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Heating and weakening of faults during earthquake slip

James R. Rice1

Received 21 August 2005; accepted 23 January 2006; published 24 May 2006.

[1] Field observations of mature crustal faults suggest that slip in individual events occurs
primarily within a thin shear zone, <1–5 mm, within a finely granulated, ultracataclastic
fault core. Relevant weakening processes in large crustal events are therefore suggested
to be thermal, and to involve the following: (1) thermal pressurization of pore fluid
within and adjacent to the deforming fault core, which reduces the effective normal stress
and hence also the shear strength for a given friction coefficient and (2) flash heating at
highly stressed frictional microcontacts during rapid slip, which reduces the friction
coefficient. (Macroscopic melting, or possibly gel formation in silica-rich lithologies, may
become important too at large enough slip.) Theoretical modeling of mechanisms 1 and 2 is
constrained with lab-determined hydrologic and poroelastic properties of fault core
materials and lab friction studies at high slip rates. Predictions are that strength drop
should often be nearly complete at large slip and that the onset of melting should be
precluded over much (and, for small enough slip, all) of the seismogenic zone. A
testable prediction is of the shear fracture energies that would be implied if actual
earthquake ruptures were controlled by those thermal mechanisms. Seismic data have
been compiled on the fracture energy of crustal events, including its variation with slip
in an event. It is plausibly described by theoretical predictions based on the above
mechanisms, within a considerable range of uncertainty of parameter choices, thus
allowing the possibility that such thermal weakening prevails in the Earth.

Citation: Rice, J. R. (2006), Heating and weakening of faults during earthquake slip, J. Geophys. Res., 111, B05311,

doi:10.1029/2005JB004006.

1. Introduction

[2] Earthquakes occur because fault strength weakens
with increasing slip or slip rate. What physical processes
determine how that weakening occurs? The question is
addressed here for mature crustal faults with highly granu-
lated cores, that are capable of producing large earthquakes.
Recent field observations suggest that slip in individual
events may then be extremely localized, and may occur
primarily within a thin shear zone, <1–5 mm thick. That
localized shear zone lies within a finely granulated (ultra-
cataclastic) fault core of typically tens to hundreds millime-
ter thickness, that core itself fitting within a much broader
damage zone of granulated or incompletely cracked rock.
Evidence for that morphology has emerged from studies of
the exhumed, and now inactive, North Branch San Gabriel
fault [Chester et al., 1993] and Punchbowl [Chester and
Chester, 1998; Chester et al., 2004] fault of the San Andreas
system in southern California, the Median Tectonic Line
fault in Japan [Wibberley and Shimamoto, 2003], of the
Hanaore fault in southwest Japan [Noda and Shimamoto,
2005], the Nojima fault [Lockner et al., 2000] which
ruptured in the 1995 Kobe, Japan, earthquake and has been

penetrated by drill holes, and from other observations
summarized by Sibson [2003], Ben-Zion and Sammis
[2003], Biegel and Sammis [2004], and Rice and Cocco
[2006].
[3] As perhaps the best characterized case, a thin ‘‘prin-

cipal slip surface’’ (PSS), Figure 1, was identified along an
exposure of the Punchbowl fault which is exhumed from 2 to
4 km depth and which has accommodated 44 km of slip. The
PSS was argued to have accommodated ‘‘several km’’ of slip
[Chester andChester, 1998;Chesteret al., 2004]. Subsequent
studies by J. S. Chester et al. (Extreme localization of slip and
implications for dynamic weakening of faults, manuscript in
preparation, 2005, hereinafter referred to as Chester et al.,
manuscript in preparation, 2005) [see also Chester et al.,
2003; Chester and Goldsby, 2003] of a thin section sample
(Figure 1b) showed that the nominal thickness of that shear
zone, as revealed by uniform birefringence in crossed polar-
izers due to preferred orientation of the sheared minerals
within it, varies from 0.6 to 1.1 mm at different locations
along the specimen. However, within this �1 mm thick
‘‘nominal’’ shear zone, most of the shearing seems to have
been accommodated within a zone (dark in Figure 1b) of
extreme shear localization having an apparent thickness of
100–300 mm. Such thicknesses on the order of 200 mm are
small compared to hydraulic and thermal boundary layers
developed near faults during significant earthquakes. Thus it
will be appropriate for some purposes to address the thermal
and hydraulic state near a fault as if the slip occurred in a
zone of zero thickness, i.e., as slip on a plane, as considered
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by Mase and Smith [1987] and Lee and Delaney [1987].
That model is the main focus of this paper, and some
new analytical results are derived for it. A subsequent
manuscript (A. W. Rempel and J. R. Rice, Thermal
pressurization and onset of melting in fault zones, sub-
mitted to Journal of Geophysical Research, 2006, here-
inafter referred to as Rempel and Rice, submitted
manuscript, 2006) builds on this work and provides
numerical estimates for zones of small but finite thick-
ness, addressed also by Lachenbruch [1980] and Mase
and Smith [1985, 1987].
[4] Also, a thin ‘‘central slip zone’’ was identified by

Wibberley and Shimamoto [2003, Figure 3] along the
Median Tectonic Line fault; subsequent measurements
(C. A. Wibberley, private communication, 2003) showed
that it has a nominal thickness of �3 mm, although there
has been no study reported of possible fine scale features
within it as for the case just discussed.

1.1. Localization in Granular Systems

[5] It is useful to compare the apparent thickness of the
Punchbowl shear zone to other experimental estimates of
the minimum thickness of a localized flow in a disordered
granular material. Such shear cannot be localized to a
mathematical plane because other particles get in the way
and must move (and/or crack) to accommodate the motion.
Thus some broader zone of particles must participate in the
shear, if not instantaneously, at least when averaged over
slips of order of a typical particle diameter or more.
Localized shear is widely observed in geomechanics and
several attempts have been made to characterize the thick-
ness of shear bands in soils. Morgenstern and Tschalenko
[1967] illustrate shear bands for a clay, kaolin, and thick-
nesses of order 10–100 times a clay platelet diameter

(�0.5 mm) seem representative. For sands and other gran-
ular materials, thickness scales principally with the ‘‘mean
particle diameter’’ d50, defined for nonuniform size distri-
butions such that 50% by weight of the particles have larger
size.
[6] Tordesillas et al. [2004, pp. 982–983] summarize that

In real sands, reported shear band widths range from around 7–8
d50 [Oda and Kazama, 1998] up to over 30 d50 [see Oda and Iwashita,
1999, chapter 4]. There is some evidence to suggest that the initial
packing density influences the shear band width, with denser
assemblies producing thinner shear bands. Harris et al. [1995]
reported shear band widths of up to 17 d50 in loose granular
assemblies, compared with widths of around 10 d50 reported, for
example, by Roscoe [1970], Scarpelli and Muir Wood [1982] and
Tatsuoka et al. [1990] for dense assemblies. [Citation format changed
and some wording replaced with d50 notation.].

Similarly, Muir Wood [2002, Table 1] shows values of
thickness ranging from 7 to 19 d50; that includes some
results from above and also, e.g., the Muhlhaus and
Vardoulakis [1987] thickness of �16 d50 from plane strain
compression tests.
[7] If these apply to the ultracataclasite of concern here

the shear zone thickness should be of order 10–20 d50.
Chester et al. [2005] [see also Chester et al., 2004] show the
size distribution for the Punchbowl ultracataclasite hosting
the PSS from optical and TEM studies, based on binning
particles by effective diameter d into size ranges that are
each a factor of two smaller than the next larger bin, starting
at 100 mm size (a bin centered on d has 2d/3 < size < 4d/3).
The number of particles per unit of macroscopic area
sampled is accurately described as / 1/d2 for bin centers
d between 50 nm and 50 mm. However, the number of
particles in the 100 mm bin has only �0.002 times as many

Figure 1. Principal slip surface (PSS) along the Punchbowl fault. (a) From Chester and Chester [1998]:
Ultracataclasite zone with PSS marked by black arrows; note 100 mm scale bar. (b) From Chester et al.
(manuscript in preparation, 2005) [also Chester et al., 2003; Chester and Goldsby, 2003]: Thin section;
note 5 mm scale bar and �1 mm localization zone (bright strip when viewed in crossed polarizers due to
preferred orientation), with microshear localization of most intense straining to �100–300 mm thickness.
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particles as predicted by that scaling, so that the population
is, statistically, essentially devoid of particles above 67 mm.
Thus the areal distribution nA(d) is / 1/d3, where nA(L)dL
is the number per unit area with size L < d < L + dL. The
distribution nV(d) per unit volume contains an extra 1/d [e.g.,
Sammis et al., 1987] and thus is / 1/d4 over a range which
should be assumed to extend from as small as�10–30 nm to
an upper limit of�67 mm, and then cut off at both ends. That is
extraordinarily broad, and leads to d50 � 1 mm. Thus the
thickness of a shear band in the ultracataclasite is predicted to
be�10–20 mmby the conventional guidelines, much smaller
than the 100–300 mm range inferred from the thin section
(Figure 1b), although the prediction is paradoxical because
20–25% of the ultracataclasite mass has size >10 mm. A
possibility is that d50 does not provide a relevant scale for very
broad size distributions; essentially all the thickness studies
have been done on sands with a comparatively narrow
distribution [Muir Wood, 2002] (e.g., d10/d90 < 5 typically,
whereas d10/d90 � 100 for the ultracataclasite). Also,
interparticle cohesion would be much more important
for the small particles of the ultracataclasite, and clump-
ing of smaller particles could raise the effective d50 for
purposes of localization.
[8] For the MTL, Japan, ultracataclasite containing the

PSS, Figure 5 of Wibberley and Shimamoto [2003] shows
the cumulative weight percent with size >d, versus d, but only
for d > 10 mm. The results imply that d50 < 10 mm in that
case too. Also, extrapolating a bit, d = 10 mm corresponds to
d20 tod30 in that case, very consistentwith the correspondence
of d = 10 mm for the above Punchbowl distribution with d20 to
d25. So again, a very fine shear localization is expected based
on the conventional guidelines.
[9] The ultracataclasite is sheared naturally under vastly

larger normal stresses than for the clay and sand experi-
ments mentioned, so that particle cracking might normally
be thought to be an issue. However, it can be argued
[Sammis et al., 1987; Biegel et al., 1989] that the broad
size distribution is the result of prior constrained comminu-
tion, which has evolved the gouge to a state at which it is
protected against further particle cracking, by assuring that
all particles, down to sizes that are too small to crack, have
contact with abundant smaller neighbors and thus experi-
ence no exceptionally large individual contact forces.
[10] While granular materials often show localized shear,

even under slow quasi-static and isothermal deformation, the
thermal weakening mechanisms addressed in this paper are
of themselves localization promoting, so that it is appropriate
as a first approximation to treat them as if slip were occurring
on a plane. Nevertheless, the difference between zero and,
say, 200 mm for the width of the shearing zone is not
negligible for all purposes, especially for estimating maxi-
mum temperature, and the discussion in sections B6 and B7
addresses this point (see also Rempel and Rice, submitted
manuscript, 2006). At the particle level, it should probably
not be assumed, for a highly localized granular shear zone,
that shear at any given moment in time is uniformly
distributed over the thickness, such that the average slip rate
between individual particles is a small fraction of the net slip
rate V that is accommodated. Rather, it seems plausible that
shear is highly concentrated at each moment in time, with the
most active sites having slip rates more nearly comparable to
V, but with the locations of those active sites shifting rapidly

over the nominal thickness. Numerical simulations as by da
Cruz et al. [2005] of granular flows, albeit for a narrow size
distribution, support this picture, particularly for the range of
their dimensionless inertial shear parameter I < 0.003 which
they call the ‘‘quasi-static regime’’ and which is character-
ized by intermittency of shear at the particle scale. That
range is achieved in gouge, with density �2700 kg/kg/m3,
when fault slip at 1 m/s is accommodated over thicknesses
>5d (which should always be the case), at effective normal
stress >10 MPa.

1.2. Implied Temperature Rises in Absence of a
Weakening Mechanism

[11] Unless we appeal to some mechanism to rapidly
diminish fault strength as slip accumulates, that evidence
for narrowness of the zone where frictional work is dissi-
pated would imply temperature rises which far exceed those
for onset of melting. For example, 7 km is a representative
centroidal depth of the region slipping in crustal earth-
quakes, and at that depth the ambient temperature is
typically �200�C and the effective overburden pressure is
�125 MPa, assuming hydrostatic pore pressure. Equating
that to the effective normal stress sn on a fault, and
assuming a friction coefficient f = 0.6, the shear strength
is t = 75 MPa for onset of slip.
[12] Supposing, implausibly as will be seen, that t

remains constant during slip at (for simplicity) a constant
slip rate V and that the slip is accommodated by uniform
shear over a fault core of thickness h, the temperature rise
can be calculated from equation (B7a) of Appendix B, using
in its integrand the function B defined by equation (B8) in
place of the function A. Then, assuming that all changes in
internal energy are accountable as temperature change, the
temperature rise at the layer center in an event with slip d
(=Vt) is accurately given by DT = td/rch (the simple result
for adiabatic heating), provided h > 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

athd=V
p

. The DT is
half that amount at the layer edges, due to conductive heat
loss. Here rc � 2.7 MPa/�C and ath = 0.70 mm2/s [Vosteen
and Schellschmidt, 2003; Lachenbruch, 1980] are the spe-
cific heat per unit volume and thermal diffusivity of the fault
gouge, respectively.
[13] To choose V, note that Heaton [1990] reports seismic

slip inversions for seven shallow earthquakes, giving for
each the average slip and average slip duration at a generic
point on the fault. The ratio of slip to duration defines the
average slip rate V during an event; it ranges from 0.56 to
1.75 m/s, with average of 1.06 m/s for the seven events.
Therefore V in this paper, when considered constant, is
taken as 1 m/s. For an earthquake of slip d = 1 m, the
condition for use of the above adiabatic heating formula at
the layer center is therefore h > 3.3 mm.
[14] Thus, for h = 10 mm, the temperature rise if t remains

constant during slip would be 2780�C at the layer center and
1380�C at the edge. For h = 5 mm, both numbers double, to
5560�C at the layer center. For h = 0, corresponding to slip on
a plane as described by equation (B11a), the temperature rise
would be DT = (t/rc)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V d=path

p

= 15,670�C. All of those
numbers correspond to temperatures which are well above
1000�C, a nominal value for the equilibrium melting tem-
perature of wet granitic compositions in the shallow crust (the
most vulnerable constituents, such as biotite, would begin to
melt at 750�C [e.g., Otsuki et al., 2003]). To keep the
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temperature rise at the layer center at 7 km depth below
1000�C, i.e., to keep DT < 800�C, would require h > 35 mm.
That thickness seems inconsistent with the observation
of narrow shear zones. The predicted temperature rises
scale directly with t, and hence in this type of illustration,
scale directly with depth. They would be twice larger at
14 km depth. For h = 5 mm, melt onset would occur at all
depths >1.2 km. Yet evidence for melting in the form of
pseudotachylytes is relatively rare. Where it is found and is
attributable to tectonic faulting, the inferred depths are
generally toward the lower reaches of the seismogenic zone
[Sibson, 1975].
[15] Hence it seems that strength t cannot remain con-

stant during earthquake slip, at least at a static threshold
corresponding to f � 0.6, but must weaken quite substan-
tially to explain the apparent absence of pervasive melt.
Further the weakening process must be effective enough to
allow for extremely thin shear zones, as in cases that might
well be described as slip on a plane (h � 0). Given the
evidence for such thin shear zones, which would suffer
extraordinary temperature rises if t remained constant, it
seems likely that that relevant weakening processes are of
thermal origin, as now discussed.

1.3. Thermal Weakening Mechanisms

[16] The possibility is examined in this work that the
primary weakening mechanisms for shallow earthquakes on
mature faults are indeed thermal in origin, but operate well
before melting conditions are achieved, and sometimes
preclude melting. They involve the following processes,
which are assumed to act in combination: (1) Thermal
pressurization of pore fluid within the fault core by frictional
heating which reduces the effective normal stress and hence
reduces the shear strength t associated with any given
friction coefficient f [Sibson, 1973; Lachenbruch, 1980;
Mase and Smith, 1985, 1987; Lee and Delaney, 1987;
Andrews, 2002; Wibberley, 2002; Noda and Shimamoto,
2005; Sulem et al., 2005; Bizzarri and Cocco, 2006a,
2006b], a mechanism which has also been suggested for
weakening in catastrophic landslides [Habib, 1967, 1975;
Anderson, 1980;Voight and Faust, 1982;Vardoulakis, 2002],
and (2) flash heating and consequent weakening at highly
stressed frictional microcontacts during rapid slip, which
reduces the friction coefficient f, a process studied for some
years in connection with high speed friction in metals
[Bowden and Thomas, 1954; Archard, 1958/1959; Ettles,
1986; Lim and Ashby, 1987; Lim et al., 1989;Molinari et al.,
1999] and which has recently been considered as a process
active during earthquake slip [Rice, 1999; Tullis andGoldsby,
2003a, 2003b; Hirose and Shimamoto, 2005; N. M. Beeler
and T. E. Tullis, Constitutive relationships for fault strength
due to flash-heating, submitted to U.S. Geological Survey
Open File Report, 2003, hereinafter referred to as Beeler and
Tullis, submitted manuscript, 2003].
[17] Simple, elementary models of those two processes

are developed here. Neither process is new to discussions of
seismicity. Nevertheless, the recent work on fault zone
structure mentioned above, emphasizing the thinness of
shear zones, as well as laboratory measurements of perme-
ability and poroelastic properties of fault core materials
(Lockner et al. [2000] for the Nojima fault; Wibberley
[2002] and Wibberley and Shimamoto [2003] for the Me-

dian Tectonic Line fault; Sulem et al. [2004] for the Aegion
fault; Noda and Shimamoto [2005] for the Hanaore fault)
for mechanism 1, and of frictional properties of rocks at
high slip rates [Tullis and Goldsby, 2003a, 2003b; Prakash,
2004; Hirose and Shimamoto, 2005; Prakash and Yuan,
2004, also private communication on work in progress at
Case Western Reserve University on high speed friction
studies in quartz with the torsional Kolsky bar, November
2004] for mechanism 2, makes it possible to insert with
some confidence numerical values for parameters into the
equations describing those processes. The focus here is on
rapid and at least moderately large slips. By the latter is
meant slips much larger than those of order 0.01 to 0.1 mm
over which unstable sliding is thought to nucleate, accord-
ing to current understanding of rate- and state-dependent
friction concepts.
[18] Predictions from the modeling of mechanisms 1 and 2

to follow are that strength drop should be nearly complete at
large slip and that macroscopic melting should often be
precluded over most of the seismogenic zone. Those predic-
tions are qualitatively consistent with low heat outflow from
major faults and a scarcity of glass (pseudotachylyte) that
would be left from rapid recooling of silicate melts.
[19] A more quantitatively testable prediction is that of

the shear fracture energies G that would be implied if actual
earthquake ruptures were controlled by those two thermal
mechanisms. The simple modeling allows prediction of
stress t versus slip d during events, written here as t =
t(d), and thereby a prediction of the fracture energy. That
fracture energy was classically defined by Palmer and Rice
[1973] for slip weakening laws which had a well defined
residual strength tr at large slip, such that t(d) = tr for d > d1, a
given constant. (In the independently formulated Ida [1972]
description of slip weakening, the residual strength was taken
as zero.) Then for ruptures withmaximum slip greater than d1,
the fracture energy is given by

G ¼
Z d1

0

t d0ð Þ � tr½ 
dd0: ð1Þ

However, it will be seen that the mechanisms considered
here lead to a t = t(d) for which weakening continues, but
at an ever decreasing weakening rate �dt(d)/dd, out to very
large slip. Abercrombie and Rice [2005] have in fact argued,
purely from seismic data, that a slip-weakening description
with that feature is required to fit the observations. In that
case, a generalization of the G expression which they used,
and which is consistent with the Palmer and Rice [1973]
derivation, is to define G for an event with slip d as

G ¼ G dð Þ ¼
Z d

0

t d0ð Þ � t dð Þ½ 
dd0; ð2Þ

and that is used here. To write of a relation t = t(d) is, in
fact, a simplification adopted here for a first test of the
proposed weakening mechanisms against seismic con-
straints. More generally, the physics underlying the
mechanisms requires that t be regarded as some complex
functional of the slip rate history at all times up to the
present. Thus, when summarizing that complex result in the
form t = t(d) here, it is to be understood that t has been
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evaluated based on mechanisms 1 and 2 for a slip rate
history V = const = 1 m/s and that d is just a proxy for Vt.

1.4. Other Weakening Mechanisms

[20] Mechanisms 1 and 2 are expected to become impor-
tant immediately after seismic slip initiates, but as large slip
develops they may not always remain the most significant
weakening mechanisms. Macroscopic melting (i.e., when a
coherent melt layer has formed along the whole sliding
surface) may occur too for sufficiently large combinations
of slip and initial effective normal stress. It is not addressed
here except to identify, within limitations of the simple
modeling developed, maximum temperatures expected on
the basis of processes 1 and 2, to see if they would lead to
onset of melting. Melts, if sufficiently hot, have a low
viscosity and may lubricate faults reducing dynamic friction
[Sibson, 1975; Spray, 1993; Brodsky and Kanamori, 2001].
However, melting is not a simple weakening mechanism.
During rapid shear at modest effective normal stress, in the
range just prior to the transition of macroscopic melting,
there is an abrupt increase in frictional strength [Tsutsumi
and Shimamoto, 1997; Hirose and Shimamoto, 2005]. The
strength decreases with continued shear and heating, which
increases melt volume and raises its temperature, reducing
its viscosity. At the start of the transition, microscopic blobs
of melt form near the larger frictional contact asperities, as
an extreme form of the flash heating process 2, and get
smeared out along the sliding surfaces and rapidly solidify,
at least when the average temperature of those surfaces is
low enough, so as to locally weld the surfaces together.
Fialko [2004] has therefore suggested that the onset of
melting may sometimes arrest slip.
[21] Another weakening mechanism by gel formation

[Goldsby and Tullis, 2002; Di Toro et al., 2004] has been
identified too in silica-rich lithologies, when sliding produ-
ces fine wear debris in presence of water. It, rather than
melting which it could preclude, might be the dominant
weakening mechanism at large slip in some situations.
Severe weakening was reported in a pure quartzite rock,
Arkansas novaculite, by Goldsby and Tullis [2002] and Di
Toro et al. [2004] when subjected to large slip (>0.5–1.0 m),
at least at moderately rapid rates (>1 mm/s). Di Toro et al.
[2004] identified the underlying process as silica gel for-
mation, based on observations of slip surface morphologies
which showed (T. E. Tulllis, private communication, 2004)
‘‘now solidified . . . flow-like textures that make it . . .

evident that at the time the deformation was going on, a
thin layer coating the sliding surface was able to flow with a
relatively low viscosity’’. Further evidence of the impor-
tance of silica content is that Roig Silva et al. [2004a,
2004b] showed that the susceptibility of different rocks to
this type of weakening is directly ordered as their silica
content, such that the order of weakening and silica content
is as follows: quartzite (Arkansas novaculite) > granite
(Westerly) � feldspar (Tanco albite) > gabbro. However,
Tullis reports that the ‘‘solidified flow structures have so far
only been seen for novaculite’’. It is presumed that shear
continuously disrupts silica particle bonding so that the
fluidized gel mass deforms at low strength, although it
would gradually consolidate into a strong, amorphous solid
in the absence of continued shearing, then showing a
fractionally much greater increase of strength than what a

granular gouge would show on a comparable timescale. The
onset of this weakening process seems to require moder-
ately large slip according to laboratory studies thus far
available, and it is not yet known whether it would normally
contribute significantly to seismic weakening before the two
processes analyzed here would have substantially reduced
strength.

1.5. Poromechanical Properties of Fluid-Infiltrated
Fault Core Rocks

[22] The present modeling of mechanism 1 assumes the
presence of fluids, particularly water, within shallow crustal
fault zones, such that the concept that the effective normal
stress sn controls frictional strength will be valid (sn = sn� p,
where sn is the compressive normal stress on the fault and p is
pore fluid pressure). That is reasonable in the sense that the
fault zone is a granularmaterial and should be fluid-infiltrated
below the water table. However, it is well to note that the
effective stress principle presently seems to lack laboratory
verification (or disproof) at the high slip rates of interest.
Mineralization and slow creep in hotter portions of the crust
may isolate fluid-filled pores from one another so that the
fluid phase loses the interconnectivity that it had shortly after
the last earthquake, whereas the poroelastic-plastic modeling
developed here for mechanism 1 assumes that gouge near the
slip zone forms a porous material with an interconnected pore
space. Such initial isolation of fluid pores may, however, not
invalidate the modeling. Recent studies [Poliakov et al.,
2002; Andrews, 2005; Rice et al., 2005] emphasize that the
high local stress concentration associated with the prop-
agating front of the slip rupture zone will cause stresses
that are consistent with some nonelastic deformation in
fault gouge material adjoining the slipping zone. It may
assumed that such deformation acts, very near the tip, to
rupture cementation and restore fluid phase connectivity
as large slips develop in the wake of the passage of the
rupture front. (In the 1 s that it typically takes for 1 m of
slip to accumulate at a point, the rupture front will have
moved 2 to 3 km. The most significant alterations of
temperature and pore pressure take place in zones whose
length scales occupy a few millimeters to a few tens of
millimeters measured perpendicular to the fault surface.
Thus the interaction with the rupture front is short lived,
and the fault response can be analyzed as heat and fluid
transport which has significant variation with space coor-
dinates almost only in the direction perpendicular to the
fault.) Nonelastic deformation off the fault plane will also
contribute to the overall fracture energy in addition to the
slip-weakening contribution identified in the expression
for G(d) above, but that is neglected in this first study.
Nevertheless, predicted G values may be smaller than
actual G for that reason.
[23] Several investigations have attempted to constrain

the values of hydraulic permeability and diffusivity within
the fault zone as well as to estimate the value of perme-
ability [see Lockner et al., 2000; Wibberley and Shimamoto,
2003; Sulem et al., 2004; Noda and Shimamoto, 2005,
references therein]. These studies have shown that the
ultracataclastic gouge zones forming the fault core have a
much lower permeability than that measured in the surround-
ing damage zone, which can be highly variable. Permeability
within the fault core (�10�19 m2) can be 3 orders of
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magnitude smaller that that in the damage zone
(�10�16 m2). In both regions, permeability is reduced
as the effective normal stress is increased. For example,
in the case of the ultracataclastic gouge core material
containing the slip zone in the MTL, after isotropic
compaction to 180 MPa effective stress, at which the
permeability is 3 � 10�21 m2, the permeability along the
unloading path is approximately 4 � 10�21 m2 at
120 MPa, 10�20 m2 at 70 MPa, and 10�19 m2 at 10 MPa
[Wibberley and Shimamoto, 2003, Figure 8.b.ii]. For a
hydrostatic pore pressure, 126 MPa corresponds to the
effective overburden stress at 7 km, a representative
centroidal depth for the slip zone of crustal earthquakes,
and permeability along an unloading path from that value is
shown in Table 1 (along with other material parameters
introduced in section 3 and Appendix A), and has been
estimated as explained in Table 1.

2. Flash Heating and Weakening of
Microasperity Contacts

[24] Flash heating at frictional asperity contacts has been
suggested in engineering tribology as the key to under-
standing the slip rate dependence of dry friction in metals at
high rates [Bowden and Thomas, 1954; Archard, 1958/
1959; Ettles, 1986; Lim and Ashby, 1987; Lim et al.,
1989; Molinari et al., 1999]. It has also been considered
recently in seismology as a mechanism that could be active
in controlling fault friction during seismic slip [Rice, 1999;
Tullis and Goldsby, 2003a, 2003b; Prakash, 2004; Hirose
and Shimamoto, 2005; Prakash and Yuan, 2004, also
private communication, 2004; Beeler and Tullis, submitted
manuscript, 2003], in the range before macroscopic melting.
The presentation here follows Rice [1999] but with an
improved basis for choice of material parameters and also

with a modification of the basic model as was proposed by
Beeler and Tullis (submitted manuscript, 2003).
[25] We consider an asperity contact which has just

formed and that will persist for a slip Da before it is slid
out of existence. Letting T be the gradually evolving
average temperature along the sliding fault surface, the
contact may be assumed to have that temperature T when
it first forms but, if sliding is fast, the temperature Ta at the
contacting asperity interface will undergo a local, highly
transient, rise due to frictional heating (i.e., ‘‘flash’’ heating)
during its brief lifetime q. That lifetime is q = Da/V where V
is the slip rate.

2.1. Threshold Conditions for Onset of Weakening
Due to Flash Heating

[26] The local shear strength tc of the asperity contact
interface will presumably degrade continuously with in-
creasing Ta. A highly simplified yet informative first model
[Rice, 1999] is to assume that tc is constant with respect to
Ta up until when Ta reaches a weakening temperature Tw,
and then decreases dramatically when Ta > Tw. As a simple
model, Rice [1999] assumed that for Ta > Tw, the weakened
contact shear strength tc,w was negligibly small compared
to its lower temperature value tc. Beeler and Tullis (sub-
mitted manuscript, 2003) and Tullis and Goldsby [2003a,
2003b] observed that a better fit of the model to data
showing strong rate weakening of friction was to assume
a small but nonnegligible tc,w for Ta > Tw. (This discussion
neglects the variation of tc with slip rate due, presumably, to
thermally activated slip at the contacts [e.g., Rice et al.,
2001] which is associated with the ‘‘direct effect’’ in rate
and state friction, and also any variations in tc that may be
associated with the maturing of contacts. While important
for nucleations of instability, those effects generally corre-
spond to modest fractional changes in the friction coeffi-
cient f, and tend to be dwarfed by the much larger

Table 1. Properties of the Ultracataclastic, Clayey Gouge Containing the Principal Slip Surface of the Median Tectonic Line Fault Zone,

Japana

sc � p,
MPa

�@n/@sc (= bd � bs),
10�11/Pa bd, 10

�11/Pa n bn
v , 10�9/Pa

bn
el,

10�9/Pa
bn
dmg,

10�9/Pa
ln
el,

10�4/�C
k,

10�20 m2
kdmg,

10�20 m2

160 3.0 4.6 [0.035] 0.84 0.55 2.2 �2.0 - -
126 [4.22] [5.82] [0.04] [1.04] [0.65] [2.49] [–1.9] 0.65 6.5
120 - - - - - - - [0.73] 7.3
100 [5.0] 6.6 0.042 1.2 0.72 2.7 –1.9 - -
75 - - - - - - - [1.5] 15
55 8.0 9.6 [0.050] 1.6 0.91 3.5 –1.8 - -
50 [10] 12 0.055 1.8 1.0 3.9 –1.6 - -
10 23 25 0.072 3.2 1.7 6.6 –1.3 [19] 190
aResults fromWibberley [2002] and C. A. Wibberley (private communication, 2003) for pore compressibility parameter �@n/@sc ( = bd � bs; where bd is

drained bulk compressibility of the porous medium and bs is compressibility of its solid grains) and for n (approximately porosity; precisely, the void
volumeper unit reference state volume of the porous aggregate). Results fromWibberley and Shimamoto [2003] in their Figure 8.b.ii provide permeability k; the
value shown here at effective confining stress sc � p = 126 MPa corresponds to their results for isotropic virgin consolidation to that confining stress. Their
gouge was instead consolidated further, to sc� p = 180MPa, and then studied at various states of unloading (unloading and reloading are then approximately
reversible) to provide the results in their Figure 8.b.ii. Permeability values k shown here are estimated values for an unloading curve starting at 126 MPa,
assuming that at any given effective stress, the ratios of permeability along that curve, to those along the actually documented curve for unloading
from 180 MPa, are in the same 1.91 ratio as the ratio of the virgin consolidation k (0.65 � 10�20 m2) at 126 MPa to the k (0.34 � 10�20 m2) at that
same 126 MPa along the unloading curve from virgin consolidation to 180 MPa. Numbers in brackets are interpolated or extrapolated. Parameters bn
and ln enter an expression of type dn = n(bndp + lndT) characterizing effect of variation of pore pressure p and temperature T at various external
constraints. Explanation of superscripts on bn and ln: v is for variation at fixed confining stress sc; el and dmg are for variation at fixed fault-normal
stress sn and zero fault-parallel strains, with el for elastic response of fault wall and dmg to approximately represent a damaged wall state with
inelastic response for which, for the values shown here, bd has been doubled, i.e., bd

dmg = 2.0bd. For that damaged state, the permeability kdmg has been
increased to 10 times k. For calculations of the table, the following values have been assumed: bs = 1.6� 10�11/Pa; solid grains volumetric thermal expansion
ls = 2.4 � 10�5/�C (ln

v = ln
dmg = ls); drained Poisson ratio of aggregate nd = 0.20.
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weakening of f that is predicted based on the thermal
process now studied.)
[27] The net work per unit area dissipated at the asperity

contact during its lifetime is tcDa, if there is no thermal
weakening. However, will there be weakening? That clearly
depends on V; if it is too large, heat cannot be transferred
away fast enough and the asperity interface will have
reached temperature Tw at some time qw which is less than
the contact lifetime q. We can estimate [Rice, 1999]

qw ¼ path

V 2

rc Tw � Tð Þ
tc

� �2

ð3Þ

where ath is the thermal diffusivity and rc is the heat
capacity per unit volume (rcath is the heat conductivity).
That result is obtained using the equations of one-
dimensional heat conduction for a planar heat source
[Carslaw and Jaeger, 1959] with heat input into the solids
on both sides of the contact interface at rate tcV/2, as in the
‘‘fast moving heat source’’ limit of Archard [1958/1959].
Thus the total heat input tcVqw per unit area at the contact,
up to the weakening time, is equal to the maximum thermal
energy storage rc(Tw � T) per unit volume times the
effective heated distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pathqw
p

, which distance is
defined by matching this explanation of the solution to
the exact one-dimensional heat conduction analysis.
[28] The expression given for qw is relevant if qw < q =Da/V.

That means it is relevant for V > Vw where the weakening
velocity Vw so defined is obtained by setting qw = Da/V, so
that

Vw ¼ path

Da

rc Tw � Tð Þ
tc

� �2

: ð4Þ

Thus Vw is the critical sliding velocity, below which the
contact does not weaken during its lifetime but above which
it does.
[29] To estimate Vw, recognizing that we will be

concerned with temperatures ranging from ambient up to
�900�C, rough average values are ath = 0.5 mm2/s and rc =
2.7 MPa/�C [Vosteen and Schellschmidt, 2003]. The slip Da

over which the contact exists should be identified approx-
imately with a sliding distance to renew the asperity contact
population, which means that it should be comparable to the
state evolution slip distance of rate and state friction,
variously denoted as dc or Lf, at least in situations for which
the frictional slip is strongly localized and not diffusely
spread though a shearing fault gouge [e.g., Marone, 1998];
Da = 5 mm is taken for illustration here. The weakening
temperature Tw cannot be in excess of the inferred temper-
ature of pseudotachylyte melts, 1000�C to 1450�C [Spray,
1993, 1995; Ray, 1999, O’Hara and Sharp, 2001], and
should be closer to the lower limit of that range since here
we are considering the range prior to macroscopic melting.
So Tw = 900�C is considered here. Molinari et al. [1999]
emphasize that slightly submelting Ta values can also
greatly degrade strength, at least in metals, so that a layer
of melt may not be required for weakening by flash heating.
In most ceramics and rocks, it is possible that the weakened
condition involves a thin layer of melt, perhaps at submi-
cron scale, which rapidly refreezes in quenching by sur-

rounding cooler material when the contact phase ends.
Ultimately, continued heat input through the asperities
causes the fault average temperature T to become too large
to quench rapidly, so that such a melt layer would smear out
and possibly reweld in places, beginning the complex
transition to macroscopic melting discussed earlier and
documented by Tsutsumi and Shimamoto [1997] and Hirose
and Shimamoto [2005], but which we do not consider here.
T = 200�C is an ambient fault zone temperature toward the
midlevel of the crustal seismogenic zone, so that Tw � T �
900�C–200�C = 700�C. Recent measurements of contact
area in transparent materials by light scattering [Dieterich
and Kilgore, 1994, 1996], including quartz, confirms earlier
suggestions [Boitnott et al., 1992] that in brittle rock
materials tc is of order 0.1 m, where m is the elastic shear
modulus; 0.1m is a standard elementary estimate of the
theoretical shear strength of a crystalline solid. (The result
is also supported by measurements of contact indentation
strength sc [Dieterich and Kilgore, 1994, 1996]. Because
average contact stresses satisfy scAc = sA and tcAc = tA,
where Ac is true contact area and A is nominal area, and s and
t are the macroscopic normal and shear stresses, a
measurement of the friction coefficient f during sliding
gives, through f = t/s = tc/sc, a way of estimating tc. So
we take tc = 3.0 GPa. This gives Vw = 0.12 m/s for
onset of severe thermal weakening. The scaling of the
result with the most uncertain parameters is

Vw ¼ 0:12
m

s

5 mm

Da

� �

Tw � T

700C

� �2
3 GPa

tc

� �2

: ð5Þ

For example, with all else the same except for T = 20�C to
represent a room temperature lab experiment, the estimate is
Vw = 0.20 m/s. During large rapid slip the average
temperature T of the fault interface will slowly increase
(slowly compared to the timescale over which asperity
temperatures Ta flash up toward Tw) and, if all other
parameters involved have only modest dependence on T, the
threshold velocity for onset of flash weakening should
diminish.

2.2. Model for Friction Coefficient When V > Vw

[30] A similarly simple estimate of the effect on macro-
scopic friction is given by neglecting the statistics of Da

and other parameters, and noting that when V > Vw (which
meanswhen qw< q), the contact spends a fraction qw/q(=Vw/V)
of its lifetime at the initially high strength tc and the remaining
fraction at the weakened strength tc,w, so that the average
contact shear strength during its lifetime is

tcð Þavg¼ tcqw=qþ tc;w 1� qw=qð Þ ¼ tc � tc;w
� �

Vw=V þ tc;w

ð6Þ

whereas if the severe heating is confined to a thin layer
(compared to contact size Da), sc is unaltered from its lower
temperature value. Thus, setting f = (tc)avg/sc, this simple
model gives

f ¼ fo � fwð ÞVw

V
þ fw when V > Vw; ð7Þ
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where fo = tc/sc is the low speed friction coefficient and fw =
tc,w/sc = fotc,w/tc is the friction coefficient based on the
weakened shear strength at high temperature. The model of
Rice [1999] gave this equation for f but with tc,w and fw
considered negligibly small; their finite values were added by
Beeler and Tullis (submitted manuscript, 2003); tc,w, and
hence fw, could not plausibly be independent of Ta and V
(because they, together with the thickness of a thin melt layer,
determine the viscous shear response at the contact), but are
nevertheless treated as constant in section 2.3 to simplify the
description.
[31] Equation (7) must be regarded as an expression for f

in steady state sliding (i.e, sliding at effectively constant V
over slip distances that are large enough to completely
renew the contact population). A fuller description would
have to build in well-known effects that are described
within rate and state friction, e.g., with the feature that @f/
@V > 0 (positive ‘‘direct effect’’) when V is changed
instantaneously at a fixed state of the contact population.
Such a feature is not only physically motivated, but is
known to be necessary to make mathematically well-posed
models of sliding, with velocity-weakening friction, on
interfaces between elastically deformable continua [Rice et
al., 2001].

2.3. Comparisons to Experimental Data at High Slip
Rates

[32] At the time of presentation of the model discussed,
the data available for f at rates V approaching the seismic
range were those of Tsutsumi and Shimamoto [1997]. They
were mainly concerned with melting in their annular shear
experiments on gabbro, but they did identify some data
points as being taken prior to melting range [see also Hirose

and Shimamoto, 2005], and those showed weakening qual-
itatively consistent with the above concepts. Since then
there has been great progress on laboratory experiments
imposing rapid slip [Tullis and Goldsby, 2003a, 2003b;
Prakash, 2004; Prakash and Yuan, 2004, also private
communication, 2004], and the concept of substantial
weakening at rapid slip rate is definitively supported. See
Figure 2.
[33] The expression for f in terms of fo, fw, Vw and V was

fit by Tullis and Goldsby [2003a, 2003b] to their experi-
mental results for five rock types that were tested in annular
shear at V up to 0.36 m/s (Figure 2a, for quartzite), of which
all but one showed evidence of strong weakening at higher V.
Results for Vw as read off approximately from the plots of
Tullis and Goldsby [2003b] are as follows: Vw� 0.14 m/s for
quartzite (Arkansas novaculite) and also for granite; 0.28 m/s
for feldspar (Tanco albite); 0.11 m/s for gabbro; and 0.27 m/s
for calcite (weakening for it was far less pronounced than for
the other rocks). These Vw are all comparable to the rough
estimate Vw � 0.2 m/s made above.
[34] Also, values of fo and fw associated with the Tullis

and Goldsby [2003b] fits can be inferred from their plots for
some of the rocks, with the results being as follows: fo �
0.64 and fw � 0.12 for quartzite; fo � 0.82 and fw � 0.13 for
granite; and fo � 0.88 and fw � 0.15 for gabbro. Those
values lead to estimates of f at 1 m/s, an average seismic slip
rate, of fV=1m/s � 0.16 for quartzite and 0.23 for both granite
and gabbro. However, those are extrapolations beyond the
data; the most extreme weakening actually recorded in the
experiments, i.e., at the maximum rate of 0.36 m/s, was
fV=0.36m/s � 0.32 for quartzite, 0.40 for granite, and 0.37
for gabbro. To choose those values, and indeed to fit a
curve to the experimental results, required averaging out

Figure 2. Friction coefficient at high slip rates for Arkansas novaculite (�100% quartzite), determined
in rotating annular specimens. (a) Tullis and Goldsby [2003a, 2003b]: Slip rates V up to 0.36 m/s imposed
in Instron testing frame for 45 mm slip, after a 1.2 mm preslip at �10 mm/s. At low V, friction
coefficient f � 0.65, whereas at V > 0.3 m/s, f � 0.3 results. Comparable rate weakening was found by
Tullis and Goldsby for Tanco albite (�100% feldspar), granite, and gabbro. (b) Prakash [2004],
Prakash and Yuan [2004, also private communication, 2004]: Pretwisted torsional Kolsky bar imposes
slip at V � 3–4 m/s, resulting in f slightly less than 0.2. Experiment becomes uninterpretable after
small slip (marked) due to cracking in wall of specimen.
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the rapid fluctuations as shown in Figure 2a, and those
were more severe for some of the other rocks. Presumably
they result because the friction is strongly velocity weak-
ening, and instabilities result from the interaction of
that type of friction with the elasticity of the loading
apparatus.
[35] While Figure 2a shows, for quartzite, f � 0.30–0.35

for V = 0.30–0.36 m/s, much higher speed experiments
[Prakash, 2004; Prakash and Yuan, 2004, also private
communication, 2004] on the same rock type (Figure 2b)
show f � 0.20 or slightly less at rates V = 2–4 m/s. Those
experiments, done by loading an annular specimen with a
torsional wave from a pretwisted Kolsky bar, achieve rates
higher than the average seismic slip rate, although the
results are valid only for a very small slip, �0.2 mm, prior
to cracking of the wall of the annulus. The results cited from
Tsutsumi and Shimamoto, Tullis and Goldsby, Prakash and
Yuan, and Hirose and Shimamoto suggest that despite high
friction coefficients, f � 0.6–0.9 in slow slip, strong rate
weakening of localized frictional sliding at seismic slip rates
is a reality, probably due to flash heating, and that we might
expect f � 0.2–0.3 at seismic slip rates, at least in the range
of slip prior to development of a macroscopic melt layer
along the friction surface (if enough slip takes place, at high
enough effective stress, for such to occur). For that reason,
the default value of f during seismic slip in sections of the
paper is taken as f = 0.25, and in some cases f = 0.20 is
examined too. The weakened f implies a slower heating rate,
so that more slip is needed to achieve a given temperature
change (the slip needed is shown in section 3 to scale as 1/f 2,
and so is 9 times larger for f = 0.25 than for f = 0.75).

3. Thermal Pressurization of Pore Fluid

[36] This mechanism [Sibson, 1973; Lachenbruch, 1980;
Mase and Smith, 1985, 1987] assumes that fluids (water,
typically) are present within the fault gouge which shears
and that the shear strength t during seismic slip can still
be represented by the classical effective stress law t =
f(sn � p), where sn is normal stress and p is pore
pressure. Frictional heating then would cause the fluid,
if it was unconstrained, rather than caged by the densely
packed solid particles, to expand in volume much more
than would the solid cage. Thus unless shear-induced
dilatancy of the gouge cage overwhelms the thermal
expansion effect, or unless the gouge is highly permeable,
a pressure increase must be induced in the pore fluid
during slip. Since sn can typically be assumed to remain
constant during slip, strength t is reduced, ultimately
toward zero, as shear heating continues to raise temper-
ature so that p approaches sn.

3.1. Conservation and Transport Equations

[37] Shear of the material of a fault zone lying parallel to
the plane y = 0 is considered, under constant normal stress
sn, so that the y coordinate axis is perpendicular to the fault
zone. The shear rate is _g = _g(y, t), and the spatial distribu-
tion of _g will shortly be considered either to be completely
uniform, or else to take the form of slip that is wholly
confined to the mathematical plane y = 0 within the fault
zone, so as to most simply represent slip on the type of very
thin shear zone (or principal slip surface) within the fault

zone discussed in section 1. In that latter case, _g(y, t) =
V(t)dDirac(y), where V(t) is the slip rate across the fault
plane. The model of slip on a plane will be a sensible
simplification for prediction of pore pressure when the
diffusion distance for pore pressure change (which varies
with time and slip during the event) is a few times greater
than the actual shear zone thickness. Similarly, it should
provide a sensible prediction of the maximum temperature
rise when the diffusion distance for temperature changes is
also a few times greater than shear zone thickness. Since
hydraulic diffusivity is usually estimated to be greater than
thermal diffusivity (see Tables 2 and 3 and sections 3.2 and
3.6 and Appendix A for the fuller basis for parameters
there), the condition on pore pressure may be met even if
that on temperature fails. In such cases the model will be
reasonable for prediction of pore pressure rise by thermal
pressurization, and hence of fault weakening by effective
stress reduction which is of primary interest here, whereas it
will overestimate the maximum temperature rise in those
cases. Rempel and Rice (submitted manuscript, 2006)
investigate those issues more fully.
[38] The shear stress t = t(t), i.e., it is independent of y,

by considerations of mechanical equilibrium. (It is true that
@t/@y = ra, where a is the fault-parallel particle acceleration,
but the effect of even large accelerations, say, 10–100 g, is
insignificant over the small length scales in the y direction
about the fault, i.e., a few millimeters to a couple tens of
millimeters, over which the heat and fluid diffusion
processes take place during the dynamic slip, and gigantic
gradients in p and T occur. E.g., even with a = 100 g, @t/
@y � 3 MPa/m, so t changes by only 0.03 MPa over
10 mm change in y. In comparison, the variation of shear
strength f(sn � p) with distance is, when there is full
thermal pressurization p ! sn at the fault core, of order
f(sn � pamb) over the few millimeters over which p varies
from sn to pamb, where pamb is the ambient pore pressure.
Its gradient thus is typically of order 1000–5000 MPa/m
at representative seismogenic depths, vastly larger than any
effect of acceleration over the relevant few millimeter size
scale. Thus assuming mechanical equilibrium @t/@y = 0,
so that t = t(t) over the relevant size scale, is certainly
appropriate for present purposes.) Of course, t and _g or V
will vary also with the x and z coordinates within the fault
zone, but the length scales in x and z over which they vary
will generally (except possibly at the propagating front of the
rupture zone) be far larger than the scale in the y direction
affected by heat and fluid mass diffusion, so the problem is
treated as involving the single, fault-perpendicular spatial
coordinate y.
[39] The energy equation, or first law of thermodynamics,

and the fluid mass conservation equation are

� @qh
@y

þ t _g ¼ rc
@T

@t
and

@m

@t
þ @qf

@y
¼ 0: ð8Þ

Here rc is the specific heat per unit volume of the fault
gouge in its reference state. Also, m is the current mass of
pore fluid per unit of bulk volume which the porous
material occupied in that reference state [Rice and Cleary,
1976], and m = rfn, where rf is the density of the fluid in
the pore spaces, and n is the current volume of pore space
per unit reference state bulk volume. (Loosely, n is the
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‘‘porosity’’ of the fault gouge, although that term should
strictly be reserved when pore volume is divided by current,
rather than reference state, bulk volume.) Further, y is here
treated as a Lagrangian, or material, coordinate that is
measured off in that reference state, and _g = @v/@y where v
is the local fault-parallel velocity. Work by the normal stress
sn is negligible in comparison to that by t in the large shear
considered.
[40] The energy flux qh and fluid mass flux qf in the

above balance equations are given by

qh ¼ �K
@T

@y
qf ¼ �

rf k

hf

@p

@y
: ð9Þ

The latter is the Darcy law where k is permeability and hf is
fluid viscosity (hf � 10�4 Pa s for water in the elevated
temperature range of interest). In the former, all nonnegli-
gible energy flux qh is assumed to be in the form of heat
conduction, where K is the thermal conductivity. That is,
advective energy transport by the moving hot fluid has been
neglected, justifiably, because the pore volume fraction n is
low (e.g., of order 5% for Median Tectonic Line, Japan,
ultracataclasite at effective confining stress of order
100 MPa (C. Wibberley, personal communication, 2003),
values that are consistent with results of Sulem et al. [2004],
for samples from borehole penetration the Aegion fault in
the Gulf of Corinth), and the ultracataclasite permeability is

exceptionally low, of order 10�20–10�19 m2 [Lockner et al.,
2000; Wibberley and Shimamoto, 2003; Sulem et al., 2004]
(Tables 1 and 2). See Mase and Smith [1987] and Lee and
Delaney [1987] for a fuller discussion of the advective
terms; the latter suggest that they should be negligible if k <
10�16 m2.

3.2. Porothermoelastic Parameters, Governing
Equations for p and T, and Types of Solutions Allowed

[41] With standard procedures (see Appendix A), includ-
ing the Segall and Rice [1995, 2004] treatment of inelastic
dilatancy, increments dm in fluid mass content can be
written in terms of increments dp in pore pressure and dT
in temperature, and of the inelastic (or ‘‘plastic’’) porosity
increments dnpl, as

dm=rf ¼ b dp� LdTð Þ þ dnpl ð10Þ

where it is understood that sn and the fault-parallel
extensional strain components are held constant during the
process considered. The new parameters b and L, defined
by the way in which they appear in that equation, are
expressed in terms of compressibility and thermal expan-
sion properties of the fluid and of the pore space later in this
section, following the derivation in Appendix A, and values
are given in Tables 2 and 3.

Table 2. Assumed and Resulting Parameters of the Slip-on-Plane Model, to Represent a Mature Fault Surface at 7 Km Depth, at Normal

Stress of 196 MPa, Ambient Pore Pressure of 70 MPa, and Ambient Temperature of 210�Ca

Models Considered

Intact Elastic Walls Highly Damaged Walls

Ambient p and T b Average on p-T path Ambient p and T b Average on p-T path

Common parameters assumed for all models
Specific heat of fault gouge [L], [VS], rc, MPa/�C 2.7 2.7 2.7 2.7
Starting porosity [W], n 0.04 0.04 0.04 0.04
Friction coefficient (flash heating, see text), f 0.25 0.25 0.25 0.25
Slip rate [see text], V, m/s 1.0 1.0 1.0 1.0
Normal stress, sn, MPa 196 196 196 196

Path ranges used for property evaluations
Pore fluid pressure range pamb, phigh, MPa 70, 70 70, 133 70, 70 70, 133
Effective stress range sn � pamb, sn � phigh, MPa 126, 126 126, 63 126, 126 126, 63
Temperature range Tamb, Thigh, �C 210, 210 210, 334 210, 210 210, 810

Material properties (averages over path ranges)
Thermal diffusivity [VS], ath, mm2/s 0.70 0.65 0.70 0.50
Fluid thermal expansivity [B], lf, 10

�3/�C 1.08 1.21 1.08 2.30
Pore space thermal expansivity, ln, 10

�3/�C �0.19 �0.18 0.02 0.02
Fluid compressibility [B], bf, 10

�9/Pa 0.64 0.74 0.64 4.47
Pore space pressure expansivity [W], bn, 10

�9/Pa 0.65 0.77 2.49 2.95
Fluid viscosity [K] [T], hf, 10

�4 Pa s 1.48 1.26 1.48 0.77
Permeability [WS], k, 10�20 m2 0.65 1.38 6.5 13.8

Resulting material properties
Undrained pressurization factor, L (MPa/�C) 0.98 0.92 0.34 0.31
Hydraulic diffusivity, ahy (mm2/s) 0.86 1.81 3.52 6.04

Resulting parameters of slip-on-plane model
Weakening length parameter, L*, mm 1.51 2.55 29.8 49.5
Maximum possible temperature rise, DTmax, �C 271 366 1200 1840
Maximum possible T, Tmax (for Tamb = 210�C), �C 481 576 1410 2050
a‘‘Intact elastic walls’’ models use laboratory-constrained data for permeability k and pore space pressure expansivity bn = bn

el of undisturbed gouge, and
‘‘highly damaged walls’’ models account approximately but arbitrarily for gouge damage at the rupture front, and during slip and thermal pressurization, by
using a differently defined pore space pressure expansivity bn = bn

dmg and increasing k by 10� and bd by 2� the laboratory-constrained values; k and the two
bn measures are assumed to vary only with sn � p. Fluid and other T or T-p dependent properties are evaluated as averages along straight line paths from
pamb, Tamb to phigh, Thigh. Codes are B, Burnham et al. [1969]; K, Keenan et al. [1978]; L, Lachenbruch [1980]; T, Todheide [1972]; VS, Vosteen and
Schellschmidt [2003]; W, Wibberley [2002] and C. A. Wibberley (private communication, 2003); WS, Wibberley and Shimamoto [2003]. Fluid properties
estimated from B, K, and T with the collaboration of A. Rempel.

bThe ‘‘high’’ values are set to ambient values for the columns. Results are used to approximately estimate the respective phigh, Thigh for the ‘‘average on p-
T path’’ columns, as rough spatial averages, over the part of the wall that is actively participating in the heat and mass transfer, at the stage when p at the
fault has been elevated to sn.
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[42] As explained in Appendix A, we must consider the
possibility of other than elastic response of the material
bordering the slip zone. Inelastic response is there relevant
for the following reasons: The material will have been
damaged and deformed inelastically by large concentrated
stresses, e.g., locally in excess of a Mohr-Coulomb yield
criterion, as the rupture front passed by it [Andrews, 1976,
2005; Poliakov et al., 2002; Rice, 1980; Rice et al.,
2005]. Also, the process of shearing in granular materials
(section 1.1), and sliding on fault surfaces that are not
perfectly flat [Power and Tullis, 1991], necessarily forces
some accommodation deformations in the fault walls that
would not be likely to elicit only elastic response. Finally,
the assumption of elastic response of the fault walls, even next
to a perfectly smooth and planar fault, leads ultimately to large
fault-parallel compressional effective stresses near the sliding
zone, and hence to large effective stress differences which
cannot be sustained elastically as p! sn (Appendix A). Thus
Tables 1 and 2 gives values of parameters corresponding not
only to elastic response of intact wall material, but also to
nonelastic response due to highly damaged walls (but with
damage simply represented in terms of increased drained
compressibility and permeability of the wall material, and
relaxation of fault-parallel stresses to the fault-normal value).
Table 3 further explores a range of assumptions for represent-

ing effects of damage. The present inability to precisely
characterize fault wall response leads to a broad range of
possible model parameters here. (The induction of large fault-
parallel compressive effective stresses very near the sliding
zone suggests that at least locally, all principal stresses will be
compressive and at least as large as p, except possibly in the
zone affected by stress concentration at the rupture front [Rice
et al., 2005], so that hydraulic cracking by the pressurized
fluid is not generally expected. In any event, the fluid
realistically available to feed such a fracture is limited because
gouge porosity and permeability are quite small.)
[43] There are few guidelines on how to represent the

magnitude of inelastic dilatancy. A possibly important con-
cept is that the gouge which deforms during an earthquake on
a mature fault has been subjected to previous similar defor-
mations, and thus it might be regarded as if it is in a ‘‘normally
consolidated’’ state just before the presently considered
episode. That means that it is then subjected to the largest
effective stress experienced since its structure was last dis-
turbed and unloaded (by thermal pressurization) to a low
effective stress during the prior event. After that prior event it
was then reloaded monotonically to its effective stress at the
start of the presently considered event, as the excess pore
pressure diffused away. Because cases of large dilatancy are
generally associated with a densely packed state achieved
through overconsolidation, that would suggest that only
modest inelastic dilation might take place during each shear
episode on a mature fault. However, the real situation is
complicated by the unknown effects of healing and cemen-
tation processes over the time interval between earthquakes.
[44] Note that dm/rf in equation (10) corresponds to the

volume of fluid, per unit reference state bulk volume, that
would have to be absorbed (or expelled if dm is negative) in
order for there to be changes dp, dT, and dnpl (again, at fixed
sn and fault-parallel extensional strains). Thus b is the
volumetric pore fluid storage coefficient (i.e., dm/rf = bdp
for elastic storage at fixedT, with ‘‘elastic’’ implying dnpl=0).
Alternatively, if an increment of deformation is undrained
(i.e., dm=0), then the expression tells us how p varieswith the
other parameters, namely, dpundrained = LdT � dnpl/b. That
shows that L (called G by Mase and Smith [1987]) is the
thermoelastic value of dp/dT under undrained conditions.
Appendix A shows that b = n(bf + bn), where bf is the
isothermal compressibility of the pore fluid (drf/rf = bfdp) and
bn (equivalent to bf of Segall and Rice [1995]) is the
isothermal pressure expansivity of the pore space (dn/n =
bndp), assuming no inelastic dilatant contribution. Also, L is
given as L = (lf � ln)/(bf + bn), where the l are isobaric,
volumetric thermal expansion coefficients, defined such that
drf /rf = �lfdT and dn/n = lndT, again assuming no dilatant
contribution.
[45] Using the above results, the energy and fluid mass

conservation equations are

@T

@t
� t _g

rc
¼ 1

rc

@

@y
rcath

@T

@y

� �

@p

@t
� L

@T

@t
þ 1

b

@npl

@t
¼ 1

rf b

@

@y
rf bahy

@p

@y

� �

;

ð11Þ

where ath = K/(rc) is the thermal diffusivity and ahy = k/(hfb)
is the hydraulic diffusivity. See Tables 2 and 3 for values
under different assumptions.

Table 3. Study of Effects of Damage of Fault Gouge Due to

Concentrated Stressing Near the Rupture Front and Due to

Inelastic Response to Thermal Stressing Along the Fault Wallsa

bd
dmg

1.0bd 1.5bd 2.0bd

bn
dmg, 10�9 Pa�1 1.04 1.77 2.49

L, MPa/�C 0.64 0.44 0.34

kdmg = k = 0.65 � 10�20 m2

ahy, mm2/s 0.65 0.46 0.35
L*, mm 3.06 5.49 8.28
DTmax, �C 385 517 635
Path L*, mm �4.6 �6.6 �8.4

kdmg = 5k = 3.25 � 10�20 m2

ahy, mm2/s 3.28 2.28 1.76
L*, mm 8.17 13.2 19.0
DTmax, �C 630 802 960
Path L*, mm �13 �18 �24

kdmg = 10k = 6.50 � 10�20 m2

ahy, mm2/s 6.56 4.57 3.52
L*, mm 13.5 21.2 29.8
DTmax, �C 809 1020 1200
Path L*, mm �25 �36 �49

aMaterial properties are based on normal stress of 196 MPa, pore
pressure of 70 MPa, and temperature of 210�C, to represent ambient
conditions on a mature fault surface at 7 km depth. Damage is represented
simply by an arbitrarily altered value bd

dmg of the drained compressibility bd,
which enters the expression for bn ( = bdmgn = bn

v in this case), and an altered
value kdmg of the permeability k, relative to their experimentally constrained
values (Table 1) for intact gouge. All parameters other than bn and those
listed here have the values listed for the highly damaged walls ambient p
and T case in Table 2 (which corresponds to the special case in the bottom
right column here); bn corresponds to the parameter bn

v introduced in the
text and is calculated in terms of bd by the expression given there but using
bd
dmg for bd. Similarly, kdmg is used for k. Unaltered values are (Table 1) bd =
5.82 � 10�11/Pa and k = 0.65 � 10�20 m2. Values ‘‘path L*’’ correspond to
the improved estimates of L* like made in Table 2 by evaluating material
properties as averages along the p-T path predicted based on the ambient
properties.
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[46] Finally, it would generally be assumed that the shear
stress transmitted across the fault zone is consistent with the
effective stress law t = f(sn � p) with, in the simplest
modeling, a constant friction coefficient f. In fact, that
implies remarkable limits to the types of solutions allowed
by the above differential equations. Then the value of p(y, t)
in any one place y0 which undergoes shear must be the same
as in any other place y00 that also shears, because f, sn and t
have the same value at both places. That is discussed further
in Appendix B. When @npl/@t = 0 and f is constant, it
implies that the types of solutions that can exist are such that
either one or the other of the following is the case:
[47] 1. The p(y, t) = p(t) (i.e., p is spatially uniform)

throughout the zone that shears, which implies, through
equations (11), that T(y, t) has the form of a function of y
plus a function of t. If shear commences at all values of y at
the same time, and at the same initial temperature, that
reduces to T(y, t) = T(t), and then _g(y, t) = _g(t) too. Such
describes a solution with no heat or mass transport and with
spatially homogeneous straining. It is a state of homoge-
neous, adiabatic, undrained deformation, an obviously very
idealized case discussed in section 3.3.
[48] 2. Shear occurs at a single value of y at which p(y, t)

has its global maximum. That is, the thermal pressurization
process naturally leads to shear localization. The situation
corresponds to the model of slip on a plane, as considered
by Mase and Smith [1987] and Lee and Delaney [1987]. It
is unrealistic in that, as discussed in section 1.1, slip on a
mathematical plane is not strictly possible in a disordered
granular system, but it is to be interpreted physically as slip
over such a small thickness that the disordered particulate
state controls the size of that thickness (at scales of order of
a few tenths of a millimeter, it is suggested in section 1). To
resolve that thickness further, as is not attempted here, it
would be necessary to formulate a refined model of granular
friction which had built into it some mathematical structure
to limit localization [e.g., Muhlhaus and Vardoulakis, 1987;
Tordesillas et al., 2004]. Exceptionally, a finite set of 2 or
more y values might share the hosting of the global
maximum of p(y, t), in which case, there would be slip on
a finite set of planes, but each would have to undergo
exactly the same pore pressure history and that seems too
special to address further here.
[49] While it would be the case that strong rate strength-

ening of f with increasing shear rate _g would allow
delocalization of shear from a plane, any feature leading
to rate weakening of f, including the flash heating mecha-
nism discussed earlier, would tend to promote localization
to a plane. Rate weakening and severe localization are well
correlated experimentally [Beeler et al., 1996; Scruggs and
Tullis, 1998], at least in low strain rate experiments. Thus
the two weakening mechanisms given primary focus here
may be intimately connected with why slip can be so highly
localized on mature faults.

3.3. Adiabatic, Undrained Deformation

[50] This is case 1. It corresponds to homogeneous simple
shear strain g at constant sn, on a spatial scale of the sheared
layer that is broad enough to effectively preclude heat or fluid
transfer. It seems unlikely to be achieved even approximately
in practice, except for gouge showing an extremely strong
positive increase of f with shear rate, because, as shown in a

companion paper (J. R. Rice and J. W. Rudnicki, Stability of
spatially uniform, adiabatic, undrained shear of a fault zone,
manuscript in preparation, 2006), such deformation is unsta-
ble to severe flow localization, after which the heat and mass
transfer effects must become important. Neglect of transport
terms in equations (11) gives

dp� LdT þ dnpl=b ¼ 0 and tdg ¼ rcdT ; ð12Þ

and describes a special case considered by Lachenbruch
[1980]. The equations can be rearranged, and integrated,
starting at ambient conditions pamb and Tamb, and assuming
for simplicity that rc, L and b can be considered as constant
(or using averaged values for the integration interval), to
obtain
Z g

0

tdg ¼ rc T � Tambð Þ ¼ rc=Lð Þ p� pamb þ Dnpl=b
� �

: ð13Þ

Remarkably, this result is independent of any assumption
about how t varies with sn � p, g, dg/dt, or their history.
Making only the weak constitutive assumption that the
shear strength reduces to 0 when p is raised to the level sn,
there results expressions for the maximum possible work
which can be absorbed per unit volume, and the maximum
possible temperature rise, in sufficiently large adiabatic,
undrained shear. These are
Z largeg

0

tdg ¼ rc

L
sn � poð Þ; and Tmax � Tamb ¼

sn � po

L
;

where po ¼ pamb �
Dnpl

b
: ð14Þ

The term po here has a simple interpretation; if the net
dilatancy during the shear is Dnpl (physically, we expect
nearly all of that to accumulate in the earliest stages of
deformation), then po just involves an effective resetting of
the initial pore pressure from ambient, by reducing it by the
suction Dnpl/b [Segall and Rice, 1995].
[51] A specific form for the weakening law when t =

f(sn � p) with constant f results by eliminating T and p as
explicit variables in equation (12) to get the Lachenbruch
[1980] equation

dt

dg
þ f L

rc
t ¼ 1

b

dnpl

dg
: ð15Þ

Assuming as an approximation that all inelastic dilatancy
occurs in the earliest phases of shear, the right side is
effectively a Dirac delta function at strain g = 0+ and the
solution is

t ¼ f sn � pð Þ ¼ f sn � poð Þ exp � f L

rc
g

� �

¼ f sn � poð Þ exp � f L

rc

d

h

� �

; ð16Þ

where the latter form applies to slip d over a layer thickness
h that is large enough to justify the neglect of heat and fluid
transport (with the caveats that homogeneous deformation
of that type appears to be unstable against localization and
that there are inconsistencies, discussed in Appendix B,
related to the feature that p will not be spatially uniform
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within any layer of finite thickness with realistic boundary
conditions). The associated temperature rise is

T � Tamb ¼
p� po

L
¼ 1� t

f sn � poð Þ

� �

sn � po

L
: ð17Þ

Also, the fracture energy associated with such shear in a
layer of thickness h is

G ¼ G dð Þ ¼
Z d

0

t d0ð Þ � t dð Þ½ 
dd0

¼ rc sn � poð Þh
L

1� 1þ f Ld

rch

� �

exp � f Ld

rch

� �� 	

; ð18Þ

which approaches G = (rc/L)(sn � po)h at large slip; that
value is independent of f, as anticipated from equation (14).
[52] The characteristic shear strain for the adiabatic,

undrained weakening is rc/fL. It may be estimated from
values for rc and L in Table 2. Because the entire gouge
domain is assumed to be deforming in shear, the ‘‘highly
damaged’’ model seems appropriate for it, at least for the
ambient conditions at 7 km depth assumed for Table 2. Then
rc/fL � 7.3/f. For slip on a plane at seismic rates, a
weakened friction f = 0.25 seems justified to represent flash
heating and is used subsequently here. However, for broadly
distributed shear as in this section, the contacts would not
likely shear fast enough to be susceptible to flash heating
and so f � 0.6 may be more appropriate, leading to the
characteristic weakening strain rc/fL � 12. The character-
istic slip distance in the exponential slip-weakening law is
therefore estimated as 12h. The associated value of Dc as
defined in the linear slip-weakening relation assumed by
many seismologists, with property that G = f(sn � po)Dc/2
at large slip, is therefore estimated to beDc= 2(rc/fL)h� 24h,
i.e., Dc � 0.24 m for h = 10 mm.
[53] Rice [2003] and Rice et al. [2005] discussed inter-

pretations of seismically inferred earthquake fracture ener-
gies in terms of such estimates of G and Dc. However, the
new perspectives reached in the present work, based on the
extreme localization of shear, leads to the conclusion that
the model of slip on a plane discussed next (including
modifications to it to deal with effects of the actual small but
finite thickness of the shear zone) provides a preferred
physical basis for predicting slip weakening and fracture
energy associated with thermal pressurization.

3.4. Model of Slip on a Plane, General Results

[54] In the case of interest here, all sliding is on the plane
y = 0 and t = f(sn � pjy = 0) where pjy = 0 is the pore
pressure on that sliding plane. Thus the equations which
must be satisfied are as follows:

In jyj > 0;
@T

@t
¼ 1

rc

@

@y
rcath

@T

@y

� �
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@p

@t
� L

@T

@t
þ 1

b

@npl

@t
¼ 1

rf b

@

@y
rf bahy
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@y

� �

; ð19aÞ

On y ¼ 0�; �rcath

@T

@y
¼ � 1

2
tV ¼ � 1

2
f sn � pjy¼0


 �

V

and
@p

@y
¼ 0: ð19bÞ

[55] For simplicity, and in keeping with the spirit of
making elementary estimates, in the sequel the transport
terms on the right sides of the energy and fluid mass
equations are linearized to ath@

2T/@y
2 and @hy@

2p/@y2, re-
spectively, choosing ath and ahy as representative values for
the range of p and T experienced during a typical seismic
event that is modeled (Tables 2 and 3).
[56] It is assumed here for simplicity that essentially all

inelastic dilatancy Dnpl in the fault zone takes place in the
concentrated stress field associated with passage of the
rupture tip, and in the earliest increments of localized slip,
with no further dilatancy as significant slip develops. Thus
the inelastic dilatancy rate can be written approximately for
our purposes as @npl(y, t)/@t = Dnpl dDirac(t). The effect of
this approximation is to make the above set of partial
differential equations become

In yj j > 0;
@T

@t
¼ ath

@2T

@y2
and

@p

@t
� L

@T

@t
¼ ahy

@2p

@y2
for t > 0;

with pjt¼0þ¼ po � pamb �
Dnpl

b
and T jt¼0þ¼ Tamb:

ð20Þ

where pamb is the ambient pore pressure, and Tamb is the
ambient temperature, just before rupture. The same
conditions apply on y = 0 as in equations (19b).
[57] The PDE set can be solved in general to show

(Appendix B) that at the fault plane, y = 0, there is a
universal proportionality between the temperature rise from
its initial value and the pore pressure rise from its suction-
reduced value just after onset of failure. That relation is

T � Tambð Þjy¼0¼ 1þ
ffiffiffiffiffiffiffi

ahy

ath

r� �

p� poð Þjy¼0

L
; ð21Þ

and it is universal in that it applies no matter how slip rate V
varies with t, or how t or f varies with slip rate and slip
history. In fact, the derivation does not even require the
assumption that the shear strength law be given in the form
t = f(sn � pjy=0). However, if the strength law at least has
the property that t! 0 (or is negligible) when pjy = 0 ! sn,
then the maximum possible temperature which can be
achieved on the fault plane is

DTmax ¼ Tmax � Tamb ¼ 1þ
ffiffiffiffiffiffiffi

ahy

ath

r� �

sn � po

L
ð22Þ

and results for it are given in Tables 2 and 3. It is a factor 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ahy=ath

p

times the maximum possible rise for the adiabatic
undrained model of section 3.3. That Tmax can be approached
only at sufficiently large slip such that p there is driven to sn
(at which point the heating rate vanishes and there can be no
further temperature rise). In cases for which it exceeds the
melting temperature, say, Tmax > 1000�C, the model must be
abandoned at some smaller amount of slip, corresponding to a
pore pressure rise to a value p < sn which just brings T on the
slip plane to the melting temperature, according to the above
expression for T � Tamb.
[58] Mase and Smith [1987] derived equation (22)

through an ingenious analysis of an asymptotic limit, for

B05311 RICE: HEATING AND WEAKENING OF FAULTS

13 of 29

B05311



which a fault had been sliding for a long time at p � sn, and
for which the temperature rise was long saturated at a value
DTmax to be determined. They then made what they seem to
have thought to be an approximation, that equation (21)
might roughly apply during the entire process, to derive
equation (23) to follow as a corresponding approximation,
albeit one that they had already shown to be an exact result
when there was no fluid transport so that ahy/ath = 0 (see
Appendix B). The present work shows that in fact,
equations (21) and (23) are exact results.
[59] The utility of these expressions for temperature rise

is marred only by the fact that the model of slip on a plane
tends to overestimate the temperature of even a very thin but
finite thickness shear zone. See Appendix B for discussion
and some approximate corrections for that. Mase and Smith
[1987] and Rempel and Rice (submitted manuscript, 2006)
provide a fuller analysis.

3.5. Model of Slip on a Plane, Solution for Constant
Friction and Slip Rate

[60] A linear integral equation for t(t), given general
histories of slip rate V(t) and friction coefficient f(t), is
derived in Appendix B equation (B15) based on equations
(B11a) and (B11b). (A generalization of the integral equa-
tion is also given there for a Gaussian shear rate distribution
[Andrews, 2002] over a narrow zone.) The equation thus
defines the constitutive laws for the fault surface. It can be
solved numerically in general, but in a simple closed form
for the case of constant V and f to obtain, when the solution
is written in terms of slip d(=Vt),

t ¼ f sn � pð Þ ¼ f sn � poð Þexp d

L*

� �

erfc

ffiffiffiffiffiffi

d

L*

r

 !

; ð23aÞ

where

L* ¼ 4

f 2
rc

L


 �2
ffiffiffiffiffiffiffi

ahy
p þ ffiffiffiffiffiffi

ath
p
 �2

V
: ð23bÞ

This parameter L* (related to yo of Mase and Smith [1987]
by L* = Vyo) has the unit of length, descended from
diffusivity divided by slip rate, and nicely wraps into a
single parameter the dependence of scaled friction strength
t/[ f (sn � po)] on all of the porothermoelastic properties of
the solid and fluid, and on the slip rate and friction.

[61] Although the equation contains a single length pa-
rameter, a plot as in Figure 3 shows a remarkable multiscale
feature, in that continued weakening takes place at an ever
decreasing rate over a very broad range of slip d, which is
scaled by L* in Figure 3. A modest rearrangement of
equation (23a) lets us solve for pore pressure rise at the
fault plane and, using equation (21), the fault plane tem-
perature as a function of d is then

T � Tamb ¼ 1þ
ffiffiffiffiffiffiffi

ahy

ath
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sn � poð Þ
L

1� exp
d

L*
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d
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r

 !" #

;

ð24Þ

where the bracketed term starts at 0 at d = 0, and slowing
approaches 1 as d increases to many times L*, so that its
prefactor is DTmax.
[62] The prefactor can also be expressed in terms of L*,

writing

DTmax ¼ 1þ
ffiffiffiffiffiffiffi

ahy

ath

r� �

sn � poð Þ
L

¼ f

2

ffiffiffiffiffiffiffiffi

VL*

ath

s

sn � po

rc
; ð25Þ

where the dependence on f and V cancels because L* / 1/
Vf 2. This further emphasizes that L* encapsulates all of the
thermoelastic and poroelastic parameters that enter the
model.

3.6. Model of Slip on a Plane: How Large is L*?

[63] The estimates, given in Tables 2 and 3, are based on
material properties (Table 1 for the gouge, and references
cited in Table 2 for water) evaluated so as to represent 7 km
depth, which is chosen because it is a representative
centroidal depth of the region which slips in large crustal
earthquakes. The ambient conditions there are taken as
Tamb = 210�C and pamb = 70 MPa, and the fault-normal
stress sn is identified as the overburden, 196 MPa (so that
sn � pamb = 126 MPa). Dilatancy is neglected (po = pamb)
in the standard model and for the estimates in Tables 2 and 3,
although later an illustration will be given for a large,
50 MPa dilatant suction, so that po = 20 MPa. L* depends
on f and V, and in the standard model, f = 0.25 based on the
earlier discussion of flash heating and V = 1 m/s as
explained. Because L* / 1/Vf 2, the weakening of f by flash
heating is very important to the numerical size of L*; use of a
slow slip rate f of order 0.9–0.6 would decrease L* to only

Figure 3. Prediction of shear strength t versus slip d due to thermal pressurization of pore fluid during
slip on a plane, at constant rate V and with constant friction coefficient f, in a fluid-saturated solid. Note
the multiscale nature of the weakening. Here sn is fault-normal stress and po is the pore pressure just after
its reduction from ambient pressure by any dilatancy at onset of shear.
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8–17% of the values shown. Use of f = 0.20, also plausible,
increases L* by 56%, and use of f = 0.15 by 180%.
[64] In Table 2, approximate end-members are consid-

ered, as follows: (1) intact elastic fault walls and (2) highly
damaged walls (see Appendix A). ‘‘Ambient p and T
columns’’ evaluate all relevant porothermomechanical prop-
erties based on the assumed pamb, Tamb, and sn � pamb, and
then use those to obtain the resulting L and ahy, and thus L*,
DTmax and Tmax. However, the range of p and T thus
predicted is large, and the porothermomechanical properties
on which the results depend vary with p and T. To retain the
simplicity of the linear model, with single relevant param-
eter L*, the properties are recalculated as averages along the
p-T paths implied by the ambient p and T results. This is
done by identifying a representative p and T at each stage of
the process, which p and T are chosen recognizing that each
vary across the few millimeters distance where the process
is active, and range from p(0, t), T(0, t) at the slip plane to
pamb, Tamb at the outer limit of the affected zone. Thus, at
time t in the process, properties are evaluated using repre-
sentative p = [p(0, t) + pamb]/2 and T = [T(0, t) + Tamb]/2.
Using those for p and T, we then march along the p-T paths
corresponding to the ambient p and T results, respectively,
which paths then run from pamb, Tamb to phigh, Thigh at
full pressurization, where phigh = (sn + pamb)/2 and Thigh =
(Tmax + Tamb)/2, and calculate averages of all material
properties along those paths (that done with the collabora-
tion of A. Rempel). Those path-averaged properties are used
as the basis of the ‘‘average on p-T path’’ refined estimates,
respectively. It is seen that L* increases (by factors of 78%
and 66%, respectively, principally because the predicted ahy

roughly doubles, but also because L diminishes about 10%),
and corresponding to the increases in L* and modest
decreases in ath, the predicted temperature rise Tmax in very
large slip increases by 10–25%. Again, in average on p-T
path highly damaged walls cases, for which the temperature
rise, even after correcting for the small but finite thickness
of the shear zone, is in excess of melting, the model predicts
that a macroscopic melt layer will form before enough
slip can accumulate to cause full pressurization (i.e., before
p(0, t) ! sn).
[65] The method of using path averages of properties as in

Table 2, for a path based on properties evaluated at ambient
conditions, is a somewhat ad hoc procedure. Nevertheless, it
has the virtue of simplicity and the results of fully nonlinear
numerical solutions to the governing equations (Rempel and
Rice, submitted manuscript, 2006), including variations of
all properties with p and T, suggest that it is provides a good
first approximation, substantially improving on predictions
that ignore the change in properties from their ambient
values. Table 3 shows predictions of L* and other param-
eters for a range of assumptions about damage in the fault
walls, the most extreme corresponding to the highly dam-
aged walls ambient p and T case in Table 2. The corrected
estimates of L* based on path averages of properties, as for
highly damaged walls average on p-T path values in Table 2,
are shown also in Table 3, and denoted ‘‘path L*’’ there.
They involve increases ranging in different cases from 2 to
84%. Note that once the corrected L* is given, the corrected
DTmax can be determined using no other information than
the (mild) temperature dependence of ath, roughly inferable
from the information given in Table 2.

[66] Thus the a priori estimates of L* cover a regrettably
wide range, from 2 to 50mm. In the sequel, several results are
shown based on what is denoted as ‘‘low end’’ and ‘‘high
end’’ estimates of thermoporoelastic properties, these being
chosen as follows: low end, L* = 4mm,when f = 0.25 andV=
1m/s; and high end, L* = 30mm,when f= 0.25 andV= 1m/s.
(In some cases, modest alterations of f will be explored, and
then the associated L* will change in accord with L* / 1/f 2,
understanding that the set of porothermoelastic parameters
which enter L* have not changed.)
[67] For the low end choice, the slips illustrated in Figure 3

extend up to 0.4 mm in the first panel and up to 0.4 m in the
last. For the high end choice, they extend up to 3 mm in the
first and up to 3 m in the last. It is obviously impossible to
identify a fixed length scale (say, like what is often
denoted as Dc) over which weakening takes place for the slip
weakening law implied by the physics of thermal weakening.
Rather, weakening continues over a very broad range of slip,
but at an ever decreasing rate. Abercrombie and Rice [2005]
showed that seismic evidence for how fracture energy scales
with slip, if attributed to a single slip weakening law, the same
for all earthquakes in their data set, implied qualitatively
similar features to what emerges here, in the sense that
weakening continues over a broad range of slip at an ever
decreasing rate. That is an alternative to suggesting [Ohnaka,
2003] that Dc scales with slip in the event (or, restated, that
faults which host large slip events have large Dc).

3.7. Model of Slip on a Plane, Fracture Energy and
Net Heating

[68] With the aim of testing the theoretical predictions,
based on geological characterizations of mature fault zones
and laboratory studies of poromechanical and frictional
properties, against seismological constraints, the predicted
law t = t(d) is used to calculate the fracture energy G:

G ¼ G dð Þ ¼
Z d

0

t d0ð Þ � t dð Þ½ 
dd0 ¼ f sn � poð ÞL*

� exp
d
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A convenient three-term asymptotic expansion of that,
accurate to three significant figures when d > 20L*, is

G dð Þ � f sn � poð ÞL*
ffiffiffiffiffiffiffiffi

d

pL*

r

� 1þ 3
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pd
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; ð27Þ

it is useful also because some software packages cannot
accurately evaluate the exp(D)erfc(D) product when d� L*.
Figure 4 shows the predicted G versus slip d for a wide range
of L* values, ranging from 1 to 120mm. The two solid curves
of the set correspond to the low-end (blue curve, L* = 4 mm)
and high-end (red curve, L* = 30 mm) models.
[69] The leading term in the asymptotic expression for G,

when d � Vt � L* is

G � f sn � poð Þ
ffiffiffiffiffiffiffiffi
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where here t is to be interpreted as the duration of slip at a
point on the fault. As the last form makes clear, this result
for G at large slip is, for a given duration t, actually
independent of the friction coefficient f and slip rate V that
are assumed (although the derivation has, nevertheless,
assumed that both are constant in time during slip). That
independence of f at large d/L* can be seen in Figure 5. If
this G expression, which applies only for very large
slips (when the curves cluster in Figure 5), is written as
G = f(sn � po)Dc/2, as for the frequently assumed linear
slip-weakening law, then for such large slip events the Dc

would correspond to

Dc ¼
4rc
ffiffiffi

p
p

Lf

ffiffiffiffiffiffiffiffi

ahyt
p

þ
ffiffiffiffiffiffiffiffi

atht
p� �

: ð29Þ

[70] Thus, using values somewhat comparable to highly
damaged walls, ambient p and T, in Table 2, e.g., rc =
2.7 MPa/�C, L = 0.37 MPa/�C, f = 0.25, ahy = 4.0 mm2/s,
and ath = 0.64 mm2/s, this would give Dc = 0.18 m for an
event with 1 s duration, i.e., 1 m slip at 1 m/s. The result
scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffi

d=1 m
p

in this large slip range. However, for
events that involve slips that are comparable to or just a few
times L*, the scaling factor is not a power law; it can be
seen in Figures 4 to 6 to be not so far from linear in slip on
the logarithmic plots over a substantial slip range, although
the curves have a significant curvature.
[71] Figure 6 illustrates the effect of a significant initial

suction, 50 MPa (i.e., reducing po to 20 MPa), developed in
the pore fluid as a representation of strong inelastic dilat-
ancy, a possibility ignored in the earlier plots. It simply
resets the initial effective stress, at the 7 km depth consid-
ered, from sn � po = 126 MPa to 176 MPa, so that the stress
at any slip increases by a factor 176/126 � 1.4. On the basis
of the ambient bf and range of possible bn values in Tables 2
and 3, to induce that suction would require that Dnpl/n �
5–15%.

Figure 4. Predicted fracture energy versus G for a wide
range of choices for L*.

Figure 5. Predicted fracture energy G versus slip for
various choices of friction coefficient f, for thermoporo-
elastic parameter choices associated with low-end (blue
curves) and high-end (red curves) models. L* varies with f,
for given thermoporoelastic parameters; the standard choice
in this work is f = 0.25, in which case, L* = 4 mm (low-end,
solid blue curve) and 30 mm (high-end, solid red curve).
Dash-dotted curves are for larger f = 0.40, dashed curves are
for smaller f = 0.15.

Figure 6. Predicted fracture energy G versus slip for
models which include a large initial suction due to dilatancy.
The solid curves are for the standard low-end and high-end
parameter choices, for which the pore pressure is assumed
to be the ambient (at 7 km depth), po = pamb = 70 MPa,
whereas the dashed curves correspond to a 50 MPa suction,
reducing po to 20 MPa.
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[72] An additional quantity of interest is the net frictional
work per unit area, equal to the total heat supplied per unit
area of fault,

R d

0
t(d0)dd0. It is convenient to normalize that by

the total heat that would have been supplied if there was no
thermal pressurization process, i.e., if stress stayed constant
at f(sn � po). The result is

R d

0
t d0ð Þdd0
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and it shows that in large slip events, the heating is notably
reduced from what would be the case if stress stayed
constant at f(sn � po), and that level is already much smaller
than is often assumed, because the flash heating effect has
reduced f. This means that conventional estimates of heating
in large events as in section 1.2, even if they involved slip
confined to a plane as in the present modeling, would in
practical terms result in smaller heat outflow.

4. Predictions of Fracture Energy Compared to
Seismological Estimates

[73] The predictions of the slip on a plane model are that
G increases substantially with slip during an event
(Figures 4–6). That is a feature shared by recent assemblies
on data for large numbers of earthquakes [Abercrombie and
Rice, 2005; Rice et al., 2005; Tinti et al., 2005], all of which
show a clear tendency for the average G in an event, as
inferred from seismic slip inversions, to increase with the
average slip in the event. The same feature was recognized
previously by Ohnaka [2003] and interpreted by him as an
increase of Dc with slip in the event. Further, Mikumo and
Yagi [2003], Zhang et al. [2003], and Tinti et al. [2005]
inferred the variation ofG (orDc) with position on the rupture

plane within an individual events, and found that it did
increase with slip. An alternative explanation for such an
increase has been proposed on terms of inelastic energy
dissipation off the main fault plane [Andrews, 2005], and
such dissipation is surely a part of the overall fracture
dissipation, although at present it cannot be ascertained how
much is attributable to dissipation in slip-weakening
processes within the narrow shear zone (the part modeled
here), and how much to inelastic straining of nearby
material.
[74] Table 4 assembles data from two recent attempts to

use a systematic single method to infer fracture energies for
a large set of earthquakes. In one study, Rice et al. [2005]
used their model of a propagating slip pulse to convert the
slip inversion parameters for seven earthquakes presented
by Heaton [1990] into estimates of fracture energies for
those events. Their method establishes a factor of two range
for the result, i.e., Gmin < G � Gmax, where Gmax = 2Gmin,
due to a parameter of the model (‘‘R/L’’ of Rice et al.
[2005]) being left undetermined by the slip inversion
information. That factor of two difference is not large on
the logarithmic scale on which the results are plotted
(Figure 7) and thus Table 4 lists the average of the bounds,
G = 1.5Gmin = 0.75Gmax, for that event set. Also, Tinti et al.
[2005] started with kinematic slip inversions for seven
earthquakes (two of their events being members also of
the previous set of seven) and applied a systematic smooth-
ing procedure to estimate stress histories associated with the
slip, and hence to estimate fracture energies. Their results
for each event are represented by a single entry in Table 4,
although, as the footnotes there explain, they often produced
a set of possible models which, usually, were not very
different from one another, at least considering the loga-
rithmic scale. For the two events common to both the Tinti
et al. and the Heaton and Rice et al. sets (Imperial Valley
1979, and Morgan Hill 1984), the results are reasonably

Table 4. Fracture Energies G of Large Earthquakes, Arranged in Terms of Average Slip d

Event Mo, 10
18 N m l, km w, km d, m G, MJ/m2 Refa

Michoacan 1985 (M = 8.1) 1,500 150 120 2.8 6.6 1
Landers 1992 (M = 7.1) 56 60 14 2.2 5.0 3
Landers 1992 (M = 7.3) 97 79 15 2.2 17.4 2a
San Fernando 1971 (M = 6.5) 7 12 14 1.4 6.9 1
Northridge 1994 (M = 6.7) 12 18 24 0.99 5.2 2b
Borah Peak 1983 (M = 7.3) 23 40 20 0.96 2.9 1
Tottori 2000 (M = 6.8) 13 29 18 0.80 3.7 2c
Kobe 1995 (M = 6.9) 22 48 20 0.78 1.5 4
Kobe 1995 (M = 6.9) 24 60 20 0.62 1.7 2d
Imperial Valley 1979 (M = 6.5) 5 30 10 0.56 1.3 1
Imperial Valley 1979 (M = 6.6) 7.7 35 12 0.6 0.81 5
Imperial Valley 1979 (M = 6.6) 8.6 42 11 0.6 1.8 2e
Morgan Hill 1984 (M = 6.2) 2.1 20 8 0.44 2.0 1
Morgan Hill 1984 (M = 6.3) 2.7 30 10 0.26 2.0 6
Morgan Hill 1984 (M = 6.3) 2.6 30 10 0.25 1.4 2f
Colfiorito 1997 (M = 5.9) 0.71 10 7 0.38 0.83 2g
North Palm Springs 1986 (M = 6.0) 1.8 18 10 0.33 0.15 1
Coyote Lake 1979 (M = 5.9) 0.35 6 6 0.32 0.57 1

aReferences are 1, Rice et al. [2005] based on slip inversions by Heaton [1990]; the G values are averages of Gmin and
Gmax (= 2 Gmin) of Rice et al. [2005], i.e., G = 1.5 Gmin = 0.75 Gmax; 2, Tinti et al. [2005]; 2a, average of two models, G values
±16% of mean; 2b, average of two models, G values ±11% of mean; 2c, average of four models, of which one is an average of
three models, G values +92% to –54% of mean; 2d, single model; 2e, average of two models, G values ±3% of mean; 2f, single
model; 2g, average of threemodels,G values +34% to�52% ofmean; 3,Peyrat et al. [2001]; 4,Guatteri et al. [2001]; 5,Favreau
and Archuleta [2003]; 6, Beroza and Spudich [1988].
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close. Table 4 also contains the results of other investiga-
tions of individual events where available. In general, the
results are close, with the exception of a large discrepancy
between the Tinti et al. [2005] and Peyrat et al. [2001]
results for the Landers 1992 event (Table 4, and marked
‘‘La’’ in Figure 7). Also, of the Heaton and Rice et al. event
set, the North Palm Springs 1986 event (‘‘NPS’’ in Figure 7)
seems to lie away from the trend for other events of
comparable size; Rice et al. [2005] comment that such
could be because the reported rupture speed was extremely
close to what was assumed to be the Rayleigh speed (the G
estimated by their procedure would vanish if the two speeds
coincide).
[75] The large event data set from Table 4 may be

compared in Figure 7 to theoretically predicted curves based
on the standard low-end (blue curve) and high-end (red
curve) parameter choices, and to a black curve for a model
with strong initial dilatancy, so that po is reduced from the
ambient value (70 MPa, as used for the blue and red curves)
to 20 MPa. Also, for the black curve, the friction coefficient
f = 0.20, a slightly more extreme flash weakening that is not
implausible, and L* = 50 mm are chosen. (Recognizing the
f dependence of L*, that L* = 50 mm corresponds to
porothermoelastic parameters which would have produced
L* = 32 mm, i.e., essentially the same as for the standard
high-end model, if f = 0.25.)
[76] An approach to estimating fracture energy G from

seismic data, or more precisely, to estimating a fracture

energy-like parameterG0, has been presented byAbercrombie
and Rice [2005]. Their approach gives results for a vastly
broader slip range, from submillimeter slips up to those with
slips on the 1 m scale, for the large events as in Table 4 and
Figure 7. The approach is based on the processing of
seismic recordings to obtain radiated seismic energy Es,
moment Mo, and a measure of rupture source area A,
typically by corner frequency, to get estimates also of
slip d and static stress drop (from initial stress t0 to final
static stress t1) for a large collection of earthquakes. The
smallest members were recorded at depth in the Cajon Pass
borehole. The data set also includes Northridge aftershocks,
and various larger events for which radiated energy, mo-
ment, and stress drop parameters have been estimated. For
each event a parameter G0 was inferred which is generally
expected to be comparable to G and to coincide exactly with
G when the final dynamic friction stress td during the last
increments of seismic slip is negligibly different from the
final static stress t1 (i.e., when there is negligible dynamic
overshoot or undershoot); td would corresponds to what has
been written as t(d) here, evaluated at the average final slip
d of the event.
[77] The expression for G0 is

G0 ¼ Gþ td � t1ð Þd ¼ t0 � t1 � 2mEs=Moð Þd=2; ð31Þ

see Abercrombie and Rice [2005] for attempts to estimate
how different G0 and G might be due to differences between
td and t1; e.g., dynamic overshoot models have td > t1,
whereas partial stress drop, or undershoot, models have
td < t1. The results for G0 for the larger slip events are
generally consistent with what has been inferred for G based
on seismic slip inversions and summarized in Table 4. See the
upper right portion of Figure 8, where the ovals are the G
values for the 12 events of Table 4 (with each event now
being represented by a single d and G value, by averaging
results where there is more than one d and G set in Table 4).
The results also show a clear tendency for G0 to increase with
slip in the event, at least for slips up to the order of �1 m.
[78] The curves drawn in Figure 8 are for the same three

models as in Figure 7. It is seen that the two curves (red and
black) based on the high-end choice for the thermoporo-
elastic parameters provide a plausible reproduction of main
trends in the data, not just at large slip as in Figure 7 but
also at slips of order of a few millimeters (where the two
curves based on high-end properties essentially overlap one
another). In contrast, the predictions based on the low-end
parameters (blue curve) give a less suitable description of
the data. There are many uncertainties in the seismic data
that cannot be addressed here and of course in knowing
what are defensible model parameters.

5. Conclusion

[79] Earthquakes occur because fault strength weakens
with increasing slip or slip rate. Here the question has been
addressed of what physical processes determine how that
weakening occurs during rapid, large slip, with the focus
being on mature crustal faults, capable of producing large
earthquakes. Field observations suggest that slip in individ-
ual events then occurs primarily within a thin shear zone,
<1–5 mm, within a finely granulated (ultracataclastic) fault

Figure 7. Average fracture energies G (points) inferred for
large earthquakes, plotted as a function of average slip in the
events. Table 4 lists the events and references, and lettering
next to the points corresponds to event names there (‘‘Ko’’ =
Kobe 1995, ‘‘IV’’ = Imperial Valley 1979, etc.). Results are
compared to theoretical predictions for the standard low-end
(blue curve) and high-end (red curve) parameter choices, and
to a prediction (black curve) based on a slightly lower friction
coefficient (but nearly the same porothermoelastic parameters
as for the standard high-end model) and on a substantial
inelastic dilatancy at the onset of shear which reduces pore
pressure at the 7 km depth considered by 50 MPa.

B05311 RICE: HEATING AND WEAKENING OF FAULTS

18 of 29

B05311



core. In absence of a strong weakening mechanism, tem-
perature rise would lead to widespread melting, yet evi-
dence of glass (pseudotachylyte) that would be left from
rapid recooling is not pervasive on most exhumed faults.
Relevant weakening processes in large crustal events are
therefore likely to be thermal, and it is proposed here that
the two primary processes are (1) thermal pressurization of
pore fluid and (2) flash heating at highly stressed frictional
microcontacts. For sufficiently large slip, a macroscopic
melt layer may form too at high enough normal stress or, in
silica-rich lithologies, weakening by gel formation may
occur instead.
[80] Theoretical modeling of mechanisms 1 and 2 has

been constrained with lab-determined poroelastic and trans-
port properties of intact fault core material, and frictional
properties at high slip rates. Predictions are that strength
drop should often be nearly complete at large slip and that
the onset of melting should be precluded over much of the
seismogenic zone. These are qualitatively consistent with
low heat outflow from major faults.
[81] A more quantitatively testable prediction is that of

the shear fracture energies G that would be implied if actual

earthquake ruptures were controlled by those thermal mech-
anisms. Seismic observations have recently been processed
to allow inference, albeit with much uncertainty, of the G of
large crustal events, with focus on its variation with slip in
an event. The results are plausibly described by theoretical
predictions based on the above mechanisms, within a
considerable range of uncertainty of gouge material prop-
erty choices, thus allowing the possibility that such thermal
weakening prevails in the Earth. The property ranges which
provide the best descriptions are those chosen to represent
the effects of significant damage and inelastic straining in
the concentrated stress field associated with passage of the
rupture front, represented simply by increasing, relative to
intact gouge, the permeability and, less so, the compress-
ibility of the fault wall material during the slip and thermal
heating process which then begins.
[82] Among the uncertainties in interpreting the seismic

data, to which the theoretical results have been compared, is
that it has been assumed that all of what is inferred as G can
be accounted by stressing and slip on the main fault plane.
However, it is presently unknown what partitioning there is
between contributions to the total G from such slip weak-

Figure 8. Lines show theoretical predictions of earthquake fracture energy G versus slip d in the event,
for the model of slip on a plane, based on combined effects of thermal pressurization of pore fluid and
flash heating, with simplified representation assuming a constant friction coefficient f and slip rate V.
Symbols represent estimates of G from seismic data. The open oval symbols at the upper right are for the
12 large earthquakes listed in Table 4, where now the range of values obtained from different inversions
or procedures for the same earthquake (Figure 7) have been reduced to an average G and d, represented
by the center of the oval. The basic plot, to which the curves and oval symbols have been added, is from
Abercrombie and Rice [2005]; it shows their parameter G0, thought to be of the same order as G (G0 = G
when final dynamic sliding strength and final static stress coincide). Their data set includes small events
recorded at depth in the Cajon Pass borehole, including clusters of such events (colored symbols within
circles), Northridge aftershocks (squares), and large events (triangles) analyzed from regional or
teleseismic recordings. Their procedure leads to a negative G0 for about 15% of the events, and then no
result is shown. Note that the high-end porothermoelastic parameter choice provides a better description
over the entire data range than does the low-end choice.
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ening on the main fault plane and from distributed inelastic
deformation in regions bordering that plane. Also, once the
latter are recognized, there is uncertainty concerning how
the values of G inferred from seismic slip inversions, which
purport to constrain the slip weakening part of G but which
assume elastic response off the main fault, actually relate to
that slip weakening part.
[83] At a more fundamental level, the physics underlying

the thermal weakening processes studied here implies a
strong dependence on slip rate and slip rate history. For
simplicity, that dependence has been mapped into slip
weakening here, with stress dependent on slip, by evaluat-
ing the models at what is thought to be a representative
seismic slip rate. At a more fundamental level, fracture
energy is a precisely defined concept in the frictional
rupture case [Palmer and Rice, 1973; Rice, 1980] only for
slip weakening with a well defined residual strength that is
approached at large slip. The slip weakening laws dealt with
here have the feature of an ever decreasing slope with
increasing slip (Figure 3), so that it is probably suitable to
regard that as a proxy for a well defined residual strength.
However, the physical phenomena are fundamentally rate
and history dependent and then, even assuming perfectly
elastic response off the fault plane, there is no rigorous
definition of G unless the rate and history dependence of
stress is compatible with the shear strength on the fault
settling to a constant residual level (which could be zero)
well behind the rupture front. Instead, strong strength
variations with position there could be expected with certain
velocity weakening laws (because V is changing from large
to zero values at say, the arresting tail of a slip pulse). A
constant residual level at effectively zero strength could be
expected for large slip events which achieve close to full
thermal pressurization and reduce strength to a negligible
level, but not more generally, especially due to the strong
sensitivity of f to V implied by flash heating.
[84] There is a clear need for laboratory tests of the

thermal mechanisms discussed. Because they provide esti-
mates of fracture energy that agree plausibly with seismic
data only when speculative corrections for damage and
inelastic deformation of the fault wall at the rupture front,
and during subsequent slip, are made, as in Appendix A
here, it is essential also to obtain better laboratory con-
straints on the instantaneous permeability and poroelastic
moduli, and on dilatancy, for gouge materials undergoing
shear. At present such properties are known only for intact
gouge that is not actively shearing, and then only from a
limited number of studies.
[85] Also, it is important to understand how the thermal

pressurization mechanism operates in conditions that might
exist at mid crustal depths, possibly involving a mineralized
pore space with pressure solution at gouge particle contacts,
and unconnected pockets of liquid water. Shear of such a
zone, initiated by the propagating rupture tip, would then
seem to be necessary for fluid connectivity to be reestab-
lished so that the effective stress characterization of
strength, t = f(sn � p), holds.
[86] The thermal mechanisms discussed here are those

which are expected to be dominant from the start of seismic
rupture, but in some cases there will be transitions to
melting, or perhaps to gel formation, at large enough slip.
Clearly, the theory of the transitions to the larger slip

mechanisms needs to be developed and tested. Further,
there is need to better understand how to represent the
shear strength of a dense, rapidly shearing gouge with
p � sn. Is it sufficiently small to be negligible compared to
t = f(sn � po)? Or does it represent a substantial fraction of
that value? Can the condition of p approaching sn actually be
achieved on a real fault? It is sometimes speculated that highly
pressurized pore fluids would hydraulically crack their way
into the already damaged walls of the fault. The induction of
large fault-parallel compressive effective stress very near the
slip surface (Appendix A) should generally mitigate against
that. However, local stress alterations near the rupture front
[Poliakov et al., 2002; Rice et al., 2005], associated with
stress concentration, could allow some local hydraulic crack-
ing at a fault wall in that region, particularly on the extensional
side of a mode II rupture.
[87] The type of modeling presented describes a fault

which is statically strong, in that a high static friction
coefficient controls nucleation, but once dynamic slip is
nucleated, there is a rapid and extreme weakening of the
fault, down to essentially negligible strength in sufficiently
large slip. So it is dynamically weak and, in fracture
mechanics terminology, it is ‘‘brittle’’. Such scenarios
require enormous strength drops, say, at the 7 km depth
focused on here, from a static strength of perhaps 75 MPa to
get slip started (with f � 0.6) at a generic point of the
rupture surface, to effectively zero if large enough slip
occurs.
[88] It is often assumed that such scenarios would also

imply a seismic stress drop comparable to that strength
drop, which would then be much larger than stress drops
inferred seismically or geodetically, and so could not be a
realistic process for the Earth. However, a strength drop is
not the same as a stress drop. The later is, rather, the change
in the shear stress from a static prestress acting shortly
before rupture nucleates somewhere on the fault to a time
shortly after the rupture when waves have propagated away
from the ruptured region, and a static state has been
restored. There is no need for the average static shear
prestress over all the fault to be at all comparable to the
average static strength. Rather, if ‘‘defect regions’’ [Rice,
1996; Lapusta and Rice, 2003] exist where rupture is
readily nucleated, then the propagating rupture fronts so
nucleated will concentrate stress on parts of the fault which
were prestressed well below the strength, and thus some-
times enable the rupture zone to grow well beyond its
region of nucleation. That is a well known process at the
heart of brittle crack theory. In the fault mechanics context,
those defect regions could be sites of concentrated shear
stress as at boundaries between locked and creeping zones,
or regions of low normal stress due, e.g., to nonplanarity of
faults with releasing bends or with rupture branches that
have locally perturbed stress, or local regions of signifi-
cantly elevated pore pressure, perhaps due to a low perme-
ability cap to an upflowing pore fluid.
[89] The only requirement on the prestress, then, is that if

a significant earthquake is to occur, the prestress must be
sufficiently large to drive rupture over a substantially greater
region than that where it nucleated. That does not require
prestress comparable to the static strength. Both the Rice
[1996] and Lapusta and Rice [2003] studies verified such
concepts in numerical modeling of sequences of earth-
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quakes in a simple crustal plane model of a major strike-slip
fault. That assumed a Lachenbruch [1980] type of expo-
nential slip weakening, from high static to negligible
residual strength in one study, and strong rate weakening
at high slip rates, roughly based on the flash heating
concept, in another study. The results showed that a fault
zone, with defect regions allowing easy nucleation, could
operate at average prestress levels which could be far below
the average static strength, and produce great ruptures of
seismically reasonable stress drops that corresponded to
negligible long term heat outflow.

Appendix A: Porothermoelastic Background

A1. Volumetric Porothermoelastic Response Under
Isotropic Confining Stress

[90] Wibberley [2002] studied the Median Tectonic Line
gouge and showed in his Figure 3b the change in pore
volume Vpore, normalized by the original total sample
volume Vtot,o, as a function of the confining pressure sc
(positive in compression), where sc was applied isotropi-
cally (i.e., applied stress state sij = �scdij) on a sample
which was maintained at constant pore pressure p. The ratio
Vpore/Vtot,o = n, where n is the apparent fluid volume
fraction of Rice and Cleary [1976]; n is essentially the
porosity Vpore/Vtot if Vtot is nearly equal to its reference state
value Vtot,o. C. A. J. Wibberley (private communication,
2003) provided the slope �@n(sc, p, T)/@sc (difficult to read
from the plot) at different sc � p, leading to the �@n/@sc
values shown in Table 1 for the ultracataclastic, clayey
gouge containing the principal slip surface, and also pro-
vided the values of n (bd in Table 1), determined by
measuring the absolute Vpore. The gouge was compacted
to sc � p = 180 MPa and then studied at various state of
unloading (unloading and reloading below 180 MPa are
then approximately reversible) to provide the results. Sim-
ilar data are shown by Noda and Shimamoto [2005] for
ultracataclastic, clayey gouge of the Hanaore fault in south-
west Japan, which has higher porosity and permeability.
[91] To interpret the measurements, note that the trace of

the strain tensor is ekk= exx+ eyy+ ezz= (Vtot�Vtot,o)/Vtot,o, and
the porothermoelastic constitutive relations, linearized about
a reference state at sc,o, po, To, where T is temperature, are

ekk ¼ �bd sc � sc;o
� �

þ bd � bsð Þ p� poð Þ þ ls T � Toð Þ;

n� no ¼ � bd � bsð Þ sc � sc;o
� �

þ bd � 1þ noð Þbs½ 
 p� poð Þ
ðA1Þ

þ lsno T � Toð Þ:

Here the coefficients are constrained by the requirement that
�scdekk + pdn is a perfect differential at fixed T [Rice and
Cleary, 1976], and bd is the drained compressibility of the
porous solid. Also, to simplify, it has been assumed that all
pore space is interconnected and that the material of each
solid element of the gouge would exhibit an isotropic
volumetric response to isotropic local stressing, with the
same compressibility bs in each element (implying (n� no) =
�bs (p � po)no when the confining stress equals the pore
pressure), and an isotropic response to unconstrained
temperature change, with the same volumetric thermal
expansion ls. That allows the various coefficients to be

expressed in a standard manner in terms of bd, bs and ls. The
dependence on sc and p can be grouped as sc� (1� bs/bd)p,
showing the expected Biot factor (1 � bs/bd) for elastic
response. Thus �@n(sc, p, T)/@sc = bd � bs, and since bs is
generally small compared to bd, we need estimate it only
approximately and use bs = 1.6 � 10�11/Pa, a compromise
between 1.2 � 10�11/Pa for mica [Wibberley, 2002] and
�2� 10�11/Pa for granite. Thus elastic changes in n at fixed
confining stress sc can be written

dn ¼ n bvndpþ lv
ndT

� �

with bvn ¼
bd � bs

n
� bs and lv

n ¼ ls

� 	

;

ðA2Þ

and bn
v is shown in Table 1. Also, ls = 2.4 � 10�5/�C (three

times the linear thermal expansion coefficient for granite) is
adopted.

A2. Porothermoelastic Expressions for Conditions of
Constant Fault-Normal Stress and Vanishing
Fault-Parallel Strains

[92] A form for dn like that just given will be required in
formulating the fluid mass conservation equation. However,
in our application it is not sc which should be regarded as
constant but, instead, only the fault-normal compressive
stress component sn (= �syy). The fault-parallel compo-
nents sxx and szz near the sliding surface will vary during
the slip history; however, they must in order to keep the
fault-parallel strain components exx and ezz at essentially
zero values (at least once a material point is out of influence
of the strong stress perturbations at the rupture tip). The goal
in this section is therefore to estimate the factors bn and ln
which enter into

dn ¼ n bndpþ lndTð Þ at fixed syy; exx and ezz
� �

: ðA3Þ

[93] We can distinguish two end-member cases for that as
follows:
[94] 1. In the first case, the wall material adjoining the

sliding fault is modeled as if it remains intact and elastic
during the heating and pressurization. The notations bn

el, ln
el

are then used to denote bn, ln. Expressions for them are
derived just after explanation of case 2, and they are
tabulated in Table 1 for the MTL gouge. The difficulty
with this first case is that because of the very large
temperature excursions that will be calculated based on it,
the fault-parallel stresses sxx and szz are predicted to
become implausibly large in compression, One must then
expect the wall material to fail to remain elastic, especially
since the pore pressure is being elevated toward sn. That
means that fault-parallel plastic strains would develop (with
the sum of fault-parallel thermal, elastic and plastic strains
necessarily being zero), which would have the effect of
letting sxx and szz relax toward equality with syy (i.e., with
�sn), a plastic relaxation which is neglected in this first
case. This is all the more a concern because theoretical
stress modeling for propagating ruptures and other consid-
erations (section 3.2) suggest that the fault wall material is
likely to have been freshly damaged and inelastically
deformed as it begins the large shear slippage process being
modeled here.
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[95] 2. The second case accounts very approximately
for that damage and inelastic response, which must be
expected to open flow passages within the pore space and
increase permeability. It does so by addressing an oppo-
site end-member for which the fault-parallel stress relax-
ation is modeled as if it was complete, so that all normal
stresses remain equal to one another (i.e., as in the
isotropically confined situation, but with sc = sn). The
simple representation of damage effects adopted in con-
junction with that is to assume increased values of
drained compressibility and permeability, denoted bd

dmg

and kdmg, respectively, relative to those (denoted bd and
k) for the undisturbed gouge. In Tables 1 and 2, results
are shown for bd

dmg = 2bd and kdmg = 10 k, whereas in
Table 3 results are shown for various combinations of
(bd

dmg, kdmg), ranging from (bd, k) to (2bd,10 k). For this
case with damage considered, the notations bn

dmg, ln
dmg are

used to denote bn, ln, and since this end-member
assumes fault-parallel stress relaxation, we take bn

dmg =
bn
v as would be calculated based on bd

dmg, i.e.,

bdmgn ¼ b
dmg
d � bs

n
� bs ðA4Þ

and take ln
dmg = ln

v( = ls). That makes bn
dmg approximately

twice as large as bn
el of case 1 even when bd

dmg = bd.
[96] To analyze case 1 requires a further commitment on

details of the porothermoelastic stress-strain description of
the fault wall material, and for simplicity, that is taken as
elastically isotropic. In that case, the constitutive relations
for ekk and n � no will have exactly the same form as above
if we reinterpret sc as �skk/3, and we need only supplement
them with the expressions relating deviatoric stress and
strain, namely,

sij � sij;o � dij skk � skk;o
� �

=3 ¼ 2m eij � dijekk=3
� �

; ðA5Þ

where m is the shear modulus and sij,o denotes stresses in the
reference state before the slip process begins. Given the
constraints

ekk ¼ 0þ eyy þ 0 ¼ eyy;
� sn � sn;o
� �

� skk � skk;o
� �

=3 ¼ 4meyy=3;
ðA6Þ

and substituting into the above volumetric constitutive
relations, and rearranging to eliminate skk/3, then gives

eyy ¼ � bd
1þ r

sn � sn;o
� �

þ bd � bs
1þ r

p� poð Þ þ ls

1þ r
T � Toð Þ;

n� no ¼ � bd � bs
1þ r

sn � sn;o
� �

þ bd � bsð Þ bd þ rbsð Þ
1þ rð Þbd

� nobs

� �

� p� poð Þ þ ls no �
r bd � bsð Þ
1þ rð Þbd

� �

T � Toð Þ; ðA7Þ

where r = 4mbd/3 = 2(1 � 2nd)/(1 + nd) and nd is the
Poisson ratio under drained conditions. This model
neglects any fault-parallel plastic straining, even though
the thermally induced fault-parallel compressive stresses
will be seen to ultimately take on implausibly large
values.

[97] Thus, when we write dn = n(bn
eldp + ln

eldT) at fixed
compressive normal stress sn, the parameters are given,
under the case 1 assumption of elastic fault wall behavior, as

beln ¼ bd � bsð Þ bd þ rbsð Þ
n 1þ rð Þbd

� bs; lel
n ¼ ls 1� r

1þ r

bd � bs
nbd

� �

;

ðA8Þ

bn
el and ln

el are given in Table 1. Typically, nd � 0.20 for
gouge, corresponding to r = 1, which is used to estimate bn

el

and ln
el in Table 1. It can be seen that ln

el is of opposite sign
to ls, and is 5 to 8 times larger in magnitude. That is
because the normal effect of temperature rise to expand pore
space is strongly counteracted by a second effect, particular
to the constraint of zero fault-parallel strain change, which
is that the thermal expansion induces large fault-parallel
compressive stresses which act to reduce porosity.
[98] To solve for the predicted fault-parallel stressessxx and

szz, note that the deviatoric stress-strain relation above gives

sxx � sxx;o ¼ szz � szz;o ¼ � sn � sn;o
� �

� 2meyy ðA9Þ

and from that

sxx � sxx;o þ 1� bs=bdð Þ p� poð Þ
¼ � nd

1� nd
sn � sn;o
� �

� 1� bs=bdð Þ p� poð Þ
� �

� 2 1þ ndð Þ
3 1� ndð Þ mls T � Toð Þ: ðA10Þ

In the case of interest here sn = sn,o and we assume sxx,o �
szz,o � �sn,o. Arranging the result in terms of effective
compressive stresses like sn � p, this implies

�sxxð Þ � p ¼ sn � pð Þ þ 1� 2nd

1� nd
1� bs=bdð Þ p� poð Þ

þ 2 1þ ndð Þ
3 1� ndð Þ mls T � Toð Þ

� sn � pð Þ þ 0:55 p� poð Þ þ 0:31 T � Toð ÞMPa=C:

ðA11Þ

In the last form, bs, ls and nd are chosen as above, and bd =
5.8 � 10�11/Pa, approximately correct for the MTL gouge
at 126 MPa effective stress (Table 1), leading to
bs/bd � 0.27 and m � 13 GPa. For the model of slip on a
plane, it is shown in section A3 that the temperature and
pore pressure changes immediately adjacent to the slipping
plane are related by (section 3.4)

T � To ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ahy=ath

q

 �

p� poð Þ=L � 2:90 p� poð ÞC=MPa;

ðA12Þ

where the numerical term corresponds to intact elastic walls
average on p-T path parameters as in Table 2 (i.e.,
estimating parameters appropriate to elastic response of
the fault walls over a range of p and T, starting at ambient
conditions of 70 MPa and 210�C, and effective normal
stress of 126 MPa, which are which are approximately
appropriate conditions for a fault surface at 7 km depth).
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Inserting that expression for temperature rise into the
expression for effective stress,

�sxxð Þ � p � sn � pð Þ þ 1:45 p� poð Þ: ðA13Þ

Clearly, as p ! sn, which is what the thermal pressurization
analysis suggests very near the fault, the predicted effective
stress state approaches a purely biaxial state at �1.4 times
the initial sn � po, and that could not be sustained
elastically. Recognizing that during the weakening process,
shear stress t = f(sn � p) where the f is reduced by flash
heating, and taken to be 0.25 here, one can calculate all in-
plane stress components, made nondimensional with
sn � p, in terms of the ratio (p � po)/(sn � p). It is thus
possible to determine when the Mohr-Coulomb failure
condition is reached in the gouge of the fault wall. Assuming
f = 0.60 governs Mohr-Coulomb failure (gouge particle
contacts in the wall will not be shearing rapidly enough to be
susceptible toweakening by flash heating), failure is expected
to commence when p � po reaches 58% of sn � po. Thus, if
the fault wall gouge has been damaged at the rupture tip, so
that it behaves as a cohesionless granular material, then
subsequent response cannot remain elastic during substantial
thermally induced pressure increase.
[99] Also, as commented above in connection with case 2,

such damage will increase the permeability. That will lessen
the slip surface pore pressure rise associated with a given
temperature rise, or restated, will increase the fault plane
temperature rise associated with a given pore pressure rise
above the 2.67�C/MPa quoted above. The result is to assure
that Mohr-Coulomb failure of the wall will commence at yet
smaller pore pressure rise. For those reasons, several evalua-
tions of how wall damage would affect the principal results
are given (Table 3), with that damage being parameterized
simply in terms of values of bd

dmg/bd and kdmg/k for case 2.

A3. Fluid Mass Content in Terms of p and T

[100] The above developments for cases 1 and 2 are in aid
of evaluating the term @m/@t in the fluid mass conservation
equation. There, m is defined as the mass of fluid divided by
Vtot,o, and therefore m = rf n where rf is the local density of
fluid in the pore space. Clearly, dm = rf n(drf /rf + dn/n); we
have seen how to write dn (except for an inclusion of
inelastic dilatancy, done in the manner of Segall and Rice
[1995]), so that

dn ¼ n bndpþ lndTð Þ þ dnpl; ðA14Þ

where the additional ‘‘plastic’’ term here represents inelastic
dilatancy. Also, because rf = rf (p, T),

drf ¼ rf bf dp� lf dT
� �

; ðA15Þ

where bf is the fluid compressibility and lf is its volumetric
thermal expansivity; see the Table 2 caption for the data
sources for those used here. Thus

dm=rf ¼ n bf þ bn
� �

dp� lf � ln

� �

dT
� �

þ dnpl

¼ b dp� LdT þ dnpl

b

� �

; ðA16Þ

where b and L are defined by this expression and written
explicitly in section 3.2.

Appendix B: Notes on Formulation and Some
Solutions for Thermal Pressurization Model

B1. General Representation of Solutions of
Linearized Energy and Fluid Mass Conservation
Equations

[101] Here we are concerned with solving the pair of
equations

@T

@t
� t tð Þ _g y; tð Þ

rc
¼ ath

@2T

@y2
and

@p

@t
� L

@T

@t
¼ ahy

@2p

@y2
ðB1Þ

for arbitrary histories of shear stress t(t), independent of y as
required by the shear equilibrium equation, or equation of
motion at the small spatial scale considered, and shear strain
rate histories _g(y, t). In this phase of the presentation, we do
not consider any specific friction law, like t = f(sn � p), or
more general constitutive law relating the stress to the strain
rate or, if confined to a plane, to the slip rate. Further, we adopt
the simplified representation of dilatancy discussed earlier
(sections 3.2–3.4), so that it just resets the initial value
assumed for pore pressure from pamb to po = pamb � Dnpl/b.
[102] The solution to the energy equation is well known

[Carslaw and Jaeger, 1959] when a layer of unit thermal
energy per unit area is inserted at t = 0 along the plane y = 0;
that defines the Green’s function G(y, t; ath) such that the
solution is T � Tamb = (1/rc)G(y, t; ath), where

G y; t;að Þ ¼ 1

2
ffiffiffiffiffiffiffiffi

pat
p exp � y2

4at

� �

when t > 0;

and

G y; t;að Þ ¼ 0 when t < 0: ðB2Þ

Note that
Rþ1
�1 G(y, t; a)dy = 1 for t > 0. The corresponding

pore pressure Green’s function is [Lee and Delaney, 1987]

p y; tð Þ � po ¼
L

rc

ahyG y; t;ahy

� �

� athG y; t;athð Þ
ahy � ath

ðB3Þ

if ahy 6¼ ath. If they coincide, then @[aG(y, t; a)]/@a
replaces the last fraction. Thus for arbitrary histories of
dissipation rate t(t) _g(y, t),

T y; tð Þ � Tamb ¼
1

rc

Z t

0

Z þ1

�1
t t0ð Þ _g y0; t0ð ÞG y� y0; t � t0;athð Þdy0dt0;

ðB4aÞ

p y; tð Þ � po ¼
L

rc

Z t

0

Z þ1

�1
t t0ð Þ _g y0; t0ð Þ

� ahyG y� y0; t � t0;ahy

� �

� athG y� y0; t � t0;athð Þ
ahy � ath

� 	

� dy0dt0: ðB4bÞ

It can be noticed that the solution for p has a symmetric
dependence on the thermal and hydraulic diffusivities.
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[103] These solutions are for the model in which all
inelastic dilatancy is represented by the simple resetting of
the initial pore pressure. When that approximation is not
appropriate, the solution for p(y, t) � pamb is the same as in
the expression given above for p(y, t) � po, except that to
the right side of the expression must be added the term

� 1

b

Z t

0

Z þ1

�1

@npl y0; t0ð Þ
@t0

G y� y0; t � t0;ahy

� �

dy0dt0:

B2. Examples of Distributed Shear

[104] Consider the Andrews [2002] assumption of a
Gaussian shape, with root-mean-square half width w, for
the shear rate distribution, namely,

_g y; tð Þ ¼ V tð Þ
ffiffiffiffiffiffi

2p
p

w
exp � y2

2w2

� �

; ðB5Þ

where V(t) is the net slip rate accommodated. Then, doing
the convolution over y0 of _g(y0, t)/V(t) with G(y � y0, t; a)
to define a function arising in the Andrews [2002]
solution,

A y; t;að Þ ¼ 1
ffiffiffiffiffiffi

2p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ 2at
p exp � y2

2 w2 þ 2atð Þ

� �

; ðB6Þ

the results are

T y; tð Þ � Tamb ¼
1

rc

Z t

0

t t0ð ÞV t0ð ÞA y; t � t0;athð Þdt0; ðB7aÞ

p y; tð Þ � po ¼
L

rc

Z t

0

t t0ð ÞV t0ð Þ

� ahyA y; t � t0;ahy

� �

� athA y; t � t0;athð Þ
ahy � ath

� 	

dt0:

ðB7bÞ

[105] The second case is a spatially uniform shear rate
within a layer of thickness h centered on y = 0, with no
shear outside the layer, i.e., _g(y0, t) = V(t)/h for y0 within the
layer. Convolving that _g(y0, t)/V(t) with G(y � y0, t; a)
defines a new function

B y; t;að Þ ¼ 1

2h
erf

hþ 2y

4
ffiffiffiffiffi

at
p

� �

þ erf
h� 2y

4
ffiffiffiffiffi

at
p

� �� 	

; ðB8Þ

and then the solutions for p and T are given by the same
expressions as in the two previous equations, but with
B(y, t � t0; a) replacing A(y, t � t0; a).

B3. Possible Inconsistency of Assuming Distributed
Shear

[106] It may be proven that both of those solutions (and
presumably any solution for a shear distribution that is
symmetric about y = 0 and for which y@ _g(y, t)/@y � 0), have
a maximum in the pore pressure distribution at y = 0 at least
for some finite time interval after the shear history begins;
an analysis of that is given below by solving for @2p/@y2 at
y = 0 and ascertaining when it is provably negative. As noted

in section 3, the assumption of such type of strain rate
distribution leads, strictly, to an inconsistency if we insist
that in all deforming regions the Coulomb law t = f(sn � p)
be met, with a friction coefficient that is constant, or that
weakens with increasing strain rate. (Here sustained shear is
being considered, so that the rate weakeningmentioned refers
to the steady state f; there is always rate strengthening when
we look at the effects of sudden change of shear rate, and in
some cases rate strengthening is observed in sustained, or
steady state, shear too.
[107] Consider the model of uniform shear within a layer

of thickness h. By direct calculations one finds that

@2p y; tð Þ
@y2

� 	

y¼0

¼ � L

rc

Z t

0

� t t0ð ÞV t0ð Þ G h=2; t � t0;ahy

� �

� G h=2; t � t0;athð Þ
� �

2 ahy � ath

� �

t � t0ð Þ dt0: ðB9Þ

Observing that t(t0)V(t0) and t � t0 are nonnegative, it is
possible, after a little analysis, to show that the integrand is
positive when

t � t0 < tpos �
ahy � ath

8ahyath

h2

ln ahy=ath

� � ðB10Þ

and negative when t� t0 > tpos. Thus p will have a maximum
at y = 0 for all t < tpos, since no values of t0 allowing the
integrand to be negative will then have entered the integral.
Also, p will continue to have such a maximum for at least
some (and possibly all) t > tpos. No more precise statement
can be made without specifying a particular V(t0), t(t0) history
because then the integrand will take both positive and
negative values, and numerical evaluation would be needed
in any event. As representative values, take ath = 0.6 mm2/s
and ahy = 3.0 mm2/s. There results tpos = 0.10(h/mm)2s,
which is 10 s when h = 10 mm and 2.5 s when h = 5 mm.
Recalling that 1 m/s is an average slip rate during a seismic
event, those times correspond to slips of 10 m and 2.5 m,
respectively, so for all practical purposes such thick shearing
zones would have p maximum at y = 0 throughout the event,
raising questions, as above, about the plausibility of the
assumption of such thick shear zones.

B4. Solution for Slip on a Plane

[108] The special case of most interest here, motivated by
the preceding discussion, is that of slip on a plane, _g(y0, t0) =
dDirac(y

0)V(t0). The general solutions then reduce to

T y; tð Þ � Tamb ¼
1

rc

Z t

0

t t0ð ÞV t0ð ÞG y; t � t0;athð Þdt0; ðB11aÞ

p y; tð Þ � po ¼
L

rc

Z t

0

t t0ð ÞV t0ð Þ

� ahyG y; t � t0;ahy

� �

� athG y; t � t0;athð Þ
ahy � ath

� 	

dt0

¼ L
ffiffiffiffiffiffi

ath
p

ahy � ath

ffiffiffiffiffiffiffi

ahy
p

T y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ath=ahy

q

; t

 �

� Tamb


 �h

� ffiffiffiffiffiffi

ath

p
T y; tð Þ � Tamb

�
 i

: ðB11bÞ
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[109] Remarkably, if we examine the changes of p and T
on the fault plane y = 0 itself, the latter version of equation
(B11b) shows that there is a universal relation

T 0; tð Þ � Tamb ¼ 1þ
ffiffiffiffiffiffiffi

ahy

ath

r� �

p 0; tð Þ � po

L
ðB12Þ

between them, valid no matter what the history of t(t) and
V(t), where, to give one of the two,

p 0; tð Þ � po ¼
L

2
ffiffiffi

p
p

ffiffiffiffiffiffiffi

ahy
p þ ffiffiffiffiffiffi

ath
p
 �

rc

Z t

0

t t0ð ÞV t0ð Þ
ffiffiffiffiffiffiffiffiffiffi

t � t0
p dt0: ðB13Þ

[110] For consistency it should be checked that the fault
plane, where slip is assumed to take place, really is the
location of highest pore pressure. It may be verified from
the above representation that p, @p/@y, and @2p/@y2 are
continuous at y = 0 (and that @p/@y = 0 there). That is
generally not so for higher derivatives but suffices for use
of (@2p/@y2)y=0 < 0 as the condition for p to have an at
least local maximum there. Thus, observing from the
above expression that L(@T/@t)y=0 = (1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ahy=ath

p

)(@p/
@t)y=0, the PDE expressing fluid mass conservation shows
that

ahy

@2p

@y2

� �

y¼0

¼ @p

@t

� �

y¼0

� L
@T

@t

� �

y¼0

¼ �
ffiffiffiffiffiffiffi

ahy

ath

r

@p

@t

� �

y¼0

:

ðB14Þ

Thus, so long as @p/@t > 0 on the fault plane, which means
that @T/@t > 0 there too, we have (@2p/@y2)y=0 < 0, assuring
that p has at least a local maximum. Hence no immediately
neighboring plane is stressed beyond the friction threshold.

B5. Constitutive Relation for Shear Strength at the
Fault Plane

[111] The above integral representation shows how to
calculate p(t)[ = p(0, t)] along the fault, given t(t0) and
V(t0) for 0 < t0 < t, but t is, of course, not known a priori and
must be chosen to meet the friction law t(t) = f(t)[sn � p(t)].
Here the notation f = f(t) is meant to emphasize that the
friction coefficient may itself evolve with time, e.g., through
a dependence of f on the slip rate V or, more precisely,
through a dependence on V and its prior history, of the type
described in rate and state friction (including the extension,
yet to be made specific, of rate and state concepts to the
rapid slip range of interest here, in which flash heating
occurs). In this presentation it will be assumed that, given
the history of V(t), the history of f(t) is then determined, as
in the most common discussions of rate and state friction or,
more simply, of velocity-dependent friction (which is a
valid concept only when considering slips that are large
enough, and have V changing slowly enough, that f can be
equated to its steady state value at rate V [Rice et al., 2001]).
However, that is not a complete description because f will
also be dependent on the history of T and of effective stress
sn � p; those effects are ignored here.

[112] Observing that f(t)[p(t) � po] = f(t)(sn � po) � t(t),
the foregoing integral representation becomes the integral
equation

f tð Þ sn � poð Þ � t tð Þ ¼ f tð ÞL
2

ffiffiffiffiffiffiffi

ahy
p þ ffiffiffiffiffiffi

ath
p
 �

rc

Z t

0

t t0ð ÞV t0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p t � t0ð Þ
p dt0;

ðB15Þ

which defines the constitutive relation for the fault plane, in
the sense that for any given slip rate history V(t), which
implies also the function f(t), we can solve the equation to
determine the corresponding shear stress history t(t). For
any given V(t), it is a linear equation in t(t), although it is
easy to solve other than numerically only in special cases,
one to be discussed.
[113] The corresponding integral equation can be stated

but not solved here for a distributed shear rate in the form of
the Andrews [2002] Gaussian distribution. This makes the
approximation that although the entire layer shears, the
constitutive relation is based on the highest pore pressure,
presumed to be at the layer center y = 0, which, as remarked,
is not consistent with distributed shear. Thus its thickness
scale w should be regarded as some microstructurally
demanded thickness, in recognition that slip on a mathe-
matical plane is not a physical possibility in a granular
aggregate. Taking strength t(t) = f(t)(sn � p(0, t)), the
preceding integral representation of the Andrews solution
leads to

f tð Þ sn � poð Þ � t tð Þ ¼ f tð ÞL
ffiffiffiffiffiffi

2p
p

ahy � ath

� �

rc

�
Z t

0

ahyt t0ð ÞV t0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ 2ahy t � t0ð Þ
p � atht t0ð ÞV t0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ 2ath t � t0ð Þ
p

" #

dt0; ðB16Þ

and, once solved, the temperature rise at the center of the
shearing layer (no longer directly proportional to the pore
pressure rise) is

T 0; tð Þ � Tamb ¼
1
ffiffiffiffiffiffi

2p
p

rc

Z t

0

t t0ð ÞV t0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ 2ath t � t0ð Þ
p dt0: ðB17Þ

[114] The solution to the integral equation for slip on a
plane, in the simplest case, for which V and f are treated as
being constant throughout the event, is used in the paper to
predict the stress versus slip relation t = t(d). Slip d = Vt in
this case and, rewritten in terms of slip, the integral equation
reduces to

f sn � poð Þ � t dð Þ ¼ 1
ffiffiffiffiffiffi

L*
p

Z d

0

t d0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p d� d0ð Þ
p dd; ðB18Þ

where

L* ¼ 4

f 2V

rc

L


 �2
ffiffiffiffiffiffiffi

ahy
p þ ffiffiffiffiffiffi

ath

p� �2
:

Note that the length parameter L* inherits its length
dimension from the ratio of a composite diffusivity to the
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slip rate V. The solution, found by steps outlined in section
B6, is

t ¼ t dð Þ ¼ f sn � poð Þ exp d

L*

� �

erfc

ffiffiffiffiffiffi

d

L*

r

 !

; ðB19Þ

where erfc(z) = (2/
ffiffiffi

p
p

)

Z 1

z

exp(�u2)du and erfc(0) = 1.

B6. Solution Details

[115] The Laplace transform t̂(s) is defined by t̂(s) =
Z 1

0

t(d)exp(�sd)dd, so that the integral equation, when

transformed (noting that the transform of a convolution is
a product of transforms), becomes

f sn � poð Þ
s

� t̂ sð Þ ¼ t̂ sð Þ
ffiffiffiffiffiffiffi

L*s
p ; ðB20Þ

giving

t̂ sð Þ ¼ f sn � poð Þ
1þ

ffiffiffiffiffiffiffi

L*s
p

ffiffiffiffiffiffi

L*

s

r

:

That t̂(s) is analytic in the complex s plane except for the
singular point at s = 0 and the branch cut, which can be
taken to coincide with the negative Re(s) axis. Then the
contour G in the inversion formula, which properly runs
along the Re(s) > 0 side of the Im(s) axis, can be distorted
to run along the branch cut, i.e., from �1 to 0 along the
Im(s) < 0 side of the Re(s) axis, and from 0 to �1 along the
Im(s) > 0 side of that axis. Thus with s written as rexp(iq),

t dð Þ ¼ 1

2pi

Z

G

f sn � poð Þ
1þ

ffiffiffiffiffiffiffi

L*s
p

ffiffiffiffiffiffi

L*

s

r

exp sdð Þds

¼ f sn � poð Þ
2p

Z 1

0

1

1þ i
ffiffiffiffiffiffiffi

L*r
p þ 1

1� i
ffiffiffiffiffiffiffi

L*r
p

� 	

� exp �rdð ÞL*dr
ffiffiffiffiffiffiffi

L*r
p ; ðB21Þ

which can be rewritten, using u =
ffiffiffiffiffiffiffi

L*r
p

, as

t dð Þ
f sn � poð Þ ¼

2

p

Z 1

0

exp �u2d=L*ð Þdu
1þ u2

¼ 2

p
exp

d

L*

� �
Z 1

0

exp � 1þ u2ð Þd=L*½ 
du
1þ u2

: ðB22Þ

Now, call the last integral I(d), noting that I(1) = 0, and
calculate dI(d)/dd. The result is some factors times a new
integral, recognizable as

ffiffiffi

p
p

/2, so that

dI dð Þ
dd

¼ �
ffiffiffi

p
p

exp �d=L*ð Þ
2
ffiffiffiffiffiffiffiffi

dL*
p ;

I dð Þ ¼
ffiffiffi

p
p

2

Z 1

d

exp �d0=L*ð Þ
ffiffiffiffiffiffiffiffiffi

d0L*
p dd0 ¼ p

2
erfc

ffiffiffiffiffiffi

d

L*

r

 !

:

ðB23Þ

Thus we obtain t(d)/[f(sn � po)] = exp(d/L*)erfc(
ffiffiffiffiffiffiffiffiffiffi

d=L*
p

).
[116] The exp(D)erfc(

ffiffiffiffi

D
p

)} solution (with D = d/L*) just
derived for arbitrary values of ath and ahy is of the same

form as one presented by Mase and Smith [1987] for slip on
a plane in the special case ahy = 0. That is a case in which
there is no fluid motion, so that response is locally un-
drained. The present solution coincides precisely with theirs
when we evaluate L* by setting ahy = 0. To see why that
should be so, note that when ahy = 0, the differential
equations governing for slip on a plane reduce to

For jyj 6¼ 0;
@T

@t
¼ ath

@2T

@y2
; ðB24aÞ

On y ¼ 0; �rcath

@T

@y
y ¼ �0; tð Þ ¼

1

2
t tð ÞV ¼ 1

2
f sn � poð Þ � p 0; tð Þ � poð Þ½ 
V ; ðB24bÞ

For all y; p y; tð Þ � po ¼ L T y; tð Þ � Tamb½ 
 ) p 0; tð Þ � po

¼ L T 0; tð Þ � Tamb½ 
: ðB24cÞ

Expression (B24c) converts (B24b) into a boundary condition
on T alone, and as Mase and Smith noted, that converts the
problem into one solved in another context by Carslaw and
Jaeger [1959], with solution in that exp(D)erfc(

ffiffiffiffi

D
p

)} form.
Once we realize that in our case with ahy 6¼ 0, there does
nevertheless remain the strict proportionality derived above
betweenT(0, t)�Tamb and p(0, t)� po (which had in fact been
assumed as a plausible approximation by Mase and Smith
[1987] based on their derivation of the correct relation
between Tmax � Tamb and sn � po; see discussion in section
3.4), the same adaptation of the Carslaw and Jaeger [1959]
solution is good for the more general ahy 6¼ 0 case. That has a
further benefit because Carslaw and Jaeger [1959] also
derive the complete expression for the temperature field
T(y, t), reported also byMase and Smith [1987]. The result is

T y; tð Þ � Tamb ¼ 1þ
ffiffiffiffiffiffiffi

ahy

ath

r� �

sn � po

L


 �

� erfc
Y

2
ffiffiffiffi

D
p

� �

� exp Y þ Dð Þerfc Y

2
ffiffiffiffi

D
p þ

ffiffiffiffi

D
p� �� 	

; ðB25Þ

where Y = jyj/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

athL*=V
p

and D = d/L*.

B7. General Series Solution for Temperature Near the
Slip Plane and Finite Shear Layer Effects on Predicted
Temperatures

[117] The above solution is exact, at least within linear-
ization of the PDE pair for p and T, but it applies only for
the simplified case in which f and V are constant during
the slip. We can learn something about the more general
case as follows: Consider the domain y > 0, and the Taylor
series in y,

T y; tð Þ � Tamb ¼ T 0; tð Þ � Tamb þ y
@T

@y
0þ; tð Þ

þ 1

2
y2

@2T

@y2
0þ; tð Þ þ . . . : ðB26Þ

From the PDE for T and its boundary condition, as well as
from the direct proportionality of p(0, t) � po to T(0, t) �
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Tamb, which was shown to hold no matter how f and V vary
with time,

� rcath

@T

@y
0þ; tð Þ ¼ 1

2
f tð Þ sn � p 0; tð Þð ÞV tð Þ;

ðB27Þ
@2T

@y2
0þ; tð Þ ¼ 1

ath

@T

@t
0; tð Þ ¼ � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ahy=ath

p

athL

d

dt
sn � p 0; tð Þð Þ:

These are substituted into the series and some terms are
rearranged to give the general result

T y; tð Þ � Tamb ¼ DTmax 1� sn � p tð Þ
sn � po

� Y
sn � p tð Þ
sn � po

�

� Y 2

2 sn � poð Þ
L* tð Þ
V tð Þ

d

dt
sn � p tð Þð Þ þ . . .

	

ðB28Þ

where DTmax = (1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ahy=ath

p

)(sn � po)/L as before, where
p(t) is a shorthand for p(0, t), i.e., the pressure on the
slip plane, where L*(t) is the same L* as before but
now defined in terms of the time dependent f(t) and V(t)
(which means that L*(t) / 1/[f 2(t)V(t)]), and where Y = jyj/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

athL* tð Þ=V tð Þ
p

.
[118] An application of this result is to find the average

temperature over a small distance h about the fault plane.
That is of interest because if the slip zone is not a
mathematical plane but rather is better idealized as a narrow
shearing layer of thickness h, then the maximum tempera-
ture rise at any given time will be less than that predicted for
slip on a plane. A full exploration of that is in preparation
(Rempel and Rice, submitted manuscript, 2006), but a
simple estimate is obtained by identifying the maximum
temperature �T (t) at any given time with the average of
T(y, t) over the strip �h/2 < y < + h/2, so that

T tð Þ � Tamb

¼ DTmax 1� sn � p tð Þ
sn � po

� H
sn � p tð Þ
sn � po

� 2H2

3 sn � poð Þ
L* tð Þ
V tð Þ

d

dt
sn � p tð Þð Þ þ . . .

� 	

ðB29Þ

where H = h/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16athL* tð Þ=V tð Þ
p

. The series can be used
with reliability if the ratio r* of the magnitude of the
quadratic in H term to that of the linear in H term is small
compared to 1, and truncated with the linear in H term if
r* � 1, where

r* ¼ � 2H

3 sn � p tð Þð Þ
L* tð Þ
V tð Þ

d

dt
sn � p tð Þð Þ: ðB30Þ

To estimate r* in a simple case, let us return to the model
with constant f and V. Then sn � p(t) follows the
exp(D)erfc(

ffiffiffiffi

D
p

) form, which falls off as /1/
ffiffiffiffi

D
p

at large
D, so that when it is noted that Vdt = dd, an increment of
slip, there results r = (2H/3)(L*/t)(dt/dd) � HL*/3d when
d is a few or more times L*.
[119] Consider, the Punchbowl fault as studied by Chester

and Chester [1998] and Chester et al. [2003]; see Figure 1.
The candidate values of h are �0.2 mm if to represent the
heavily sheared core, and h � 1.0 mm if to represent the

zone that has been visibly affected (in polarized light) by
the shear. For Table 2, these values give the following: h =
0.2 mm: H = 1.69, 1.31, 0.35, and 0.32, respectively; and
h = 1.0 mm: H = 8.45, 6.57, 1.73, and 1.59, respectively.
Thus, assuming we are looking at large enough slips so that
r* � 1, we can estimate the maximum temperature in the
fault zone of finite but small thickness h by

T tð Þ ¼ Tamb þ DTmax 1� 1þ Hð Þsn � p tð Þ
sn � po

� �

versus T 0; tð Þ ¼ Tamb þ DTmax 1� sn � p tð Þ
sn � po

� �

ðB31Þ

for the model of slip on a plane. That is, the model of slip on
a plane would then overestimate the maximum temperature
at time t by approximately

T 0; tð Þ � T tð Þ ¼ DTmaxH
sn � p tð Þ
sn � po

: ðB32Þ

The overestimate becomes negligible when p ! sn, but can
be numerically significant before that. Consider the intact
elastic walls, average on p-T path, case of Table 2, and
suppose that melting should be assumed to begin when T =
900�C. At the 7 km depth considered in Table 2, for the
model of slip on a plane, melting would then begin when
(sn � p)/(sn � po) = 0.425, corresponding to slip d = 1.01
L* � 30 mm. However, for thickness h = 0.2 mm (H =
0.35), melting would instead begin when (sn � p)/(sn � po)
� 0.31, which is achieved at slip d � 2.4 L* � 71 mm, over
twice as large. For h = 1.0 mm (H = 1.73), it would begin
when (sn � p)/(sn � po) � 0.16, achieved at d � 12 L* �
360 mm. These are very rough estimates, but the differences
in the estimated slips to the onset of melting are quite
significant. The forthcoming work of A Rempel and Rice
(submitted manuscript, 2006) should be consulted for more
precise corrections of temperature rises for finite, if small,
shear zone thicknesses.
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