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ABSTRACT

Context. The heating of solar coronal plasma to millions of degrees is likely to be due to the superposition of many small energy-
releasing events, known as nanoflares. Nanoflares dissipate magnetic energy through magnetic reconnection.
Aims. A model has been recently proposed in which nanoflare-like heating naturally arises, with a sequence of dissipation events
of various magnitudes. It is proposed that heating is triggered by the onset of ideal instability, with energy release occurring in the
nonlinear phase due to fast magnetic reconnection. The aim is to use numerical simulations to investigate this heating process.
Methods. Three-dimensional magnetohydrodynamic numerical simulations of energy release are presented for a cylindrical coronal
loop model. Initial equilibrium magnetic-field profiles are chosen to be linearly unstable, with a two-layer parameterisation of the
current profile. The results are compared with calculations of linear instability, with line-tying, which are extended to account for
a potential field layer surrounding the loop. The energy release is also compared with predictions that the field relaxes to a state of
minimum magnetic energy with conserved magnetic helicity (a constant α force-free field).
Results. The loop initially develops a helical kink, whose structure and growth rate are generally in accordance with linear stability
theory, and subsequently a current sheet forms. During this phase, there is a burst of kinetic energy while the magnetic energy decays.
A new relaxed equilibrium is established that corresponds quite closely to a constant α field. The fraction of stored magnetic energy
released depends strongly on the initial current profile, which agrees with the predictions of relaxation theory.
Conclusions. Energy dissipation events in a coronal loop are triggered by the onset of ideal kink instability. Magnetic energy is
dissipated, leading to large or small heating events according to the initial current profile.
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1. Introduction

It is a major challenge in astrophysics to explain how the coro-
nae of the Sun and other stars are heated to temperatures in the
millions of degrees (e.g. Browning 1991; Narain & Ulmscheider
1996; Mandrini et al. 2000; Klimchuck 2006). Although it is
widely accepted that the heating mechanism depends on the
coronal magnetic field, the details of the process remain con-
troversial. The “nanoflare” scenario (Parker 1988) has been
widely studied; it proposes that coronal heating is due to the
superposition of many small – and as yet observationally un-
detectable – flare-like energy-releasing events. The underlying
energy-release mechanism in coronal heating is thus the same
as in large flares, namely magnetic reconnection (e.g. Priest &
Forbes 2002). Magnetic reconnection converts stored magnetic
energy into thermal energy and particle kinetic energy on time-
scales that are much more rapid than global ohmic diffusion.
According to the nanoflare scenario, coronal heating is a spo-
radic rather than smooth, continuous process; this is compatible
with many observations from space-borne observatories, which
indicate that transient energy releasing events are widespread in
the solar atmosphere. However, it has not been possible to de-
termine conclusively whether the occurrence rate of nanoflares
is sufficiently high for them to provide the energy required to
heat the corona (Aschwanden 1999; Parnell 2000; Benz 2002;

Aschwanden & Parnell 2002). Indeed, in the foreseeable future
it may be difficult if not impossible to resolve this purely on
observational grounds. It is thus of considerable interest to be
able to predict a priori how frequently energy-releasing events
of different sizes occur and how much energy is released at the
different scales, and this is one of the key aims of the present
work. Here we build on a new coronal heating model proposed
by Browning & Van der Linden (2003) which allows the dis-
tribution of heating-events (nanoflares and larger events) to be
calculated ab initio.

The overall magnetic energy-release in many localised mag-
netic reconnection events, as expected to occur in complex coro-
nal magnetic field configurations, is difficult to calculate directly.
One fruitful approach is to use magnetic relaxation theory, orig-
inally developed for laboratory plasmas by Taylor (1974) but
since applied extensively to the solar corona (e.g. Heyvaerts &
Priest 1984; Browning & Priest 1986; Browning et al. 1986;
Browning 1988; Vekstein et al. 1993; Kusano & Nishikawa
1996; Lothian & Browning 2000; Zhang & Low 2003; Melrose
2004; Priest et al. 2005). In an ideal plasma, the magnetic helic-
ity, defined as

K =

∫

V

A · BdV, (1)
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is conserved. Here, B is the magnetic field and A the vector po-
tential, so that B = ∇ × A. When the volume of interest has
magnetic flux crossing the boundaries, as is the case for solar
coronal loops since field lines interlink the photosphere, the rel-
ative helicity must be used since the simple definition above is
not unique (gauge dependent). We use the convenient formula-
tion of Finn & Antonsen (1985).

Relaxation theory postulates that in a highly conducting
plasma, in the presence of small-scale magnetic reconnection,
the global magnetic helicity survives as an invariant, whereas
magnetic energy is dissipated by reconnection. In other words,
helicity dissipation is much weaker than energy dissipation
(Berger 1984; Taylor 1986); a simple justification for this, which
will be useful in interpreting the results presented later, is as fol-
lows (Browning 1988). It may be easily shown from the MHD
equations that the resistive dissipation rates of magnetic energy
and helicity are

dK

dt
= −2

∫

η( j · B)dV,
dW

dt
= −
∫

η( j · j)dV, (2)

where W is the magnetic energy, j = (∇×B)/µ0 the current den-
sity, µ0 the magnetic permittivity and η the resistivity. Assume
that dissipation occurs mainly in thin current layers of width l,
with l ≪ L (where L is the global length scale), characteristic of
magnetic reconnection, so that j ∼ B

µ0l
. Hence

dK

dt
∼ −(2ηB2L3)/(µ0l),

dW

dt
∼ −(ηB2L3)/(µ2

0l2), (3)

so that

(1/K)dK/dt

(1/W)dW/dt
∼ l

L
≪ 1. (4)

Thus the dissipation of helicity is much slower than that of en-
ergy. Note that here we have neglected driving terms, which in-
ject both energy and helicity through boundaries. Helicity injec-
tion due to photospheric footpoint motions can indeed be very
important in the solar corona (e.g. Heyvaerts & Priest 1984;
Berger 1984), but is not discussed further here as it is absent in
the model problem that is numerically simulated here, although
helicity (and energy) are injected during the slow evolution lead-
ing to the establishment of the unstable equilibrium (Browning
& Van der Linden 2003). For a more detailed discussion of the
role of helicity in magnetic reconnection, see Ji (1998).

If a magnetic field is disrupted, it tends to relax towards the
state of minimum magnetic energy subject to the constraint of
helicity conservation. This minimum energy or relaxed state is
the well known linear or constant-α force-free field

∇ × B = αB, (5)

where

α =
µ0 j//

B
, (6)

(Taylor 1974). Such relaxation has recently been directly ob-
served in the solar corona (Nandy et al. 2003). Any energy dif-
ference between the initial field and the relaxed state is usually
assumed to be dissipated as heat. During the relaxation process,
some magnetic energy might initially be converted into kinetic
energy, but this will subsequently be dissipated by viscosity or
other processes (this is implicit in relaxation theory since the re-
laxed state is static).

In order to apply these ideas to solar coronal heating, con-
sider that the coronal magnetic field is stressed by photospheric

footpoint motions whose timescale is slow compared with an
Alfvén travel time along the field lines. The field thus evolves,
in general, into a nonlinear force-free state, with some excess
magnetic energy. If this is disrupted in some way, it will then
relax to the lower energy constant-α force-free field, releasing
any free energy as heat (Heyvaerts & Priest 1984). The cycle
of energy build-up and relaxation repeats, giving heating by a
stress-and-relax process. One of the difficulties of most previous
relaxation-based coronal heating models was that the energy re-
lease depends on the relative time-scales of the relaxation and
driving processes. This leaves a question: for how long does en-
ergy build-up as the field is stressed by footpoint motions, be-
fore a heating-event occurs? Relaxation theory itself cannot an-
swer this question. An answer was suggested by Browning &
Van der Linden (2003), who proposed that a heating-event is
triggered by the onset of ideal MHD instability.

The reason for choosing ideal, rather than resistive, instabili-
ties is that, in very highly conducting coronal plasma, only ideal
instabilities have sufficiently rapid timescales to be relevant to
flare onset or coronal heating. Naively, it might seem that ideal
instabilities intrinsically cannot dissipate energy and are thus ir-
relevant as part of a heating process. However, there are clear
indications from 3D MHD simulations in cylindrical loop mod-
els that in its nonlinear phase, the ideal kink instability generates
strong current sheets in which fast, driven magnetic reconnec-
tion dissipates energy rapidly in the presence of small (but non-
vanishing) resistivity (e.g. Baty & Heyvaerts 1996; Velli et al.
1997; Arber et al. 1999; Baty 2000). Plasma flows generated by
the growing kink mode act as a driver for reconnection, creating
current sheets and pushing together oppositely directed fields.
It is likely that the time-scale of this reconnection process will
scale as the Alfvén time. Indeed, reconnection in the nonlinear
phase of an ideal kink has been proposed as a flare mechanism,
and it is a natural consequence of the nanoflare hypothesis to
propose the same mechanism for coronal heating.

The coronal heating process proposed by Browning &
Van der Linden (2003) is thus as follows. The coronal field
is stressed by photospheric footpoint motions, evolving quasi-
statically through a sequence of equilibria until it becomes ide-
ally unstable. At this point, a dynamic heating-event ensues,
at the end of which the field attains the minimum energy or
constant-α state, with the same helicity but lower energy. The
heat released during the event may be calculated as the differ-
ence between the energies of the stressed state and the relaxed
state – which is always a positive quantity, since the latter is a
minimum energy state. The value of α for the relaxed state is
determined by the helicity conservation constraint. The process
is investigated quantitatively for a simple model problem con-
sisting of a cylindrical coronal loop magnetic-field of length L
and radius R, with the photosphere represented by boundaries at
the ends of the cylinder z = 0, L. The initial nonlinear force-free
equilibrium, established by slow rotations of the photospheric
footpoints, is given by a two-layer model with a piece-wise con-
stant profile of α. Thus, we have

∇ × B = α(r)B, (7)

where

α = α1, r < Rc, α = α2, r > Rc. (8)

The field components are continuous across the layer boundary
r = Rc although the current is discontinuous there. This formu-
lation of the initial force-free state provides a convenient two-
parameter family, which can approximate to a wide range of cur-
rent profiles (Melrose et al. 1994). The linear stability threshold
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Fig. 1. The marginal stability boundary (solid line) for the ideal m =
1 kink mode in the (α1,α2) plane as calculated with the CILTS code.
Here we used Rc = 0.5, aspect ratio L/R = 20 and a rigid wall boundary
at the edge of the loop (r = R = 1). The stable region is to the left of
the line. The dotted and dashed curves show the successive zeroes at
r = R of Bz and Bθ, respectively, while the vertical dashed lines indicate
for which values of α1 either of the field components are zero at the
transition point r = Rc.

for ideal m = 1 kink instability was calculated using the CILTS
code (see Van der Linden & Hood 1999 for details about the
method), and is reproduced here in Fig. 1.

For each point on the marginal stability curve, the energy re-
lease during helicity-conserving relaxation to a constant-α state
(a point on the diagonal of Fig. 1) is determined. It is found that,
for the main branch of the stability curve, heating-events of a
wide range of sizes are obtained, ranging over about 3 orders-
of-magnitude. The energy release may be usefully expressed

δW =
1

µ0

ψ2
0

L

R2
δW∗ =

π2LR2B2

µ0

δW∗, (9)

where ψ0 is the loop flux, B a typical magnetic field and δW∗

is the dimensionless energy per unit length, which varies from
about 0.001 to 1 depending on where the marginal stability curve
is crossed. It is expected that the process will repeat: thus, the
relaxed equilibrium will be stressed by the footpoint motions,
evolving again quasi-statically until the instability threshold is
again crossed and another heating-event ensues. Thus, coronal
heating proceeds by a series of discrete transient heating-events
or “nanoflares”. The precise distribution of event sizes depends
on the driving motions: but it is clear that the stability curve is
most likely to be crossed at or near its nose, corresponding to a
small heating-event, whereas larger events will be rarer.

The primary aim of the present paper is to compare the re-
sults of the Browning & Van der Linden (2003) model, which
uses relaxation theory to determine the energy release, with the
results of a 3D numerical simulation solving the full nonlin-
ear MHD equations. However, this investigation should not be
seen merely as a test of relaxation theory, with the code used
for verification (or otherwise): the numerical code itself also has
limitations, notably it is unable to access the very large mag-
netic Reynold’s numbers and correspondingly very wide range
of length-scales, from current sheet width to global scales, that
are expected to be found in the real solar corona. On the other
hand, the numerical simulations do provide valuable information
about the dynamics of relaxation which is beyond the scope of
relaxation theory.

In performing this comparison, several aspects of coronal
physics are elucidated, which are of intrinsic interest and rel-
evance. Firstly, we improve the ideal linear stability map of a
line-tied solar coronal loop calculated earlier, by relaxing the ef-
fects of the outer conducting wall. Secondly, better understand-
ing is obtained of the nonlinear kink instability, for a range of
current profiles. Thirdly, the effects on the energy available by
relaxation of a range of current profiles and boundary positions
are explored.

The details of the method and the model problem are out-
lined in Sect. 2. Extensions to the theory, both the linear stability
results and the relaxation model, including an investigation of
varying the boundary position, are presented in Sect. 3. The re-
sults of the numerical simulation are presented in Sect. 4, and
compared both with the predictions of linear stability theory and
with relaxation theory as appropriate. Finally, conclusions are
outlined in Sect. 5.

2. Numerical details and initial equilibria

We carry out the nonlinear simulations using a
3D MHD Lagrangian-remap code, Lare3d, which is de-
scribed fully in Arber et al. (2001). The code solves the MHD
equations given by,

∂ρ

∂t
= −∇ · (ρu), (10)

∂

∂t
(ρu) = −∇.(ρuu) + 1

µ0

(∇ × B) × B − ∇P, (11)

∂B

∂t
= ∇ × (u × B) − ∇ ×

(

η
∇ × B

µ0

)

, (12)

∂

∂t
(ρǫ) = −∇.(ρǫu) − P∇.u + η j2, (13)

with specific energy density,

ǫ =
P

(γ − 1)ρ
, (14)

where u is the velocity, P the thermal pressure, γ = 5/3 the ratio
of specific heats and ρ the mass density. We ignore the effects of
gravity, thermal conduction, radiation and heating.

The equations are made dimensionless by setting

r −→ r∗ r̃, B −→ B∗B̃, u −→ vAũ,

P −→ P∗P̃, t −→ t∗ t̃, ρ −→ ρ∗ρ̃,

where a tilde denotes a dimensionless variable. vA is the Alfvén
speed given by vA = B∗/

√
µ0ρ∗, t∗ = r∗/vA is the Alfvén transit

time, P∗ = B∗2/µ0. Here, r∗ = R, the loop radius, and B∗ = B1,
the initial axial field at r = 0. Thus, we obtain dimensionless
equations and removing the tildes from the dimensionless quan-
tities, they reduce to Eqs. (10)−(14) with µ0 = 1.0. The current
is in units of B∗

0
/µ0r∗. Since the resistivity which we will take is

not uniform we keep a normalised η explicitly in the equations
by taking η∗ = µ0r∗vA. The choice of the form of the resistivity
follows Arber et al. (1999). We take, in dimensionless variables,

η = η0MAX

(

0,
| j|
jcrit

− 1

)

; (15)

the critical current at which “anomalous resistivty” switches on
is jcrit = 5 (in dimensionless units)and η0 = 0.0001; We limit the
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Fig. 2. Plots of Bz (unbroken line) and Bθ
(dashed line) against radius for cases 1 (a), 2
(b), 3 (c), 4 (d), 5 (e) and 6 (f).

resistivity so that it cannot exceed 10−3, and there is no back-
ground resistivity.We calculate the relative helicity by making
use of Eq. (2) above, which is directly integrated in time, with
the initial value given by an exact analytical calculation for the
helicity of the initial equilibrium (taking account of the external
potential field, which contributes to the helicity through its inter-
linkage with loop field; with a square boundary corresponding to
the numerical region).

The Lagrangian step is fully 3D, uses the predictor-corrector
method and artificial viscosity. The remap step uses Van Leer
gradient limiters (Van Leer 1997), applied to the density, specific
energy density, velocities and magnetic fluxes to ensure that it is
monotonicity preserving. Furthermore, Lare3d uses Evans and
Hawley constrained transport (Evans & Hawley 1988) to guar-
antee that if ∇ · B is initially zero (which we ensure it is) it is
maintained at zero to machine precision throughout the evolu-
tion. The numerical grid is staggered so that the density, pres-
sure and specific energy density are defined at the cell centres;
the velocities at the vertices; the magnetic field components at
the cell faces and the current components along the edges of the
numerical cell. | j| = ( j2x+ j2y+ j2z )1/2 and the resistivity are defined
at the same vertices as the velocities. The staggered grid reduces
the amount of averaging required in some of the calculations,
thus reducing the associated error, and removes checkerboard
biasing.

For each of the cases which we have investigated we have
taken a computational domain with sizes Lx = Ly = 3 and
Lz = 20. Each equilibrium is represented as a loop of ra-
dius 1 and, therefore, each loop has an aspect-ratio of 20, as in
Browning & Van der Linden (2003). We have chosen the size of
the box in the x- and y-directions such that the boundary condi-
tions should not significantly affect the evolution of the loop. We
impose line-tied boundary conditions in the z-direction. We run
each simulation on an 812 × 160 grid and carry out simulations
without imposed resistivity and with imposed resistivity.

The initial field is taken to be in unstable equilibrium.
The equilibria are defined as described in Browning &
Van der Linden (2003) and by Eq. (7) so that we have;

Bz = B1J0(α1r), Bθ = B1J1(α1r), (r ≤ Rc), (16)

Bz = B2J0(α2r) +C2Y0(α2r),

Bθ = B2J1(α2r) +C2Y1(α2r), (Rc < r < 1.0), (17)

where

C2 = B1

J0(α1Rc)J1(α2Rc) − J1(α1Rc)J0(α2Rc)

∆
, (18)

B2 = B1

J1(α1Rc)Y0(α2Rc) − J0(α1Rc)Y1(α2Rc)

∆
, (19)

and,

∆ =
2

πα2Rc

· (20)

We take Rc = 0.5, B1 = 1 and in the rest of the box impose a
potential field that matches the equilibrium field at r = 1.0. Thus
the initial fields are continuous throughout the numerical box,
while the α profile is piecewise constant. The six cases that we
have investigated are (see Fig. 2): (1) α1 = 2.3 and α2 = 0.01;
(2) α1 = 3.0 and α2 = −3.5; (3) α1 = 0.01 and α2 = 2.3; (4) α1 =

4.9 and α2 = 0.01; (5) α1 = 2.3 and α2 = 1.5; (6) α1 = 2.5
and α2 = 1.69; we focus most attention on the first three. These
equilibria are chosen so that all are initially linearly unstable,
but are either fairly close to the original marginal stability curve
calculated in Browning & Van der Linden (2003), reproduced in
Fig. 1, or to the newly calculated stability threshold, described
below. We apply a small velocity perturbation to trigger the kink
instability and then investigate how the instability evolves and
how the loop relaxes.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079192&pdf_id=2
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3. Linear stability and relaxed state calculations

Before presenting the results of these 3D nonlinear numer-
ical simulations, we first revisit the linear stability analysis
of the equilibria described above. The results in Browning &
Van der Linden (2003) assumed a cylindrical conducting shell at
the outer boundary of the loop (r = 1). However, the nonlinear
code, being in Cartesian rather than cylindrical coordinates, has
a rectangular outer conducting-shell at x = y = 0 and x = y = 3,
with a potential field in the region between the “loop” (with cen-
tre located at x = y = 1.5 and boundary at r = 1) and the wall. As
the linear stability code does not accommodate a square bound-
ary, we consider instead a loop in r < 1 surrounded by a potential
field with an outer cylindrical conducting-wall at r = Rw > 1.
By increasing Rw until its effects are insignificant, it should be
possible to match the nonlinear simulation where the wall is at
a sufficiently large distance that it has little effect at least in the
initial stage of the development of the instability. Clearly this
configuration must be less stable than the original model. It is
also a better representation of the solar corona, since the effect
of unrealistic conducting boundaries is weakened. The effect of
the size of a potential field region surrounding a twisted force-
free loop has also been considered by Baty (2001).

The ideal linear stability of a loop with a surrounding po-
tential field is studied using the CILTS code, which uses an it-
erative process to find the eigenvalue γ2 of the linearised MHD
equations. Figure 3 shows the growth-rate γ for the cases stud-
ied in detail numerically (see next section), as a function of the
wall distance Rw. It is evident that the wall has little effect on
the growth-rates (so that the stability is the same as if the wall
were at infinite distance), for Rw > 1.5 and certainly for Rw ≈ 3.
We thus calculate stability properties for Rw = 3 for comparison
with the nonlinear simulations. Note that the square boundary of
the the numerical simulations lies between the inscribed circles
Rw = 1.5 and the circumscribed circle Rw = 3, so for detailed
comparisons of growth-rates and so on, both extremes should be
considered.

Unstable eigenfunctions for the current profiles studied are
shown in Fig. 4. Although we used cylindrical coordinates in
the calculations, the eigenfunctions have been transformed into
cartesian coordinates for ease of comparison with the nonlin-
ear simulations. We plot Vx(x, z) along a plane cutting the loop
along its axis. The linear eigenfunctions clearly show the differ-
ent structures of the unstable modes in the equilibria selected.
For cases 1 and 2 the eigenfunction is naturally confined to the
non-potential loop field, which explains why the distance to the
outer wall has virtually no influence on the growth-rate (see
Fig. 3), even for small values of Rw.

The marginal stability curve is found by starting with a
known unstable point in (α1, α2) parameter space, and then scan-
ning until a first stable point is found. Due to symmetry, the
boundary only needs to be calculated for positive α2 and the
complete map is obtained by mirroring to get negative values.
The results are shown in Fig. 5. It should be noted that, as ex-
pected, the stable region is smaller than the orginal stable region
as calculated in Browning and Van der Linden (Fig. 1), and is
fully contained within it. The first stable region in Fig. 5 is fully
closed: in particular, the unstable “nose” in Fig. 1 and the sta-
ble region for large values of α2 near the α2 axis (which was
actually a region of weak instability) have disappeared. The test
cases for nonlinear simulation are marked on the diagram: it may
be seen that, with the newly calculated stability boundary, some
cases are now deeply within the unstable region. In order to fa-
cilitate the interpretation of the stability map, we have added

Fig. 3. Growth-rate γ as a function of Rw for the six cases studied in this
paper. Labels on the graphs correspond to the case number attributed in
the text.

Fig. 4. Linear eigenfunctions for the six cases studied. We plot Vx(x, z)
along the plane y = 0, which contains the cylinder axis r = 0. The
figures have been placed in the order of the case number.

curves showing reversals, within the loop radius R, of axial field
Bz (dashed lines) and of azimuthal field Bθ (dotted lines). It has
been shown that the energy principle may be written such that
the only destabilising term is proportional to αBzBθ (De Bruyne
& Hood 1992), so that crossing one of these reversal lines takes
the equilibrium into a different stability regime.

The final α value and the energy release, according to relax-
ation theory, will also be affected by the addition of a potential
field layer and the position of the external boundary. Thus, we
re-calculate the energy difference between the initial field and
the minimum energy constant-α field, including the effects of a
potential field layer in the initial field between the loop bound-
ary r = R and the conducting wall r = Rw. The relaxed state
has a single value of α in the whole region (r < Rw); this value
is calculated by noting that both helicity K and total axial flux
ψw = ψ(Rw) are conserved during relaxation. Note that the he-
licity is also affected by the potential field layer surrounding the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079192&pdf_id=3
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Fig. 5. Stability map for the same loop model as in Fig. 1, but now
surrounded by a potential field bounded by a rigid wall at Rw = 3. Solid
black curves mark the boundary between stable and unstable regions.
The six cases studied in detail in this paper are also indicated.

loop: even though an isolated potential field has zero helicity, the
potential field region contributes to the total helicity through the
interlinkages of its fluxes with the loop fluxes. The energy re-
lease depends quite strongly on the wall position, both because
the net volume is increased as the wall radius increases and be-
cause the relaxed state α value decreases: in fact, if the wall were
moved to infinity, the field would relax to a potential state and
all the free energy of the initial loop would be released. In order
to compare with the nonlinear results, we take Rw = 1.5, giv-
ing a circle inscribed within the square numerical boundary (the
missing “corner” regions are of small volume). In dimensionless
units, taking (as in the nonlinear numerical simulations), the ax-
ial field on axis B1 = 1, the energy release δW per unit length
is 0.0338 for Rw = 1 (no potential field region, as in previous
work) and increases to 0.089 for Rw = 1.5, for the current profile
of test case 1 (α1 = 2.3, α2 = 0.01); the relaxed state α values
are 1.124 (no potential field region) and 0.5703 (potential field
out to Rw = 1.5.)

4. Results

We present results from the nonlinear numerical simulations for
the six test cases, focussing on cases (1), (2) and (3), and com-
pare with the linear stability results and relaxation theory. These
three cases are close to the marginal stability curve with an outer
potential layer, descibed in the previous section while the re-
maining cases are well inside the unstable region (but are close
to the original stability curve shown in Fig. 1). This is reflected
in the magnitude of the growth rates of the various cases.

4.1. Case 1: α1 = 2.3 and α2 = 0.01

Isosurfaces of current at successive times are shown in Fig. 6.
The loop shows signs of growing instability by t = 100τA,
where the loop can be seen to be kinked (Fig. 6, left). We es-
timate the growth-rate of the instability from the kinetic energy
in the numerical results by taking d(log(K.E))/dt, (see Fig. 7).
This gives us an estimate of γ ≈ 0.06 for the initial linear in-
stability, which agrees very well with the linear result which is
likewise γ ≈ 0.05 for high values of Rw. The shape of the helical
deformation nicely matches the linear eigenfunction (Fig. 4).

A current concentration starts to form at t = 110τA at ap-
proximately r = 0.75 and can be seen as a helical ribbon

Fig. 6. Isosurfaces of current at | j| = 1.5 at t = 100τA (left hand side)
and t = 124τA (right hand side) for case (1).

Fig. 7. Plot of log kinetic energy as a function of time and the estimated
growth rates.

wrapped around the cylinder by t = 124τA (Fig. 6, right). For
this case we use the form of the resistivity discussed earlier with
jcrit = 6 and η0 = 1 × 10−4. The current exceeds this critical
value at approximately t = 130τA and Fig. 8e shows that the
ohmic heating increases from this time showing that the resistiv-
ity begins to affect the evolution of the loop.

As we have a high concentration of current in this period, a
resistive plasma reconnection occurs. The effects of this can be
seen clearly in the energy plots (Fig. 8). Just before t = 200τA

the magnetic energy begins to drop rapidly whilst the kinetic
energy suddenly increases and then peaks and decreases more
slowly. This behaviour is characteristic of reconnection, the ki-
netic energy increase being associated with fast reconnective
outflows. Notice that there appear to be a series of reconnection
episodes, with several peaks in kinetic energy of varying mag-
nitudes. We continue the simulation until t = 400τA by which
time the magnetic energy is beginning to plateau, while the cur-
rent is still decreasing and is dropping below the critical value
for the resistivity to be triggered. The helicity (Fig. 8f) varies in

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079192&pdf_id=5
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P. K. Browning et al.: Numerical simulations of heating by nanoflares 843

Fig. 8. Plots of a) magnetic energy, b) kinetic
energy, c) internal energy, d) maximum current,
e) Ohmic-heating and f) change in helicity as
functions of time for case (1). The initial helic-
ity, calculated analytically, is 24.935.

a similar manner to the ohmic heating but its variation is rela-
tively weaker. The increase in helicity is due to the large neg-
ative current spikes (see Fig. 6), thus giving a positive change
in K according to Eq. (2).

We note that the relative change in helicity (δK/K ∼
0.0005) is much less than the relative change in magnetic en-
ergy (δW/W ∼ 0.03). This is entirely consistent with the under-
lying hypothesis of relaxation theory. Furthermore, from Eq. (4)
we see that the change in helicity relative to the change in en-
ergy should scale like l/L; with the limited grid resolution avail-
able to the 3D code, this can be no less than 1/81 in the present
simulation, whereas we might expect l/L ∼ S −1/2, for exam-
ple, which will be far smaller at large S in the real corona. This
shows that relaxation theory works best in very high magnetic-
Reynolds-number plasmas, which should indeed exist in the so-
lar corona but which cannot be accessed by present day numeri-
cal simulations.

The cumulative ohmic-heating (Fig. 8e) is almost constant
from t = 300τA suggesting that the resistivity is too low to allow
further reconnection or diffusion to take place except at isolated
locations. On the other hand, the peak current and kinetic en-
ergy still appear to be decaying at this time, indicating that the
relaxation process is not yet complete.

How close is the plasma to the final constant-α relaxed state?
Relaxation theory predicts a constant-α solution, valid in the
central part of the loop, of the form

Bz = 0.7801J0(0.5703r), Bθ = 0.7801J1(0.5703r).

The value of α is determined by conservation of helicity and
total axial flux from the initial state. Figure 9 shows the axial
magnetic-field component, Bz as a function of x at y = 0 and z =
0 at the final time of t = 400. The long dashed curve is the initial
axial field. The solid curve is the simulation result at t = 400,
while the dotted curve is the predicted constant-α field based
on relaxation theory with α = 0.5703 and Bz(0, 0, 0) = 0.78.
The short dashed curve shows the constant-α solution based on
α = 0.85 and Bz(0, 0, 0) = 0.81. This provides a good fit with
the simulation result. However, it should be noted that the axis
has been displaced by a distance of approximately −0.2. This

Fig. 9. Plots of Bz(x, 0, 0) (left) and By(x, 0, 0) for case (1) at t = 0 (long
dashed) and t = 400 with results from the simulation (solid), predicted
constant α (dotted) and best fit constant α short dashed).

is a remnant of the initial kink instability which displaces the
axis in a helical manner. It is this displacement that has not yet
relaxed. Note that the current profile in the final state still had
spikes and is not completely flat (as indicated by the fairly high
value of jmax shown in Fig. 8d) – but the fields are well fitted by
a constant value of α which averages out the spikes as magnetic
field is essentially an integral of the current.

It would be interesting to follow the time evolution further,
but at present practical limitations due to an accumulation of
numerical errors prohibit this. This will be a subject of future
work.

4.2. Case 2: α1 = 3.0 and α2 = −3.5

Case (2) is different from the others in that there is a region of
reversed current surrounding the central core. The pitch of the
helical instability of the loop is now in the opposite sense. The
linear instability starts to develop around t = 80τA. The esti-
mated initial growth-rate from the simulations, γ = 0.15, differs

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079192&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079192&pdf_id=9
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Table 1. Predicted and numerical (fitted) values of δW, α and Bz(0, 0, 0), and the offset of the cylindrical axis, for the 6 simulations.

Case Pred. δW Actual δW Pred. α Fit α Pred. Bz Fit Bz Offset

1 1.7793 1.2804 0.5703 0.85 0.78 0.81 –0.2
2 9.0652 5.6677 –0.7521 –0.95 0.5954 0.659 0
3 1.5859 1.2650 1.17 1.4 1.0086 1.05 –0.1
4 3.196 3.8446 2.4045 2.4 0.4708 0.456 –0.47
5 1.4034 0.9571 1.413 1.413 0.8075 0.8075 –0.05
6 1.4236 1.1243 1.6135 1.5135 0.7950 0.81 –0.03

Fig. 10. Plots of magnetic energy (top, left hand side), kinetic energy
(top, right hand side) internal energy (bottom, left hand side) and peak
current (bottom, right hand side) for case (2).

quite significantly from the linear growth-rate from CILTS, as
discussed in Sect. 4.7 below.

The magnetic energy drops by around 5.7 units – about 20%
of the initial value – and then remains more or less constant;
while the kinetic energy increases to a peak value around the
time t = 110τA, before rapidly dropping down to a value below
its initial value (Fig. 10). The release of a higher fraction of the
initial magnetic energy is expected in this case, since the stronger
variations in α are associated with increased free magnetic en-
ergy. After the instability and the current-sheet formation, the
maximum current settles down to a value below the critical
value. Hence, any subsequent evolution will rely on numerical
diffusion to reach a new equilibrium. The helicity changes only
evolves during the linear and nonlinear instability stage and stays
at a constant value after the kinetic energy starts to decay. The fi-
nal field profiles are well fitted with a constant-α force-free field,
similarly to the method described for Case (1) above, and the fit-
ted α value−0.95 is quite close to the predicted value of −0.7521
(see Table 1).

4.3. Case 3: α1 = 0.01 and α2 = 2.3

This equilibrium consists of a nearly untwisted central core, sur-
rounded by a highly twisted sheath. This is the least unstable of
the cases. In fact, whilst it indeed lies in the unstable region of
Fig. 5, it would be stable if Rw were reduced to 1.5 (see Table 2)
and hence is stable according to the original stability model with
a conducting wall at the loop boundary (Fig. 1). This sensitiv-
ity to the wall postion may be due to the unusual shape of the
most unstable mode (Fig. 4), which is not well-confined radi-
ally. The growth-rate of the instabiity is thus small (Table 2).
A helical current-sheet has formed by t = 80τA, as shown in

Table 2. Predicted (linear stability) values and estimates from numerical
simulations for growth-rate γ.

Case Linear γ (Rw = 3.0) Linear γ (Rw = 1.5) Simulation γ

1 0.049 0.047 0.06
2 0.062 0.060 0.15
3 0.048 stable 0.035
4 0.202 0.194 0.15
5 0.155 0.136 0.13
6 0.180 0.152 0.15

Fig. 11. Again this has the same structure as predicted by the
linear instability calculations. However, the instability is not so
clearly identified in the kinetic energy plot in Fig. 12b. In this
case there are several periods when the kinetic energy grows al-
most exponentially. (The periods of exponential growth and the
growth-rates are identified from a logarithmic plot, similar to
Fig. 7.) The first case, from t = 25τA to 45τA has a growth-rate
of about 0.035. The linear growth-rate is 0.04776. This mode ap-
pears to saturate and the kinetic energy drops before rising again
in the time interval [60, 85], with a faster growth rate of 0.12.
The kinetic energy again saturates and drops before rising for a
final time at t = 100τA until t = 120τA. For this growth-period,
the growth-rate is 0.0175. Multiple kinetic energy peaks are ob-
served for other cases, but not so strongly as here, and only this
case has the first weak “precursor” peak in kinetic energy, appar-
ently corresponding to the most unstable linear mode, followed
by a much stronger peak. Figure 12a shows that the magnetic en-
ergy drops during the instability by about 1.26, but there appears
to be a continual slow decay from t = 200τA until the end of the
simulation.

The maximum current (Fig. 12c) shows a sustained growth
right from the start of the simulation (exceeding the critical value
around t = 60τA) until the main peak in the kinetic energy is
reached around t = 80τA. Although the maximum current starts
to drop, it never falls below the critical value of 6.0 and so mag-
netic diffusion will continue till the end of the simulation.

Finally, we note that the change in the helicity is again neg-
ative.The helicity starts to change around t = 70τA and is fin-
ished around t = 150τA. Again it is worth noting that the relative
change in helicity is about 9 × 10−4, while the relative change in
magnetic energy is 2.4 × 10−2. Hence, relaxation theory should
give a reasonable description of the final state.

4.4. Case 4: α1 = 4.9 and α2 = 0.01

The fourth case is highly unstable compared with the first three,
as confirmed by the re-calculated stability threshold (Fig. 5). In
the original calculation without a potential-field layer, this equi-
librium was close to the stable “tongue” region which projected
into the unstable region, which was why it was chosen. The loop
already shows signs of being kinked by t = 10τA (Fig. 13) which
is much quicker than for case (1) and the instability appears to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079192&pdf_id=10
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Fig. 11. Left: isosurfaces of the loop at | j| = 2.5 at t = 80τA for case (3).
Right: isosurfaces of the loop at | j| = 0.75 at t = 56τA for case (5).

Fig. 12. Plots of magnetic energy (top, left hand side), kinetic energy
(top, right hand side) internal energy (bottom, left hand side) and peak
current (bottom, right hand side) for case (3). The initial helicity, calcu-
lated analytically, is 59.920.

evolve faster. The estimated growth-rate is 0.15, which again
agrees well with the linear results (γ ∼ 0.2), and explains why
the instability evolves much more rapidly than for case (1) where
the growth-rate is three times slower.

This equilibrium has some features that are very different
from those of the other equilibria investigated in this paper. A
comparison of the isosurface shown in Fig. 13 with other isosur-
faces in this paper reveals that it has a different structure from
the others, with several kinks. This is consistent with the linear
eigenfunction of this equilibrium as shown in Fig. 4. Note that
both have 6 peaks in the axial direction (4 larger, and 2 smaller).

Another unique feature of this case is that the final state,
when the field is close to being relaxed to equilibrium, has a
significantly helical character (the cylindrical axis is displaced
by 0.47, see Table 1). This is in accordance with relaxation the-
ory, which predicts that, if the initial helicity exceeds a critical

Fig. 13. Isosurfaces of the loop at | j| = 1.5 at t = 24τA (left hand side)
and t = 32τA (right hand side) for case (4).

value, the minimum-energy state is helical rather than axisym-
metric (Taylor 1974; Browning & Van der Linden 2003). The
criterion can be expressed most simply in terms of the relaxed
state α value, calculated assuming axisymmetry and normalised
to the wall radius: if this exceeds 3.11, the minimum-energy
state is in fact helical. For case 4, α ∗ Rw = 3.608 and hence
a helical state is predicted. Note that the initial helicity is 4.822,
which seems to be low compared with the helicity of other cases.
However, the more appropriately normalised helicity is K/ψ2

w

(evaluating the net axial flux ψw at the outer wall Rw) which is
larger than the other cases due to the low value of ψw = 0.1710.
Relaxation theory would further predict that the normalisedα for
the relaxed helical state would be 3.11 (with any excess initial
helicity increasing the magnitude of the helical distortion rather
than increasing α). The fitted value is somewhat larger than this
(see Table 1); however, this has been calculated on the basis of
fitting a shifted cylindrical model. Also, this field is not fully
relaxed by the end of the simulation.

4.5. Case 5: α1 = 2.3 and α2 = 1.5

Cases (5) and (6) are just inside the upper boundary of the orig-
inal marginal stability curve (Fig. 1), but are well inside the in-
stability region when a potential field layer is included (Fig. 5).
Case (5) becomes unstable by t = 50τA (see Fig. 11) and the
kink instability has a growth-rate of approximately 0.25. During
the non-linear phase of the instability a high current concentra-
tion builds up, starting to do so at t = 60τA. Again, this structure
agrees well with the linear eigenfunction shown in Fig. 4.

4.6. Case 6: α1 = 2.5 and α2 = 1.69

Case (6) becomes noticeably kinked by t = 20τA with a growth-
rate of approximately 0.14; the current isosurfaces are similar to
Case (5).

The linear growth-rate, for Rw = 3, is 0.18. A concentration
of current begins to build up as a helical ribbon wrapped around
the kinked central current at t = 60τA.
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The resistivity is triggered just after t = 60τA, when the criti-
cal current is reached. The magnetic energy drops a little and the
kinetic energy increases and then peaks and begins to fall. The
current plateaus while the cumulative ohmic heating and the he-
licity rise.

4.7. Overview of cases 1 to 6

Having seen the results for all six test cases, we now consider
how the energy release and other quantities agree with the pre-
dictions of relaxation theory. This is given in Table 1. which
shows the predicted values of δW, α and the axial field strength,
Bz(0, 0, 0) based on relaxation theory and the actual change in
magnetic energy and fitted values from the simulations. The off-
set (final column) represents the displacement of the cylindrical
axis from the original axis. It should be noted, however, that only
cases (1−3) have been run until relaxation is fairly complete.
On the other hand, cases (4−6) are linearly more unstable and
the kink instability develops much faster for them. For all cases,
there is quite good agreement between the numerical results and
relaxation theory, as summarised in Table 1. For the majority of
cases, the numerical energy release is less or significantly less
than that predicted by relaxation theory, which is entirely to be
expected as the numerical simulations do not attain a fully re-
laxed state. Case (4) is unusal in that it releases slightly more
energy than predicted. However, both the orders-of-magnitude
and the trends are correct. There are also some other poten-
tial sources of small discrepancies: the geometries are slightly
different (square boundary for numerics, cylinder for relaxation
calculation); the numerical resolution of the simulation is quite
coarse and the Lundquist number is not very high. Also, note that
there is uncertainty in the correct choice of the boundary (Rw) for
the relaxed state model: the relaxation may not develop over the
whole volume within the external conducting boundary, but may
be confined to a smaller region in the vicinity of the loop. This
will lead to the actual energy release (numerical) being less than
predicted, which holds for all cases except Case (4).

The results for the α values and the values of the axial field
on the axis are summarised in Table 1. Cases (4)−(6) are really
very close to the values of α and Bz(0, 0, 0) predicted by relax-
ation theory, with cases (1)−(3) still requiring some more relax-
ation. In addition, the best fit to the final state often is displaced
by a small amount from the axis. This offset is listed in Table 1.
The value of 0.03 in case (6) is close to the size of the grid and
is probably not too significant. The offset is almost certainly left
over from the kink instability that always displaces the magnetic
axis in a helical manner and cannot be predicted from relaxation
theory except when the values of α are so large that the relaxed
state is no longer cylindrical but helical in nature. Only cases (1)
and (4) show significant deviation from the initial state, suggest-
ing that the final magnetic-field has a slight helical structure in
these cases; as discussed above, this is in agreement with relax-
ation theory for case (4), which indeed has the largest offset.

The linear growth-rates can be compared with the estimated
growth-rates calculated from the logarithm of the kinetic energy
during the first initial rise of the instability and current sheet for-
mation, as seen in Table 2, which shows predicted and numerical
values of the growth-rate γ. However, in some cases the kinetic
energy reaches a first maximum, drops and then rises a second
and even third time. We do not use the growth-rates of these
cases in this comparison. The numerical simulation were simply
given an initial helical disturbance with a fairly localised radial
extent. This, of course, does not match the most unstable mode
and time is required for that mode to emerge. If there is more

than one unstable mode, it may be that the fastest growth-rate is
not correctly predicted. As discussed earlier, the square bound-
ary of the numerical box lies in between circles of radii Rw = 1.5
and Rw = 3. Note that, in some cases, the linear growth-rate
is affected by the choice of Rw within this range; these are the
cases in which the eigenfunctions (Fig. 4) have signicant radial
extent and are not confined to vicinity of the current-carrying
loop. Case 2 seems to be somewhat anomalous, but in all other
cases, the linear growth rate closely matches the estimated nu-
merical value. All things considered, the agreement is actually
very good.

5. Discussion and conclusions

The evolution of a linearly unstable twisted cylindrical force-
free flux tube, representing a coronal loop, has been investi-
gated, focusing on the energy release. It has been proposed that
coronal heating may result from a series of heating-events in
which stored magnetic energy is released by magnetic reconnec-
tion – essentially the same process as in a solar flare. Previous
work (Browning & Van der Linden 2003) has proposed that such
heating-events are triggered when the field becomes unstable to
ideal MHD instabilities (kink instability in a simple loop geome-
try) and that the subsequent energy release in the nonlinear phase
may be estimated by assuming a helicity-conserving relaxation
to a minimum energy state. The model then predicts that heating-
events of a wide range of magnitudes may occur, depending on
the current profile when the ideal stability threshold is crossed.
Here, we have explored some aspects of this model using a 3D
MHD simulation.

A coronal loop is modelled as a straight cylinder of twisted
magnetic-field, embedded in a potential field layer and (for nu-
merical purposes) an outer conducting wall at a large radius. The
magnetic field lines are line-tied at the ends of the cylinder, rep-
resenting the photosphere. The initial current profile is parame-
terised according to the variation in α (the normalised ratio of
current to magnetic field), whereby α is piece-wise constant. Six
test cases were studied, with a range of current profiles, all of
which are unstable force-free equilibria. Three cases were cho-
sen that lay close to the marginal stability curve, when a con-
ducting wall surrounds the loop. On relaxing this, by placing a
potential field around the loop and with the outer boundary suf-
ficiently far away that the growth rate is not influenced, these
cases turned out to be well within the unstable region, having
large growth-rates. The other three cases were located close to,
but just outside, the newly calculated marginal stability curve,
having relatively small growth-rates.

In all cases, a kink instability is initially excited; subse-
quently a helical current sheet wraps itself around the loop,
whose shape is very well predicted by the eigenfunction of the
linear instability. The initial growth-rate of instability agrees
very well with the predictions of the linear stability code. In the
nonlinear development, the strength of the current in the sheet
exceeds a critical value, triggering anomolous resistivity and fast
magnetic reconnection. The reconnection allows the magnetic-
field to change its topology and relax towards its lowest energy
state, conserving axial flux and almost conserving magnetic he-
licity as it evolves. The relative change in helicity is always about
one hundredth of the relative change in magnetic energy, indicat-
ing that relaxation theory will apply. (This ratio is constrained by
the grid-size – we would expect even better conservation of mag-
netic helicity on finer grids, as will be tested in future work.) All
cases relax towards a constant-α state (though not quite down to
the predicted one). The α profile is not constant but does vary
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rapidly about a mean value and it is the mean value that gives
the best fit to the axial and azimuthal field profiles at the end
of the simulation. However, despite the remaining “spikiness” in
the α profile, the magnetic-field profiles and the magnetic en-
ergy are very close to those of the constant α state. It is likely
that in subsequent evolution, the current profile will be smoothed
further.

The numerical simulations confirm many of the key predic-
tions of the Browning & Van der Linden (2003) coronal heat-
ing model: in particular, as outlined above, the development of
the kink instability, the onset of reconnection leading to mag-
netic energy release, the conservation of helicity, the evolution
to a relaxed state which is (close to) a linear force-free field.
The initial stages of evolution agree very well with the predic-
tions of the linear instability calculations. The release in mag-
netic energy agrees reasonably well with the predicted values.
Also, the relaxed state is found to be helical in some cases, in
agreement with relaxation theory. Most importantly, the numer-
ical results confirm the central prediction that heating events of
a wide range of magnitudes will occur, depending on where the
stability boundary is crossed. Within this theory, coronal heat-
ing by nanoflares arises naturally, and the energy distribution of
nanoflares can be predicted. The coronal field will evolve in a
way which results in sporadic heating: the field is stressed until
it becomes unstable and then relaxes, releasing stored magnetic
energy, and then the process repeats, leading to a sequence of
discrete heating-events of varying magnitude.

The discrepancies between the simulation results and relax-
ation theory are also interesting, and the simulations also elucid-
uate the dynamic process by which energy is released, which is
beyond the scope of relaxation theory. It appears that relaxation
is most effective in fields which are strongly unstable. Also, the
presence of multiple unstable modes seems to contribute to the
establishment of a relaxed state. It is not clear why in some cases
the final state is well fitted by a constant-α force free field but
with a value of α differing significantly from predictions. The
energy release due to relaxation is strongly dependent of the ex-
tent of the region over which relaxation occurs: the numerical
simulations show that this depends on the nonlinear amplitude
of the kink instability, which differs for different profiles. Some
interesting features are apparent in the nonlinear dynamics, such
as successive phases of exponentially growing kinetic energy.
Further investigation of this nonlinear dynamical behaviour, and
the nature of the magnetic reconnection, will be a subject of fu-
ture work.

Whilst the simulations are suggestive of reconnection pro-
cesses which might occur in coronal loops, and hence heat the
corona, a direct quantitative comparison in terms of small scale
processes cannot be made because our simulation – in common
with all other simulations of the solar corona – has a far lower
value of the Lundquist number and has a very simplified model
of “anomalous resistivity” through Eq. (15). Also, of course, ki-
netic effects, which are likely to be significant at small scales
within the corona, are neglected. Dissipation in our code occurs
mainly through anomalous resistivity, though viscous dissipa-
tion of kinetic energy also plays a role. However, it is very likely
that the global dynamics and the overall energy release is only
very weakly dependent on the details of the localised dissipa-
tive processes; this will be investigated further in future work
through scaling studies. Thus, the general scenario of current
sheet generation leading to magnetic reconnection and energy
dissipation should be applicable to the corona, even if the details
within the current sheets are not.

The results have significant implications for understanding
solar coronal heating. Firstly, we confirm the key finding of
Browning & Van der Linden (2003): even within a single loop
structure, heating events with a wide distribution of magnitudes
can occur (with the magnitude of the energy release depending
on the point at which the marginal stability curve is crossed, and
hence on the time history of the footpoint twisting.) Heating will
naturally be sporadic and time-dependent, with a series of en-
ergy releasing events of varying sizes. This provides theoretical
backing for the nanoflare scenario proposed by Parker 1988. The
energy release quantum (elemental nanoflare) is

R3B2

µ0

δW, (21)

where δW is the smallest dimensionless energy release from
Table 1. Taking typical active region values of B = 0.01 T and
R = 1 Mm gives an elemental nanoflare of about 8 × 1019 J or
less, consistent with Parker’s ideas.

Our model does not directly predict a coronal heating rate,
as it calculates only energy release from isolated events. Such
events will repeat, and the time-averaged heating will depend on
the rate at which the external driving triggers crossings of the
stability threshold. In terms of an order of magnitude heating
rate, our model is similar to other reconnection-based coronal
heating models: since free energy cannot build up significantly
beyond the stability threshold, the heating rate will be given by
the Poynting flux (P) into the corona. Following Parker (1983),
this is

P =
BtBvvphot

µ0

; (22)

as is well known, typical coronal values of the vertical mag-
netic field (Bv = 0.01 T) and the photospheric velocity (vphot =

1 km s−1) give a sufficient energy flux for active region heating
(≈104 W m−2) so long as the transverse (horizontal) magnetic
field component (Bt) is high enough. Allowing for 25% of free
energy to be dissipated, Parker (1983) states the requirement
Bt ≈ 0.4Bv. This leads to the idea that for coronal heating by
reconnection to be effective, there must be some control mecha-
nism maintaining a twist or shear at this critical level: reconnec-
tion must only “switch-on” when this degree of shear is reached
(Dahlburg et al. 2005). Thus, a second significant implication of
our results for coronal heating is that we provide some explana-
tion for this switch-on nature of reconnection, since heating oc-
curs only when the kink instability threshold is reached, which
requires a critical Bθ/Bz. The value of this ratio varies between
cases; clearly, instability does not occur until this is sufficiently
large, and typical values are in the range 0.1−1.
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