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Abstract: Curved veins and arteries make up the human cardiovascular system, and the peristalsis
process underlies the blood flowing in these ducts. The blood flow in the presence of hybrid nanopar-
ticles through a tapered complex wavy curved channel is numerically investigated. The behavior of
the blood is characterized by the Casson fluid model while the physical properties of iron (Fe3O4)
and copper (Cu) are used in the analysis. The fundamental laws of mass, momentum and energy
give rise the system of nonlinear coupled partial differential equations which are normalized using
the variables, and the resulting set of governing relations are simplified in view of a smaller Reynolds
model approach. The numerical simulations are performed using the computational software Mathe-
matica’s built-in ND scheme. It is noted that the velocity of the blood is abated by the nanoparticles’
concentration and assisted in the non-uniform channel core. Furthermore, the nanoparticles’ volume
fraction and the dimensionless curvature of the channel reduce the temperature profile.

Keywords: Casson hybrid nanoparticles; peristaltic transport; slip effects; hall applications;
numerical approach

1. Introduction

In various thermal techniques, the improvement of heat transfer with the proper
utilization of nanofluids has emerged as a superior mechanism. Despite the continuous
work in nanotechnology and thermal engineering reporting different means of enhancing
the thermal processes, the results of increasing thermal resources have been notably poor
due to high casting and low thermal performance. The nanoparticles in question are small
sized metallic materials with good thermal accuracy. Recently, nanofluids have been used
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in different applications such as energy production, various engineering phenomena, as
industrial resources, for thermal management, etc. In recent years, nanoparticles have been
widely used in anti-cancer drugs to kill tumor cells and due to their enhanced thermal
conductivity these nanoparticles destruct the tumor tissue more efficiently. In cancer treat-
ment, nanoparticles are inserted into the bloodstream to increase therapeutic efficacy and
reduce side effects; better performance can be obtained by inserting different combinations
of nanoparticles. Compelling improvements in the thermal properties of nanofluids are a
fundamental source of motivation. Choi [1] performed the directions first on nanofluids;
Buongiorno [2] endorsed the Brownian motion and the role of thermophoretic forces on
nanofluid flows; Sui et al. [3] observed heat transfer fluctuation for the slip flow of nanoflu-
ids with a rate-type Maxwell model; Sandeep and Animasaun [4] conducted research to
highlight the change in thermal properties of nanofluid when variable sources of thermal
properties are followed; and Afridi et al. [5] reflected the heat transfer onset of nanofluids
in view of fractional heat sources. The convective thermal case associated with the couple
stress nanofluid has been analytically reported in the contribution of Khan et al. [6]. Kumar
et al. [7] reported the entropy generation involvement for the Joule heating flow in the pres-
ence of radiative phenomenon. Khan et al. [8] preserved the microorganisms’ suspension
in nanofluids and inspected the stability analysis. The variable viscosity utilization for
observing the nanofluid properties was noted by Mondal and Pal [9]. Ahmad et al. [10]
determined the bioconvection investigation in a porous medium with nanoparticles’ at-
tention. Makinde et al. [11] predicted the thermal investigation based on nanofluids with
magneto-hemodynamic applications. Das et al. [12] focused on the fully developed verti-
cally moving channel flow of nanofluids under the influence of wall surface conductivity.
Mandal et al. [13] worked out a nanofluid model for carbon nanotubes comprising the
rotating 3-D flow. Zhang et al. [14] discussed the bioconvective attribution of nanofluids in
concentric cylinders with a dominant Lorentz force contribution. The Walter-B nanofluid
flow with attention to buoyancy forces has been analyzed in the work of Chu et al. [15].

The hybrid nanofluid is a superior category of nanofluids which reflects the improved
thermal consequences of the suspension of two different nanoparticles in a base material.
The motivation to observe the thermal mechanism of the base fluid via the hybrid nanofluid
is due to the enhanced thermal mechanism. The reflection of hybrid nanofluid models
exhibit more fascinating behavior than nanofluids. Special applications of hybrid nanofluids
are observed in energy production, manufacturing systems, solar applications, heating
devices, engine heat rate countering, extrusion processes, etc. The class of hybrid nanofluids
is achieved after combining the base material with more than one nanoparticle. The thermal
onset of hybrid particles is more stable and impressive. Wahid et al. [16] observed the
thermal attention of hybrid nanofluids to a moving disk with permeable surface walls.
Almaneea et al. [17] focused on the comparative enhancement of the thermal aspect of
the heating phenomenon in view of hybrid nanofluid interaction. Mousavi et al. [18]
investigated the flow of a stretching porous space encountering the hybrid nanofluid
model and detected some dual numerical solutions in a confined region. The thermal
effects of a hybrid nanofluid under the impact of a magnetic force were visualized by
Khan et al. [19]. Madhukesh et al. [20] determined the curved geometry flow due to the
hybrid nanofluid by observing the Newtonian heating effects. Rashid et al. [21] analyzed
the heating aspect of titanium oxide in a moving cylinder in the horizontal direction.
Abdelmalek et al. [22] identified the rotation of the disk flow where the improvement in
heat transfer was influenced by hybrid nanoparticles. Muhammad et al. [23] predicted
the attention of hybrid nanofluid to the squeezing flow. Shaw et al. [24] reported the
contribution of the quadratic radiative phenomenon while working on Casson hybrid
nanoparticles for various values of the Prandtl number. Sen et al. [25] developed tiny
hybrid nanoparticles of thermal significance with a diamond base material. Nayak et al. [26]
observed a distinct nanostructure for non-Newtonian fluids. The enrollment of interesting
Darcy–Forchheimer forces for optimized nanofluid flow was addressed by Nayak et al. [27].
Recently, the work of Shaw [28] presented the various novel consequences of a hybrid
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nanofluid model for rotatory disk flow. Mahanthesh et al. [29] observed the importance of
Joule heating for hybrid nanofluid transport in a wedge capturing the isothermal properties.
The permeable surface flow of hybrid nanofluid with theoretical observations has been
determined by Haq et al. [30].

The application of the Hall effect is associated with direct current and is important
in plasma physics, magnetic devices, electromagnetic theory, semi-conductors, voltage
currents, circuit problems and various electrically conducting flows. The Hall current
attains direct association with the magnetic force. Seth et al. [31] addressed the Hall effect
for rotating flow in a channel owing to arbitrary conducting walls. Seth et al. [32] observed
the Hall effect for the heat transfer phenomenon in ramped thermal temperature. Abbasi
et al. [33] addressed the Hall effect on Jeffrey nanofluid caused by peristaltic transport.

The motivation for presenting the current flow model is the observation of the thermal
impact of a hybrid nanofluid model for the slip flow of Casson fluid with applications of
peristaltic phenomena [34–36]. The motivation for the consideration of the Casson fluid
model is justified by the fact that it reports the shear thinning and shear thickening effects
associated with human blood. The novel aspects of the current research are:

â The presentation of a mathematical model for the peristaltic transport of Casson fluid
with the interaction of hybrid nanofluid containing the ferro nanoparticles and copper
nanomaterials in a curved channel.

â The role of slip effects and Hall current is also observed.
â The highly nonlinear system of the obtained model is numerically solved with the

ND-Solver.
â The physical thermal impact of hybrid nanoparticles is focused to control the blood

flow properties. The current investigation presents novel applications for human
blood flow, thermal systems, various engineering processes, extrusion systems, human
endoscopy, the control of heating phenomena, chemical processes and biomedical
applications [37–42].

2. Mathematical Modeling of Hybrid Nanofluid

Consider an unsteady base in a channel with a curved surface caused by 2-D flow,
where the channel width is taken as 2b. The rheology of hybrid nanofluid in the curved
region is due to peristaltic pumping. The complex sinusoidal waves with speed c are
imposed on the walls of the conduit. In order to model the problem in the curved channel,
curvilinear coordinates are incorporated instead of cylindrical coordinates. A sketch of the
flow under conditions of the flow problem and coordinate system is presented in Figure 1.
The transportation of fluid is chosen along the S-axis and the X-axis is chosen to be normal
to the surface of the conduit. The radius of the channel is Λ and O is the center of the
channel.
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Figure 1. Flow illustration of model. 

The mathematical expressions to describe the complex peristaltic waves are [34–36]: 
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with wavelength (𝛽), non-uniform factor (𝑀), wave speed (𝑐), phase difference (𝜖) 
and wave amplitudes (𝛷 , 𝛷 ). The tangential, radial and axial directions are denoted 
with 𝑋, 𝑍  and 𝑆 , respectively. The observations for a straight channel are observed 
when the curvature of channel Λ approaches to ∞. The axial and radial velocity compo-
nents are 𝑈  and 𝑈 , respectively. 

The contribution of magnetic force is taken in radial directions with Lorentz force: 𝑭 = 𝑱𝟏 × 𝑩 (3) 

The Hall current is: 𝑱𝟏 + 𝒆𝒏𝒆𝑩𝟎 𝑱𝟏 × 𝑩, = 𝜎 𝑽 × 𝑩  (4) 

having 𝑛  (free electron density), 𝑒 (electric charge) and 𝜎  (hybrid nanoparticles’ 
electric conductivity). Writing Equation (4) with components: 𝐽 = 0,𝑚Λ𝑋 + Λ 𝐽 + 𝐽 = 0,− 𝑚Λ𝑋 + Λ 𝐽 + 𝐽 = − 𝜎 𝐵 Λ𝑋 + Λ 𝑈 ,⎭⎪⎬
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 (5) 

where, 𝑚 = 𝑒𝑛  is the Hall parameter. In view of Equation (5): 

𝐽 = − 𝜎 𝐵 Λ𝑋 + Λ 𝑈 ⎝⎛ 𝑚1 + 𝑚Λ𝑋 + Λ ⎠⎞ (6) 

Figure 1. Flow illustration of model.

The mathematical expressions to describe the complex peristaltic waves are [34–36]:
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H2
(
S, t
)
= b + M

(
S− ct

)
+ Φ1 sin

(
2σπ

β

(
S− ct

))
+ Φ2 sin

(
2ωπ

β

(
S− ct

))
(1)

H1
(
S, t
)
= −b−M

(
S− ct

)
−Φ1 sin

(
2σπ

β

(
S− ct

)
+ σε

)
−Φ2 sin

(
2ωπ

β

(
S− ct

)
+ ωε

)
, (2)

with wavelength (β), non-uniform factor
(

M
)
, wave speed (c), phase difference (ε) and

wave amplitudes (Φ1, Φ2). The tangential, radial and axial directions are denoted with
X, Z and S, respectively. The observations for a straight channel are observed when the
curvature of channel Λ approaches to ∞. The axial and radial velocity components are U2
and U1, respectively.

The contribution of magnetic force is taken in radial directions with Lorentz force:

F = J1 × B (3)

The Hall current is:

J1 +
ene

B0

(
J1 × B,

)
= σhn f

[
V× B

]
(4)

having ne (free electron density), e (electric charge) and σhn f (hybrid nanoparticles’ electric
conductivity). Writing Equation (4) with components:

J1r = 0,
mΛ

X+Λ
J1z + J1θ = 0,

− mΛ
X+Λ

J1θ + J1z = −
σhn f B0Λ

X+Λ
U2,

 (5)

where, m = ene is the Hall parameter. In view of Equation (5):

J1θ = −
σhn f B0Λ2(
X + Λ

)2 U2

 m

1 +
(

mΛ
X+Λ

)2

 (6)

J1z =
σhn f B0Λ(

X + Λ
)U2

 1

1 +
(

mΛ
X+Λ

)2

 (7)

All defined flow assumptions lead to following governing system [34–36]:

∂

∂X

{(
X + Λ

)
U1
}
+ Λ

∂U2

∂S
= 0 (8)

ρhn f

(
∂U1

∂t
+ U1

∂U1

∂X
+

U2Λ
X + Λ

∂U1

∂S
− U2

2

X + Λ

)
= − ∂P

∂X
+ µhn f

(
1 +

1
γ1

)
(

1
X + Λ

∂

∂X

((
X + Λ

)∂U1

∂X

)
+

(
Λ

X + Λ

)2 ∂2U1

∂S2 −
2Λ(

X + Λ
)2

∂U2

∂S
− U1(

X + Λ
)2

) (9)

ρhn f

(
∂U2

∂t
+ U1

∂U2

∂X
+

U2Λ
X + Λ

∂U2

∂S
− U1U2

X + Λ

)
= − Λ

X + Λ
∂P
∂S
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(
1 +

1
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)
(

1
X + Λ

∂

∂X

((
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)∂U2

∂X

)
+

(
Λ

X + Λ

)2 ∂2U2

∂S2 +
2Λ(

X + Λ
)2

∂U1

∂S
− U2(

X + Λ
)2

)
−

σhn f B2
0Λ2(

X + Λ
)2 U2

(
1

1+
(

mΛ
X+Λ

)2

) (10)
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(
ρCp

)
hn f

(
∂T
∂t

+ U1
∂T
∂X

+
U2Λ

X + Λ
∂T
∂S

)
= Khnf

(
1

X + Λ
∂

∂X

((
X + Λ

) ∂T
∂X

)
+

(
Λ

X + Λ

)2 ∂2T

∂S2

)
+µhn f

(
1 +

1
γ1

)
(

2

{(
∂U1

∂X

)2

+

(
Λ

X + Λ
∂U2

∂S
+

U1

X + Λ

)2}
+

(
∂U2

∂X
+

Λ
X + Λ

∂U1

∂S
− U2

X + Λ

)2)
+

σhnfB2
0Λ2(

X + Λ
)2

+ (mΛ)2
U2

2 .
(11)

with µhn f (viscosity),
(
ρCp

)
hn f (heating capacity), ρhn f (density), γ1 (Casson factor) and

Khn f (thermal conductivity). Table 1 is organized in order to present the flow properties of
the hybrid model.

Table 1. Hybrid nanofluid different consequences with mathematical forms [5].

Density ρhn f = (1− α1 − α2)ρ f + α1ρs1 + α2ρs2 .

Viscosity µhn f =
µ f

(1− α1 − α2)
2.5

Effective heat capacity
(
ρCp

)
hn f = (1− α1 − α2)ρ f

(
Cp
)

f + α1ρs1

(
Cp
)

s1
+ α2ρs2

(
Cp
)

s2

Thermal conductivity Khn f

K f
=

α1Ks1 + α2Ks2

α1 + α2
+ 2K f − 2K f (α1 + α2) + 2(α1Ks1 + α2Ks2 )

α1Ks1 + α2Ks2

α1 + α2
+ 2K f + K(α1 + α2)− (α1Ks1 + α2Ks2 )

Electric conductivity

σhn f

σb f
=

σs1 + 2σb f − 2α2

(
σb f − σs1

)
σs1 + 2σb f + α2

(
σb f − σs1

)
where σb f =

σs2 + 2σf − 2α1

(
σf − σs2

)
σs2 + 2σf + α1

(
σf − σs2

) σf

Changing the problem from fixed to waves frame by introducing the following trans-
portations:

s = S− ct, X = x, u1 = U1, u2 = U2 − c, P = p (12)

Following the above transformations, Equations (9)–(12) become:

∂

∂x
{(x + Λ)u1}+ Λ

∂u2

∂s
= 0, (13)

ρhn f

(
−c

∂u1

∂s
+ u1

∂u1

∂x
+

(u2 + c)Λ
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∂u1
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x + Λ

)
= −∂p

∂x
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(
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)
(

1
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(
(x + Λ)
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)
+

(
Λ

x + Λ

)2 ∂2u1

∂s2 −
2Λ

(x + Λ)2
∂u2

∂s
− u1

(x + Λ)2

) (14)

ρhn f

(
−c

∂u2
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∂u2

∂x
+

(u2 + c)Λ
x + Λ

∂u2
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− u1(u2 + c)

x + Λ

)
=− Λ

x + Λ
∂p
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+µhn f

(
1 +

1
γ1

)
(

1
x + Λ

∂

∂x

(
(x + Λ)

∂u2

∂x

)
+

(
Λ

x + Λ

)2 ∂2u2

∂s2 +
2Λ

(x + Λ)2
∂u1

∂s
− u2 + c

(x + Λ)2

)
−

σhn f B2
0Λ2

(x + Λ)2 (u2 + c)
(

1
1+( mΛ

x+Λ )
2

) (15)

(
ρCp

)
hn f

(
u1

∂T
∂x

+
(u2 + c)Λ

x + Λ
∂T
∂s

)
=Khn f

(
1

x + Λ
∂

∂x

(
(x + Λ)

∂T
∂x

)
+

(
Λ

x + Λ

)2 ∂2T
∂s2

)
+µhn f

(
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1
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(

2
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∂u1

∂x
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+

(
Λ

X + Λ
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+

(
∂(u2)

∂x
+

Λ
x + Λ

∂u1

∂s
− (u2 + c)
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+

σhnfB2
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(16)

Now we use the dimensionless variables [34–36]:

s =
2πs

β
, η =

x
b

, u1 =
u1

c
, u2 =

u2

c
, δ =

2πb
β

, h =
H
b

, Re =
ρ f cb
µ f

, k =
Λ
b

, p =
2πb2

βµ f c
p, .
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Φi =
Φi
b

, i = 1, 2, m1 =
βM

b
, Ha =

√
σf

µ f
B0b, θ =

T − T1

T2 − T1
, Ec =

c2

C f (T2 − T1)
, Pr =

µ f C f

K f
, .

Br = PrEc,

with η (radial direction component), u1 (radial velocity), s (axial component), u2 (axial
velocity), Re (Reynolds constant), Pr (Prandtl constant), k (dimensionless curvature), Ha
(Hartmann number), δ (wave number), M (non-uniform parameter), Ec (Eckert number)
and Br (Brinkman number). Using stream functions defining as u1 = δ(Λ/η + Λ)∂ψ/∂s
and u2 = −∂ψ/∂η and implementing the smaller Reynolds assumptions, the rest of
equations take the form [34–36]:

∂p
∂η

= 0. (17)

∂p
∂s

=
1

k(k + η)

1

(1− α1 − α2)
2.5

(
1 +

1
γ1

)
∂

∂η

(
(η + k)

(
1− ∂ψ

∂η

)
+ (η + k)2 ∂2ψ

∂η2

)
−C1

Ha2k2

( η + k)2 + (mk)2

(
1− ∂ψ

∂η

)
,

(18)

C2

(
∂2θ

∂η2 +
1

η + k
∂θ

∂η

)
+

Br

(1− α1 − α2)
2.5

(
1 +

1
γ1

)(
∂2ψ

∂η2 +
1

η + k

(
1− ∂ψ

∂η

))2

+
k2BrHa2C1

( η + k)2 + (mk)2

(
1− ∂ψ

∂η

)2
= 0.

(19)

with the copper nanoparticles’ volume fraction (α1) and ferro nanomaterials volume frac-

tion of α2. Moreover C1 =
σs1+2σb f−2α2(σb f−σs1)
σs1+2σb f +α2(σb f−σs1)

, where σb f =
σs2+2σf−2α1(σf−σs2)
σs2+2σf +α1(σf−σs2)

σf and

C2 =
Khn f

K f
=

α1Ks1+α2Ks2
α1+α2

+2K f−2K f (α1+α2)+2(α1Ks1+α2Ks2)
α1Ks1+α2Ks2

α1+α2
+2K f +K(α1+α2)−(α1Ks1+α2Ks2)

.

The boundary conditions in terms of stream function [34–36]:

ψ = − q
2

,
∂ψ

∂η
+ β1

(
1 +

1
γ1

)
1

(1− α1 − α2)
2.5

(
−∂2ψ

∂η2 −
1

η + k

(
1− ∂ψ

∂η

))
= 1, θ = 1 (20)

at η = h2 = 1 + m1s + Φ1 sin(σs) + Φ2 sin(ωs) (21)

ψ =
q
2

,
∂ψ

∂η
− β1

(
1 +

1
γ1

)
1

(1− α1 − α2)
2.5

(
−∂2ψ

∂η2 −
1

η + k

(
1− ∂ψ

∂η

))
= 1, θ = 0 (22)

at η = h1 = −1−m1s−Φ1 sin(σ(s + ε)−Φ2 sin(ω(s + ε)) (23)

For mean flow:
Ω1 = q + 2 (24)

Defining q as:

q =
∫ h

−h

∂ψ

∂η
dη, (25)

The fluctuation in pressure rise, wall shear force and heating transfer coefficient near
the lower surface wall and upper surface is:

∆p =
∫ 2π

0

dp
dx

dx (26)

C f = −
∂h1

∂s
∂2ψ

∂η2

∣∣∣∣
h1

(27)

Z1 =
∂h2

∂s
∂θ

∂η

∣∣∣∣
h2

(28)
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3. Solution of the Problem

After eliminating pressure for Equations (17) and (18), the shooting method with
built-in ND solver is applied. This scheme is well-known and is not presented in detail
here. Table 2 interprets the numerical values of density, thermal conductivity, specific heat
and electrical conductivity.

Table 2. The properties of ferro nanoparticles, copper and human blood [5,16].

Material Cu Blood Fe3O4

ρ
(
kg/m3) 8933 1063 5200

K (W/mk) 401 0.492 6

C (J/kgK) 385 3594 670

σ (S/m) 5.96× 107 0.8 25,000

4. Discussion

This section claims some physical importance of the parameters for different flow regimes.
For this task, the values are parameters which are defined as σ = 1, m1 = 0.2, ω = 1 and
ε = π.

4.1. Axial Velocity Profile

Figure 2 is the graphical representation of the axial velocity against the several involved
parameters for non-similar values of flow rate q, i.e., q = 0.1 and q = −5.0. The velocity
profile is plotted and examined under the influence of both the slip and non-Newtonian
rheology of the nanofluid. From Figure 2a, it is clear that the velocity of the hybrid
nanofluid declines at the central line of the channel by boosting the solid volume fraction
of Cu nanoparticles and near the walls of the channel the velocity rises; this behavior is
same for several values of q. Physically, these results show that the solid volume fraction
plays a dynamic role in the transport of blood near the lubricated walls of curved micro-
vascular conduits in the presence of hybrid nanoparticles. The solid volume fraction of
copper nanoparticles can also play a key role in the regulation of blood in diseased arteries
with lubricated walls. A similar trend is observed in Figure 2b for the axial velocity by
boosting the solid volume fraction of Fe3O4 nanoparticles for both q = 0.1 and q = −5.0.
This indicates that due to the interaction of the nanoparticles, which control the thermal
transport near the micro channel, there is a decrease in velocity in the center of the channel,
and due to the slip features at the walls, the velocity rises. Figure 2c is plotted to analyze
the change in the axial velocity component due to increasing fluctuation of the Hartmann
number. The reduced results are observed in the upper regime when enhancing values
are being assigned to the Hartmann number. However, a rising velocity in the lower
regime is observed for the same Hartmann constant variation. The change in the Hartmann
number against the axial velocity is described via Figure 2d. Reduced velocity in the core
of the channel is observed. As a result, a depressive velocity trend occurs and the velocity
fluctuates toward the upper regime of the channel. The reduction in velocity flow is due to
the application of magnetic force which results in a resistive Lorentz force. The control of
velocity due to m1 has been noted in Figure 2e. The enhanced change in hybrid nanofluid
movement against m1 in the core regime is noticed. Moreover, the channel diameter begins
to decrease when larger measurements are assigned to m1. Figure 2f presents important
observations of the change in velocity caused by the impact of curvature k. The results are
further observed for an infinite range of curvature. The response of velocity is similar for
non-similar values of flow rate q.
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Figure 2. (a–f): (a) Change in u2(η) for α1, (b) change in u2(η) for α2, (c) change in u2(η) for m,
(d) change in u2(η) for Ha, (e) change in u2(η) for m1, (f) change in u2(η) for m1/.

4.2. Temperature Profile

The results described in Figure 3a present the trends of temperature profile θ(η) due
to the Casson fluid parameter for Cu/blood nanofluid and hybrid nanofluid [34–36]. The
noted observations reveal that both Cu/blood nanofluid and hybrid nanofluid are a decreas-
ing function of the Casson parameter. As the Casson parameter increases, the behavior of
the fluid approach that of viscous fluid, so for viscous fluid the temperature is minimal and
for the Casson fluid the temperature is maximal. As the non-Newtonian character is added,
the resistance between the layers of fluid rises, increasing the internal kinetic energy of the
colloidal suspension. As a result, the enhancing temperature rate is deduced [34–36]. The
same nature of temperature results from enrolling the change in the velocity slip constant
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(Figure 2b). The Hall current reduces the role of Lorentz force as seen in Figure 2c. The
graphical observations in Figure 2d demonstrate an increase in the thermal rate caused
by an increasing Hartmann number. An improvement in the thermal performance of the
copper–blood suspension is observed due to Lorentz force. Similarly, an improved heat
transfer phenomenon is noted for ferro-copper nanoparticles. Such results may have impor-
tant implications for applications within ferromagnetic materials and industrial processes.
An increase in temperature is visualized when the non-uniformity of the channel increases
(Figure 2e). Therefore, the non-uniformity of the surface geometry plays an important role
in the thermal transmission of various processes. Figure 2f demonstrates a low temperature
rate for an increasing curvature constant.

Micromachines 2022, 13, 1415 10 of 17 
 

 

slip constant (Figure 2b). The Hall current reduces the role of Lorentz force as seen in 
Figure 2c. The graphical observations in Figure 2d demonstrate an increase in the thermal 
rate caused by an increasing Hartmann number. An improvement in the thermal perfor-
mance of the copper–blood suspension is observed due to Lorentz force. Similarly, an im-
proved heat transfer phenomenon is noted for ferro-copper nanoparticles. Such results 
may have important implications for applications within ferromagnetic materials and in-
dustrial processes. An increase in temperature is visualized when the non-uniformity of 
the channel increases (Figure 2e). Therefore, the non-uniformity of the surface geometry 
plays an important role in the thermal transmission of various processes. Figure 2f demon-
strates a low temperature rate for an increasing curvature constant.  

  

  

  
Figure 3. (a–f): (a) Change in 𝜃 for 𝛾  (b) change in 𝜃 for 𝛽 , (c) change in 𝜃 for 𝑚, (d) change in 𝜃 for 𝐻𝑎, (e) change in 𝜃 for 𝑚  and (f) change in 𝜃 for 𝑘. 
Figure 3. (a–f): (a) Change in θ for γ1 (b) change in θ for β1, (c) change in θ for m, (d) change in θ for
Ha, (e) change in θ for m1 and (f) change in θ for k.



Micromachines 2022, 13, 1415 10 of 15

4.3. Trapping Phenomena

In many situations the boluses of fluid are generated in the flow regimes which
are enclosed by streamlines; this occurrence is referred to as trapping phenomena. This
trapping is an important rheological feature related to the dynamics of the bolus under
various circumstances. A wavy streamlined shape is produced in the vicinity of the walls
on both halves of the channel due to the complex wave pattern on the wall. Furthermore,
the flow structure of the trapping phenomena can be discussed and predicted due to the
non-uniformity of the flow patterns. Figures 4–7 demonstrate the significance of α1, α2,
Ha, m and m1. The nature of the bolus is noted for the parameters defined in Figure 4.
A smaller bolus size is exhibited, which disappears in the upper channel regime when
the volume fraction rate increases. From Figures 4b, 5b, 6b and 7b, larger bolus size in
associated to the increasing volume fraction rate. Such a trend is due to the addition of solid
nanoparticles to the base liquid. From Figure 5, it can be observed that the concentration of
the bolus plays no role on either of the channel surfaces. The appearance of the bolus in the
channel is observed without the participation of the magnetic phenomenon. Actually, the
fluid trapped towards the wall of the channel and the flow patterns near the walls develop
under strong magnetic force. Figure 6 shows the effect of the onset of the Hall factor
on the trapping phenomenon; the opposite effect is noted for the Hall parameter. From
Figure 7, the bolus is seen to disappear inside the channel when movement is observed in
the uniform and non-uniform channel regimes.
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m = 2.0, q = −0.1, γ1 = 1.0, β1 = 0.1.

4.4. Pressure Rise

Figure 8a,b is presented to visualize the change in the pumping phenomenon against
the nanomaterials’ volume fraction. Owing to the larger nanomaterial concentration, the
increment in pressure is observed, while the contrary trend is noticed in the co-pumping
regime. Moreover, slightly larger pressure distribution is results from copper nanoparticles.
Such results are significant for roller pumping design due to curvature. Figure 8c,d demon-
strates the phenomenon of pressure change for the Hartmann number and the Hall factor.
The enhancing pressure gradient is observed in the pumping core while the decrease is
noted in the co-pumping zone.
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4.5. Heat Transfer Coefficient and Wall Shear Force

The numerical claims are listed in Table 3 to observe the change in heat transfer coeffi-
cient for copper nanoparticles (α1 = 0.1, α2 = 0.0) and hybrid nanofluid (α1 = 0.1, α2 = 0.2).
The analysis is investigated for the hybrid nanofluid model and the blood/copper nanofluid
suspension. An increase in the heat transfer coefficient is noted upon enlarging the Hart-
mann factor. However, the larger transmission of energy is noted for the copper–blood
decomposition. The role of the slip factor controls the heating phenomenon for both models.
Observations of the decrement when varying the Hall parameter yield results. For the
blood–copper model, the heat transfer factor increases for the Brinkman number as well
as for the hybrid nanofluid, both with the no-slip mechanism and by entertaining the slip
factor. Moreover, the increasing trend in the curved channel is noted. From Table 4, the
numerical trend of the wall shear force increases for the Hartmann constant for all models.
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However, the low wall shear results are determined for the hybrid model. The Hall current
factor and curvature constant present decreasing changes for the wall shear quantity.
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Table 3. Variation of heat transfer coefficient with γ1 = 1.0 and q = −0.2.

Ha m Br k
β1 = 0.0 β1 = 0.1

Cu Nanofluid Hybrid Nanofluid Cu Nanofluid Hybrid Nanofluid

0.0 1.0 1.0 3.0 1.946431 1.803762 1.313924 1.305188

1.0 1.947308 1.804217 1.314652 1.305564

2.0 1.949939 1.805583 1.316832 1.306690

0.0 1.952836 1.807087 1.319297 1.307965

1.0 1.949939 1.805583 1.316832 1.306690

2.0 1.947920 1.804535 1.315149 1.305820

0.0 1.283249 1.283249 1.283249 1.283249

2.0 2.56784366 2.28255142 1.30959600 1.290532

4.0 3.85243826 3.28185379 1.33594274 1.29781534

2.5 1.95869391 1.81494916 1.32416001 1.31492136

5.0 1.92554637 1.78290025 1.29642262 1.28689076

∞ 1.88993547 1.74844033 1.26657588 1.25666942

Table 4. Change in skin friction with γ1 = 1.0 and q = −0.2.

Ha m k
β1 = 0.0 β1 = 0.1

Cu Nanofluid Hybrid Nanofluid Cu Nanofluid Hybrid Nanofluid

0.0 1.0 3.0 1.64793574 1.647935744 0.23902529 0.144332354

1.0 1.64825439 1.64814824 0.23902712 0.14433235

2.0 1.64921003 1.64878559 0.23903264 0.14433235

0.0 1.65017632 1.64943017 0.23899158 0.14431076

1.0 1.64921003 1.64878559 0.23903264 0.14433236

2.0 1.64849017 1.64830548 0.23903597 0.14433582

2.5 1.65630099 1.65612141 0.24164339 0.14724496

5.0 1.63224142 1.63204609 0.23360486 0.13824367

∞ 1.60630293 1.60609039 0.22491558 0.12840275

5. Conclusions

The peristatic pumping-based blood flow with applications of hybrid nanofluid is
studied in a curved channel. The determination of heat transfer is observed in ferro
nanoparticles and copper nonmaterial. Additionally, the importance of the Hall factor
contributes to make the model comprehensive. The significance of various flow parameters
for velocity, heat transfer coefficients and pumping phenomena are visualized. The mains
results are concluded as:
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