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HEATING TOKAMAKS VIA THE ION-CYCLOTRON
AND ION-ION HYBRID RESONANCES
*
F. W. Perkins
‘ k%

National Center for Atmospheric Research

Boulder, Colorado 80307

ABSTRACT. The ion-ion hybrid resonance can occur at high plarma’
densities in tokamaks and thereby absorb energy from the fast magnetosonic
mode which would otherwise propagate freely. Ion-cyclotron resonance re-
gions, although they occur in the low density peripheral plasma, can none-
theless céuse sufficient absorption to compete with fundamental cyclotron
resonance damping by ions. For the ion-ion hybrid resonance it is shown
that: (1) The energy absorption occurs via a sequence of mode conversions.

(2) A poloidal field component normal to the ion-ion hybrid mode conversion
surface strongly influences the mode conversion process so that rough ly

equal electron and ion heating occurs in the ﬁresent proton-deuterium ex-
periments, while sole}y‘electron heating is predicted to prevail in deuterium-
tritium reactoré. (3) The ion-ion hybrid resonance suppresses toroidal '
eigenmodes. (4) Wave absorption in minority fundamental ion-cyclotron

heating experiments will be dominéted by ion-ion hybrid mode conversion

absorption for minority concentrations excéeding roughly 1%.

On leave from the Plasma Physics Laboratory, Princeton University,
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For the ion-cyclotron resonance, it is shown that: (1) Ion-cyclotron
mode conversion leads to surface electron heating. (2) Ion-cyclotron mode

conversion absorption dominates fundamental ion-cyclotron absorption thereby

preventing efficient ion heating.

>

As,a specific example, in "second harmonic heating experiments' of deu-
terium plasmaé containing small concentrations of protons, wave absérption
proceeds via the ion-ion hybrid mode conversion and the actual ion heating
results frow cyclorron damping of the converted wave. True second harmonic
heating in the PLT tokamak can be obtained by nsing a proton—Hc3 plasma
which hés the same ratio of gyrofrgquencies as a deuterium-tritium plasma

-and should accurately simulate reactor ion-cyclotron heating physics.

1. . INTRODUCTION

The heating of tokamak plasmas has become one of the key objectives

of controlled fusion research. Among the various paths towards this goal,

heating via the fast magnetosonic mode in the Ion Cyclotron Range of
Frequencies (ICRF) offers a variety of wave absorption processes which can

bring abouL either electron or ion heating. This paper concentrates on

wave absorption via the ion-ion hybrid and ion-cyclotron resonances.
. Y !
‘Why is ion-ion hybrid absorption important? There are both experi-
i R : :
mental and theoretical reasons. Turning first to the experimental motiva-
' I :

tions, one notes that recent experiments on the ATC [1],~TFR [2], and

%
et

TM-1HF [3] tokamaks attempting secgnd harmonic heating of deuterium plasmas,
n¢ : :
have all uncovered similar phenomena, unexpected on the basis of the
. a, ‘
-theory of a single species plasma:&(l) Toroidal eigenmodes either had a
§



very low Q or did not exist (see Fig. 6 of [2]). (2) The dependence of
eigenmode amplitudes on the position of the w = 2ch surface was not sym-
metric about the midline of the mino; cross section. And (3), strong ion
heating.was observed. A single species model [4] predicts high-Q eigen-

modes, symmetry of Q for deviations of the w =-2wc plane about the midline

D
of the minor cross section, and weak ion heating (for a given wave field
strength). A clear discrepancy between theory and experiment exists,'and
in view of the necessity to scale small tokamak results to reactor scale
devices, it is important to obtain an understanding of why this discrepancy
éxists. The model invoked here is that the deuterium plasmas actually
contained an important concentration of protons (0.20 > np > 0.01) so that
the proton-deuteron hybrid resonance surface lay close to the w = zch = wcp
surface. Small concentratians of protons are indeed expected and measured
[2] because of the operating procedures of the ATC and TFR experiments
wherein deuterium heating experiments are interspersed among proton con-
finement experiments on a day-to-day schedule. One ;hould note however,
that TFR experiments on proton plasmas near the second harmonic of the
proton gyrofrequency, where ion-ion hybrid effects do not play a role, have
qualitatively verified the single species theory (Fig. 6 of [2]). True
second harmonic héating of deuterium, uncontaminated by the ion-ion hybrid
resonance and proton fundamental absorption, occurs only for proton con-
centrations less than Bi - a demanding requirement experimentally.

From a theoretical.point of view, one would like to understand both
the magnitude and mechanism of ion-~ion hybrid absorption so that whatever
benefits it may have can be tested and exploited in the forthcoming ICRF

experiments on PLT and TFR 60U.



Ion-ion hybrid absorption has been recognized recentiy [5-7] as likely
to play an important role in plasma heating via magnetosonic waves, and
Swanson [7] has presented preliminary solutions to the Budden equ;tion [8]
governing propagation of a fast wave normally incident on an ion-ion hybrid
resonance surface. This papéef sets forth in more detail the geometry of
the resonance surface. in the minor cross-section surfacé, geﬁeralizes the
fast wave propagation equation to,arbitrary‘angle of incidence, apd exam-
ines the fate of energy launched into the short wavelength modes by the
conversion pfocesses. The component of the poloidal field normal to the
mode conversion layer (i.e., in the major radius direction) produces impor-
tant effects in the mode conversipn process.

The next section of the paper presents an overview of the models which
we will use in reaching an understanding of ion-ion hybrid resonance ef-
fects. The paper then proceeds ffom a simplified cold plasma dispersion
relation to warm plasma dispersion relations and several full wave solutions,
including Budden model effects oﬁ{coroidal eigenmodes. The concluding
section discusses tokamak applicgtions, including the suggestion of using
p—He3 plasmas. The gyrofrequency ratio for p—He3 is the same as D-T, and
should accurately simulate a reag?or as well as allow pure second harmenic

heating uncontaminated by ion-ipﬁbhybrid resonance effects.

2. MODELS

Our model is best presented ?h several stages, because in fact a
variety of models are employed t@%ﬁeal with the various geometries which
AL .

the ion-ion hybrid resonance giv§§;rise to. Let us start with an overview

s !

of how our models develop. First, we use a W.K.B. ideal model to establish

H



the frequencies and geometry of the various ideal resonances and cutoffs

in a two-species plasma. The term "ideal model' means one in which the
parallel electric field is neglected and cold plasma theory governs the
perpendicular currents. The ideal model shows that ion-ion hybrid reso-
nance effects occur in a layer which is thin compared to the minor radius
so that the mode conversion process can be correctly describeé by a slab
model in which the density and poloidal field remain fixed ané the only
;patial variation of equilibrium parameters is‘the change of magnetic

field streﬁgth.with major radius. Given this geometry, a full W.K.B.
dispersion relation is‘developed which includes: (1) finite ion Larmor
radius associated with both fundamental and second harmonic gyrofrequencies;
(2) parallel electric fields; (3) poloidal field effects on kll’ and (4)

an arbitrary ratio between the parallel phase velocity and electron thermal
velocity. This W.K.B. dispersion relation allows us to identify what are
the important physical processes to include in full wave solutions, as well
as to estimate both the size of tﬁe mode conversion region, and the damping

which the converted waves will suffer.

The next step is to carry out simplified full wave calculétions corre-
sponding to both the ideal and mode conversion W.K.B. dispersion relations.
As has been the experience with other mode conversion processes, we prove
that the total dissipation predicted by an ideal Budden model égrees with
the more sophisticated mode conversion calculations provided there is no en-
ergy probagating'towérds'the mode conversion in the ;hort wavélength branches.
With this . expected result in hand, we return to the ideal model to find
the effect of ion-ion hybrid resonance on toroidal eigenmodes. Throughout

these calculations we concentrate on two special cases: (A) Minority



protons in a deuterium plasma. In this case, deuterium second harmonic
waves can exist in the ion-ion hyﬁrid resonance region. (B) D-T :(or p-He3)
plasmas with an emphasis on minority tritons in a deuterium plasma. In

this case, there is no degeneracy between a second harmonic frequency and

%

the ion-ion hybrid frequency.

3. THE IDEAL MODEL: CUTQFFS AND RESONANCES

The simplest model of wave propagation in a tokamak is the ideal, W.K.B.
model where only cold plasma motions are allowed and the parallel electric
field is ignored. Furthermore in tokamak geometries when the polpidal
magnetic field is weak compared to- the toroidal field, the parallgl wave
number is quite accurately given by

kn = %~ constant (1)

w3

unless the perpendicular wave number becomes very large because of mode
convefsion processes. Hence with#n the ideal model, waves propagate with
constant angular frequency w_and constant k"i Assuming that the static
magnetic field lies in the z-diregxign and that the wave propagate§ in
the x~z plane, the familiar technfiques of cold plasma theory yield the

equations

. .
(A - ki) B+ 1DE = 0
| (2)

~iDE + (A — k> - k2)E
X 7y

1
o



Ca

and the dispersion relation

~

Za-1d) - @-kDC-k) = 0 -
where
2 ) :
w 27 3
D = _pD z n o w ? ()
2 O. o} Ad Q (QZ_QF) : o
¢ o O !
Z “arr i .
w P ) !
_ pD ¢. g w j 5
A = 2 Zlnc (1& ) 2 2 | 3 (5
c O g/ Q. - w
(o)
- 2
w 227 2
pD g w
B = A+D = —5]n ) - (6)
c2 g o < Ac QO(QO w)
' 'wZD 22 W2 :
C = A-D = —P—-2 ) L el b oy [
. c O o o] o]

with the definition

. n, 2,
no = —3%%—32- = fraction of electrons contributed by species O (8)
e
Q, = ZOeB/Mb,c (9)
2 - 2 _ deuterium plasma frequency for
wpD = e ne/bib ~ full eleclivun density (10)

Figure 1 portrays functions A, B and C for a D-T plasma. The qualitative
behavior is the same,K for other species.

Evidently, the surface where

A - k% = 0 . X (11)

. . . , . 2 .
defines the ion-ion hybrid resonance at which k, * «© according to the

ideal model. CECquation (11l) also yields the single species ion-cyclotron



resonances. The usual fast magnetosonic wave cutoff is given by

) 4
C~-k, =0 ) (12)

Formula (7) shows that this cutoff is not sensitive to plasma composition.
. 2 \ . '
The surface B ~ k,; = 0 is a cutoff that occurs near the ion-ion hybrid re-
sonance producing the resonance-cutoff pair which the Budden equation "
describes.
Figires 2 = 4 plor the resonances and cutoffs for our dpecial cases of *
interest, and show how these surfaces manifest themselves on the tokamak minor

cross section. The actual plasma densities are given by

: 2
2 -
n = 4.1-10%% cm 3(———1 meter) N (13)
€ : M1

. . - 2
in terms of the quantity N = mio/czk" read from Figures 2 - 4. In using

Figs. 3 and 4 fgy a p—He3 plasma, the nondimensional frequency variable is
y = w/QD and the densities should be one-half those given by kl]).

What physics does oune learn from Figs. 2 - 4? First, it is evident
that the'geometfy of the resonances and cutoffs is quite complicated, aﬂd
prevents a simple one-dimensional model from describiﬁg the effeéts of the
ion-ion hybrid resonance. Second, when the heavier ion has the smaller
concentration, ion-cyclotron mode conversion resonances exist over a good
fraction of the plasma circumference, and compete with the ion—ion hybrid
resonancé. On the otﬁer hand, the mode conversion—cutoff.regions are gen-
erally quite thin compared to the minor radius, pointing towards the use of a
sequence of oné dimensional models, each model treating the physics of the

D

mode conversion process in a small region of space and connecting in a



simplified way to global eigenmodes.

| More specifically, in the case of present experiments, Fig. 2, with
small concentrations of light ions (protons) inla heavy ion (deuterium) .
plasma, tﬁe relative width in ﬁinor radius over which ion-ion hybrid effects
occur is small. If one defines $a fo be the maximum deviation of an A or B

gsurface from the w = 2QD surface, then for small proton concentrations one can

find
6_aé < 3R G_a.B_ < R (14)
a T 4a p a T 2a''p
!
where the equalities- apply at high densities. To the extent that
|8a, - Sa_| :
___A___B_ ~ _I_{_ n << 1’ , (15)

a T 4a p

the mode conversion layer is thin with respect to the minor radius and the
specifics of the mode conversion processes can be obtained from a one-
dimensional slab model with constant poloidal field and plasma density.
Figurc 2b also points out that it is impossible to avoid some ion-cyclotron
mode conversion absorption in the tenuous plasma outside magnetqsonic wave
cutoff.

In the case of plasmas with a small concentration of heavier ions
(tritons) in a light ion (deuterium) plasma, the presence of an'ion—ion
hybrid resonance surf;ce is accompanied by two mode conversion-cutoff pairs
corresponding to deuterium and triton ion-cyclotron waves. Again the layers

will be thin in minor radius, and amenable to a slab type analysis.
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Thirdly, even in plasmas with 507 deuterium - 50% tritium, the rélative
separation between the mode conversion resonance and cutoff is a small frac-
tion of the minor radius. At high densities, one can show that i
IGaA - (SaB|a_l ~  0.02(R/a) - - (16) ]
so tha£ a slab type geometry is again a good model. In this case also, it
is ifpossibie to avoid mode conversion absorption by ion-cyclotron resonances.
Altogether, the complicated geometries depicted in Figs. 2 - 4 will pre-
vent precise calculations of wave damping decréments, etc. The best this
paper will do is factor-of-two estimates for the contributions of various
processés to the overall wave damping decrements.‘ But these estimates and
the scaling laﬁs associated with them form a sufficient understandiﬁg of the
actual heating processes to be useful in guiding and interpreting tokamak

heating experiments.

4, FINITE LARMUR KA&IUS DISPERS1UN RELATION

The goal of th;s section is to determine what physical processes are
playing a role in the mode conversibn phenomena which occur when ki >
according to the ideal model [c.f. fﬁ) and (10)]. Our tool for this will
be a general finite Larmor radius di'spersion relation and a one-dimensional
slab geometry: Such an gnalysis produces three classes of results: (1) iden-
tification of the dominant terms gdverning the propagation of the short wave-
length converted modes, (2) the prificipal damping processes for these modes,

and (3), an estimate of the typical scale sizes of the mode conversion layer.
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The physics incorporated in the finite Larmor radius dispersion rela-
tion inciudes: (1) electron and ion velocities across the magnetic field
according to cold plasma theory, (2) a Maxwellian velocity distribution for both
electrons‘and ions, (3) the first finite Larmor radius contributions to ion
velocities across the magnetic field which involve not only FLR corrections
to the cold plasma velocities, but also the introduction of second harmonic
terms, (4) arbitrary ratio of the parallel phase velocity of the wave to the
electron thermal velocity, and (5) fundamental and second harmonic ion damping
processes and electron Landon damping.

Figure 5 portrays our general one-dimensional slab model for investigating
mode conversion physics. This model stems from the narrow spacing between
the resonance and cutoff surfaces. Consequently, the equilibrium varies only
in the x-direction, while the z-direction is the toroidal direction. The y-
direction completes a right-hand coofdinate system.

The essence of our slab model is that the x-direction is the local normal
to the mode conversion surfaces portrayed in Figs. 2 - 4. Hence the actual
orientation of the x~direction in a laboratory frame depends on the mode con-
version process under consideration. Let us discuss two extreme examples
occurring in Fig. 3c. The ion-ion hybrid mode conversion region near the
center of plasma is oriented so that the poloidal field is normal to the
mode conversion layer, and the principal variation in the equilibrium results
from the major radius variation of magnetic field intensity. On the. other
hand, the deuterium ién—cyclotron mode conversion surface on the outside of the
plasma is’ oriented so that the poloidal field is parallel to the mode conversion
surface, and it is the equilibrium density variation that induces the mode

conversion process. In both these examples, the x-direction lies close to



the major radius direction, but this will evidently not be the case for the
deuterium ion-cyclotron mode conversion surfaces of Fig. 3b.
It is straightforward to obtdi#d to the finite Larmor radius dispersion
3 » . . H
relation starting from the conductivity tensor G on p. 229 of Bekefi's book

[9] or Swanson's dielectric tensét &? [10]. Let the wave-vector be given by
+ k,, 3 ' (17)

and wave electric field amplitudeé bY'E(x,t) = EeXp(izlr; - iwt), so that

the WKB wave equation becomes

> > > Gtmiw ?.E I (18)

In component form, equation (18) is

. 2 ) _
(Z Ay - kE) + 1(F DIE, + kky By = 0 (19)
i(ED)E. + (LA - k> -K2DE, = 0 ' (20)
G o'l ¢ o < "2
wz' 2
. — —_— = 21
koky Ef + ( 557 Vg kL>E3 0 (21)
¥l k"De

where the subscript 0 denotes an idik species and

2

w -2 ky T, 2 ki T,
A= B2 [——2 {1 - — §>+ s > (22)
g ¢ - 0 O 0 .

C R- w MG ol 496 w MG Q

l= o

g
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2 2

B wzo 2 ky T\ 2 ki T,
e vy (1 - 2 )+ 5 3 2 (23)

c QO -w MO QO 490 -w Mo QO

2 2 2

¢ 2 T.

wpo on w2 2k, Ti wQG ky i
by = 2 |l 2\~ o3 VR 2 (24)

c QO - w Qo M0 QO 4QG - w M0 QO A

oo 2 :
- wE) = - xe ™ ' ! - (25)

we - ge T/ X-Ee-ie X i

w m 1/2
Ee = E_-<2T ) (26)

" e . .
2
De = Te/4TTnee (27)
Formulas (22-24) are based on the inequalities
-2 (1 \? w - 20 /M \2

o] o] oy 1 (6] o] 5> 1 (28)
Koy 2Ti ki, ZTi

so that ion-cyclotron damping effects are small.. When we wish to consider

cyclotron damping processes, we will use the replacement

1/2 o 2 1/2
M -X M
1 .1 o] e — dx - 1 g , .
e k,,‘<2nT,> / x - -ic - &, <2T,> z(g ) (29)
g ) 1 J o n i
. . l M N
where
w - nQO MO‘ 1/2.
B T T m ) (30)

The cogndscenti will also recognize that the 2-3 and 3-2 elements of the

conductivity tensor should not be precisely zero unless |€e| >> 1. These
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and other neglected terms contribute to the weak electron damping of other-
wise undamped mggnetosonic waves. Our use of we only in the 3-3 element
adequately desc}ibes the electron Landau damping of short wavelength.con-
verted waves which is the topic of principal interest here.

Setting the determinant of the coefficient equal to zero yields the dis-

persion relation

: B . '
‘z[c“k'z"kzzTO(“’z“mo“’)( 7 - 21 2)]
4 w
g

L
g

) . ‘
2 2 o] 2 1 1
|:B -k, - kL Z > (w™ + ?_Qou)) ( > T 7 2 )]

' g Y] e

o QO- o]
5
k?c”Dzk,z,
- e
L-=
w W
e
2 2.2 :
kyc D k,, . ) 2 2
= — 2‘-‘ kﬁA—k%—kg—kuBO( g‘” 5. - ‘;’ 5 = 0 (31)
w W ag 2(Q° - wh) 20407 - w7) ¢/
e o g
where
81-Tnio Tl
By = 2

and A, B, C are given by (5-7) and Fig. 1.
Forfunately, equation (31) permits a considerable simplification. The
procedure is to collect powers of k& and examine the contributions to the

cocfficients. We shall discard terms that are (1) finite B contributions
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. 2 2. -1 .
with a fundamental resonance denominator (Q0 -w) to coefficients where

there is already a cold plasma term (i.e., A, B) with a fundamental re-

sonance denominator, (2) contributions to coefficients that are of the order

c2k.2,D2 T k,z, -
A € v —£ << 1

w% szw
e e

f
|
s

relative to other contributions to the coefficient, or (3) of order 8 relative

k)

i . . . . .
to other contributions. The simplified dispersion relation is:then

2.2
k6 (o4 Deku }'Eg( wZ _ w2 )
1
w2 W o] 2 492 - wz 92 - w2
e g
2. 2.2
D Kk R 2 2
+kl':[A 5 +ZTO<2w2' > 2)
w- W o Q- - w 4@0 - w
2 2 2 w? 2 2
-k [(A-kG) - (C-k) L By —5—5 [+ B-kD(C-kD = 0 - (32)
o 4 - w :

In the slab geometry of Fig. 5, one has to have a good approximation

+> -
B K,
k, = kz + B = kz + ekx + O(sky) A - (33)
ky = Xkt Yk - (34)
where .
€ = (Bp/B) cos8 = (r/Rq) cosh << 1 (35)

q being the usual tokamak safety factor.
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Snell's laQ demands that wavés propagatc with fixed w, kz, k . Only
the x-component of the wave number is permitted to vary so that the dis-
persion felati?n remains satisfied as the equilibrium quantities, A,_B, QO,
vary.

The mode conversion and absorp£ion phenomena governed by (32) are best
brought out by discussions of particular cases.

A. Minority protons in a deuterium plasma. This case corresponds to

the present experiments in ATC, TFR, and TM-IHF [1-3]. It has the unique
feature that the second harmonic of the major species is degenerate with the
fundamental of the minority species and thus close to the ion-hybrid resonance
frequency. Tig. 2 informs us that the peripheral region whe;e ion-cyclotron
mode conversion takes place is small, and hence we neglect it. Since the
mode conversion takes place largely in high density plasma, we can also
neglect the kz contributions to k,, and, after some manipulation and discarding

of small terms, we arrive at the dispersion relation

2 2 .
IS S S AL S WUY Gk WY A L
8W bx 8W 3 X bx 3 X
e e
n R
+ (142 )= 0 (36)
3 2%
where S = kxc/&pD, Be D refer to that of the electrons and-deuterium ions,

and x represents the distance inward in major radius from the w = ZQD surface.

The argument of the We function is

2 , 1/2 . .
w(m)m iQ_lﬁ_(_m_;/' - ._/2_<L>/' < 1 (37)
= - €S ~ ’
K ZTC . ES(npD 2TC ? MBe
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while the ion damping can be ignored provided

w - 29 1/2
- D (2“‘ ) = ——Z-X—ﬂz— >> 1 (38)
8x ,Ti RSSBD

Let us also show that the term in S6 is negligible. Treating the three
highest powers of S as a quadratic) equation, one finds that the S6 term is

negligible provided b2 << 4ac which yields

2 4 ; 2 4,
Be € 4 nPR - Bee BD
64 3 X 8

B_R
3(1_ D2>' | ‘ (39)

X
4x €

. . -1 . .
an inequality true since R|x| >> 1 for tokamaks. Hence the dispersion

relation of interest is

8 2 '
SR B.R B_R n_R n_R
__eD 4(.2 _ D 4 _p Yy _ 16(, _ P ) .
32Wex + S (8 4x >+ S<3 x) 3 <1 2x> =0 (40)

What physics can one extract from equation (40)? It is evident that
the coefficients of 52 and S4 can vanish, indicating that two mode conver-
sion processes will take place. Let us follow the wave energy through the
mode conversion processes until we can establish that it is being absorbed
via a collisionless damping process. By comparing the values of x at
which fhe coefficients of S4 and 82 vanish, one establishes that the details
of the mode conversion process depend upon the value of the parameter
3€2np/BD. We shall'examine both limits: (a) 3€2np/8D >> 1 and (b)
3€211p/BD << 1. Limit (a) applies to most of the region of present day
experiments as the nominal values for the ATC experiment demoﬁstrate (see

Table 1). Limit (b) applies to the higher B experiments planned for the
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future as well'és regions in present experiments where € is small because

T cos e'ié small. Figu;e 6 sketches the roots of the dispersion relation in
the two limits; Both graphs make the same point: Energy can propagate away
from the mode conversion region only along the propagating part of the 8-4
branch oé the dispersion relation. As this branch of the dispersion rela-
tion crosses the cyclotron resonance. surface, ion-cyclotron daﬁping‘by
deuterium takes place. Utilizing (29), (38) and (40), one finds that the
width ot the deutetium éyclotron damping region is

1/4 0 172

i/2 1/2 , -1/4
6xc ~ RSeBD T (8) Re BD’T: Be

while the spatial damping decrement is determined from the equation

ke V. *-
G . 8 wx s Ve g 1)
e28 RE. 8y e’g B Bp |’z|2
e e
with k, = SE:mpDc_l . Using a perturbation approach one finds that
. 2 v
4 €
Im S X (42)
D - 1/2 1/2 1/2
(8m) Be Bp
and that
w - w_ R 2.5 .
_pD ~ D e~ : : 43
ch c Im Sy = c g 0.75 1 (43)
‘e

where nominal values have been used.
Inequality (43) assures us that energy converted into the 8-4 branch
of the dispersion relation will be absorbed by deuterium ion-cyclotron

damping when it finally reaches the tyclotron resonance layer. On the
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other hand, electron damping operates throughout the mode cofiversion region.

On the 8-4 branch, one can use (40) to obtain

ImS = l-/? €_18 _l/z(m/M)l/2 (44)
e 2 e .
while the characteristic distance comes from the separation of the (4-2) - (8-4)
i 2
mode conversion layer from cyclotron resonance surface: GXMC X BDR/4€ ..

" Hence the total attenuation due to electrons is

2

w B.R
exp [— D (ImS ) —EL-J > exp(-5) (45)
c e’ 4e

a strong attenuation which appears not to permit propagation of the 8-4 branch
to the cyclotron layer. However, the cyclotron layer and mode conversion

point are roughly coincident because

5x_ 4y L/t ¢2-5
-1 (46)

SgMc '~ 8 1/2 B 1/4 i

2

D e

pointing out that both cyclotron absorption and electron damping will take

place. The ratio of the two attenuation coefficients is

ImS 3 1/2
D V8 £ M 1
ey ( ) ~ 3 : 47)

ImS B
e
suggesting that electron absorption is larger than deuterium ion-cyclotron

absorption, but not by a large factor. Proton cyclotron effects play no

role on the 8-4 branch.



In summary, minority protons in a deuterium plasma produce an ion-
hybrid mode conversion absorption of magnetosonic waves. The converted
waves are damped, in roughly equal proportions, by second harmonic @euterion
cyclotron absorption and electron Landon damping. In all our work, the para-
meter € plays a key role pointing dut the importance of the rotatioﬁal trans-

t
form.

B. DeuteriqmrTritium Plasmas. The deuterium-tritium plasma providcs a
good example of ion-hybrid mode-conversion processes and in particular, the
case of a minority heavy ion in a light ion plasma. 1In addition, degeneracies
between second harmonic and fundamental frequencies are ahsent. We shall

develop our equations for the case where tritium is a minority ion, but our

e

results apply qualitatively up to tritium concentrations of roughly 50%.
Figures 3 and 4 point out thag no less than three mode conversion processes
occur in this case - tritium and deuterium ion-cyclotron mode conversion as
well as the ion-ion hybrid mode conversion resonance. Let us concentrate
here on the ion-hybrid mode conversion; ion-cyclotron ﬁode conversion proc-
esses which océur only at the edge of the plasma will be discussed below.

The appropriate dispersion relation comes from (32) and is

S

2 2
g 7€ B 8 ( 27 ”TR) g 18 By (12 RNy
—— 2 - =L+ + S
20 X 5 ble

32 W 8% s T
e e

= 0 (48)

278, BD”TR>_ 2(12_ R”T) 8 ”TR>
80 “4x

+ S4 (82 + -

where we have included first and segond harmonic deuterium contributions in
o 4 8 ' 2.

the coefficients of S and S . We shall also assume that BD << g7, as 1is

generally appropriate for existing and planned tokamaks. But, in the reactor

regime, this inequality may not be true.
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2 .
Evidently, the coefficients of all powers of S~ can vanish indicating
that the mode conversion problem posed by (48) is not well-defined. But the

-1 (i.e.,

; 2
highest powers of S generate values of S given by 82 ~ B
k%T/MQ2 ~ 1) where our finite Larmor radius expansion procedure has broken

down. Hence we must try to simplify the physics to get a well-posed mathe-

matical problem, consistent with our FLR expansion. 1

Our simplification will consist of ignoring the S8 term completely, and
dropping the 12/5 contribution to the coefficient of 86. The physical basis
for this simplification originates with Fig. 7 which shows the mode conver-

sion diagram approrpiate to the simplified dispersion relation

3¢ R Rn 2 n.R
6 e T 4 2 s (12 R 8 _ T _
-5 (' X ) +S.¢ -3 (——- ” nT) + = (2 —;;—) 0 ‘49)

and contrasts it with that of (48).
The key difference is that in our simplified model the branchiof the

‘

dispersion relation labeled A permits propagation of energy away from Fhe
mode conversion layer, whereas the’true one does not. On the other hand,
the séale lengths associated with branch A are always short compared to
those of branches B and C which connect to the cold plasma fast-wave branch.
Hence the coupling between branch A and branches B and C will be weak and a
simplified. model of branch A will suffice. Our full wave calcplation car-
ried out ih equations (f8) to (75) reaches the same conclusiqn.

How is the energy absorbed in this mode conversion situation? Figure 7
shows that: the energy absérged from the fast wave will appear on the short
wavelength portion of branch B, propagating away from the tritium cyclotron

resonance surface. In terms of physics, this wave is a deuterium electro-
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2

magnetic ion—cyclotron'wave, and the principal damping mechanism is the
electron damping associated with the 86 term of (49). Computing the spatial

damping decrements one obtains

8 1/2
Im S - EZE £

2 :
e 15~ 3 (ﬁ) 1 G

~ 10 cm of the

which is sufficient to damp the wave within a distance c/w D
: P

mode conversion layer.

Qualitati§ely, the prediction is that for future, larger tokamaks, mode
conversion aé'the tritium-deuterium ion hybrid resonance leads to a fairly
local electron heating. This prediction holds for any heavy-minoriéy ion in a
plasma composed of lighter ions. Again, € and the rotational transform play
crucial roles. One can also qeadily check that for nT > 10_2, the cyclotron
absorption region is sufficiently far from the mode conversion layer so that

tritium cyclotron resonance absorption does not occur.

C. Ion-Cyclotron Mode Conversion. In the low density peripheral regions

of a tokamak plasma, Figs. 3 and 4 show that an ion=cyclotron resonance mode
conversion process takes place which corresponds to the ion-cyclotron mode
conversion processes in single-species plasmas [4,11]. 1In configurations where
these mode conversion surfaces occupy a fair fraction of the plasma perimetef,
the polqidal field is almost pafallél to the mode conversion surface and the
quantity €, defined by (35), is vetry small. Consequently, rotational trans-
form does not'éouple the kx-and k,, Wwave numbers, and the mode conversion
process occurs at constant k, = kza In addition, the parallel wavenumber
determines the density at which the ‘mode conversion takes place: We shall

treat the simplest form of ion-cyclétron mode - that of a single species
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deuterium plasma - as illustrative of the physics of ion-cyclotron mode con-
version. As the frequency falls substantially below the gyrofrequency, ion-
cyclotron mode conversion heating transforms into the Alfven wave heating
process discussed by Hasagawa and Chen [12] and by Tataronis [13].
The dispersion relation which gqverns ion-cyclotron mode conversion in
a deuteriuﬁ plasma can be obtained from (32) with the following simplifica-
i

"tions: (1) The mode conversion is brought about principally by the density

variation and so one can write

wz w2 w2 wz

D 2 _ pD

pz 2 2 (l +_I).(_.) Tk = 2 (%)
c (QD - w) c (QD - w)

which  serves to define the density gradient scale length L. The mode con-
version takes place at x = 0.  (2) The relation between k%.and wiD at the
mode conversion point is used to evaluate k% in the ki and ki terms of (32).
(3) Because the frequency is close to the deuterium gyrofrequency, only the
fundamental gyroresource terms are, retained. (4) The term C is negligible

2
compared to k, in the low density peripheral regions. Straightforward

algehra then generates the dispersion relation

- 8% (%) - s [(%") + 1] = o. B (51)

where the B's refer to the plasma at the mode conversion surface. The ar-

gument of the we function is



£ = _‘*’_(_"‘)llzg(%—w) ( n_\Y7 1 (52)
€ K 2Te{ Qz MD Be) .

. ;
indicating electron damping will be important. Indeed, one can readily

calculate that

2 2 1/2
w DL QD - w L/ x 1/2 X
PD_ 1 ¢ = > = (f) I W > 1 ) (53)
2w a ' moe ’
with K i
2 ; o2
a = ZTE/]}LD QD

SO thatithe mode converted wave is ébsorbed by electron Landau damping close
to the mode cqnversion surface. Hencg ion-cyclotron mode conversion processes
lead to surface electron heating.

Figure 8 sketches the mode conversion diagram for ion—cyclotrop mode
conversion. Evidently, the 6-4 branch of the dispersion relation plays a
small role, and the S6 term in (51) can be safely neglected.

Summary. The most important result of this section has been the iden-
tification of the dominant physical processes as manifested in the various
simplified dispersion relations (40), (49), and (51). In addition, we have
established fhét the converted short wavelength modes are.all quick}y atten-
uatedvin space, implying that no reflected energy can propagate into a mode
conversion layer. These considerations directly impact on the full wave
solution of the next section. Lastly, by considering what processes con-
tributed to the spatial damping, we were able to determine whether electron
or ion heating should result. For example, equations (42) - (47) predict

that a fair amount of deuteron heating should occur in present experiments
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with minority protons. But, in a D-T plasma, equations (49) and (50) pre-
dict that ion-ion hybrid mode conversion results in electron heating. The
ubiquitous presence of € (eq. 35) in our formulas indicates the strong in-

fluence of the poloidal field on the physics of the converted waves.

5. FULL WAVE CALCULATIONS OF MODE CONVERSION

The rdle of full wave calculations in mode conversion problems is two-
fold. First, we wish to show that the total energy extracted from the cold
plasma branches is the same in the Budden model as in mode conversion models
which radiate short wavelength waves away from the mode conversion point.
Secondly, full wave calculaLions are required to show that the short-wave-
length energy is in fact radiated into the expected branches of the dispersion
relation.” For example, in Fig. 7b the energy could in principle be radiated
in both the A and B branches of the dispersion relation. However, because
only the B branch goes continuously into a ceold plasma bfanch, we expect
most of the radiated energy will appear on that branch. The reader who is
interested solely in practical results is advised to read only the summary
~of this section, 1eavingAthe saddle points and asymptotic formulae for the

aficionados.

The Budden Model. The Budden model is derived from the ideal model by

treating the frequency as a Laplace transform variable with a small positive
imaginary part w > w+ i 8. Consequently, the coefficient A - k% does not
precisely vanish, and the coefficients of ki and ki in (32) give rise to the

differential equation of the form
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S (l-grv = 0 | (54)

which no longer is singular because of the small positive number A. Equa-
tion (54) is a confluent hypergeomeﬁric equation having a cutoff at £ = n
and resonance at £ = 0. A similar equation was analyzed by Budden [8]. The
precise interpretation of the dependent variable | is not yet clear, since
(54) has merely been written down by analogy with the dispersion relation
(32). Derivat;ons of the Budden ‘equation from the differential equation
for wave propagation follow in thé next section, which will detérmine the
parameter 1 and the nondimensional Vvariable £.

It should also be pointed out that (54), which yeilds propagating waves
for |£| >> n, is the appropriate eqiiation fof ion-ion hybrid mode conversion
in a high density plasma. Ion-cyclotron mdde conversion yiélds.an equation

of the form

M_(lﬁL_ﬂ_._)w: 0 (55)

which produces evanéscent waves for |§| >> n.

Equation (54) can be solved by Laplace's method [14] with the result

k

1]
p(E) = -/—9% exp[+ik‘g- Kh= in —-ik'—-z—J | (56)
cl-k 1- k'™

and thé contour C must be ¢hosen so that the exponential factor in (56)
vanishes or returns to the same valie at the end points. An integration

by parts transforms (56) into
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M[ (25" a (57)

C1,2
where Fig. ? shows two contours-Cl, C2 corresponding to two independent

solutions to (55). The asymptotic -formula for these solutions are

+
‘ K, exp (-/4)y g >>n .
I K, exp (Tn/4)y g << -n o
' (58)
: . + _ :
K,exp (/&) (" + b)) . £ >>n
w -
2 ) kyexp ey bt 4 ) £ << -
where the constants are
_ _[.m™m]/2 -m/2} -1 ' _ mmn
Kl = (e -e ) n ; K2 = —(e - l)
+
and the functions Y have the asymptotic formula
. s ¢ it gin/2 g >
w = 3 'c' . .
lCeh g| /2 £ << -n
(59)
% —if i
- Ce ™" Emlz g€ >>n
w = * -1 #
et |g|in/2 £ << -

and whereé

(o]

cC = i 2-1(]/2/ dy e Y yin/2 .
0
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These results are the same as Budden's: Solution wl corresponds to a wave

incident on the resonance with zero reflection coefficient and transmission

coefficient T = exp(-mn/2). The linear combination
bo = (y/K)) exp (m/4) - (Y;/R,) exp (-mn/4&) o (60)

corresponds to a wave incident on the cutoff with reflection coefficient
. k¢

R=1-¢e m and transmission coeffieient T = —exp(—ﬂn/Z).b

One Should:also note that wz which does not depend on a positive A
[as is eQident from (56) and con-tour:C2 of Fig. 9] represents the solution of
" (54) which is regular at the origin. Since this solution involves no sin-
gularities, it will not produce any energy absorption - a point made by
Swanson [15]. '

Our principal goal is to demonstrate that the Budden model yields -the
correct energy absorption. Our arguments that this is so pFoceed asgfollows.
'We shall émplonyaplace's method [14] to generate solutions of ﬁighe? order
differential equations corresponding to dispersion relations (40) anq (49).
We shall then examine what types of contours are allowed in the region k ~ 1,
and show that any contour which connects to a short wavelength branch pro-
pagating away from mode conversion region 1s of the type C

N
shall also establish the contours of t&pe C2 are possible. Since the con-

1 of Fig. 9. We

tours Cl and C2 represent independent solutions of the second order differential

equation, we conclude that the Buddem model satisfactorily describes the energy
dissipation. Furthermore, by examining the saddle points which correspond
to the short wavelength modes, we shall demonstrate that energy emerges from

1

the mode conversion region only on short wavelength branches which are
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continuously connected to the ideal branches. This argument justifies our
use of W.K.B. concepts in identifying how the mode-converted energy will

eventually heat the plasma.

Let ué'now provide these results for dispersion relation (40) which

governs minority pfotons in a deuterium plasma. The eighth-order differential

equation is:

; .8 X )2 f
cg —g + €,(6 -8 —p +E 5+ (E-npd = 0 | (61)
| 3E 3¢ |
where
3w . R \ 2w X
_ _pb 2 - 2 - _pb~
€g = . € BBy €, 3, £ . . (62)
n, RO g ' 2 '
g, = (-1, n = P2 A o= 8p/3eTn. (63)

The three quantities El, n, and A are all more or less of order unity while

€, << 1 and gg << eZ. Laplace's method yields the solution to (61) to be

k 8 4

€, k' + e E k' -1
1 k c,lk 1 -Kk'™ = €4k'

C 4

where the exponential term must either vanish or return to the same value at

the ends of the contour C. Branch cuts must emanate from the points k = 1

-1/2

k = 1¢4 to maintain the k'-integral single valued. The saddle points

*

of this exponential factor correspond to solutions of the equation

0 = -n+ea-kh + e, 5 - 0K + ek | | (65)
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which is dispersion relation (40) rewritten. The allowed trajectoriesbof the

contour C as |k| + ®© must satisfy

; -im
8 5 5i6 2 2min
5z Ikl > e (66)
which implies that
- T+2m
8 = 10 - 5 n. . (67)

Figure 10 shows that we can find two contours which reproduce the topology
of contours Cl’ C2 in the region k < 1, and involve only the saddle point

/4 which corresponds to outgoing energy propagation on' the 8-4

at- k = (gg/2g,)

branch of the dispersion relation. [This can be seen by using eighth and fourth
2 :

‘order terns of (40) and x/R = (407 -w”)/807. ]

Now let us turn to the deuterium=tritium plasma. The sixth order dif-

ferential equation corresponding to dispersion relation (49) and Fig. 7b is

‘ 46 N 32
1% — 6 * €,(§ -5n) —p + & — + E=miyp = 0 , (68)
| ¢ s aE 2%
where
w X Nn.Rw
_ 2 pD _ 10 2, _ 5 2 R ¥ pD
& = 3¢+ % = g €8n. g =ge, 0 18¢c (69)
As a rule, €6 << EZ. Laplace's methoéd yields the solution tor V¥
, 4
dk k n % €6k'6 - Sns4k"
Vo= —— 7 eXp (ik& - i = > A dk') - (70)
. 1-k"+¢,k 1 - k'™ + ¢,k' . :
C 4 4
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where the exponential term must again have the same value at both ends of
the contour C. Braﬁch cuts’must come from k = * 1, * 621/2 to make the
k'-integral single valued. The saddle points associated with exponential
factor arevgiven by the equation

I
ek + e st E@-KD) -0 = 0
which is digpersion relation (49) rewritten. Figure 11 shows the contours

and saddle points associated with the integral (70). As k| » =, the ex-

ponential term will vanish at the contour ends provided
3 3i6 -iw+ 2min
e > e

or

8 = - m/6 + 2mn/3 ’ (71)
Since one cannot deform the contour and the branch cut of Fig. 11lb

into the lower half plane until eaddla point A is passed (aﬁd still have the

saddle point concributions dominate the integral), it is evident that contour Cl’

which corresponds to solution wllof (58) of the Budden equation, in principle

contains; outgoing radiation in both the A and B branches of the dispersion

relation (see Fig. 7b). Contour CZ’ which corresponds to wz of (58), again

does not couple to the short wavelength branches because it is the solution

of the second order equation which is regular at the origin.f In order to

determine the relative importance of the A and B branchés, we must evaluate

integral (70) along the contour. Because k2 2 1/84 >> 1 for these branches,

the integral can be simplified to
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dic k k'2(€6k'2 - 5n) ; :
v o= K[| 5——5—exp [ikf - i 5 dk' + A (72)
A k (ea}c -1) e, k" -1

4

where K is a constant determined by the integration near k ~ 1 and A is a
function which is discontinuous across the cut due to branch cut originating
at k = l:

Now we would like to estimate the contributions to ¥ coming from saddle
points A and B. The integration of the argument of the exponential c;n be

perforieéd with the result that

~ £ k-3 £
! : ’
% = —2—%—"@@ ikE - i ;’3 +i(5n—-—g—>k
‘ k"(g, k" -1) 4 €
I 4= 7
6\ 1 ezl;/zk'l |
+ifsn - =)= | —=——— |+ A ‘ (73)
; 212 1/21<+'l
€4 € _
2 1 . . 1/2
Using the fact that 56/64 << 1 and the substitutions q = €, k-1,

1/2

t = q(€-+5n)€; one can rewrite the contributions to (73) coming from

the neighborhood of saddle point B as

1 &30 -i5n
51/2 el/2 / 2 it+A
(2) - & e 4 (g_"'ﬁl) dt e (74)
K B 1+15n »El/2 1 -1
2 4 2
2 C t
. B

where CB denotes the contour near saddle point B. The contribution from

the neighborhood of saddle point A can be calculated to be

. 172
C22) e |
h _ 3/4 EQ 7/4 e 6 e—it2+A'_dt 4 (75)
(K) A 7 974 : :
A €, (& + 5n) .
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where A' is the discontinuity across the contour associated with the branch
points at k = 1, 62/2. The salient feature in comparing (74) and (75) is to
note that the coefficient in (75) is very small compared to- that of (74),

This is the mathematical manifestation of the physical concept:that if two
branches of. the dispersion relation have dissimilar scales, tha; there is

very little coupling between them. In our case, the scales areédifferent
provided €6~<< ez. Hence we have shown that most of the mode c;nversion'energ}
appears on branch B.

Summari. This section has proved the expected results: Solutions of the
Budden equation have been shown to correspond with full mode conversion solu-
tions where the short wavelength waves propagate away from the mode conversion
surface. Furthermore, a comparison between (74) and (75) showed that thé mode
converted energy appears on the, branches of the dispersion relation which are
directly connected to the cold plasma branches. Hence, one can use Figs. 6 -8
to determine where the energy dissipated by a mode conversion resonance appears.
And, by calculating the spatial damping decrements on these shortwavelength
branches one can decide whether electron or ion heating will occur. This jus-

tifies procedure which was followed in equations (42), (&4), (47), (49) and

(53) of the preceding section.

6. EFFECT OF RESONANCES ON TOROIDAL EIGEMMODES

The complicated geometries displayed in Figs. 2 - 4 make it clear that no
simple-yet-precise calculations of the effect of the ion-ion hybrid resonance
., .
on toroidal eigenmodes can be made - even with the second order equations of

the Budden_model. What this section does is to pose simplified geometrical

models which will permit semiquantitative conclusions to be drawn regarding



the effect of the ion-ion hybrid and ion-cyclotron resonances on eigenmodes.
Our approach regards the .complex parallel wave number as the eigenvalue to
be determined as a function of frequency, density, etc., and utilizes the Budden

formulation to obtain the correct dissipation.
) {

Ion-Ton Hybrid Resonance. Our simplified model for assessing the effect

of the i;n—ion hybrid resonance on toroidal eigenmodes is portrayed in Fig. 12,
The modei assumes: (1) A plasma of uniferm density and composition exists be-
tween two conducting plates. (2) The magnetic intensity varies in tﬁe x-direction
according to B = BO(R+x)/R so as to ¢reate an ion-ion hybrid réSOnance-cutoff
pair. (3) One of the ion species is a minor species so that thé ion-ion

hybrid resonance frequency is near the gyroresonances for that species. (4) The
resonance cutoff pair are closely spaced Ax << a. (5) The y and z directions
are directions of symmetry. Hénce we use a Fourier transform in the y-direction
and a Laplace transform in the z-direction since we are interested iq the
spatial damping. The z-Lapalce transform produces a Budden moéel of the re-
sonance regionz (6) The electric field Ey vanishes at the con&ucting walls.

(7) The parallel EZ field can be ignéred.

What physics does this model répresent? First, in the absence of an ion-
ion hybrid resonance, the model will produce an undamped, propagating eigen-
mode provided the density is sufficiéntly high. Secondly, according to Figs. 2-4
the ion-ion hybrid surface occurs inrhigh density regions and this model
‘should adequately describe the energy dissipation there. Third, since the
resonance cqtoff layer is fhin, we can use formulas (57-58) to connect the
amplitudes on either side of the layer. Although these formulas are derived

for negative imaginary part of k, (i.@., a Laplace transform variable), they
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are still valid for modest positive imaginary parts of k, by analytic con-
tinuation. Therefore, this model will yield the effect of the ion-ion hybrid
resonance on an undamped eigenmode. To within factors of order unity, it does
not matter that the undamped eigenmode is oversimplified by iénoring density
gradients. '

Let us now turn to the task of generating a Budden model éqﬁation from
the differential equations for wave propagation. As we shall ;ee below, .this
requires a ‘particular choice of dependent variable, since spatfal changes in
the wave polarization can cause apparent singularities for an arbitrary choice
of dependent variable (e.g. ﬁy).

The differential equation for wave propagation

becomes in our model

(AGx) S k..?',)Ex + i(D(x) -k %)Ey =0 (76)
2
_'j_.(D(x) +kaiX)Ex+ (A(x) —k.,+§;—2-)1~:y = 0 ' (77)

where we have assumed that all quantities vary as exp[i(ky + knz - wt) ]
and A, D are given by (3,4). Utilizing (4) - (7), let us define‘K and C

by

A = A-k,, c = C-k,, D-= A-C. !

While both A and D vary rapidly near a resonance, C does not. In Lhe manip-
-ulations below, C will be treated as a constant, while variations in A and D

will be permitted.
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The procedure for deriving a Budden equation is as follows: Solve (76)

for Ex and substitute into (77) obtaining the second order equation

o 3E - 2 2— .
%_lz(Aa—iE —kDE)+_Dk2 e e L (78)
A-k y 7, A-k- °F A -k y .
By introducing the variables
¢, = E,» 9, = r—_k—g—‘(x%E,)—kDE_) (79)
Y C(A -1k*“) vE Y. 4

one can recast (78) in terms of two coupled first-order equations

2

= LT (A-k9)C
A 5o = (A C)k<1>1 + K b,

(80)
3, o o
A B - T (A - Ok ¢2 - k(2A - C)d)l
Next, one can define the variables
+ 1 - 1

+ -—
and obtain from (80) a coupled set of first order equations for ¢ and ¢ .
36 = = 2, +

2k 3 = To™ + (@ - D0

(81)
— 3" _ (5 _ AC) - —~ . — AC)+
28 G- = (21 - k)¢ +(4kC GKE - S )qb
Straightforward manipulations then lead to an equation of the Budden form

+

for ¢
2 .+ =2
9 L - (kz - 2C + —_—)¢+ (82)
Ix A
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as A is the quantity which vanishes (except for the small positive imaginary

. . + -
part). Retracing our steps, one obtains the relations between ¢ , ¢ and Ey

+ _ A(C-kD) kA 3
200 = = Ey+_———_ 5 axEy

C(A-k°) C(A-k%) : ,

: 83)

2— ——=  2— — ,
0~ = 2k C-AC-k'A . , kA 5 \
YT T L Y Caoikly O Y f

C(A-%k") C(A-k™)

. + N ’ - . .
At the conducting boundary, the condition Ey = 0 leads to ¢ = ¢ , and via

(81) to

k2 - @ ¢t (84)

which is the boundary condition we will use in our eigenvalue calculations.
Let us note here that the derivation leading to (82) is also valid for the
ion-cyclotron resonance because in the low density peripheral plasmas [~ —kg
and hence C is constant. In comparing (78) and (82), one notes that the ap-
pareﬂt singularity at A = k2 has been eliminated. The role of this singular-
ity is simply to make the wave polarization such that

JE

kE{X“F C - 1<2)Ey = 0

at this point.

Let us next rewrite (82) in terms of actual physical variables. The
plasma consists of two species: deuterium and a minor species denoted by the
subscript ”2". The ion-ion hybrid frequency will then be very close to Qz

1

and we can write the formulas for A and C as
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- SPZE Qz _ I‘ZR 1
c QZD - Qg x ¥
' | (85)
2 2 ’
T = “pD % 21
cz (QD f QZ)QD N
where we have assumed that
I, = zn,2,/A, << 1 x/R = (w-Q,)/Q, << 1, (86)

and used the definition N = czlga/wsb introduced following (13). Since our

principal interest lies in the high density regime, we will assume N >> 1
and retain only terms of first order in N—l. Substituting (85) into (82),

one obtains the equation

QZ
) X( 2 1)
2 3 o« —2 H o1 M+ a0, N +
2 boTs G +oyn N T 2 o (8D
p o ( p T i)Yy ( 2 _1) TR
ol -5 N 2
., =2 22,2 . et
with k = k"¢ /wpD. If one next introduces x' = x - Xy where
IR o -1
2 2 1
X, = —\———"75-% (88)
D z \-2 2 N .
. ”D - 92
; -2 -1
and performs straightforward algebra in which terms of order N. , F2N
are neglected, the resulting differeittial equation is
2 2 2 27
C2 d2 + N QZ 1 QD4-92 FZR QD-QZ -
7 72 L L1 R +2(. nl TR o (89)
] N - +' |
wpD dx QD QD X' r1 D
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where it can be readily verified that a small negative imaginary part of k,,
leads to a small positive imaginary part of A, which is represented by A.
Evidently, equation (89) has the form of a Budden equation, and the simple

rescaling of variables leads to

d2

2

dg

o+ Nyt - 5 |
¢+ QA -gEpe =0 ; (90)

‘where A has been rescaled,

1/2
2 2 2
L}
op | oy (Bt
£ - = -k - 555
C Q2 N QZ
D D
- (91)
I, Rw_ |02 I P
r]_2‘*’1)_2_E2_;(2 D) (D 2)
2c 2 N 2 i
2 4y o
and where boundary condition (84) takes the form
2
s
+ (0, + 5208
— 277 1y +
kA 7z e+ oyl 2
(5-%)
— -k
QZ
D

when E}N_l -~ 0 and the appropriate values are used, formulas (91) give the

>

€ama expras;ions for n and 7 nus did the W.K.B. analysis for p-D plasmas

-

(A2,A3) and N-T plasmas (A9).

The geperal solution to (90) takes the form
> = v = b, ta b, . (93)

and has, from (58)-(59), the asymptotic formula
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(ﬂ fﬂ) zin m i
4 : . -1
e +ae4 ,1££2+‘ae4Le1£’:€2 E >>n
v!)_,
(m -m -in  -m ~ #in 54
a H : -
e + a ea ) engglz + ae 4 L e lg|F,[2 £ << -n

where L = L(n) = C*/C is a phase faétor. When k, has a positive imaginary

part, the boundary conditions are applied at

52 = ox, (1 « i)

(95)
El = 7axl(l =~ 1ig)
where
.2
w 2
D 2 - 1
OL=—E—"—2—k2—'N- (96)
Q
D
and '
2 2
ky (Imk,,) (25 +90)

ae = 5 ) (97)
af .
D
Application ot the boundary conditioh (92) leads to two formulas for a -
one based ‘on the condition at EZ’ the other on the condition at El Equating

these two expressions for a generates the .eigenvalue equation

1 + exp [-ZOL‘XZE + ‘i(q>2 - 2'(1}{2)]

= e"Tm -;1 + exp[z OLx1 £+ i(2A0'- Xi’“”#ﬁil} . . 8

where the phase factors are defined by
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i¢ '
e 2 = LA+iB(@x) " /(1-18)
(99)
i¢ .
e T = L+iB) ax |7/ (1~ i8)
and B comes from the boundary condition (92)
2 1/2 2 -1 .
Q Q
I K('%-I—tz) (———2——-122) (100)
Y () +9) :

While the phases ¢l, ¢2 do vary with n and x, as a rule their magnitude is
smaller and their variation less rapid than the phases 20Lxl and 2ax2. Con—
sequently ¢l and ¢2 are effectively constant with respect to variations in
Zuxl, 2ax2.

A separation of (98) into real and imaginary parts yields the two
equations

~2ax2€ . 2axle
1 +e c:os(ZOLx2 - cbz) = e T][1 + e COS(2OLX1 + rbl)] (101)

-20x%x,€

20x, €
- e sin(2ax, - ¢,) = e—ﬂn[e 1

sin(2OLx1 + ¢l)] : (102)

for which we have to solve for the two free parameters ¢, €. Simple ex-
pressions can be obtained for the limits mn >> 1 and Tn << 1. The results

are for mn >> 1

20 x = (2n+1)T - (103a)

2~ %

= - . :
?.axze = e 1+ LOS(zaXl + ¢1)] (103b)
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and for In << 1,
ZOL(Xl+x2) + ¢l - ¢2 = 2nm - TN ,s>in(2axl + rbl) (104a)

2 ai—:(xl+x2) = Tm[l + cos(2 ax{l + .¢1,):| » (104b)

Evidently, the spatial damping can vanish if 2ax, + ¢l = (2n+1)7. This

1

corresponds to the case where the eigenmode is a pure wz solution [c.f. (58)]
and has no dissipation. In general, ‘the freedom permitted to adjust o by
2 2

9
varying N = k,, ¢ /wpD

is required to satisfy conditions (103a) or (104a).

With o so determined, the spatial damping does not generally vanish,
Practically, the most interesting case is when ™n << 1. Utilizing (91),

(96) and .(97), we can compute the ameunt of spatial damping a mode experi-

ences once around the torus tqg be

: 2 2 ,
2/ Rw_.» 2z Q. -2.)"
(nk,)2TR = L(_P_Q) R(Z%2 )\ D" "2 | (105)
2n c a\ A 2 2 2
: ; 2 Q-+ Q
D 2
where n is the toroidal mode number k, = n/R. .Unless n, < 10_2, this

damping is severe and toroidal eigenmodes do not exist.

Although the case where mn >> 1 appears to have small damping, the
simpxifications of the modél do not take into account the variable width
of the resonance-cutoff points according to Figs. 2-4. Hencé if ™ >> 1,
near the center of a machine, there will be regions close to the magneto-
sonic cutoff (surface é in Figs. 2-4) where Tn will be of grder unitx,
and which will provide the damping of an eigenmode.

Hence, we COnclude from (105) that the ion-ion hybrid re;onance sup-

presses toroidal eigenmodes.



43

The Single Species Jon-Cyclotron Resonance. Any attempt to heat plasma

ions via the fundamental cyclotron resonance must, as Fig. 13 makes clear,
involve an ion-cyclotron mode conversion surface. As a rule, this surface

is constrained to lie in the low density peripheral plasma, so the absorption
resuiting from it is weak. _On the o£hef hand, the damping of a magnetosonic
toroidal eigenmode by fundamentally resonant ions is also weak [4], and it is
appropriate to compare the two absorption rates. If one tries to increase
the resonant ion absorption by making the resonant ion a minority species in
the plasma:[16], then ion-ion hybrid resonance processes come into play as
Figs. 2 and 3 demonstrate. Formula (105) then indicates that the dominant
absorption is via the ion-ion hybrid resonance.

Figure 14 portrays our slab model for estimating the effects of idn-
cyclotron mode conversion. The ion-cyclotron mode conversion results entirely
from the density variation; the magnetic field is in the z-direction and of
uniform strength, so that 2 >> Q - w > 0 everywhere. The scale length L for

the plasma density variation near the edge is taken small so that
kL << 1, k,L << 1 (106)

Consequently, evanescence of the wave amplitude in the density gradient
region can be ignored. We shall also estimate that ka ~ k,a ~ 1, as is
typical of :tokamak applications. But we shall be concerned with large,
dense tokamaks so that.wpDa/c >> 1, which is characteristic‘of most of the
planned tokamak heating experiments. The boundary conditions are that

E =0 at x = 0 and that BEy/ax = 0 at x = a (which corresponds to a solu-

y

tion which is even around the point x = a).
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It is evident from Fig. 14 that tﬁe mode conversion proceés operates
strictly at the periphery of the plasma. Mathematically, its effect -on eigen-
modes will be to change the boundary condition at x = 0 from the nondissipativé
condition Ey = 0 to one involving dissipation. Hence our calculation is a
two-step one. First, we investigate the small region where the mode conversion
takes place to find the new boundary condition. Then, an eigenmode calculation
is done for a uniform plasma with the temporal damping determined by the new
dissipative bouﬁdary condition. Finally, we compare the dampiﬁg decrement
resulting from mode conversioﬁ with that caused by fundamen;al‘gesonannp
absorption by ions.

Theéequationwhich governs mode conversion is (82). Let us simplify nota-
tion by ?enaming the dependent variable'¢+ -+ U, and noting that when A =0,

C is acc;rately given by C = —'k% provided (Q-w)/Q << 1. Hence, the equation

appropriate to the mode conversion region is

2 2
2w . xw
pD K

2 232 T :

d 12' - kz + k?' CZL(.H. - ) w . (107)

Ix wprw 2

2. 2 - ko
c L -w)

Introducing the non-dimensional variable = x/xD, one transforms (107) into
2 -"12 2 4 ?[. 78 - 1 ]t"w (108)
A e T R Y}

of . .

where

x
I
™

@ -ty ?]od e 1y | (109)
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and the small imaginary part A is associated with a Laplace-transform inter-

pretation of w. The inequalities discussed above serve to establish that

5
k%xa << 1 and kzxg << 1. Mathematically, the principal effect of (108) is

to provide a discontinuity in slope as the § = 1 point is passed.

2 : |

%Y _ (aw) (aw) _ 2.2

— d§ = - =£ = -1imk,k Y , (110)
/agz 3 )+ ~\3g) - D E

Combining (110) with (84), we find that the boundary condition for the eigen-

mode calculation at x = 0 is

2 2
k, +k 2

v imk, Xy

oy _
N - (111)

< |

Combining (83) and (81) with inequalities A >> C >> k2 appropriate to
the dense plasma, and using the condition 3Ey/8x = 0, one finds that the

appropriate boundary condition at x = a {is

19 :
U 2k . (112)
In the high density plasma, the equation governing the eigenmode is
2 w2
¥ 4 .
90U _ | 24 2 - Do (; _34iy W (113)
ax2 CZ 2 Q

where we used w ~ @ and assumed Y > O represents a temporal damping of the

wave. The Lwo solutions to (113) are evidently

{pl = exp(iax + 6x) ; 1])2 = exp(-iax -8x) (114)
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where
7 - 1/2 3vyw

a = (u N § = — PD (115)
pD ' loczaQ

Writing the general solution as Y = wl + sz, and applying boundary conditions

(111) and (112) leads to the complex eigenvalue equation

; 2. 20-1 .2 y |
ia + 8§ + (k,+k)k + ;ﬂﬂg.xD - ia + & + 2k 2iga +28a
= f— e . (116)

. 2.2 -1 . .2 ‘
18+ 68 - (ke +kDk - 1w1g,xn in +6 - 2k

The solution to (116) is obtéined by iteration. Assume first that § and

Z2icia i¢

1Tk% X can be ignored. We then find that e = e ', with

D
- Y 2, 2,2 . .
¢ = 2(k“~ky)e /wpD << 1, so that & is determined by

ga =~ nT . . . (117)

Also, § is given by

2
™k
N T (118)
aa _ _

. . . X 2 2,2 :
where terms of relative contribution k/aa” ~ .k“/a” << 1 have been neglected.

Combining (109), (115), and (118), one finds the damping decrement Y to be

2
2 2 .
ky € 2 2\
Yy . 4mf’" L9 -w | (119)
2 3 u)2 a w2
pDo :

: 2 2, -2
For tokamak applicatiomns we can estimate that (2 -w)w ~ x 2a/R and
Z a/3 to obtain
2 .-

(120)

Ol
[
=
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which is to be compared to the resonant ion damping decrement [4] of

22

y . 8if " R 121

Q 2\ .2 a ’ (121)
pDo

For planned tokamak experiments; the méde cbupling damping decrement
dominates for Bi < 10_2, indicating that fundamental resonance heating of
tokamak plasmas is nhot efficient. Most nf the energy will go inéo the edge
electron heating associated with the ion-cyclotron mode conversion - a con-
clusion that agrees with the results of the ST-Tokamak heating experiment [17].
A gualitative prediction of (120) is that modes with the smallest values of
ky will have the highest Q toroidal eigenmodes.

Our treatment of the ion-cyclotron mode-conversion process differs from
the one implicit in the work of Hosea and Sinclair [18]. T%ey used a strictly
cold plasma theory to describe the short wavelength waves radiated by the
mode conversion layer. Since no damping processes were available to these
waves in the cold plasma model, they reflected from the wall and returned to
the mode conversion layer and hence did not give rise to a net dissipation. -

- The touLal system; ion-cyclintron plus short wavelength waves, propagated un-
damped. By constrast, the short wavelength waves according to our hot plasma
theory are rapidly attenuated by electron Landau damping [c.f. (53)] and

hence produce a net damping of an eigenmode.
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7. DISCUSSION AND TOKAMAK APPLICATIONS

Let us begip this section with a; summary of our principal argumeﬁts
and results, hoping that the reader will thus see the forest instead of the
trees, branch outs, and poles.

It was shown following (10) that the ideal, cold plasma equations which
govern propagation of the fast magnetosonic and electromagnetic ion-cyclotron
modes break down along certain surfacas.which are called Lou-lon hybrid re-
sounance ot ion-cyclotron resonance surfaces. The geometry of these surfaces
is shuwn by cutrves "A" in Figs. 2-4, where it is seen that the ion-cyclotron
and ion-ion hybrid resonance surfaces are actually continuations of one
another, the term ion-cyclotron resonance applying to the low density regions
and vice-versa. There are three principal points made by Figs. 2-~4: First,
the ion-ion hybrid resonance sdrface can occur in the high density central
regions o% a tokamak where it affects. the propagation of the faét magneto-
sonic mode. Indeed, if the applied frequency is close to the cyclotron fre-
quency of a miﬁority ion, then ion-ion hybrid resonance effects are impossible
to avoid, as shown by Figs. 2 and 3. Second, ion-cyclotron résonance surfaces
are impoussible to avoid if the frequency is close to the cyclotron frequency
of a plasma ion, as is the case in proposed fundamental resonance heating
experiments (see also Fig. 13). Third, the geometry of the resonance surfaces
is comélicated, precluding simple-yet-precise models of the emergy absorption
caused by these surfaces. Instead, we use simple one-dimensional idealizations
(Fig. 5) based on the approximation that the resonance layers are thin. .Thése
calculations provide semi-quantitative estimates of the effects of resonénce

layers. The accuracy of the final formulas in this paper is roughly a factor
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of three. But they do provide the appropriate scaling laws and estimates
of being 1argeﬂor small.

What physical processes occur at the resonant surfaces? When hybrid
order finiée Larmor radius,.finite conductivity, poloidal field, and hot
plasmas effects are added to the Wavé propagation equation, as discussed in
the several paragraphs ﬁreceding (17), the wave equation no longer breaks
down but has seveiral branches nf the disﬁersion relation. The resuit is .that
energy leaves the 'ideal" branch of the dispersion relation and, via mode con-
version [19], emerges on the short wavelength branches, where it is absprbed
by wvarious collisionless absorption processes. The poloidal field parameter
.€, defined in (35), plays an important role in the propagation and absorption
of the short wavelength waves generated by an ion-ion hybrid layer. But it
is argued, 1in the paragraphs preceding (51), that the poloidal field is not
important in ion-cyclotron mode conversion.

Several specific cases of the general dispersion relation (32) are dis-
cussed: The case of minority ﬁrotops in a deuterium plasma corresponds to
present experiments [1-3], but has the unique feature not found in fusion DT
plasmas, that the second harmonic cyclotron frequency of the majority species
is degenerate with the fundamental cyclotron frequency.of the minority species
which is very close to the ion-ion hybrid resonance frequency. The appro-
priate dispersion relation is (40) whose roots are.sketched in Fig. 6. Equa-
tions (42-47) show that energy emerging on the 8-4 branch of the dispersion
relation is absorbed b& electron Landon damping and deuteron éecond.harmonic
cyclotron damping, with the electron damping being roughly a factor of three
.larger. This agrees with the experimental results [1] that show a modest but

not highiefficiency of ion heating.
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For thle case of a deuterium-tritium plasma, dispersion relations
(48—49),‘ﬁig. 7, and equation (50) show that all the energy absérbed by mode

conversion goes into electron heating.
;.

/
;

A’single-species ion-cyclotron resonant layer, as a rule, is oriented
/ ' S
so that the poloidal field plays no role and the short wavelength waves are

13
I}

/ ’
described by dispersion relation (51) and Fig. 8. According to (52-53),

/

tﬁése waves are absorbed by electror Landau damping resulting in electron
ﬁéating.

The next éuestion which arises i%: How strnng ic the abSULPLlon-Caused
by the resonant layers? The W.K.B. dispersion relation do not answer this
question, and a full wave solution must be used. The easiest way to do this
is via the Budden model where the frequency is interpreted to be a Laplace
transform variable having a small positive imaginary part which.preveﬁts the
breakdown of thec ideal equations. In the sertion entitled "Fuli-WaveKCalcula—
tions of Mode Conversion," we prove that full wave calculations based on dis-
persion relations (40) and (49) provide the same solutions to thc ideal
branches as do?s the BRudden model, justifying the use ®f a Budden mod%l to
compute the absorption of energy from the ideal branches. The aerivapion
of a Budden equation from differential equations for wave propagations (76-77)
was done in equations (78-82). This Budden equation was used to estimate the
damping of a toroidal eigenmode by the ion-ion hybrid resonance. The final
result is formula (105) which shows that the ion-ion hybrid resonance effcc~
tively prevents toroidél eigenmodés. In particular, the minority heétiug
scheme proposed by Stix [16] will not have high-Q eigenmodes.

A Budden-model calculation was also made of the damping &ecrement caused

by a surface ion-cyclotron mode convetsion layer. The Result (119-120) shows
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that the damping decrement caused by ion-cyclotron mode conversion is larger
than the damping decrement resulting from fundamental resonant ion absorption
(121). Cogsequently, fundamental ion-cyclotron heating experiments will lead
predominantly to surface electron heating, as observed by Iiyoshi et al. [11].
Any ion heating will be inefficient - in agreement with experiments on the

ST tokamak [17].

The predictions of the theory developed in this paper are in qual ‘tative
agreement with the global parameters measured in several tokamak experiments:
eigenmode Q's [1,2], ion heating efficiencies [1,3,17] and electron heating [11].
But the detailed physics of the mode conversion process remains unexamined
experimentally. Basic research experiments are called for to inve;tigate the
nature and damping of the short wavélength waves, especially as a function of
the poloidal field parameter € '[c.f. (35)].

Perhaps the most important question is: 1Is heating a tokamak via the
ion-ion hybrid superior to heating via the ion second harmonic absorption or
electron transit time damping of toroidal eigenmodes? The answer appears to
be no. The ion-ion hybrid resonance suppresses the toroidal eigenmodes, which
lowers the loading resistance of the launching coil [17]. High loading
resistance results in téchnologically much simpler wave launching coils -

a very desirable feature from the reactor engineering point-of-view. Also
second harmonic heating leads to efficient enérgy input into the bulk of the
ion distribution - a fgature required to make an ICRF-driven Tokamak Fusion
Test Reacéor.work well [20]. One should point out that true second harmonic
heating of a tokamak plasma has yet to be carried out experimentally. In
both the Princeton [1,17] and Kurchatov [3] experiments, attempts to heat

deuterans at the second harmonic were most likely contaminated by ion-ion
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hybrid effects caused by proton impurities. Experiments on TFR [2] at the
second harmonic of the proton gyrofrequency, where there is no possibility
of ion hybrid resonance effects, have shown the expected high-Q eigenﬁodes
but have ﬁot yet had sufficient power to perform a heating experiment.

What are the possibilities of ﬁerfo;ming a true second harmonic heating
experimenﬁ on the PLT gokamak with the planned 55 MHz genefator? The most
interesting poégibility is that of #ising p - He3 plasmas and performing second
harmonic heating of He3 at a magnetic field strength of 27 kG. One should
note that.a P - He3 plasma is a precise model of a D-T plasma in the ratio of
gyrofrequencies. Since we wish to aveid ion-~cyclotron mode conversion effects
associated with the fundamental proton frequency, the geometry required for
the secona harmonic surface in the fiinor cross-section is that given by Fig. 15,
which also applies to an ICRF-driven D-T plasma reactor [20].

Truelsecond harmonic heating of deuterium can proceed only il there is no
contamination by proton ion hybrid effects which requires proton concentration

]

”p sufficiently small so that

1/2

2T
n i 1 n 1/2 .
nf i) L oo o n g (122
n, < 2R(Mp.> 2 200 TkeV (122)

where n is the toroidal mode number. Even if (122) is satisfied, fundamental
resonant absorption by protons will déminate second harmonic deuterium absorp-
tion provided np > Bi.' Heating expe;iments which initially deposit the energy
in a minority species comprising less- than 1% of the particles can lead to a
thermal runaway of the.minority speciés. Hence the p - He-3 plasma appears to
offer the most direct approach to sécond harmonic heating as well as being a

good model for a D-T reactor.
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TABLE I.

Nominal Parameters of the ATC and PLT

Ion-Cyclotron Heating Experiments

ATC PLT

17 kG 35 kG
2x10%3 em3 6x1013
200 eV 1000 ev

-4 -

5%x10 2.5%x10
not measured 0.05

n_ = 0.10 used

p 4w

~0.05 ~0.10
~1.5 ~0.6
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Figute Captions

FIG. 1. The nondimensional functions K corresponding to the functions A, B,

C of equations (5-7). K = czA/wiD,detc. In the region 1.0 < y < 1.5, the B

curve is off-scale and negative. ) ’

FIG. 2.' Mode conversion resonances and cutoffs for a 95% deuterium plasma
with a 5% proton congcentration. (a) Curve A is the mode conversion resonance
while curve B gives the associated cutoff. Curve C is the .fast magnetosonic
cutoff. The nondimensional density N can be converted te the aclual density
by formula (13). (b) Sketch of the wesonance and cutoff surféces 68 a tokamak
minor cross-section. The quantity GaA denotes the distance between the. mode
conversion resonance and the proton ion-cyclotron surface.

FIG. 3. Cutoffs and resonances in a plasma composed of 957% deuteriuﬁ and 5%
tritium. (a) Curve A is the mode conversion resonance while curve B is the
associated cutoff. Curve C is the magnetosonic wave cutoff. .(b) Geometry of
curves in a tokamak minor cross-section for aspect ratios small enough to have
both the deuterium and tritium cyclotron resonances in the plasma. (c) Geometry’

of curves when only the tritium cyclgtron resonance is in the plasma.

FIG. 4. Cutoffs and resonances for .a plasma composed of 50% deuterium and

50% tritium. (a) Curve A is the mode conversion resonance while curve B is the
associated cutoff. Curve C is the magnetosonic wave cutoff. (b) Geometry of
curves in a tokamak minor cross-section when both deuterium and tritium re-
sonances are in the plasma. (c) Geometry of curves when only.the deuterium

resonance is in the plasma.
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FIG. 5. One dimensional model for a mode conversion layer. The x-direction
is normal to the cutoff (B) and resonance (A) surfaces. The variation of the
equilibrium in the x-direction can be due to‘either major radiusAvariation in
magnetic field or minor radius variation in plasma density depending on
whether ion-ion hybrid or ion-cyclotron mode conversion processes are being
considered. The angle 6 between the poloidal field Ep and the x-direction

depends on the orientation of the mode conversion surfaces (consult Figs. 2-4).

FIG. 6. Mode conversion diagrams for a plasma composed of minority protons in a
deuterium plasma. (a) Limit a ‘where BD/3€2np = Ga << 1. (b) Limit b where
3€2np/BD = Gb << 1. The notation 4 -2, etc. refers to a branch of the dis-
persion relation where terms in S4 are balancing those in SZ. The hatched

. . 2 . S s .
region shows the magnitude of S” in regions where it is imaginary.

FIG. 7. Mode conversion diagram for a deuterium plasma contaiping minori;y

tritium ions. The symbols A, B, C refer to the various branches of the dis-

persion relation referred to in the’ text. (a) Complete mode conversion

diagram based on dispersion relation (48). (b) Simplified diagram based on
-1

dispersion relation (49). When 32 ~ 3 7, then kf'r/MQz ~ 1, and our FLR

treatment breaks down.

FIG. 8. Ion-cyclotron mode conversion diagram for a single-species deuterium
plasma. The notation 4 -2, etc. refers to branches of the dispersion relation
obtained ﬁy retaining only the SA, SZ, etc. terms in dispersion‘relation (51).
In the sh;ded:portion where S2 > B_l, our finite Larmor radius expansion breaks

down.
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FIG. 9. Contours for solutions to the Budden equation;(54). The heévy lines
correspond to branch cuts emanating from k =+1. The contour C2 corresponds

to the solution of (54) which is regular at the origin.

FIG. 10. Contours and branch cuts for the integral (64). (a) The ééntour and
cuté corresponding to the solution of the Budden equation which is régular

at the origin. (b) Contour corresponding to solution wl of equationi(58).

The open circles and crosses correspond to saddle points when § >> 1:and

£ << -1 respectively. The double arrcw segments indicate the apﬁropéiate end

points for contours according to (67).

FIC. llﬂ Contours and branch cuts for the integral (70). (a) The contour
and cuts corresponding to the solution of the Budden equation which is regular
at the origin._ (b) Contour corresponding to solution wl of equationi(58).

The open circles and crosses designate saddle points for § >> 1 and § << -1
respectively, The notation A, B identifiecs the various saddle points with the
branches of dispersion relation (49) for x/nTR >> 1 as depicted in Fig. 7b.
The double arrow segments indicate the appropriate epd points for contours

according to (71):

FIG. i2. Slab‘geometry model for calculating the effect of the ion-ion hybrid
resonance on toroidal eigenmodes. A plasma of uniform density.and composition
occupies the region between two conducting boundaries. The magnitudé of the
magnetic field B changes with x to produce the ion-ion hybrid resonance R

cutoff CO pair.



FIG. 13. Sketch of resonant and cutoff surfaces in a single-species deuterium
plasma. The surface A is the ion-cyclotron mode conversion surface described
by (11). The surface B is the ion-cyclotron cutoff while C denotes the magneto-

sonic cutoff surface given by (12).

FIG. 14. Model plasma density profile used to estimate ion-cyclotron mode
conversion absorption. The letters A, B, C denote the corresponding surfaces
of Fig. 13. The modcl is a slab model with a uniform magnetic field such

that 1 >> (Q-w)/Q > 0.

FIG. 15. Geometry of variouns cyclotron resonant surfaces for second harmonic
heating of tritium in a deuterium-tritium plasma. This diagram also applies

. . 3. 3 . .
to second harmonic heating of He  in a proton - He plasma. The major radius
R scale is normalized to unity at the second harmonic resonance for tritium.
The circles represent the limiter radius for tokamaks of the indicated aspect
ratio R/a. They are drawn so that the fundamental deuterium resonance is just
avoided, placing the Tesonant heating surface as far towards the outside as

possible, as suggested by flux-conserving high-8 tokamak equilibria [21].
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