 terms have been used for 51J = 0 200δ ≤  and  101J =  for 0 200δ > .  
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Comparing the computational efficiency of the typical and the upgraded 

algorithms it has been found that while keeping the same accuracy in the results, the 

CPU time of the latter one is reduced by at least one order of magnitude. Furthermore, 

both Romberg and We schemes are easily applied in both linearized and nonlinear 

kinetic problems. Finally, it is noted that for more demanding problems the upgraded 

algorithm can be further improved by extending and optimizing the implementation of 

the Romberg rule. 
 

4. Results and discussion 
Results in graphical and tabulated form are presented for the macroscopic 

quantities in terms of all parameters involved in the problem. In particular, in Section 

4.1 the radial heat flow as well as the distributions of temperature, density and 

pressure are provided for various values of the normalized temperature difference β , 

the radius ratio γ  and the reference rarefaction parameter 0δ . The influence of the 

type of the gas-surface interaction and the intermolecular collision models on the 

macroscopic quantities, are examined in Sections 4.2 and 4.3 respectively. Finally, in 

Section 4.4 the range of validity of the linear solution is considered by comparing the 

present nonlinear results with the corresponding linearized ones for various values of 

β .   

The numerical results presented here, are based on the discretization and the 

numerical parameters given in Section 3. This set of parameters ensures grid 

independent results to all three significant figures given in the tables below. 

Validation of the numerical solution and benchmarking of the results has been 

performed in several manners. The numerical results satisfy the conservation 

equations obtained in Appendix A with at least 0.01% accuracy, while in the free 

molecular and hydrodynamic limits, they coincide with the analytical solutions 

presented in Appendix B. Also, for all cases examined the obtained results based on 

the nonlinear Shakhov model are in very good agreement with the corresponding ones 

obtained by the nonlinear BGK model, provided that the proper collision frequency is 

implemented in the BGK model. In addition, for adequately small temperature 

differences the nonlinear solution provides identical results to several significant 

figures with the corresponding linearized ones. Finally, additional benchmarking has 

been performed by considering the limiting case of γ  being very close to one, which 
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corresponds to the problem of heat transfer between two parallel plates.  Very good 

agreement has been obtained between the present results with the radius ratio 

0.999γ =  and the corresponding ones for the plane heat transfer problem. 

 

4.1 Bulk quantities for hard sphere molecules with diffuse boundary conditions 

In this subsection the study is focused on the dependency of the macroscopic 

quantities on 0δ , γ  and β . Therefore, only diffuse boundary conditions ( 1t nα α= = ) 

and hard sphere molecules ( 1/ 2ω = ) are considered. The reference rarefaction 

parameter varies in the whole range of the Knudsen number ( 00 650δ≤ ≤ ), the outer 

radius is 2 up to 65 times larger than the inner radius (1/ 2 1/ 65γ≤ ≤ ), while the 

normalized temperature difference takes the values of 0.1β = , 1 and 10. The 

temperature ratio is / 1A BT T β= + . It may be stated that the values of 0.1β = , 1 and 

10 correspond to linear, nonlinear and strongly nonlinear heat transfer configurations 

respectively.    

First, results for the radial heat flow, a quantity with great practical interest 

defined by Eq. (26), are presented. As it is noted before, if the radial heat flow is 

defined at some point 1rγ ≤ ≤ , then based on the energy conservation principal (the 

product  remains constant), it may be easily calculated at any point along the 

radius using the relation 

( )q r r

( ) ( ) ( )1q q r r q= =γ γ . Therefore, most of the results and 

discussion are based on the estimation of ( )q r  at r γ= . 

The behaviour of the radial heat flow ( )q r γ=  in terms of the reference 

rarefaction parameter 0δ  is shown in Fig. 4 for 0.1γ = , 0.2, 0.5 and 0.1β = , 10. It is 

seen that in most cases as 0δ  is increased (i.e., the gas becomes more dense) the 

dimensionless radial heat flow is decreased monotonically. In particular, it is 

decreased very slowly for 0 1δ < , while the reduction becomes much faster for  0 1δ > . 

However, it is seen that in the case of 10β =  and 0.1γ = , starting from  the 

heat flow is slightly increased, reaching a peak in the transition regime around 

2
0 10δ −=

0 1δ , 

and then it is decreased as 0δ  is increased. This is a nonlinear effect appearing at large 

β  and small γ . Overall it is obvious that the gas rarefaction strongly influences the 

radial heat flow for all values of β  and γ . 
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The radius ratio effect can also be noticed in Fig. 4. It is seen that in the free 

molecular regime 00 0.1δ≤ ≤  the radial heat flow is independent of γ  for both small 

and large temperature differences. Then, as 0δ  is increased the effect of γ  on  

becomes more evident. In particular, for 

q

0 0.1δ ≥ ,  is decreased as q γ  is increased 

(i.e. as the annular region is decreased). 

The behaviour of the radial heat flow ( )q r γ=  in terms of β  is shown in Table 2, 

covering a wide range of all three parameters determining the heat transfer problem. 

For small values of β  the radial heat flow is increased proportionally to β . However, 

as β  is increased and in particular for 1β ≥  the dependency is not linear any more 

and  is increased faster, following a power law of q β . It is also seen that this 

nonlinear behaviour becomes stronger as the rarefied gas becomes denser, i.e. as 0δ  is 

increased. It may be useful to note that tabulated results are important in this type of 

research work since they can be easily accessed in the future for comparison purposes 

with experiments or as benchmarks for computations. In this framework, the results of 

Table 2 will be used in the next subsections in order to study the influence of the 

intermolecular interaction law and the type of gas-surface interaction on the heat 

transfer characteristics. In addition, they will also be used to study the range of 

validity of the linear approximation by comparing with corresponding linear results 

previously reported in the literature. In order to provide this comparison in a direct 

manner, we have chosen to provide the heat flow results in Table 2 in terms of β , γ  

and the product 0δ γ . It is readily seen that the values of the rarefaction parameter in 

Table 2 vary in 00 650δ≤ ≤ . 

Next, the macroscopic quantities of number density and temperature, defined by 

Eqs. (24) and (25) respectively, are considered. In Fig. 5, the temperature distributions 

( )rτ  of the gas are presented along the radius 1rγ ≤ ≤  for 0.1β = , 1, 10, 0.1γ = , 

0.5 and various values of 0δ . It is noted that the dimensionless temperature of the 

inner ( r γ= ) and outer ( ) cylindrical wall is 1r = 1Aτ β= +  and 1Bτ =  respectively. 

It is clearly seen that the temperature jump at the walls is increased as 0δ  is decreased. 

It is also observed that the temperature jump at the inner wall is significantly larger 

than the corresponding jump at the outer wall. Even more, as β  is increased the 

temperature jumps at both walls are increased. However, it is evident from the plotted 
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results that the increase of β  has a much stronger effect on the jump at the inner 

compared to that of the outer wall. To illustrate this significant impact of β  on ( )τ γ  

it is stated that in the free molecular limit ( 0 0δ = ) for 1β =  the temperature of the 

wall is 2Aτ =  and the temperature of the gas at the wall is . The 

corresponding values for 

( ) 1.4τ γ =

10β =  are 11Aτ =  and ( ) 3.3τ γ = . This behaviour may be 

explained by the fact that the gas becomes more rarefied as its temperature is 

increased. Beyond the quantitative differences, the qualitative behaviour of the 

temperature profiles with regard to β  is similar. Comparing the temperature profiles 

for 0.5γ =  and 0.1 it is seen that the temperature is decreased more rapidly in the 

latter case. 

The dimensionless number density distributions ( )rρ  are shown in Fig. 6 for 

0.1β = , 1, 10, 0 0δ = , 2, 20 and 0.5γ = . As expected, the values of the number 

density are low at the hot wall and high at the cold wall, while they are monotonically 

increased between the two walls. This is in agreement with the related characteristics 

of the temperature distributions discussed above. Also, in all cases the density 

distributions have the common S-shaped profile, except in the case of 10β =  and 

0 20δ = . The latter behaviour is a nonlinear effect and it is present at large β  and 0δ . 

Since, according to Eq. (14) in the cases of hard sphere and Maxwell molecules, 

0=δ δ ρ τ  and 0=δ δ ρ  respectively, the variation of the local rarefaction parameter 

between the cylinders is qualitatively similar to that of the density profiles in Fig. 6. 

Thus, moving from the hot towards the cold wall the rarefaction parameter is 

monotonically increased, i.e. the atmosphere becomes less rarefied.   

The dimensionless pressure profile is also plotted in Fig. 7 for 0.1β = , , 10, 1

0.1γ = , 0.5 and various values of 0δ . Although the pressure distribution may be 

directly obtained by the density and temperature distributions, p ρτ= , it is plotted 

for completeness and clarity purposes. It is seen that, in all cases, there is a pressure 

variation along the radius of the annulus, which is increased as 0δ  is decreased and β  

is increased. This observation has been theoretically proven in Appendix A and it has 

been also observed by other researchers [4, 8]. The pressure variation is quite small 

for 0.1β =  and this is the reason that it has not been reported before in all related 
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papers based on linear analysis. Of course for 1β =  and 10 the pressure variation is 

significant and there is no way to be due to numerical error. The build-up of a 

pressure gradient due to an imposed heat flow is sparkled by non-equilibrium 

conditions and becomes more profound at large temperature differences and highly 

rarefied atmospheres.  

 

4.2 Influence of intermolecular interaction law 

The influence of the intermolecular interaction on the heat transfer characteristics 

is studied through the variation of the IPL coefficient. The radial heat flow and 

temperature distributions are plotted in Fig. 8 for hard spheres (“HS”) and Maxwell 

molecules (“MM”) characterized by 0.5ω =  and 1ω =  respectively. Results are 

provided for 0.5γ = , 0.1β = , 10 and 0 0δ = , 2, 20. As expected, the corresponding 

results are identical in the free molecular limit ( 0 0δ = ). For 0 0δ >  it is deduced that 

the variation between the “HS” and “MM” results is negligibly small at 0.1β =  even 

for large values of 0δ . However, the discrepancies are significant at 10β = , 

particularly for 0 20δ = . Observing the heat flow distributions it is seen that the heat 

flow results of the “MM” are always higher than the corresponding ones for the “HS”. 

Comparing the temperature distributions of the two types of molecules it is deduced 

that at both walls the temperature jumps of the “MM” are always larger than the ones 

of the “HS”. Therefore, the corresponding distributions are crossing each other 

somewhere along the annular radius closer to the cold wall.  

In addition, tabulated results of the radial heat flow ( )q r γ=  for Maxwell 

molecules are given in Table 3 for a wide range of the involved parameters. The 

results of Table 3 can be compared directly with the ones in Table 2 for hard spheres. 

This comparison confirms that the deviation between corresponding “HS” and “MM” 

results is enlarged as β  and 0δ  are increased and that it is also increased as γ  is 

decreased (i.e. the annular region becomes larger). Indicatively, it is reported that for 

0.1γ =  and 0 10δ =  ( 0 1=δ γ ) the relative error is 4% at 1β =  and 14% at 10β = , 

while the maximum deviation between the reported results in Tables 2 and 3, which is 

58%, occurs at 10β = ,  1/ 65γ =  and  0 650δ = .  

To extend this analysis beyond the limiting “HS” and “MM” molecules, in Fig. 9, 

some dimensional radial heat flow results (W/m2) in terms of the reference pressure 
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BP  (Pa) are given for three different monoatomic gases, namely helium, argon and 

xenon having under standard conditions 0.66ω = ,  and . These results are 

provided in dimensional form in order to facilitate comparisons with experiments in 

the short future. The inner and outer diameters are 

0.81 0.85

1AR cm=  and 10BR cm= , while 

the reference temperature is 293BT K= . The reference pressure and the type of the 

gas are easily related to the reference rarefaction parameter 0δ , while in order to keep 

these results as general as possible, the other two parameters β  and γ  are kept in 

dimensionless form. As expected, at highly rarefied atmospheres the heat flow is 

proportional to the gas pressure, while at dense atmospheres the heat flow becomes 

independent of the gas pressure. When the gas pressure is in the transition regime the 

relation is complex.  

 

4.3 Influence of gas-surface interaction 

The influence of the gas-surface interaction law on the radial heat flow is studied 

by providing numerical results for ( )q r γ=  in terms of the parameters 0 2tα< ≤  and 

0 n 1α< ≤  of the Cercignani-Lampis boundary conditions, which are applied at the 

inner wall and Maxwell diffuse boundary conditions ( 1tα = , 1nα = ) at the outer wall. 

The results are for the hard sphere model and for various values of β , γ  and 0δ . 

In Fig. 10, the radial heat flow ( )q r γ=  is plotted for 1β =  and 0.5γ =  in terms 

of each accommodation coefficient while keeping each time the other one constant 

and equal to unity. It is clearly observed that the dependency of  on q tα  is weak, 

while, on the contrary, its dependency on nα  is significant. Even more, as expected in 

both cases, as 0δ  is decreased the effect of the accommodation coefficients becomes 

stronger. It is also noted that the radial heat flow in terms of tα  is symmetric around 

1tα = . This property is inherent in the form of the boundary conditions (29) and (30). 

Values of 1tα >  correspond to large number of bouncing-back molecules, which 

happens at rough surfaces. In terms of nα ,  is monotonically increased. It is 

obvious, that 

q

nα  is more important than tα  in pure heat transfer problems. The same 

features are observed for other values of β . Furthermore, the behavior of the 
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macroscopic quantities in terms of the two accommodation coefficients is 

qualitatively similar in linear and nonlinear configurations.  

Since the implementation of the CL boundary conditions is demanding in terms of 

formulation and numerical implementation and in order to increase our confidence on 

the accuracy of the present numerical solution based on the nonlinear Shakhov model, 

the results reported here are compared with previously reported results for the same 

heat transfer configuration based on the linearized Shakhov model [10]. The values of 

the heat flow provided in Table 4 for 0.1β =  and 1/ 65γ =  and for a wide range of  

tα  and nα  may be directly compared with the corresponding results of Table IV in 

Ref. [10]. The values of 0δ γ  and δ  in the first columns of Table 4 and Table IV 

respectively are equivalent. Since the normalized temperature difference is small 

( 0.1β = ), it is expected to have good agreement between the present nonlinear results 

and the corresponding linearized ones. In fact, for 0 0.1=δ γ  there is agreement to all 

three significant figures, shown in Table 4. For 0 1=δ γ  the agreement is still very 

good since 2-3 significant figures are the same. Finally, for 0 10=δ γ  the agreement is 

reduced to 1-2 significant figures. This is reasonable since, even though 0.1β =  is a 

small normalized temperature difference, it is not small enough to have very accurate 

linearized results at large 0δ . As it is pointed out in Section 4.1 (see Table 2 and 

related discussion), nonlinear effects become important in dense atmospheres, even 

for small temperature differences.  

For completeness purposes corresponding results are provided by imposing the 

well known Maxwell diffuse-specular scattering law at the inner wall. In Fig. 11, the 

radial heat flow (q r )γ=  is plotted for 1β =  and 0.5γ =  in terms of the 

accommodation coefficient 0 1Mα< ≤ . As expected the corresponding results in Figs. 

10 and 11 for the specific values of 1n nα α= =  and 1Mα =  respectively are identical. 

Furthermore, a qualitative remark on the comparison between Figs. 10 and 11 may be 

made. It is seen that the heat flows of Fig. 11 for 0 0δ =  and 0 20δ =  are similar to the 

corresponding ones in Fig. 10 for 1tα = , 0 1nα< ≤  and 0 1tα< ≤ , 1nα =  respectively, 

while for the intermediate values of 0 2δ =  and 0 10δ =  the heat flows in Fig. 11 are 

similar to the resulting ones obtained by a combination of the corresponding heat 

flows presented in Fig. 10.  
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4.4 Range of validity of linear analysis 

The numerical treatment of linear integro-differential equations compared to the 

nonlinear ones is much more tractable since it is based on a well established 

theoretical basis. Therefore, it may be interesting to check the range of validity of the 

linear solution by comparing the corresponding linear and nonlinear results for 

various values of the normalized temperature difference parameter. According to 

theory, the linearization of this heat transfer problem is allowed provided that 1β << .  

Results for the radial heat flow, denoted as , based on the linearized Shakhov 

model and diffuse boundary conditions are provided for various values of 

Lq

0δ  and γ  in 

Table II of Ref. [10]. A comparison can be made with the corresponding nonlinear 

“HS” results, presented here in Table 2, after multiplying the linear heat flows in 

Table II with the appropriate value of β . As β  is increased significant deviations are 

observed. The maximum difference for 1β =  is about 16% and for 10β =  about 64%.  

The percentage error between the nonlinear and linear heat flows, defined as 

( ) / 100%Lq q qε = − × , is presented in Fig. 12 for several values of 0δ  and 0.1γ = , 

0.5. In highly and moderate rarefied atmospheres ( 0 0.2δ = , 2) the introduced error for 

all 0.1β = , 1, 10 is less than 2%. In less rarefied atmospheres ( 0 10δ = , 20) the error 

is increased. For example for 10β =  and 0 20δ =  the error is about 15%. However, it 

is seen that even for large temperature differences the discrepancies remain within 

reasonable margins. It may be argued that the range of applicability of the linear 

analysis is wider than expected and this might be quite useful in practical applications. 

Furthermore, the nonlinear and linear profiles of the radial heat flux and 

temperature are plotted in Fig. 13, for 0.5γ = , 0.1β = , 1, 10  and 0 0δ = , 2, 20.  As 

expected, the discrepancies are very small for both quantities when 0.1β =  and then 

they gradually increase as β  is increased. However, it is interesting to note that the 

discrepancies between the temperature distributions are significantly larger compared 

to the discrepancies of the heat flow distributions for the same set of parameters. For 

example, in the case of 10β =  and 0 20δ =  the deviation in the heat flow is about 15% 

and more or less remains constant along the radius, while the corresponding error for 

the temperature profiles varies along the radius and takes a maximum value of about 
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35% at r γ= . This is an unexpected observation, which may be important when 

linearized theory is applied to finite temperature differences. 

 

5. Concluding Remarks 
The problem of nonlinear heat transfer through a rarefied gas confined between 

two coaxial cylinders is solved based on the nonlinear form of the Shakhov kinetic 

model, subject to Cercignani-Lampis boundary conditions, while intermolecular 

interactions are simulated based on the Inverse Power Law. The governing equations 

are discretized based on the discrete velocity method and a typical second order finite 

difference scheme. The numerical algorithm becomes computationally efficient by 

applying the Romberg integration rule and the Wynn-epsilon (We) acceleration 

algorithm.  

The quantitative behaviour of all macroscopic quantities (radial heat flow, density, 

temperature and pressure) in terms of the rarefaction parameter, the radius ratio and 

the temperature difference is examined in detail. A pressure variation in the radial 

direction is detected and confirmed. Departure of the corresponding linear results has 

been observed as the temperature difference between the cylinders is increased and as 

the gas atmosphere becomes less rarefied. This deviation becomes significant at large 

temperature differences and small Knudsen numbers. However, it is concluded that 

linear analysis can capture the correct behaviour of the heat flow configuration even 

for moderate temperature differences and it is argued that the range of applicability of 

the linear analysis is wider than expected. By studying the cases of hard sphere and 

Maxwell particles it is verified that the type of molecular interaction plays an 

important role when the heat transfer configuration becomes strongly nonlinear, while 

the influence of the gas-surface scattering law has similar effects both in linear and 

nonlinear conditions. Even more, although the formulation and most of the results are 

in dimensionless form, some dimensional results are also provided for specific gases 

in order to demonstrate in a more comprehensive manner the effect of the problem 

parameters on the radial heat flow.  

It is hoped that the present work may be useful in engineering applications as well 

as in comparisons with experimental results which, as far as the authors are aware of, 

are not available for the case of large temperature differences at this stage. 

 

 22



Acknowledgments 
The authors take this opportunity to thank Prof. Barry Ganapol for helpful 

discussions and providing some supportive material regarding the implementation of 

the acceleration schemes. Also, the authors gratefully acknowledge support by the 

Association Euratom - Hellenic Republic. The views and opinions expressed herein 

do not necessarily reflect those of the European Commission. 

 

References 
[1] L. Lees and C. Y. Liu, Kinetic-theory description of conductive heat transfer from 

a fine wire, Phys. Fluids, 5 (10), 1137-1148 (1962). 

[2] C. Y. Liu, Part II: Kinetic Theory description of conductive heat transfer from a 

fine wire (http://etd.caltech.edu/etd/available/etd-12092005-133941/, Ph.D. thesis, 

California Institute of Technology, 1962). 

[3] C. L. Su, Variational principals for the heat flux in a rarefied gas between 

concentric cylinders, Phys. Fluids, 11 (10), 2144-2147 (1968). 

[4] P. Bassanini, C. Cercignani and C. D. Pagani, Influence of the accommodation 

coefficient on the heat transfer in a rarefied gas, Int. J. Heat Mass Transfer, 11, 1359-

1369 (1968). 

[5] C. L. Su and D. R. Willis, Heat conduction in a rarefied gas between concentric 

cylinders, Phys. Fluids, 11 (10), 2131-2143 (1968). 

[6] C. L. Su and R. W. Springer, A modified discrete ordinate approach to nonlinear 

cylindrical heat transfer, Int. J. Heat Mass Transfer, 13, 1611-1621 (1970). 

[7] Y. S. Lou and T. K. Shih, Nonlinear heat conduction in rarefied gases confined 

between concentric cylinders and spheres, Phys. Fluids 15 (5), 785-788 (1972). 

[8] B. T. Yeh and A. Frohm, Heat conduction in binary gas mixtures between 

cylinders, Phys. Fluids, 16 (6), 801-805 (1973). 

[9] F. Sharipov and G. M. Kremer, On the frame dependence of constitutive 

equations. I. Heat transfer through a rarefied gas between two rotating cylinders, 

Continuum Mechanics and Thermodynamics, 7, 57-71 (1995). 

[10] F. Sharipov and G. Bertoldo, Heat transfer through a rarefied gas confined 

between two coaxial cylinders with high radius ratio, J. Vac. Sci. Technol. A, 24 (6), 

2087-2093 (2006). 

 23

http://etd.caltech.edu/etd/available/etd-12092005-133941/


[11] W. Jitschin and S. Ludwig, Dynamical behavior of the Pirani sensor, Vacuum, 

75, 169-176 (2004). 

[12] P.J. Sun, J.Y. Wu, P. Zhang, L. Xu, M.L. Jiang, Experimental study of the 

influences of degraded vacuum on multilayer insulation blankets, Cryogenics, 49, 

719–726 (2009). 

[13] E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid 

Dynamics, 3(5), 142-145 (1968). 

[14] F. Sharipov and V. Seleznev, Data on internal rarefied gas flows, J. Phys. Chem. 

Ref. Data, 27(3), 657-706 (1998). 

[15] C. Cercignani and M. Lampis, Kinetic models for gas-surface interactions, 

Transport Theory and Statistical Physics, 1(2), pp. 101-114 (1971). 

[16] R. G. Lord, Some extensions to the Cercignani-Lampis gas-surface scattering 

kernel, Phys. Fluids A, 3 (4), 706-710 (1991). 

[17] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows 

(Oxford University Press, Oxford, 1994). 

[18] C. Shen, Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows 

(Springer, 2005). 

[19] R. G. Lord, Some further extensions to the Cercignani-Lampis gas-surface 

scattering kernel, Phys. Fluids, 7 (5), 1159-1161 (1995). 

[20] A. Frezzotti, Numerical simulation of supersonic rarefied gas flow past a flat 

plate: effects of the Gas-Surface interaction model on the flow field, in Rarefied Gas 

Dynamics, edited by E.P.Muntz, D.P. Weaver and D.H. Campbell, (Volume 118 of 

Progress in Astronautics and Aeronautics, AIAA, Washington DC, 1989). 

[21] F. Sharipov, Application of the Cercignani–Lampis scattering kernel to 

calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a 

long tube, Eur. J. Mech. B/Fluids, 22, 145-154 (2003). 

[22] C. Cercignani, M. Lampis and S. Lorenzani, Plane Poiseuille Flow with 

Symmetric and Nonsymmetric Gas-Wall Interactions, Transport Theory and 

Statistical Physics, 33, 545-561 (2004). 

[23] R. F. Knackfuss and L. B. Barichello, Surface effects in rarefied gas dynamics: 

an analysis based on the Cercignani–Lampis boundary condition, Eur. J. Mech. 

B/Fluids, 25, 113-129 (2006). 

[24] W. F. N. Santos, Gas-Surface Interaction Effect on Round Leading Edge 

Aerothermodynamics, Brazilian Journal of Physics, 37, 337-348 (2007). 

 24



[25] R. D. M. Garcia and C. E. Siewert, The linearized Boltzmann equation with 

Cercignani-Lampis boundary conditions: Basic flow problems in a plane channel, 

Eur. J. Mech. B/Fluids, 28, 387-396 (2009). 

[26] Handbook of Vacuum Technology (Chapter 5), edited by K. Jousten (Wiley-

VCH Verlag, Weinheim, 2008) 

[27] E. Süli and D. F. Mayers, An Introduction to Numerical Analysis (Cambridge 

University Press, 2003).  

[28] B. D. Ganapol, Analytical Benchmarks for Nuclear Engineering Applications - 

Case Studies in Neutron Transport Theory (OECD, NEA No. 6292, Nuclear Energy 

Agency Organization for Economic Co-operation and Development, ISBN 978-92-

64-99056-2, 2008). 

[29] F. Borneman, A. Laurie and J. Wagen, The SIAM 100-digit Challenge (SIAM, 

Philadelphia, USA, 2004). 

[30] C. L. Pekeris and Z. Alterman, Solution of the Boltzmann-Hilbert integral 

equation. II. The coefficients of viscocity and heat conduction, 43, 998-1007 (1957). 

 

 

 25



Appendix A: Conservation equations 

Equation (15) is multiplied successively by 1, cosζ θ  and 2ζ  and the resulting 

equations are integrated over the molecular velocity space to yield, after some routine 

manipulation, the following conservation equations: 

continuity              1 0r
u u
r r
∂ + =
∂

 (A.1) 

r  - momentum      0rrrr p pp
r r

θθ−∂
+

∂
=  (A.2) 

energy                   [ ] 0qr
r
∂ =
∂

 (A.3) 

The continuity equation, associated with the no penetration condition at the 

cylindrical walls, yields ( ) 0u r = , while the energy equation results to 

constant. Finally, since ( )q r r = rrp pθθ≠ , the  - momentum equation implies that r

/ 0rrp r∂ ∂ ≠ .  

 
Appendix B: Solutions at the free molecular and hydrodynamic limits 

In the free molecular limit ( 0 0δ = ) the right hand side of Eqs. (19) and (20) 

becomes zero and in the case of Maxwell diffuse boundary conditions ( 1t nα α= = ) 

the reduced distribution functions are given for [ ]/ 2, / 2θ π π∈ −  by  

( ) ( )
2

, , exp
1 1

Wr ρ ζφ ζ θ
π β β

⎛ ⎞
= −⎜ ⎟+ +⎝ ⎠

,       ( )
2

, , exp
2 1

Wr ρ ζψ ζ θ
π β

⎛ ⎞
= −⎜ +⎝ ⎠

⎟  (B.1) 

and for [ ]/ 2,3 / 2θ π π∈  by 

( ) ( 21, , expr )φ ζ θ ζ
π

= − ,       ( ) ( 21, , exp
2

r )ψ ζ θ ζ
π

= − . (B.2) 

where the impermeability parameter Wρ  is obtained by the no penetration condition 

according to  

( )
3 /2

/2 0

2 cos
1w d d

π

π

πρ ζ θ φζ ζ
β

∞

= −
+ ∫ ∫ θ . (B.3) 

Finally, by substituting these expressions into Eqs. (B.3) and (24-26) it is found that  

1
1wρ β

=
+

, (B.4) 
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( ) 1
1 1

1
r 1ρ θ π

π β

⎛ ⎞
= +⎜⎜ +⎝ ⎠

θ− ⎟⎟ , (B.5) 

( ) ( ) (1
1 1 1r
r

)1τ θ β π θ
ρ π

⎡= + +⎣
⎤− ⎦  (B.6) 

and 

( )q r
r
βγ
π

= . (B.7) 

The discontinuity angle ( )1
1 sin / rθ γ−=  is displayed in Fig. 1. This problem can also 

be solved when the Cercignani-Lampis boundary conditions are imposed on the inner 

cylinder. It is found that in this case the heat flux is given by  

( ) ( )22

2
n t tq r

r

βγ α α α

π

+ −
= . (B.8) 

which is similar to the linearized case appearing in [10]. It is seen that, although the 

distribution function is independent of  in the free molecular limit, the macroscopic 

quantities still depend on the space variable. The numerical solution for 

r

0 0δ =  is in 

excellent agreement with the analytical results of Eqs. (B.5-B.8). 

In the hydrodynamic limit ( 0δ →∞ ) the Fourier law is introduced into the energy 

equation to give 

( ) ˆ 0
ˆ ˆ

Tk T r
r r
∂ ∂⎡ ⎤ =⎢ ⎥⎣ ⎦∂ ∂

, (B.9) 

where, based on the IPL interaction, we have  

( ) ( )( )/B Bk T k T T T ω= . (B.10) 

Substituting Eq. (B.10) into (B.9) and nondimensionalizing the resulting equation 

according to Eq. (12) , leads to the temperature distribution  

( ) ( )
( )1/ 1

1 ln1 1 1
ln

rr
ω

ωτ β
γ

+
+⎧⎡ ⎤= + − +⎨⎣ ⎦⎩ ⎭

⎫
⎬ . (B.11) 

For hard sphere molecules, following the calculations carried out in [26, 30] it is 

deduced that  

( )
( )3/2

0

1 15
4 ln

q r
r

β

δ γ

⎡ ⎤+ −⎣= − ⎦ . (B.12) 
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Expressions (B.11) and (B.12) are in very good agreement with numerical results for 

large values of 0δ  but only in cases with small temperature difference. For large β  

the temperature gradient at the wall becomes important and temperature jump 

boundary conditions must be introduced. However, the jump solution is not provided 

here, since the mathematical derivation becomes complex when  and ( )k k T= ω  is 

involved, and more important does not really support further benchmarking of the 

present work. In the linear case, the solution is much simpler and is given in [26]. 
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Table 1: Number and range of discrete velocity magnitudes 

β  M  maxζ  

0.1 20 5 

1 20 6 

10 24 14 
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 Table 2: Radial heat flow (q r )γ= for hard sphere molecules with diffuse boundary conditions 

 0δ γ  1/ 2γ =  1/5 1/10 1/20 1/65 

0  5.64  210− 5.64 210−  5.64 210−  5.64  210− 5.64 210−  
0.1  5.54  210− 5.45 210−  5.38 210−  5.31  210− 5.18 210−  
1 4.73  210− 4.05 210−  3.62 210−  3.24  210− 2.72 210−  
5  2.86  210− 1.78 210−  1.36 210−  1.10  210− 8.24 310−  

0.1β =  

10  1.90  210− 1.02 210−  7.53 310−  5.94  310− 4.40 310−  
0  5.64  110− 5.64 110−  5.64 110−  5.64  110− 5.64 110−  
0.1  5.54  110− 5.46 110−  5.39 110−  5.31  110− 5.14 110−  
1 4.73  110− 4.02 110−  3.57 110−  3.18  110− 2.68 110−  
5  2.91  110− 1.86 110−  1.45 110−  1.19  110− 9.06 210−  

1β =  

10  2.00  110− 1.12 110−  8.39 210−  6.69  210− 4.97 210−  
0  5.64 5.64 5.64 5.64 5.64 
0.1  5.58 5.61 5.61 5.53 5.18 
1 4.78 4.06 3.50 3.03 2.48 
5  3.04 2.04 1.63 1.37 1.10 

10β =  

10  2.24 1.38 1.08 8.95  110− 7.02 110−  
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Table 3: Radial heat flow (q r )γ=  for Maxwell molecules with diffuse boundary conditions 

 0δ γ  1/ 2γ =  1/5 1/10 1/20 1/65 

0  5.64  210− 5.64 210−  5.64 210−  5.64  210− 5.64 210−  
0.1  5.54  210− 5.45 210−  5.38 210−  5.31  210− 5.18 210−  
1 4.78  210− 4.07 210−  3.64 210−  3.26  210− 2.74 210−  
5  2.89  210− 1.80 210−  1.38 210−  1.12  210− 8.40 310−  

0.1β =  

10  1.93  210− 1.04 210−  7.69 310−  6.07  310− 4.49 310−  
0  5.64  110− 5.64 110−  5.64 110−  5.64  110− 5.64 110−  
0.1  5.55  110− 5.47 110−  5.41 110−  5.33  110− 5.16 110−  
1 4.82  110− 4.15 110−  3.71 110−  3.33  110− 2.83 110−  
5  3.12  110− 2.06 110−  1.63 110−  1.35  110− 1.04 110−  

1β =  

10  2.21  110− 1.29 110−  9.75 210−  7.85  210− 5.89 210−  
0  5.64 5.64 5.64 5.64 5.64 
0.1  5.61 5.64 5.65 5.60 5.27 
1 5.09 4.52 3.99 3.50 2.91 
5  3.70 2.67 2.19 1.88 1.55 

10β =  

10  2.94 1.98 1.60 1.36 1.11 
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Table 4: Radial heat flow (q r )γ=  with CL boundary conditions for 0.1β =  and 1/ 65γ =  

 tα  0.25nα =  0.50 0.75 1.00 
0.50 2.69 210−  3.33 210−  3.96 210−  4.58  210−

0.75 3.17 210−  3.80 210−  4.42 210−  5.03  210−

0.90 3.30 210−  3.93 210−  4.55 210−  5.16  210−0 0.1=δ γ  

1.00 3.32 210−  3.95 210−  4.57 210−  5.18  210−

0.50 1.80 210−  2.09 210−  2.33 210−  2.55  210−

0.75 2.01 210−  2.26 210−  2.48 210−  2.68  210−

0.90 2.06 210−  2.31 210−  2.52 210−  2.71  210−0 1=δ γ  

1.00 2.07 210−  2.32 210−  2.53 210−  2.72  210−

0.50 4.02 310−  4.16 310−  4.26 310−  4.34  310−

0.75 4.11 310−  4.22 310−  4.31 310−  4.37  310−

0.90 4.13 310−  4.24 310−  4.32 310−  4.38  310−0 10=δ γ  

1.00 4.14 310−  4.24 310−  4.32 310−  4.40  310−
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Figure 1: Heat flow configuration 
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Figure 2: Flow diagram of the typical iteration algorithm 
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Figure 3: Flow diagram of the upgraded iteration algorithm 
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Figure 4: Dimensionless radial heat flow  at q r γ=  in terms of 0δ  for various γ , 
with 0.1β =  (up) and 10β =  (down). 
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Figure 5: Dimensionless temperature profiles ( )rτ  for  0.1β =  (up), 1β =  (middle) 
and 10β = (down), with 0.5γ =  (left) and 0.1γ =  (right). 
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Figure 6: Dimensionless density profiles ( )rρ  for  0.1β =  (up), 1β =  (middle) and 

10β = (down), with 0.5γ = . 
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Figure 7: Dimensionless pressure profiles ( )p r  for 0.1β =  (up), 1β =  (middle) and 

10β = (down), with 0.5γ =  (left) and 0.1γ =  (right).  
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Figure 8: Dependence of the dimensionless radial heat flow and temperature 
distributions on the IPL coefficient ω  for 1β =  (up) and 10β =  (down). Hard spheres 
( 0.5)ω =  are denoted with filled symbols and Maxwell molecules ( )1ω =  with empty 
symbols. 
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Figure 9: Dimensional radial heat flow through various gases in terms of the 
reference pressure  for BP 0.1γ = , with 0.1β =  (up) and 1β =  (down) . 
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Figure 10: Dependence of the dimensionless radial heat flow on the accommodation 
coefficients tα  (left) and nα  (right) keeping each time the other one constant and 
equal to unity for 0.5γ =  with 1β = . 

 

 
Figure 11: Dependence of the dimensionless radial heat flow on the Maxwell 
accommodation coefficient Mα  for 0.5γ =  and 1β = . 
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Figure 12: Relative error between nonlinear and linearized radial heat flow in terms of 
β  for various 0δ , with 0.5γ =  (up) and 0.1γ = (down). 
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Figure 13: Dimensionless radial heat flow and temperature profiles using linearized 
(empty symbols) and nonlinear (filled symbols) analysis for 0.1β =  (up), 1β =  
(middle) and 10β = (down). 
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