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ABSTRACT

Context. Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of
propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-
Helmholtz instability, which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes
have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with
the hotter surroundings can potentially hide this effect.
Aims. We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop.
Methods. Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both
(a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity.
Results. We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered
here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic
dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction
of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case
of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of
the aforementioned wave heating mechanism.
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1. Introduction

Since the discovery of transverse magnetohydrodynamic (MHD)
oscillations (Aschwanden et al. 1999; Nakariakov et al. 1999),
they have been the topic of many studies, both observational and
numerical. Stretching from the lower chromosphere up to the
solar corona, the physical characteristics of loops allow them to
act as waveguides, effectively transferring energy between those
different layers. Analytical studies on the nature of the trans-
verse oscillations in cylindrical flux tubes (Zajtsev & Stepanov
1975; Ryutov & Ryutova 1976; Edwin & Roberts 1983) have
described the different modes expected in a non-uniform plasma
with cylindrical symmetry.

Observations from the Coronal Multi-channel Polarimeter
(CoMP), the Solar Dynamics Observatory (SDO) spacecraft
and Hinode Solar Observatory have revealed the existence
of ubiquitous transverse perturbations traveling along coro-
nal loops, prominence threads and greater areas of the
corona (Tomczyk et al. 2007; Okamoto et al. 2007; Tomczyk
& McIntosh 2009; McIntosh et al. 2011; Nisticò et al. 2013;
Anfinogentov et al. 2015). Due to their high speeds and appar-
ent incompressible nature, Tomczyk et al. (2007) have consid-
ered these perturbations to be Alfvén waves, traveling in the
solar corona. Considering the energy budget of these propa-
gating waves, Tomczyk et al. (2007) estimated an energy flux
four orders of magnitude smaller than needed to balance the
radiative losses of the quiet solar corona. However, there has

⋆ Three movies associated to Fig. 1 are available in electronic form
at http://www.aanda.org

been a lot of uncertainty regarding the estimated energy carried
by the waves in the solar atmosphere (De Pontieu et al. 2007;
McIntosh et al. 2011; Goossens et al. 2013; Van Doorsselaere
et al. 2014; Thurgood et al. 2014; Morton et al. 2016), with
the line of sight (LOS) being a particularly important factor
(McIntosh & De Pontieu 2012; De Moortel & Pascoe 2012).
Meanwhile, the nature of these oscillations has been under de-
bate, with Van Doorsselaere et al. (2008) proposing that they are
in fact Alfvénic, transverse surface (kink) waves, since they have
been observed traveling along flux tubes in the solar atmosphere,
rather than in a homogeneous plasma as it would be expected of
Alfvén waves. The Alfvénic nature of those kink waves in mag-
netic flux tubes has also been proven in Goossens et al. (2009).

For the proposed heating of the solar atmosphere a dissi-
pation mechanism is necessary for the observed oscillations to
transfer their kinetic energy into internal energy of the plasma.
Tomczyk & McIntosh (2009) reported significant spatial atten-
uation in the power of the aforementioned observed propagat-
ing waves. Additional observational evidence was presented in
Verth et al. (2010), while in Terradas et al. (2010), the mecha-
nism of resonant absorption was used to analytically explain
this spatial attenuation. The analogous mechanisms of reso-
nant absorption (Sakurai et al. 1991; Goossens & Poedts 1992;
Goossens et al. 1992, 2002, 2006, 2011; Ruderman & Roberts
2002; Arregui et al. 2005) and mode coupling (Pascoe et al.
2010, 2012; De Moortel et al. 2016) have been thus consid-
ered responsible for the damping of transverse waves in flux
tubes. Through resonance, the energy of the global kink mode
is transferred to local azimuthal Alfvén modes in the boundary
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layer at the loop edges, reducing the amplitude of the os-
cillations. In the case in which multiple frequencies are ex-
cited (for example, should a broad-band driver be consid-
ered or in the case of non-linear effects due to resistivity and
viscosity), smaller scales are created through the mechanism
of phase mixing (Heyvaerts & Priest 1983; Poedts & Boynton
1996; Soler & Terradas 2015). The connection between resonant
absorption and the heating of loops has been studied in the past
(Ofman et al. 1994a,b, 1998; Poedts & Boynton 1996), where
resistivity and/or viscosity were considered, in order to dissipate
the energy contained into the created smaller scales.

While studying the damping mechanisms for Alfvén waves
in the boundary layers of flux tubes, Heyvaerts & Priest (1983)
predicted the existence of Kelvin-Helmholtz Instabilities (KHI)
in the resonant layer, through a nonlinear connection with phase
mixing. They argued that the strong shear velocities generated by
the azimuthal Alfvén waves can give rise to Kelvin-Helmholtz
turbulence, which in turn reinforces the effects of phase mix-
ing through the creation of smaller scales. Propagating waves
were predicted to be Kelvin-Helmholtz stable, while standing
oscillations should be unstable near the positions of the velocity
antinodes. Zaqarashvili et al. (2015) have also predicted that the
higher values of azimuthal velocities at loop edges near these ve-
locity antinodes would make standing kink modes and torsional
Alfvén waves Kelvin-Helmholtz unstable. The presence of KHI
and its connection to turbulence has also been studied in chro-
mospheric jets (Kuridze et al. 2015, 2016) as an explanation of
the observed, non-thermal, line broadening.

Three dimensional simulations in straight flux tubes con-
firmed the nonlinear connection between resonant absorp-
tion, phase mixing and KHI for driver generated azimuthal
Alfvén waves (Uchimoto et al. 1991; Ofman et al. 1994c;
Poedts & Goedbloed 1997; Poedts et al. 1997). More recent nu-
merical studies (Terradas et al. 2008; Antolin et al. 2014, 2015,
2016; Magyar et al. 2015; Magyar & Van Doorsselaere 2016)
have confirmed the development of Kelvin-Helmholtz induced
turbulence in straight flux tubes even for small amplitude stand-
ing kink waves. In particular, Antolin et al. (2014), through the
use of forward modelling, proved that KHI can create apparent
strands along flux tubes, as a LOS effect, providing us with a
potential method to indirectly observe this instability in coronal
loops. Additionally, Magyar & Van Doorsselaere (2016) showed
that the developed KHI can lead to faster damping of standing
transverse waves than analytically predicted from resonant ab-
sorption, further proving its effectiveness.

Following the idea that resistive and viscous dissipation
contributed to heating, Antolin et al. (2014) suggested that the
developed Kelvin-Helmholtz instabilities at the resonant layer
could lead to an increase in the flux tube temperature. The pro-
files of his tube cross-section at the antinode position revealed
the existence of small length scales in z-current density, simi-
lar to those created by the Kelvin-Helmholtz eddies. However,
Magyar & Van Doorsselaere (2016) pointed out that the mixing
between the colder flux tube and the hotter surrounding plasma
led to higher average temperatures than those expected from the
increase of the internal energy for the given simulation time.

In the current work, we focus on the temperature evolution
in both driven and freely transversely oscillating flux tubes, due
to nonlinear dissipation of wave energy. Physical resistivity is
not included in our three dimensional ideal MHD models, but
the effects of numerical resistivity are present and are used in
the study of wave energy dissipation. We consider models of
equal temperature inside and outside of the flux tube, so that
we can isolate the mechanisms of wave heating from the effects

Fig. 1. 3D density plot, measured in 10−12 kg/m3, of our basic setup
(t = 0), and of the three different models at later times. The cross
sections on the x − y planes at the footpoint (z = 0) and the apex
(z = L/2 = 100 Mm) are shown. The region with the highest refinement
level is defined by 0 ≤ z ≤ 100 Mm, |x| ≤ 2.33 Mm and y ≤ 2.33 Mm.
Animations of these figures, showing the oscillations for the three mod-
els, are available online (movies 1–3).

of mixing between regions of different temperature. The effects
of mixing are considered in a third case, where we introduced a
temperature gradient across the tube axis. We briefly discuss the
dynamics of our driven oscillating tubes, as well as the implica-
tion of their dynamical evolution on the spatial evolution of the
loop heating.

2. Numerical models

2.1. Equilibrium

The basis of our 3D numerical models consists of a straight,
density-enhanced magnetic flux tube, in a low-β coronal environ-
ment (Fig. 1). Our setup follows closely the one in Antolin et al.
(2014), with the values of our physical parameters listed in
Table 1. The index i (e) denotes internal (external) values.

Initially, the system is permeated by a uniform magnetic field
B0 ≈ 22.8 G directed along the flux tube, meaning in the z direc-
tion. We take a continuous and steep radial profile for density,
given by the relation:

ρ(x, y) = ρe + (ρi − ρe)ζ(x, y), (1)

ζ(x, y) =
1

2

(

1 − tanh

((

√

x2 + y2/R − 1

)

b

))

, (2)

where ρe = 109µmp cm−3 (µ = 0.5 and mp is the proton mass).
By x and y we denote the coordinates in the plane perpendicu-
lar to the loop axis, z along its axis and b sets the width of the
boundary layer. In our setups, we take b = 20, which gives us an
inhomogeneous layer of width ℓ ≈ 0.3R. We choose a density ra-
tio of ρe/ρi = 1/3, which is within the range of estimated ratios,
as derived from observational data in Aschwanden et al. (2003).
This ratio is expected to lead to a fast damping rate of the kink
mode through resonant absorption, and thus is suitable for rapid
transfer of energy from transverse to azimuthal motions.
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Table 1. Values of principal physical parameters used in the
simulations.

Parameter Value

Loop length (L) 200 Mm
Loop radius (R) 1 Mm

Loop density (ρi) 2.509 × 10−15 g/cm3

ρi/ρe 3

Loop temperature (Ti) 9 × 105 K
Magnetic field (Bz) 22.8 G
Plasma β 0.018

Notes. The index i (e) denote internal (external) values.

The three different cases considered in the current work are:

1. A model of propagating waves in a loop continuously driven
from the footpoint, with no temperature variation between
itself and the background plasma (Driven-equalT model).

2. A model of propagating waves in a loop continuously driven
from the footpoint, in hydrostatic equilibrium between itself
and the background plasma, where we take a temperature
ratio of Ti/Te = 1/3 (Driven-diffT model).

3. A model of a standing wave in a loop with an initial velocity
perturbation and no temperature variation between itself and
the background plasma (Stand-equalT model).

These temperature profiles are very useful in dealing with the
underlying heating mechanisms in the solar corona. By choos-
ing a gradient of Ti/Te = 1/3, we are effectively modelling
a coronal loop during a cooling phase, as observed for loops
in thermal non-equilibrium (Froment et al. 2015, 2017), and we
can directly compare to previous work dealing with the struc-
ture and observational signatures of transverse waves in coro-
nal loops (Antolin et al. 2014, 2017). Similarly, setting Ti = Te

helps us identify the effects of the wave heating, no matter how
subtle they might be. For the two models with no initial temper-
ature variation (Ti = Te), due to the pressure gradient between
the tube and the environment, we introduced a slight decrease
in the magnetic field within the tube, thus restoring total pres-
sure equilibrium. The external Alfvén speed for all three mod-
els is equal to υAe = 2224 km s−1. The internal Alfvén speed
is υAi = 1284 km s−1 for the model with Ti/Te = 1/3, and
υAi = 1276 km s−1 for the two models with Ti = Te.

2.2. Grid

The three dimensional ideal magnetohydrodynamic (MHD)
problem is solved using the MPI-AMRVAC code (Keppens et al.
2012; Porth et al. 2014), where Powell’s scheme is employed
to keep the solenoidal constraint on the magnetic field. We use
the implemented second-order “onestep” TVD method with the
Roe solver and “Woodward” slope limiter. Our domain dimen-
sions, in Mm, are (x, y, z) = ((−8, 8), (0, 8), (0, 100)), with four
levels of refinement present, which leads to an effective resolu-
tion of 512 × 256 × 64. This translates into cell dimensions of
31.25 × 31.25 × 1562.5 km, thus the resolution is higher in the
x − y plane, to resolve the small-scale phenomena that appear
around the loop edge. The loop footpoint for each model is lo-
cated at z = 0 and the apex at z = 100 Mm. Numerical resistivity
is present in our model and has a value many orders of magni-
tude larger than the expected one in the solar corona, which can
only be reduced through the use of an ever-more refined com-
putational grid. Using a parameter study in all three models, we

have estimated the maximum effective numerical resistivity to
be of the order of 8.5 × 10−9 s (in CGS). These calculations give
a Lundquist number:

S =
4π

c2

lυ

ηn

≥ 2.1 × 104, (3)

and a corresponding resistive time scale is τres = 4πl2/(c2ηn) =
1.65 × 104 s. Here we considered a characteristic velocity υ =
1.3 Mm/s ≈ υAi and a characteristic length l = 1 Mm.

2.3. Driver

Our tubes are driven from the footpoint (z = 0 Mm), using a
continuous, monoperiodic “dipole-like” driver, inspired by the
one used by Pascoe et al. (2010). The period of the driver is
P ≃ 2L/ck ≃ 254 s for both models, coinciding with their corre-
sponding fundamental eigenfrequency (Edwin & Roberts 1983).
The Stand-equalT model also has the same fundamental eigen-
frequency, as the other two models.

The driver velocity is uniform inside the loop and time
varying:

{vx, vy} = {v(t), 0} =

{

v0 cos

(

2πt

P

)

, 0

}

, (4)

where v0 is the peak velocity amplitude. Here we choose v0 =
2 km s−1, which is close to the observed photospheric motions.
Outside the loop, the velocity follows the relation:

{vx, vy} = v(t)R
2

{

x2 − y2

(x2 + y2)2
,

2xy

(x2 + y2)2

}

· (5)

To avoid any numerical instabilities due to jumps in the veloc-
ity, a transition region between the two areas exists, the shape
of which matches that of the density profile. Furthermore, our
driver follows the movement of the tube, ensuring that the base
of the tube and only that, is always inside the central region of
uniform velocity (Fig. 2).

For comparison, we also ran a simulation with no driver but
with an initial velocity perturbation (Stand-equalT model) of the
form:

{vx, vy, vz} = {v(x, y, z), 0, 0} =

{

v0 cos

(

πz

L

)

ζ(x, y), 0, 0

}

, (6)

where v0 = 25 km s−1. This way, the loop is subject to a pertur-
bation mimicking a fundamental kink mode.

2.4. Boundary conditions

For all three models, the velocity component parallel to the z axis
(vz) is antisymmetric at the bottom boundary in order to prevent
flow of mass from the tube into, what would be, the photosphere
(or “out of the loop”). The rest of the physical variables there
obey a Neumann-type, zero-gradient, condition, except the vx
and vy velocities for the Driven- models, which are defined by the
driver. Our aim is to study the fundamental standing kink mode
for an oscillating flux tube. Taking advantage of this mode inher-
ent symmetries, as well as the symmetric nature of our driver, we
simulated only one quarter of the loop (Fig. 1). Along the axis,
we went from one footpoint to the apex. We kept vz, Bx and By
antisymmetric, in the x − y plane at the apex, while all the other
quantities are symmetric. Additionally, we took into account the
symmetric nature of our driver along the y axis, vy and By are
antisymmetric in the x − z plane, while the other quantities are
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Fig. 2. Contour of our tube density profile on the x−y plane, at the foot-
point. The vector field represents the spatial dependence of our driver
for time (top) t = 0 and (bottom) t = 3P/8. P = 254 s is the driver pe-
riod. The arrow lengths represent the normalized velocity, with respect
to v0, of our driver.

symmetric. Therefore, our computational time is reduced four-
fold in total for all three cases. At the three lateral boundaries,
we apply outflow (Neumann-type, zero-gradient condition) con-
ditions, which allow waves to leave the domain. To minimize
their influence on the dynamics, we placed them at a safe dis-
tance from the loop (8 R in the x and y direction).

3. Results and discussion

For the rest of our analysis we focus on a sub-region of our com-
putational domain, defined by 0 ≤ z ≤ 100 Mm, |x| ≤ 2.33 Mm
and y ≤ 2.33 Mm. This region exhibits the maximum effective
resolution, and contains the loop for the whole duration of the
simulation, for all three models. Inside this region, we defined
the core of the loop, based on Goossens et al. (2014), as the
part of the tube cross-section where ρ ≥ 0.976 ρi. Furthermore,
we defined the inhomogeneous layer of the tube (0.335 ρi <
ρ < 0.976 ρi), the whole tube cross-section (ρ > 0.335 ρi) and,
the “corona” (ρ ≤ 0.335 ρi), all inside the same region defined
previously.

We ran all of our simulations for a total time of seven periods
(7P ∼ 1782 s). Focusing on the driven cases, the first waves to
reach the apex (z = 100 Mm) are the azimuthal Alfvén waves at
the boundary layer of our tube, thanks to their higher propagation
speed, followed by the propagating kink waves. The period of the
driver is equal to the analytically predicted value for the stand-
ing fundamental kink oscillations of a uniform flux tube for our
given densities (Edwin & Roberts 1983). Considering the sym-
metry at the apex, the propagating waves from each footpoint
superpose, forming a standing wave. By choosing that corre-
sponding frequency for our driver, we forced the loop to per-
form an oscillation resembling the fundamental standing mode
for the kink wave, with the site of the loop apex being the loca-
tion of the antinode of the x-velocity. The animations of the tube

Fig. 3. Time-distance maps of density at the apex for: (top-left) the
Driven-diffT model, (top-right) the Driven-equalT model and (bottom)
the Stand-equalT model.
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Fig. 4. Left: normalized amplitude of the loop displacement, for the
three models, calculated by tracking the centre of mass at the apex
(z = 100 Mm). Right: through centre of mass tracking at the apex,
we calculate the vx velocity in km s−1. The continuous line represents
the tube oscillating as a standing wave with Te = Ti (Stand-equalT
model), the dashed line represents the tube with the driver for Te = Ti

(Driven-equalT model) and the dotted line the tube with the driver for
Te = 3 Ti (Driven-diffT model).

oscillations for all three of our models are available online (see
Fig. 1).

In Fig. 3, we have the time-distance maps of the density at
the apex, for our three different cases. By examining them, we
can see that, for the models with the driver, the oscillation seems
to saturate after reaching its peak value in amplitude, around t ∼
1200 s. After that point, the inner, denser part of both oscillates
with a smaller amplitude, while the lower density edges main-
tain the maximum amplitude of the oscillation. The same drop in
oscillation amplitude is present in Fig. 4, where we plot the nor-
malized displacement as well as the vx velocity (given in km s−1),
for the centre of mass at the apex. We see that the amplitude
of the oscillation, for the driven cases, reaches a maximum af-
ter ∼4.5 periods (of the driver), in agreement with the time dis-
tance maps for the density. The same lower density region at the
edge of the tube also develops at later times for the Stand-equalT
model. The normalized display and the centre of mass velocity
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Fig. 5. Cross-section of the apex (z = 100 Mm) showing the (upper half) temperature and (lower half) density profile for the three different models
we studied. From top to bottom: a) the Driven-diffT model; b) the Driven-equalT model and c) the Stand-equalT model.

also reveal a damping profile, in agreement with previous works
(Magyar et al. 2015; Magyar & Van Doorsselaere 2016).

As mentioned before, the superposing propagating waves
quickly form a footpoint driven standing wave with a veloc-
ity antinode at the apex, which can be Kelvin-Helmholtz un-
stable (Heyvaerts & Priest 1983; Zaqarashvili et al. 2015). In
fact, approximately two periods time after the apex started
to oscillate, the Kelvin-Helmholtz instability (KHI) mani-
fests there because of the high shear velocities (Terradas et al.
2008; Antolin et al. 2014, 2015, 2016; Magyar et al. 2015;
Magyar & Van Doorsselaere 2016). In Fig. 5, we plot the spa-
tial profiles of the temperature and density for our three mod-
els, at the apex. The KHI develops, creating strong shear flows
and smaller scales, in addition to spatially extended eddies, the
Transverse Waves Induced Kelvin-Helmholtz (TWIKH) rolls.
These TWIKH rolls result in extensive mixing of plasma from
the loop, with the surrounding corona, as indicated by the pro-
files of temperature (T ) and density (ρ) at the apex. This ex-
tended turbulent layer is the low density tube edge, which we
saw developing in Fig. 3.

Focusing on the Driven-equalT and Stand-equalT models,
we observe the manifestation of temperature fluctuations at
the tube layer. These perturbations appear immediately after
the tubes are set in motion, and are getting stronger once the
Kelvin-Helmholtz instability sets in, as seen in Fig. 5. They are
connected to the density and pressure fluctuations and are not
the result of energy transfer between those different regions.

Antolin et al. (2017) also observed these temperature perturba-
tions for a flux tube oscillating as a standing wave, and charac-
terized them adiabatic in nature. Thus, we refer to this mech-
anism as adiabatic heating (and cooling). Here, we prove that
similar patterns for adiabatic cooling and heating appear, both
for a tube with a standing oscillation and for a footpoint driven
one. Adiabatic in nature temperature fluctuations can also be ob-
served at the footpoints of our models as well, but they are more
uniform and extended, probably originating from the large scale
loop dynamics caused by the standing (or standing-like) oscil-
lations. These adiabatic processes are existing alongside other
heating mechanisms, which we are studying in the current work.

In order to investigate the drop of the normalized driven os-
cillation amplitudes, in Fig. 6 we plot the perturbations in inter-
nal and magnetic energy densities, the kinetic energy density and
the total input energy densities for our models. Focusing on a re-
gion of constant volume, the changes in the energy densities are
directly translated into changes in the energies. The total energy
density provided by the driver, following Beliën et al. (1999), is
calculated from the formula:

S (t) = −
1

V

∫ t

0

∫

A

S · dAdt′, (7)

where S is the Poynting flux (in J m−2 s−1) from the lower bound-
ary (x − y plane), where the driver is located. A denotes the
surface element (of the lower x − y boundary plane) and V is
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Fig. 6. Time profiles for the internal, magnetic and kinetic energy density variations relative to the initial state, the total (internal+magnetic+kinetic)
energy density difference and the energy density provided by the driver. All the quantities are volume averaged for the region with 0 ≤ z ≤ 100 Mm,
|x| ≤ 2.33 Mm and y ≤ 2.33 Mm. From left to right: a) the Driven-diffT model; b) the Driven-equalT model and c) the Stand-equalT model.

the total volume of the studied region. As we see from the dia-
grams of energy, the input in the Driven-diffT and Driven-equalT
models are very similar, as it was expected. The kinetic energy
density shows a saturation in both cases after a time around
1200−1300 s, that is in agreement with what we saw in the time
density maps for the density. The fact that the kinetic energy sat-
urates, indicates that the previously mentioned drop in the nor-
malized amplitude (see Fig. 4) is not caused by an actual drop
of the oscillation amplitude, but rather by the development of
smaller scale motions in the loop cross-section, which affect the
position of the centre of mass.

It is also interesting to note here that the input energy, while
sufficient to explain the rise of the kinetic energy, is less than the
sum of internal and kinetic energy. The extra energy seems to be
provided by the drop of the magnetic energy, due to the existence
of the effective numerical resistivity. The same drop is higher in
the case of the Driven-diffT model, but it does not drastically
increase the internal energy for that model. As result, both mod-
els with the footpoint driver are expected to have very similar
dynamical evolution over time. For the Stand-equalT model, the
input is practically zero, as expected, and both the kinetic and
magnetic energies decrease in time.

We note here the different behaviour of the magnetic energy
density difference between the three models. In all three mod-
els, not all of the available magnetic energy density turns into
internal energy. From the equation for the energy density evolu-
tion in resistive MHD, we see the existence of a resistive source
term, and of fluxes. The resistive term is the one responsible for
transforming the magnetic energy into internal energy, while the
fluxes transfer energy into (“Input” in Fig. 6) and out of our do-
main. The Poynting flux through the side boundaries, which are
simulated as open, is responsible for the extra drop of the mag-
netic energy.

For the cases of uniform temperature, only a small part of
the magnetic energy density is dissipated this way, as we can see
by comparing the its drop to the rise of the internal energy den-
sity. For these two cases, the magnetic energy density drops at
almost the same levels, due to the identical initial conditions for
the magnetic fields and the plasma pressure in these two mod-
els. The oscillatory behaviour of the Stand-equalT model mag-
netic energy density is caused by the initiation of the slow wave,
which was mentioned before. The small rise observed near the
end of the simulation for the magnetic energy of the Driven-
equalT model is caused by the continuous energy input from
the driver. However, the Driven-diffT model exhibits a greater
drop, when compared to the other two cases. This drop cannot
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Fig. 7. Percentage of the: (left) volume averaged temperature variation
and (right) volume averaged internal energy variation, over a greater re-
gion (tube+corona) including the loop (0 ≤ z ≤ 100 Mm, |x| ≤ 2.33 Mm
and y ≤ 2.33 Mm). The continuous line represents the Stand-equalT
model, the dashed line represents the Driven-equalT model and the dot-
ted line the Driven-diffT model.

be adequately explained by the bigger rise of internal energy for
that model (Fig. 6), and is caused by the stronger Poynting flux
through the side boundaries. Finally, we need to stress that the
effects of numerical resistivity, as well as the inevitable devel-
opment of non-zero ∇ · B were taken into account during our
analysis.

In Fig. 7 we plot the difference of the volume averaged tem-
perature and of the volume averaged internal energy relative to
the initial state, over the area defined by 0 ≤ z ≤ 100 Mm,
|x| ≤ 2.33 Mm and y ≤ 2.33 Mm, for all three models. We see
that for the Driven-equalT and Stand-equalT models, both the
temperature and internal energy show the same relative increase.
This is consequence of the heating mechanisms present in our
simulations, which we are going to further study in the next fig-
ures. In the case for the Driven-diffT model, the temperature ex-
hibits a drop larger than 1.5% while the internal energy density
shows a rise of about 0.12%. As we explain later, this is due to
the mixing between the cold tube and the hotter environment,
that we considered in that particular model.

To further study the differences in the internal energy – tem-
perature connection among our models, we will examine the
temperature profiles along the z-axis, over time, in Fig. 8. For
the model of the driven standing wave inside the tube in temper-
ature equilibrium, we observe a gradual increase of the average
temperature over time (∼3.4%), the closer we get to the foot-
point. The temperature towards the apex increases as well, but
by a relatively smaller amount. A similar behaviour is obtained
by the temperature profiles of both the greater region (tube +
corona) and for the surrounding corona. Regarding this model,
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Fig. 8. Average temperature along the z-axis: (left) inside the tube (for ρ ≥ 0.84×10−12 kg m−3), (centre) for the whole greater region (tube+corona)
including the loop (0 ≤ z ≤ 100 Mm, |x| ≤ 2.33 Mm and y ≤ 2.33 Mm) and (right) for the surrounding plasma outside the loop. From top to
bottom: a) the Driven-diffT model; b) the Driven-equalT model and c) the Stand-equalT model. The apex is located at z = 100 Mm.

the lower changes in the average temperature for the “tube +
corona” area and for the surrounding corona are attributed to the
larger area studied, while the heating is located only inside and
at the boundary of the loop. This is also in agreement with our
findings in Fig. 7 for this model.

Studying the corresponding temperature profiles for the
standing oscillating loop, we observe again the highest average
temperatures towards the footpoints. The new phenomenon that
we did not encounter in the previous case, is a long period oscil-
lation of the average temperature. This oscillation, mostly promi-
nent at the apex, is due to the longitudinal slow mode triggered
by the large initial velocity perturbation (Terradas et al. 2011;
Magyar & Van Doorsselaere 2016). In the case of the driven
waves, this mode is not observed, the reason being probably the
gradual energy input from the footpoint. Despite the presence
of this mode, however, the temperature profile for the tube os-
cillating as a standing wave still indicates heating along a large
part of the loop, with the highest temperatures seen towards the
footpoint. As before, the same temperature evolution is observed
in the greater region, whereas a similar trend is observed in the
surrounding corona, although affected by the effects of the long
period slow mode.

Before addressing the Driven-diffT model, we will try to
recognize the different dissipation mechanisms involved by

plotting, in Fig. 9, the average square z-vorticity (ω2
z ) and the

average square z-current density (J2
z ) for different heights inside

our three different loops. These plots are focused on the area in-
side the tubes, defined by density ρ > 0.335 ρi. It is obvious from
all three models that the square z-vorticity gains its highest val-
ues at the apex, which is the position of the velocity antinode
and the part of the loop where the Kelvin-Helmholtz generated
turbulence is the strongest. The higher velocities observed there,
due to the larger amplitude of the oscillation, lead to greater val-
ues of the squared z-vorticity. This can also be verified by the
periodicity of ω2

z . Its period is half that of the wave, which gives
a period for the ωz vector equal to that of the wave. Also, for
the Stand-equalT model, we observe a drop of the vorticity os-
cillation amplitude, as well as of its mean value. This is mainly
due to damping of the kink wave. The square z-vorticity also
seems to be connected to the induced turbulence in our tubes.
As the tubes start oscillating, the minimum values of ω2

z grow
and gain non-zero values through the creation of smaller scale
structures (like TWIKH rolls). This, “base value” is larger at the
apex, where the KHI, and the induced turbulence, are at their
strongest. Therefore, ω2

z can be used as a measure of turbulence.

The z-current density, however, is increasing towards the
footpoint, where it becomes three orders of magnitude larger
than at the apex, for all three models. This consistency is caused
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Fig. 9. Top and bottom panels: time profiles for the average square z-current density J2
z and the average square z-vorticity ω2

z , respectively, at
different heights. The apex is located at z = 100 Mm and the volume averaging takes place only inside each tube (ρ > 0.335 ρi). From left to right:
a) the Driven-diffT model; b) the Driven-equalT model and c) the Stand-equalT model.

by the geometry of the resulting oscillations. As we have already
mentioned, after the superposition of the counter-propagating
waves from each footpoint, we have the manifestation of a foot-
point driven standing wave which resembles the fundamental
standing kink mode that the tube. By writing the magnetic field
and the current density in cylindrical coordinates, we see that
the main contribution on Jz is from the radial variation of az-
imuthal component of the magnetic field ∂Bφ/∂r, which for the
case of the fundamental kink mode has a cosine dependence
along the z axis, following Bφ. Thus, the z-current density will
get its highest values near the footpoints of such oscillating
loops (Van Doorsselaere et al. 2007). As we mentioned in the
introduction, in that paper, Van Doorsselaere et al. have proven
that for line-tied loops the viscous and resistive heating mech-
anisms can be observationally distinguished by the site of the
heating. Ohmic dissipation, due to resistivity, is more promi-
nent at the footpoints of oscillating loops, while viscous dissi-
pation is stronger towards the apex. Combining the above with
the value of the resistive time scale for our models, we conclude
that in both equalT-models, the stronger rise of temperature at
the footpoint is an indication of Ohmic heating due to numerical
resistivity. The lower increase of the average temperature at the
apex could be potentially caused by viscous dissipation. How-
ever, the temperature gradient between the apex and the foot-
point, for these two models, suggests that resistive heating is the
dominant heating mechanism in our models.

For the model of the driven wave inside the tube with a tem-
perature gradient, from Fig. 8, we observe a gradual increase
of the average temperature over time, the closer we get to the
apex. This phenomenon seems to contradict the results we have
got so far about the wave heating mechanisms, since this model
is dynamically the same as the model of propagating waves in-
side the tube in temperature equilibrium. It is however consistent
with the findings of Magyar & Van Doorsselaere (2016) for the
standing kink, where it was observed that the internal energy rise
at the layer was not enough to explain the rise of the temperature
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Fig. 10. Time evolution of the core (ρ > 0.976 ρi), layer, corona
(ρ 6 0.335 ρi) and whole tube (ρ > 0.335 ρi) surface areas (in Mm2) for
our three loops, at the apex. The continuous line represents the Stand-
equalT model, the dashed line represents the Driven-equalT model and
the dotted line the Driven-diffT model.

at the layer. Initially, as we see in Fig. 10, for this model, the
hotter boundary layer (0.335 ρi < ρ < 0.976 ρi) shrinks over
time. The overall volume of the tube is reduced and an initial
drop of the volume average temperature inside the tube is caused,
since the relative contribution from the colder inner parts of the
loop increases. As the simulation runs, however, the develop-
ment of the turbulence and the manifestation of the TWIKH rolls
lead to extensive mixing with the surrounding area, expanding
the turbulent layer both inwards and outwards. The shrinking
of the colder core region and the expansion of the hot turbulent
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layer is what causes the tube to become hotter over time. It is
no coincidence that the greatest rise of temperature takes place
at the apex, where the average vorticity (or in our case the aver-
age square vorticity) takes its highest values, as seen in Fig. 9.
The apex is the location of the velocity antinode, where the os-
cillation amplitude and the induced turbulence are the strongest.
Therefore, the mixing is also more extensive there, increasing the
temperature of the loop even further. The footpoint (z = 0) does
not show any rise in temperature. On the contrary, the shrinking
of the hotter layer, and thus the increase of the colder core con-
tribution, drops the temperature to a point where Ohmic heating,
which is also present in this model, is not adequate to sustain the
initial average temperature.

Studying the greater area (0 ≤ z ≤ 100 Mm, |x| ≤ 2.33 Mm
and y ≤ 2.33 Mm) for the Driven-diffT model in Fig. 8, we
observe a temperature drop close to the apex. This behaviour,
which is also connected to our findings in Fig. 7, is caused by
the extensive mixing between the loop and the hotter (in this
model) environment. The temperature profile has the opposite
evolution than before, decreasing near the apex and increasing
near the footpoint. This is a confirmation of the assumption about
the mixing. Through the loop expansion, both the colder core
as well as the warm layer contribute more to the average tem-
perature, than they initially did. Both the layer and the core are
colder than the surrounding plasma. This causes the volume av-
erage temperature to drop. However, this does not mean that the
environment cools down. From the temperature spatial profiles
in Fig. 5, we can see a rise in temperature of the surrounding
plasma, as we approach the turbulent layer. Plotting the average
temperature along the z-axis over time (Fig. 8), for the surround-
ing area, this slight heating of the corona becomes obvious. It is
worth noting that even in this case, the footpoint reaches slightly
higher temperatures than the apex, which again can be explained
through the effects of resistive heating at the tube-corona inter-
face, at the edges of the boundary layer.

The Driven-equalT model also exhibits the same evolution
regarding the different areas studied, but unlike the Driven-diffT
model, the changes of the tube cross-section do not affect the
average temperature of each region. Instead, the wave dissipa-
tion mechanisms, in particular resistive heating, are the ones re-
sponsible for the temperature fluctuations. The same is valid also
for the tube oscillating as a standing wave. Finally, we stress
that the results of the mixing on the apparent heating (cooling)
of the tube (tube + environment) depend on the temperature gra-
dient between the environment and the loop; they could signif-
icantly change should we consider different initial temperature
gradients.

4. Conclusions

We were interested in studying the heating produced by trans-
verse waves in coronal loops. We performed numerical simula-
tions for a 3D, density enhanced straight tube in ideal MHD. The
effective value of numerical resistivity present in our model is
many orders of magnitude larger than the expected values in the
solar corona. We studied two models of driven standing waves,
for a continuous, monoperiodic, footpoint driver. One model had
a uniform temperature throughout the domain, while the other
had a temperature difference between the loop and the envi-
ronment. The velocity amplitude of our driver was of the or-
der of 2 km s−1, while the period of the driver was equal to
the analytically predicted value for the standing fundamental
kink oscillations of a uniform flux tube for our given densi-
ties (Edwin & Roberts 1983). By choosing that corresponding

frequency for our driver, and considering symmetry at the apex,
the initially generated propagating waves superpose and form the
fundamental standing mode of a kink oscillation. As predicted
by the theory of driven mechanical oscillations, the original in-
crease of our oscillation amplitude and of the corresponding vx
velocity, due to the continuous input of energy, gave way to a
saturation point in both models. The noticeable difference in the
magnetic energy density profiles between the two models did
not seem to affect the dynamics of the two systems. Notably, the
internal energy density variation relative to the initial state, as
well as the kinetic energy density were similar in both models.
Additionally, considering a uniform temperature model of a tube
oscillating as a standing wave, with an initially sinusoidal pertur-
bation in the velocity, we reproduced a damping profile similar
to those in Magyar & Van Doorsselaere (2016).

For all three of our models, we reported the creation of turbu-
lence at the edges of our loop and the development of Transverse
Waves Induced Kelvin-Helmholtz (TWIKH) rolls. These rolls
resulted in extensive mixing of plasma between the inner loop
and the surrounding corona, as shown in the profiles of temper-
ature (T ) and density (ρ) at the apex. By considering an initial
temperature equilibrium between the loop and the environment,
we see that the KHI produces both a temperature increase and
a decrease in the turbulent layer. These temperature fluctuations
take place at the location of the TWIKH rolls and, as reported
by Antolin et al. (2017), they are not caused by the transfer of
energy between the different TWIKH rolls. Instead they are con-
nected to the pressure and density fluctuations caused by the
turbulence, thus being adiabatic in nature. Similar temperature
fluctuations can be observed at the footpoints of our uniform-
temperature models as well, likely caused by the large scale dy-
namics due to the waves examined.

In the two models with the uniform initial temperature, the
increase of the volume averaged energy density of the tubes was
the same in percentage to the corresponding rise in temperature.
This proved that there is indeed a wave dissipation mechanism
that causes conversion of magnetic and kinetic energy to thermal
energy. Studying the temperature profiles along the loop axis and
over time, we observed a site of heating near the loop footpoints
that is present both in the case of the driven standing wave and
the impulsively excited standing wave. The profiles of the square
volume averaged z-current density near the footpoints (three
orders of magnitude higher at the footpoint than at the apex),
indicated a strong contribution of Ohmic heating, due to numeri-
cal resistivity. A careful study of the temperature profiles for the
case of the driven oscillation indicated a slight increase of tem-
perature near the apex, were the turbulence is the strongest, and
the square z-vorticity gets its highest values for all of our mod-
els. These higher values near the apex, are due to both the higher
velocities encountered there and the creation of more prominent
smaller scale structures, such as TWIKH rolls. Further studies
must be done in order to estimate the contribution from viscous
heating there, as well as the effects of actual, physical, resistivity.
However, the greater increase of the average temperature that is
observed near the footpoints, is caused by the currents generated
at the turbulent layer. This suggests that resistive dissipation is
the main mechanism for heating (Van Doorsselaere et al. 2007).

For the model without the driver, we end up with the same
preference of resistive over viscous heating, with the highest
temperatures and z-current densities observed near the footpoint.
The observed long period oscillation of the temperature in this
case, is due to the longitudinal slow mode initiated, triggered
by initial the perturbation (Magyar & Van Doorsselaere 2016).
In the case of the driven standing waves, this mode was not
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observed in our models, probably because of the gradual en-
ergy input from the footpoints. The overall lower available en-
ergy from the standing oscillation, alongside the effects of the
observed slow mode, eventually led to a lower increase of the
loop volume averaged temperature. In comparison, despite their
slower initial heating, the driven waves produced higher tem-
peratures after the oscillations entered their assumed saturation
point.

Finally, testing the effects of temperature variation between
the flux tube and the environment for the driven oscillations, we
observed that the perturbation in the internal energy and the evo-
lution of the temperature follow different profiles over time. We
reached the conclusion, that extensive mixing between plasmas
of different temperatures can potentially hide the effects of the
wave heating mechanisms. This apparent heating (or cooling,
not considered here) is generally determined by the initial tem-
perature difference between the flux tube and the environment,
meaning that varying results should be expected for different
gradients. This has to be taken into account when dealing with
observations, since a higher calculated temperature would not
necessarily mean actual heating of the whole loop-atmosphere
system. In our model of propagating waves of a cold tube in a
hotter environment, the rise of temperature was the highest at
the apex, where the z-vorticity also took its highest values. The
resulting temperatures were far greater than those produced by
the wave heating in the model of temperature equilibrium, in
agreement with Magyar & Van Doorsselaere (2016).
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