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ABSTRACT 

Consideration is given to the fully developed 

for longitudinal laminar flow between cylinders arranged in an equilateral tri-

angular array. The analysis is carried out for the condition of uniform heat 

transfer per unit length. Solutions are obtained for the temperature distribution, 

and from these, Nusselt numbers are derived for a wide range of spacing-to-diameter 

ratios . It is found that as the spacing ratio increases, so also does the wall-to-

bulk temperature difference for a fixed heat transfer per unit length. Correspond-

ing to a uniform surface temperature around the circumference of a cylinder, the 

circumferential variation of the local heat flux is computed. For spacing ratios 

of 1.5 - 2.0 and greater, uniform peripheral wall temperature and uniform periph-

eral heat flux are simultaneously achieved. A simplified analysis which neglects 

circumferential variations is also carried out, and the results are compared with 

those from the more exact formulation. 

NOMENClATURE 

A,B, •.• ,F constants in the temperature solution 

specific heat at constant pressure 

d cylinder diameter, 2ro 

equivalent diameter, eq. (27) 

-- -
---- ~ -

h heat transfer coefficient s __ 
------- -

j summation index 

k thermal conductivity 
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mass flow parameter, (W/12P~s2 0 ~ ~i) 
summation index 

normal direction 

Nusselt number, hd/k and hde/k respectively 

summation index 

static pressure 

heat transfer rate per unit length from one cylinder 

local heat transfer rate per unit area 

circumferential average of q, Q/2~o 

radial coordinate; r o, cylinder radius; r*, outer radius of 

equivalent annulus 

half spacing between centers of cylinders 

temperature; Tw, wall temperature, Tt, bulk temperature; 

To, entering fluid temperature 

axial velocity distribution 

mass rate of flow associated with one cylinder 

axial coordinate measuring distance from the entrance of the 

passage 

dimensionless coefficients in velocity solution 

angular coordinate 

absolute viscosity 

density 

dimensionless coefficients in temperature solution 

INTRODUCTION 

In a previous investigation (ref. 1), consideration was given to the lon-

gitudinal laminar flow between cylinders arranged in regular array. Here, at-

tention is directed to analyzing the heat transfer characteristics of such a 
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flow. This configuration has potential application in compact heat exchangers 

and has been frequently considered in connection with the cores of nuclear 

reactors. 

A schematic diagram of the system under study is shown in Fig. 1. The cyl-

indrical rods between which the fluid flows are arranged in equilateral tri-

angular array, and the flow is laminar and full-developed. The thermal situation 

to be considered here is the condition of uniform heat transfer along the length 

of the passage. The goal of this analysis is to determine the fully-developed 

heat transfer characteristics of the problem, taking into account the circumferential 

variations of the temperature distribution which inevitably arise in the cross 

section of a noncircular passage. The existance of such peripheral variatiGns 

is what makes the problem both interesting and challenging. The starting point 

of the study is the basic law of energy conservation appropriate to the three-

dimensional situation. Solutions are found for a wide range of spacing to diam-

eter ratios, and corresponding heat transfer results are obtained. For large 

spacings, the flow about any given cylinder should be little influenced by the 

presence of neighboring cylinders. With this in mind, a simplified analysis has 

been carried out neglecting circumferential variations, and the heat transfer 

results thus obtained are compared with those from the more complete formulation. 

ANALYSIS 

Mathematical formulation. - To predict the heat transfer characteristics 

from first principles, we must begin with the fundamental physical law of energy 

conservation. The mathematical representation of this law appropriate to a 

fully developed flow maybe written" in cylindrical coordinates as follows 

dT f9.2T 1 dT 1 d2
T d2

T) 
pcpu dz = k\dr2 + r dr + r2 de2 + dZ2 

(1) 

where u, the axial velocity, depends on both cross section coordinates r 

and e. 
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To facilitate applying Eq. (1) to the system under study, we refer to 

Fig. 2. The left hand sketch is a cross-sectional view. From the symmetry of 

the Situation, it is easy to see that consideration need be given only to the 

typical 300 element which is blackened in the sketch. Once the solution is 

known within this element, then it is known everywhere throughout the cross 

section. An enlarged view of the typical element is shown at the right, along 

with the boundary conditions and dimensional nomenclature. The condition that 

the normal derivative be zero is an expression of symmetry. On the inner bound-

ary, r = r o' the temperature is assigned a value Tw which is independent of 

angle. Physically speaking, this means that the surface temperature is uniform 

around the circumference in a given cross section, although it will vary along the 

length. Of course, there still remains a circumferential temperature variation 

within the fluid and this will be included in the analysis. Before leaving the 

boundary conditions, it is interesting to observe that the case of uniform pe-

ripheral surface temperature is one of two interesting limiting conditions. * 

The other, uniform peripheral heat flux, still remains to be analyzed. 

The first step in attacking Eq. (1) is to introduce the condition of fully-

developed heat transfer. For the case of uniform heat transfer per unit length, 

this condition is 

~ Q ~12 ~ = constant = - = ( 
oz wCp w 12 cp 

(2) 

where w and Q respectively represent the mass flow and the heat transfer per 

unit length associated with a single cylinder in the array; while (w/12) and 

Q/12 are the quantities appropriate to the typical 300 element of Fig. 2. 

* A thorough discussion of thermal boundary conditions in noncircular ducts. 

is given in Ref. 2. 
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Next, it is necessary to know the velocity distribution u. In Ref. 1, a 

very accurate, but approximate solution for the velocity has been derived in the 

form 

ro 12n J 
6 6 

cos 6ne 
r ns n 

(3) 

The coefficients 01 through 07 have been tabulated to four decimal places in 

the reference for a wide range of spacing ratios, and additional significant fig-

ures were available when needed in the heat transfer analysis. Another piece of 

information which is needed from the velocity solution is the relation between 

the mass flow w and the pressure drop. For convenience, we define a dimen-

sionless grouping M * as 

M= 
(w/12p) 

s4(_ ! dP) 
1-1 dz 

Numerical values of M may be obtained as a function of spacing ratio from 

Fig. 6 of Ref. 1. 

( 4) 

Then, the information contained in Eqs. (2) through (4) may be introduced 

into the energy Eq. (1). After rearrangement, the governing equation for T is 

found to be 

02T 1 dT 1 02T 

or2 + r dr + r2 oe2 

= Q&!~{~ In :0 -iK~t -(sot] + ~ ::(~t[l -(:o/2n]cos Gne} (5) 

Solution of the governing equation. - In approaching Eq. (5), we look for 

particular and homogeneous solutions. Thus, the solution for T is expressed 

as the sum of these separate solutions as follows 

(6) 

*In Ref. 1, the symbol Q is used to denote w/12p. 
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For a particular solution, any function satisfying Eq. (5) will suffice. It is 

easily verified by direct subs~itution that the following expression is a satis-

factory particular solution 

T = (Q/12k)r
2 {_:J!J.. + .~J'ro)2 _ 2.(.E.)2 ::J§..ln.E... 

P Ms2 41( 16\"8 64 s + 41( ro 

+ 2: _% (.E.)6n r 1 + (ro/r)12nlcos 6ne} 
n=l 24n s ~n + 1 6n - 1 j (7) 

To find the homogeneous equation, we set the right side of Eq. (5) equal to 

zero and get 

This is the well-known Laplace equation, the solution to which may be found in 

various books on advanced calculus as 

Th = A + B In r + L: (cmr
m 

+ Dmr-m)(Em cos me + Fm sin me) (8) 
m 

where m takes on integral values to insure that T is single valued, i.e., 

that T(e) = T(e + 21(). The constants A, B, ... , F remain to be determined 

from the boundary conditions. 

So, the general solution of Eq. (5) is given by Eq. (6) in conjunction 

with Tp and Th from (7) and (8). But, to complete the solution, there 

still remains the task of satisfying the boundary conditions. Starting with 

the most easily applied conditions, we first impose the symmetry requirement 

that dr/de = 0 at e = 0
0 

and at e = 300 (see fig. 2(b». After differ­

entiating Eq. (6) and substituting from (7) and (8), it is found that the con-

dition at e = 00 yields 

Fm == 0 (9) 

while from the condition at e = 300~ it follows that 

m = 6, 12, 18, ... (10) 
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to insure that sin m~/6 = O. With this information, it is convenient to re-

phrase the temperature solution (6) as 

T = Tp + A + B In r + L (c j r 6j + Djr-6j)cos 6je 
j=l 

(11) 

where Tp is still given by Eq. (7) and Ej has been set equal to unity with-

out loss of generality. 

Next, it is required that at the surface of the cylinder, r = r o' the tem-

perature take on the value· Tw independent of angle. Applying this condition 

to Eq. (11), it is found that 

(Q/12k)r~ 
A = Tw - B In ro - ---~ 

Ms2 1- #- + :lson 
Dj = _ C.r;2j _ (Q!12k) 8n 

J Ms2 2(36n2 - 1) 
n = j 

(12a) 

(12b) 

Further, to make certain that energy conservation is satisfied on an overall 

basis for the typical element of Fig. 2(b), we equate the heat transfer per 

unit length, Q/12, to the heat conducted at the surface of the cylinder, i.e., 

. 1C/6 

Q/12 =.[ -k(~)ro ro de (13) 

This insures that there is no net energy transport across the other boundaries 

of the typical element. Of course~ overall energy would be automatically satis-

fied by an exact solution; but if an approximate solution is being contem-

plated, then it must be imposed as a separate requirement. Inserting Eq. (11) 

into the overall conservation condition (13) gives 

B _ Q!12k r_ 6Ms 2 ~ 2 1:.. r61 
- Ms 2 [ 1C + 41C r 0 - 16 ~ J (14) 

Before going ahead to the final boundary condition, it is useful to bring 

together the findings of the previous paragraph. Introducing Eqs. (12) and 

(14) into the temperature solution (11) and substituting for Tp from Eq. (7) 
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gives 

(15) 

Remembering that Bn and M are known numerical constants whose values depend 

upon s/ro, it is seen that the temperature distribution will be completely de-

termined as soon as the Cj are found. At our disposal is the condition that 

ar/ON = 0 on the right hand boundary of the typical element (see fig. 2(b», 

on which r = s/cos e. In applying this condition, it is convenient to use the 

identity 

ar oT e ar sin e 
dN = dr cos - de r (16) 

Then, introducing the temperature distribution (15) and setting ar/ON = 0 for 

r = s/cos e, there is obtained after considerable rearrangement 

~roj(COS 9)1-Sj [COS(Sj -1)9 + ("0 :OS 9)12
j 

cos(Sj + 1)9] 

= ~ 6n{ 3n (
r

s
o)12n+2 (cos e)6n+l cos(6n + l)e 

- ~ 36n2 - 1 

+ _c_os_(~6_n __ -__ l~)e __ +~(_1~/_3n~)c_o~s~e~c_oS __ 6_n __ e 

4(6n + l)(cos e)6n+l 

(r /s)12n (cos e)6n-l } 
+ 0 4(1 _ 6n) [cos(6n + l)e - (1/3n)cos e cos 6ne1 

_ ~6M+::flrro)2_l:....rro)·41cos2e_ lf
r

o)2 _::£1
ln 

( s )+ 1 +::£1 l: 1( 41( \-s 16\"5 J 8\ s 2]( r 0 cos e 16 cos2e 4]( 

( 17) 
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where 

The only unknowns appearing in Eq. (17) are the coefficients ffij (i.e., Cj ). 

In considering ways of solving for the ffij' the first thought might be to use 

the Fourier series method. If workable, this procedure would provide an in-

finite number of ffij values while satisfying -Eq. (17) at all points along the 

boundary, 00 ~ e ~ 300
• However, Fourier methods cannot be applied in the pres-

ent problem and some other approach must be used. The procedure employed here 

is as follows: First, the summation involving the ffij is truncated after i 

terms. Next, the condition (17) is applied successively at i values of e 

in the range 00 ~ e ~ 300
. This yields i linear equations, each of which 

contains i unknown values of ffij. As soon as the slro ratio is specified, 

the right hand side of each equation can be reduced to a numerical constant 

since the values of 8n and M are available from Ref. 1. So, there are i 

linear, inhomogeneous algebraic equations, the solution to which yields nu-

merical values for the To check the accuracy of the results, the entire 

procedure may be reapplied using additional terms in the summation. From thiS, 

it is found that the additional terms do not significantly affect the numerical 

values of the first few coefficients. Another important fact is that the mag-

nitudes of the ffiJ decrease quite rapidly with increasing j, so that only the 

first few ffiJ are really important. These favorable circumstances somewhat 

ease the task of finding a sufficient number of accurate ffij values. The nu-

merical results which have been obtained for the are listed in table I as 

a function of the spacing ratio s/ro• 

With the ffiJ values now known, then the coefficients C
J 

are also known 

through Eq. (17a). With these, we may return to the temperature distribution 

(15). For convenience, the summation involving the CJ may be rephrased as 

/ 
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( ro)12J~ . Q/12k L (l)j (:i-)6
j 

- cos 6Je = --
r M 6j s 

j=l 

cos 6je (18 ) 

Since On and M are also known numerical constants (ref. 1), then it is 

clear that once the geometrical parameters ro and s have been specified, 

the temperature distribution within the typical elements is determined. So, we 

are now in a position to proceed with the determination of the heat transfer 

results. 

BEAT TRANSFER CHARACTERISTICS 

Wall-to-bulk temperature difference and Nusselt number. - The solution 

which has just been presented gives the distribution of the temperature in a cross 

section relative to the wall temperature Tw in that cross section. So, to 

complete the solution, there still remains the task of finding Tw. Furthermore, 

in practice, it is the wall temperature itself which is usually the ~uantity of 

greatest practical interest, for example, on a materials limit or a thermal 

stress basis. 

NOW, in a situation where the wall heat flux is prescribed, the bulk tem-

perature is immediately determined according to the following relation 

T[) = To + ..S:.. z 
wCp 

(19) 

where To is the temperature of the fluid at the entrance to the heated pas-

sage. Making use of thiS, the wall temperature maybe written as 

(20) 

From this, it is clear that the wall-to-bulk temperature difference (Tw - Tb) 

is the key to the determination of the wall temperature. In addition, as soon 

as Tw - Tb is known, then Nusselt number results can be obtained. 

To compute the wall-to-bulk temperature difference, we start with the 

standard definition of the bulk temperature 
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dr de 

(21) 

dr de 

The denominator is simply the mass flow. Specializing to the typical element 

of Fig. 2(b) and subtracting away the wall temperature, there is obtained 

pj30
0 
;: sl cos e 

(Tw - T)ur dr de 
o ro ( ) Tw - ~ = 22 

W/12 

In evaluating the integrand, the velocity distribution is introduced from 

Eq. (3), while the temperature distribution is taken from Eq. (15) as modified 

by (18). After making these substitutions and rephrasing in terms of dimen-

sionless variables, the following functional relation is revealed 

(23) 

This is an interesting result in that the dependence on geometry enters only 

as the ratio s/ro, rather than as s and ro separately. It is easy to see 

that multiplying out the temperature and velocity distributions in the integrand 

of Eq. (22) leads to an exceedingly lengthy expression which is made even longer 

when the double integration is carried out. To display only the end result of 

the integration would require considerable space. In the interest of a concise 

presentation, the details associated with the evaluation of Eq. (22) will be 

omitted and only a few general remarks will be made as follows: In organizing 

the computations, separate account was kept of the contribution due to the non-

series portion of u and T - Tw and of the contribution due to the series 

terms. As expected, the relative importance of the series terms increased as 

the spacing decreased. The integrations which arose in connection with Eq. (22) 

were carried out analytically as far as possible; however, it was ultimately 

necessary to compute some specific integrals by numerical means and these are 
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given in the Appendix with the hope that this information may be useful to 

others. 

From the evaluation of Eq. (22), numerical results for the wall-to-bulk 

temperature difference have been obtained as a function of the spacing ratio 

s/ro. These results will be reported in terms of the customary Nusselt number 

representation. First, a heat transfer coefficient is defined as 

(24) 

Then, using the cylinder diameter as characteristic dimension, the Nusselt num-

ber becomes 

= hd (12) Q/12k 
k = It Tw - Tb 

It may be seen that the Nusselt number is essentially the reciprical of the 

(25) 

dimensionless bulk temperature parameter which has been displayed in Eq. (23). 

From this it follows that the Nusselt number depends only on the spacing ratio 

s/ro. utilizing the numerical values obtained from evaluating Eq. (22), a 

graph of N~ as a function of slro has been prepared and is presented as 

the solid curve of Fig. 3 - left hand ordinate. It is seen from the figure 

that N~ monotonically increases as slro decreases; and with thiS, it fol-

lows from Eq. (25) that the wall-to-bulk temperature difference is smaller at 

smaller spacings for a fixed heat input. This trend is in accord with physical 

reasoning. 

Now, with the relation between heat transfer and temperatUre difference 

established by Fig. 3, we may return to the computation of the wall temperature 

variation as given by Eq. (20). Dividing through by Q/k and introducing 

Eq. (25), there is obtained 

z 1 

= (w!IJ.)Pr + It Nua. (26) 
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At a fixed flow, the value of (Tw - To)/(Q/k) at a particular z will diminish 

as the spacing diminishes. But, there will, of course, be a price in pressure 

drop to be paid to maintain the fixed flow. On the other hand, at a fixed pres-

sure drop, w will diminish with decreasing spacing; and so, under this con-

dition, the two terms of Eq. (26) vary in opposite directions. The dependence 

of the flow rate on spacing ratio is more acute (see Fig. 6, ref. 1) than is 

that of the Nusselt number. So, for z values sufficiently large to establish 

fully-developed conditions, it would be expected that (Tw - To)/(Q/k) would 

increase with decreasing spacing when the pressure drop is fixed. 

Before leaving this section, it may be worthwhile to discuss briefly two 

other aspects of the results. First, it may be of interest to compare the heat 

transfer performance with that for laminar flow inside a circular tube 

(N~ = 48/11). If we ask for the same wall-to-bulk temperature difference at 

a given heat flux per unit length, then this is achieved at a spacing ratio of 

2.03. The second topic relates to the equivalent diameter. It is reasonably 

well-accepted that for laminar flow, the use of the equivalent diameter as a 

characteristic dimension is not sufficient to remove the dependence of the heat 

transfer results upon geometrical parameters. However, in the present problem, 

we are in a position to once again check on this point. From the definition 

4(cross-sectional area) (27a) 
de = heated perimeter 

it is easy to show that 

(27b) 

Then, since N~ = (N~)(de/d), we may find the dependence of NUd 
e e 

upon 

s/ro by using the results which have previously been presented. A curve de-

rived in this way has been plotted as a solid line in Fig. 3 - right hand 

ordinate. It is seen that the geometrical factors involved in the equivalent 
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diameter have given N~ 
e 

a completely opposite trend to that of How-

ever~ the variation in N~e is not less than that experienced by N~. 

Peripheral variation of local heat transfer. - In the previous section, 

attention has been focused on overall quantities such as the heat transfer per 

unit length, the bulk temperature and the Nusselt number. Here, consideration 
is given to the 

local heat transfer at various positions around the periphery of a cylinder. 

Since the velocity distribution varies with angular position around a cylinder 

while the surface temperature is prescribed to be independent of angle, it is 

evident that there may be a circumferential variation of the local heat transfer. 

To compute the local heat transfer, we use Fourier's law 

q = - k~t 
o 

(28) 

where q represents-the heat transfer per unit area. The temperature dis-

tribution is introduced from Eq. (15) as modified by (18) and after some re-

arrangement, it is found that 

...9....= 1 -
q 

2!..{l: 2m (ro)6
j 

6M . 1 j s 
J= 

cos 6je (29) 

where q, the mean local heat transfer, is related to the heat transfer per 

unit length Q by 

q= Q 
22fro 

(29a) 

Utilizing the tabulated values of illj from table I with the OJ and M from 

Ref. 1, the circumferential variation of q has been evaluated. The results 

are plotted on Fig. 4 as a function of e for parametric values of the sp~cing 

ratio s/ro' By the symmetry considerations already mentioned in connection 

with Figs. 2(a) and (b)~ the variation over the entire circumference is known 

once the results for a typical 300 section have been given. 
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From Fig. 4, it is seen that for close spacings (small sjro)' there is a 

significant circumferential heat transfer variation; while for open spacings 

(large sjro)' the heat transfer is essentially uniform around the circumference. 

Clearly, for all spacing ratios of 2 or greater, there is essentially no dis-

tinction between the case of peripherally uniform wall temperature or periph-

erally uniform heat transfer. For many applications, this statement might be 

considered applicable even to spacing ratios as low as 1.5. The trend of de-

creasing peripheral variations with increasing spacing may be explained on 

physical grounds. For close spacings, a given cylinder is much influenced by 

the presence of its neighbors, with the result that the velocity distribution 

is circumferentially nonuniform and so is the heat transfer. As the spacing 

grows larger, the flow about a given cylinder is less disturbed by its neighbors. 

The resulting trend of the Velocity toward axial symmetry is accompanied by a 

trend toward a more uniform surface heat transfer. 

It is interesting to note that the largest heat transfer occurs at e = 300 , 

the location of the largest open area for flow. On the other hand, the smallest 

heat transfer occurs at e = 00
, which is the location of the smallest open area 

for flow. From thiS, it may be inferred that if the heat transfer were pre-

scribed to be circumferentially uniform while the surface temperature is per-

mitted to vary, the hot spot would occur at e = 00
• 

S]MPLIFIED ANALYSIS FOR LARGE SPACINGS 

Both from physical reasoning and from the results of the foregoing analy-

SiS, it has been demonstrated that circumferential variations become smaller 

and smaller as the spacing ratio sjro increases. With this in mind, it seems 

worthwhile to reanalyze the problem using a model which neglects circumferential 

variations; and then, by comparing the results with those of the complete formu-

lation already presented, to find for what conditions the simplified analysis 

is valid. 
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A flow model having the property of angular symmetry with respect to a 

cylinder is an annulus surrounding the cylinder. The inner r8dius of the annu-

lus is r o' while the outer radius r* is chosen so that the flow area is 

identical to that in the actual configuration. From Fig. 2(a), it is seen that 

the actual flow area associated with a given cylinder is composed of 12 of the 

blackened typical elements. So, equating areas as follows 

~ 2 If r~U - r2) = 12 - tan - - If -o 2 6 12 

there is obtained 

* r = 

The ve 10 c.i ty problem for such an annulus is described by 

02u + ! OU = ! dp 
or2 r or ~ dz 

OU (r*) = 0 
or 

(30a) 

(30b) 

(31a) 

(31b) 

It is easily verified by direct substitution that the solution for the velocity 

distribution is given by 

82(H~r ~ In :0 - ~~f)2 -("80)2J (32) 

which is identical to the nonseries part of the more complete velocity solu-

tion (3). From this, the flow parameter M which has been defined in Eq. (4) 

can be evaluated to be 

M = 1:.. In r* _ ~ + ,/3FO)2 _ .2!..(ro)4 
2lf ro 8lf 12\-s 96 s 

(33) 

Next, by modifying the governing Eq. (5) to apply to the annulus, the 

temperature distribution problem may be formulated as 

o2T + ! oT = Q/12k {::l1ln .!:- _ !~(E.)2 _ (ro)2] 
or2 r dr Ms2 If ro 4~S s 

(34a) 

~ (r*) = 0 (34b) 
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From this, the solution for the temperature is found to be 

T - T - Q/1Zk{[:::!l (r2 + r2) _ 2- r6 _ 6MS
2

] In..!:.. 
w - Ms 2 4:n: 0 16 s 2 :n: r 0 

_ 2- (r
4 

- r6) + [_ :ll + ];Jro)2J(r2 _ r 2)l 
64 s 2 4:n: 16 \: s 0 'J (35) 

It may be seen by inspection that this result is identical to the nonseries 

portion of the more complete temperature solution (15). 

To compare the overall heat transfer characteristics with those previously 

obtained, we compute the wall-to-bulk temperature difference. Applying the 

definition of the bulk temperature from Eq. (21) to the annulus, there is 

obtained, fr* 2:n:p (Tw - T)ur dr 

Tw - 11,= 
ro . 

(36) 
w 

By substituting from Eqs. (32) and (35) , the integrand can be evaluated and 

then the integration carried out. The same type of functional relation which 

has been noted in Eq. (23) has also been found here. The end result of the 

calculation is reproduced in the Appendix to facilitate n~erical calculations 

for slro values which lie outside the range reported here. 

With the wall-to-bulk temperature difference at our disposal, the Nusselt 

number N~ can be evaluated from Eq. (25). The results thus obtained have 

been plotted as a dotted line on Fig. 3 - left hand ordinate. By comparing 

with the solid curve from the more exact calculation, it is seen that the neg-

lect of circumferential variations leads to a smaller wall-to-bulk temperature 

difference at a fixed heat transfer per unit length. So, for a given bulk 

temperature at a cross section, the wall temperature prediction from the sim-

plified calculation is low. If errors up to 5 percent in the Nusselt number 

prediction can be tolerated, then from Fig. 3 it is found that the results 

based on the neglect of circumferential variations may be used for spacing 
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ratios as low as 1.5. As the spacing becomes progressively smaller, the devia-

tions become increasingly larger. The same comments apply to the Nua. curves 
e 

associated with the right hand ordinate. 

An analysis using the equivalent annulus approximation has been carried out 

in Ref. 3 for turbulent flow for spacings down to 1.375. If the flow is fully 

turbulent, then the effects of circumferential variations will likely be smaller 

than in a laminar flow. On this baSis, we may conclude that the use of the 

equivalent annulus model appears justifiable in the turbulent case for the 

spacings considered in Ref. 3. 

TABLE r. - LISTING OF (1)j VALUES 

slro (1)J.X102 (1)2X103 (1)~105 (1)4><107 

4.0 2.9649 0.39239 0.579 "'0.3 
2.0 1. 2712 .12031 .136 .... 05 
1.5 .71081 .014556 -.195 "'-1.5 
1.2 .37039 -.1323 -1. 20 "'-6.0 
1.1 .25961 -.2065 -1.12 "'7.0 
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APPENDIX 

(a) Integral table. 

All integrals are over the range 0 to n/6 

I e tan e de = 0.05069781 

f (In cos e)cos 6e de = 0.0370858 

(cos e)8 

f (In cos e) cos 6e de = 0.04655214 
(cos e)10 

f (In cos e) cos 6e de ;:: O. 00966175 

(cos e)-4 

I (ln cos e)cos 6e de = 0.01207813 

(cos e)-2 

I cos 6e de = 0.195504853059 
(cos e)8 

I COS 6e de = 0.0487139289629 
(cos e)-4 

f cos 6e de = -0.278775438621 

( 
10 

cos e) 

I COS 6e de = 0.0270632938683 
(cos e)-2 

f cos 6e de = -0.3833738263351 
(cos e)12 

I COS 12e de = -0.01087364485 
(cos e)-6 

I COS 12e de = 0.02483882327 
(cos e)4 

I(cos e)10 de = 0.354917462776 

I(cos e)-16 de = 1.43544637803 

I (In cos e)cos 6e de = 0.0150977 

I (In cos e)cos 12e de = -0.0434739 

(cos e)14 

cos e)cos 12e de = -0.0577564 
(cos e)16 

I (In cos e)cos 12e de = 0.000874072 
(cos e)-10 

I (In cos e)cos 12e de = 0.000413828 

(cos e)-8 . 

I cos 12e de = 0.24953325973 
(cos e)14 

I cos 12e de = 0.00934144946 
(cos e)-10 

f cos 12el~e = 0.35013873273 

(cos e) 

I cos 12e de = -0.01065617196 
(cos e)-8 

I cos 12e de = 0.4834095306 
(cos e)18 

I cos 12e de = 0.00993262699 
(cos e)2 

I (cos e)8 de = 0.37912963362 

I (cos e)-14 de = 1.2290323215 
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(b) Wall-To-Bulk Temperature Difference For Equivalent Annulus 

Let 

ex. = rofs, 

Then, 

r: 3 -::11 2 3M ex.
4
1ffi4 h 13) 134 

ex.
4
] 

+ C 4lC2 + 16lC ex. + 2lC + 64J[4 ~ln a: - 16 + 16 

+ -ex. +:::::L:::..ex. --ex. --ex. -In- _L..+_ ~ 3 2 _/3 43M2 1 ~~2 ~ 13) A2 ex.
2

] 
,,2 64" 2" 64 2 ex. 4 4 



Figure 1. - Flow configuration. 
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Figure 2. - Diagram used in mathematical form:1lation. 
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Figure 3. - Nusselt number resul ts. 
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