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HEATING TOKAMAKS VIA THE ION-CYCLOTRON 

AND ION-ION HYBR1D RESON&~CES 

* F. W. Perkins 

** National Center for Atmospheric Research 

Boulder, Colorado 80307 

ABSTRACT. The ion-ion hybrid resonance can occur at high plarma· 

densities in tokamaks and thereby absorb energy from the fast magnetosonic 

mode which would otherwise propagate freely. Ion-cyclotron resonance re-

gions, although they occur in the low density peripheral plasma, can none-

theless cause sufficient absorption to compete with fundamental cyclotron 

resonance damping by ions. For the ion-ion hybrid resonance it is shown 

that: (1) The energy absorption occurs via a sequence of mode conversions. 

(2) A poloidal field component normal to the ion-ion hybrid mode conversion 

surface strongly influences the mode conversion process so that rough ly 

equal electron and ion heating occurs in the present proton-deuterium ex-

periments, while solely electron heating is predicted to prevail in deuterium-

tritium reactors. (3) The ion-ion hybrid resonance suppresses toroidal 

eigenmodes. (4) Wave absorption i~ minority fundamental ion-cyclotron 

heating experiments will be dominated by ion-ion hybrid mode conversion 

absorption for minority concentrations exceeding roughly 1%. 

* On leave from the Plasma Physics Laboratory, Princeton University, 
Princeton. New Jersey 08540. 

** Supported by the National Science Foundation. 
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For the ion-cyclotron resonance, it is shown that: (1) Ion-cyclotron 

mode conversion leads to surface electron heating. (2) Ion-cyclotron mode 

conversion absorption dominates fundamental ion-cyclotron absorption thereby 

pr~venting efficient ion heating. 

As a specific example, in "second harmonic heating experiments" of deu-

terium plasmas containing small concentratio~s of protons, w.ave absorption 

proceeds via the ion-ion hybrid mode conversion and the actual ion heating 

results froUi cyclotron damping of the conveq:~d wave. True .second harmonic 

3 
heating in the PLT tokamak can be 9bta:i,ned by nsing ;;~ proton-He ph.!!mci 

which has the same ratio of gyrofr~quencies as a deuterium-tritium plasma 

·and should accurate~y simulate rea.ctor ion-cyclotron heating physics. 

1. . INTRQDUCTION 

The heating of tokamak plasmas has become one of the key objectives 

of controlled fusion research. Among the vari.ous paths towards this goal, 

heating via the fast magnetosonic mpde. in the Ion Cyclotron Range of 

Frequen~ies (ICRF) offers a variet_-y of wave absorption processes which can 

bring a~ouL either electron or ion,heating. This paper concentrates on 

wave absorption via the ion-ion hy~'+id and ion-cyclotron .resonances. 
t' 

·Why is ion-ion_hybrid absorp~~~n important? There are both experi-
: ·.G! 

mental and theoretical reasons. 1;1}-rning first to the experimental motiva­
.n 

tions, one notes that recent expe~~~ents on the ATC [l],·TFR [2], and 
~\. 

TM-lHF [3] tok.amaks attemptiJ!-g sec€!pd harmonic heating of deuterium_plasmas, 
nc 

have ~11 uncovered similar phenomen~; unexpected on the basis of the 
t1~ 

·. 
·theory of a single species plasma: (!1) Toroidal eigenmodes either had a 

(1. 

.. 
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very low Q or did not exist (see Fig. 6 of [2]). (2) The dependence of 

eigenmode amplitudes on the position of the w = 2w surface was not sym­
cD 

metric about the midline of the minor cross section. And (3), strong ion 

heating was observed. A single species model [4] predicts high-Q eigen-

modes, symmetry of Q for deviations of the w = 2wcD p~ane about the midline 

of the minor cross section, and weak ion heating (for a given wave field 

strength). A clear discrepancy between theory and experiment exists,·and 

in view of the necessity to scale small tokamak results to re·actor scale 

devices, it is important to obtain an understanding of why this discrepancy 

' 
exists. The model invoked here is that the deuterium plasmas actually 

contained an important concentration of protons (0.20 ~ n ~ 0.01) so that 
p 

the proton-deuteron hybrid resonance surface lay close to the w = 2w = w 
cD cp 

surface. Small concentratiQns of protons are indeed expected and measured 

[2] because of the operating procedures of the ATC and TFR experiments 

wherein deuterium heating experiments are interspersed among proton con-

finement experiments on a day-t~-day schedule. One should note however, 

that TFR experiments on proton plasmas near the second harmonic of the 

proton gyrofre~uency, where ion-ion hybrid effects do not play a role, have 

qualitatively verified the single species theory (Fig. 6 of [2]). True 

second harmonic heating of deuterium, uncontaminated by the ion-ion hybrid 

resonance and proton fundamental absorption, occurs only for proton con-

centrations less than B. - a demanding requirement experiment~lly. 
~ 

From a theoretical. point of view, one would like to understand both 

the magnitude and mechanism of ion-ion hybrid absorption so that w~atever 

benefits it may have can be tested and exploited in the forthcoming ICRF 

experiments on PLT and TFR hUU. 



4 

Ion-ion hybrid absorption has been recognized recently [5-7] as likely 

to play an important role in plasma heating via magnetosonic waves, and 

Swanson [7] has presented preliminary solutions to t~e Budden equation [8] 

governing propagation of a fast wave normally incident on an ion-ion hybrid 

resonance S\l'rface·. This paper sets forth in more detail the geometry of 

the resonance surface. in the min6r cross-section surface, generalizes the 

fast wave propagation equation to. arbitrary angle of incidence, and exam-

ines the fate of energy launched into the short wavelength modes by the 

conversion processes. The <;ompO[!~nt of the poloidal field normal to the 

mode conversion layer (i.e., in the major radius direction) produces impor-

tant effects in the mode conversit;m pr.nce.ss. 

The next section of the paper presents an overview of the models which 

we wiil use in reaching an ~nderstanding of ion-ion hybrid resonance ef-

fects: The paper then proceeds ftom a simplified cold plasma dispersion 

relation to warm plasma dispersio~ relations and several full wave solutions. 

including Budden model effects ort}oroidal eigenmodes. The concluding 

section discusses tokamak applic.~tions, including the suggestion of using 
' ' 

3 3 
p-He plasmas. The gyrofrequency 'ratio for p-He is the same as D-T, and 

should accurately simulate a reastor as ~vell as allow pure second har.monic 
·'-

heating uncontaminated by ion-io~ hybrid resonance effects; 
~~ 

2. }19DELS 
'~' 

Our mod~l is best ~resented fn several stages, because in fact a 
.. n 

variety .of. models are employed to' deal with the various geometries which 
di 

the ion-ion hybrid resonance give~ rise to. Let us start with an overview 
; ! 

of how our models develop. Fir~t~ we use a W.K.B. ideal model to establish 
J ~." 
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the frequencie·s and geometry of the various ideal resonances and cutoffs 

in a two-species plasma. The term "ideal model" means one in which the 

parallel electric field is neglected and cold plasma theory governs the 

perpendicular currents. The ideal model shows that ion-ion hybrid reso­

nance effects occur in a layer which is thin compared to the clinor radius 

so that the mode conversion process can be correctly described by a slab 

model in which the density and peloidal field remain fixed and the only 

spatial variation of equilibrium parameters is the change of magnetic 

field strength with major radius. Given this geometry, a full W.K.B. 

dispersion relation is developed which includes: (1) finite ion Larmer 

radius associated with both fundamental and second harmonic gyrofrequencies; 

(2) parallel electric fields; (3) peloidal field effects on k
11

, and (4) 

an arbitrary ratio between the parallel phase velocity and electron thermal 

velocity. This W.K.B. dispersion relation allows us to identify what are 

the important physical processes to include in full wave solutions, as well 

as to estimate both the size of the mode conversion region, and the damping 

which the converted waves will suffer. 

The next step is to carry out simplified full wave calculations corre­

sponding to both the ideal and mode conversion W.K.B. dispersion relations. 

As has been the experience with other mode conversion processes, we prove 

that the total dissipation predicted by an ideal Budden model agrees with 

the more sophisticated mo.de conversion calculations provided there is no en­

ergy propagating· towards the mode conversion in the short wavelength branches. 

Withthis.expected result in hand, we return to the ideal model to find 

the effect of ion-ion hybrid resonance on toroidal eigenmodes. Throughout 

these calculations we conce-ntrate on two special cases: (A) Hinority 



6 

protons in a deuterium plasma. In this case, deuterium second harmonic 

waves can exist in the ion-ion hy}?rid resonance region. (B) D-T '(or p-He 3) 

plasmas with an emphasis on minority tritons in a deuterium plasma. In 

this case, there is no degeneracy. between a second harmonic frequency and 

the ion-ion hybrid frequency. 

3. THE IDEAL MOllE;~: C_UTQFFS AND RESONk~CES 

The simplest model of wav·e p,r:opaga-tion in a tokamak is the ideal, W.K.B. 

model where only cold plasma mot.ions are allowed and the parallel electric 

field is ignored. Furthermore in tokamak geometries when the poloidal 

magnetic field is weak compared tQ· the toroidal field, the parallel wave 

number is quite accurately given by 

k" 
n 
R - constant (1) 

unless the perpendicular wave numQer becomes very large because of mode 

conversion processes. Hence with:;i:_2n. the ideal model, waves propagate with 

constant angular frequency w and q.onstant k 11 ~ Assuming that the static 

magnetic field lies in the z-direg~tion and that the wave propagate~ in 

the x-'z plane, the familiar techn~,ques of cold plasma theo~y yield the 

equations 

• 



·• 

and the dispersion relation 

where 

D 

A 

B 

c 

with 

2 2 2 
k

11
) - (B- k11 )(C- k11 ) = 0 

2 
(2Z ) 3 w D cr w 

~ L .ncr ~ 2 2 
c cr cr n en - w ) 

cr cr 

A+ D 

A - D 

2 
w 

pD \ 
2 L. 

c a 

. 2 
w 

Jf-I 
c cr 

the definition 

n z 

7 

(3) 

(4) 

( 5) 

(6) 

(7) 

icr icr 
ncr - n 

fraction of electrons contributed by soecies cr (8) 

e 

ncr - ZcreB/Mcr c 

deuterium plasma frequency for 
full elet:llULI ue!"1Sity 

(9) 

(10) 

Figure 1 portrays functions A, B and C for a D-T plasma. The qualitative 

behavior is the same. for other species. 

Evidently, the surface where 

2 
A - k 11 0 

defines the ion-ion hybrid resonance at which k~ ~ 00 according to the 

ideal model. Equation (11) also yields the single species ion-cyclotron 

(11) 
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resonances. The usual fast magnetosoni~ wave cutoff is g~ven b.y 

2 
C - k 11 = 0 (12) 

Formula (7) shows that this cutoff is not sensitive to plasma composition. 

The Hurfac~ B - k~ = 0 is a cutbff that occurs near the ion-ion hybrid re-

sonance producing the resonance-cutoff pair which the Budden equation 

describes. 

P1" o ·u·r·~~ 2 "'" 4 plot r·il_P_ s d t ff £ · 1 f b w re onancec an cu o s ·or our spec1a ~ases o 

interest, and show how these surfaces manifest themselves on the tokamak minor 

cross section. The actual plasma densities are given by 

n 
e 

4 . 1 • 1012 em- 3 ( 1 meter )
2 

N 
>.ll 

2 2 2 
in terms of the quantity N :: IJJpO/ c k 11 read from Figures 2 - 4. In using. 

(13) 

3 
Figs. 3 and 4 for a p-He plasma, the nondimensional frequency variable is 

y w/Q and the densities should be one-half those given by (lJ). 
p 

What physics does oue learn from Figs. 2 - 4? First, it is evident 

that the geometry of the resonances and cutoffs is quite complicated, and 

prevents a simple one-dimensional mo:del from describing the effects of the 

ion-ion hybrid resonance. Second, when the heavier inn has the smaller 

concentration, ion-cyclotron mode cc:>nversion resonances exist over a. good 

fraction of the plasma circumference·, and compete with the ion-ion hybrid 

resonance. On the other hand, the mode conversion-cutoff regions are gen-

erally quite thin compared to the minor radius, pointing towArds the use of a 

sequence of one dimensional models, each model treating the physics of the 

mode conversion process in a small ~~gion of space and connecting in a 

.. 

... 
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simplified way to global eigenmodes. 

More specifically, in the case of present experiments, Fig: 2, with 

small concentrations of light ions (protons) in a heavy ion (deuterium) 

plasma, the relative width in minor radius over which ion-ion hybrid effects 

occur is small. If one defines oa to be the maximum deviation of an A or B 

surface from the w = 20.
0 

surface, then for small proton concentrations one can 

find 

(14) 

where the equalities· apply at high densities. To the extent that 

R 
4a np<< 1, (15) 

the mode conversion layer is thin with respect to the minor radius and the 

specifics of the mode conversion p~ocesses can be obtained from a one-

dimensi.onal slab model with constant poloidal field and plasma density. 

Figure 2b also points o~t that it is impossible to avoid some ion-cyclotron 

mode conversion absorption in the tenuous plasma outside magnetosonic wave 

cutoff. 

In the case of plasmas with a small concentration of heavier ions 

(tritons) in a light ion (deuterium) plasma, the presence of an ion-ion 

hybrid resonance surface is accompanied by two mode conversion-cutoff pairs 

corresponding to deuterium and triton ion-cyclotron waves. Again the layers 

will be thin in minor radius, and amenable to a slab type analysis. 
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Thirdly, even in plasmas with 50% deuterium- 50% tritium, the relative 

separation between the mode conversion resonance and cutoff is a small frac­

tion of the minor radius. At high densities, one can show that 

(16) 

so that a slab type geometry is ag,ain a good model. In this case also, it 

is impossible to avo1.d mode convers:iioh absorption by ion-cyclotron resonances. 

Altogeth~r, the complicated geometries depicted in Figs. 2 - 4 will pre­

vent precise calculations of wave damping decrements, etc. The best this 

paper will do is factor-of-two ~sti,mg.t;;es for the contributions of vari.ous 

processes to the overall wave damping decrements. But these estimates and 

the scaling laws associated wi.th them form a· sufficient understandi~g of the 

actual heating processes to be usef~l in guiding and interpreting tokamak 

heating experiments. 

4. l'lNl'l'E LAKMUK KA!J,fUS UlS.PEH.SlUN H.ELA'l'lON 

The goal of this section is toe determine what physical processes are 

playing a role in the mode conversi~h phenomena which occur when k~ -+ co 

according to the ideal model [c.f. f3) and (10)]. Our tool for this will 

be a general finite Larmer radius d[:iispersion relation and a one-dimensional 

slab geometry. Such ~m analysis pt:btluces three classes of results: (1) iden­

tification of the dominant terms g6;verning the propagation of the short wave­

length converted modes, (2) the pdificipal damping processes for these modes, 

and (3), an estimate of the typicaf scale sizes of the mode conversion layer. 
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The physics incorporated in the finite Larmor radius dispersion rela-

tion includes: (1) electron and ion velocities across the magnetic field 

according to cold plasma theory, (2) a Maxwellian velocity distribution for both 

electrons and ions, (3) the first finite Larmor radius contributions to ion 

velocities across the magnetic field which involve not only FLR corrections 

to the cold plasma velocities, but also the introduction of second harmonic 

terms, (4) arbitrary ratio of the parallel phase velocity of the wave to the 

electron thermal velocity, and (5) fundamental and second harmonic ion damping 

processes and electron Landon damping. 

Figure 5 portrays our general one-dimensional slab model for investigating 

mode conversion physics. This model stems from the narrow spacing between 

the resonance and cutoff surfaces. Consequently, the equilibrium varies only 

in the x-direction, while the z-direction is the toroidal direction. The y­

direction completes a right-hand coordinate system. 

The essence of our slab model is that the x-direction is the local normal 

to the mod~ ~nnversion surfaces portrayed in Figs. 2 - 4. Hence the actual 

orientation of the x-direction in a laboratory frame depends on the mode con­

version process under consideration. Let us discuss two extreme examples 

occurring in Fig. 3c. The ion-ion hybrid mode conversion region near the 

center of plasma is oriented so that the peloidal field is normal to the 

mode convers·ion layer, and the principal variation in the equilibrium results 

from the major radius variation of magnetic field intensity. Ort the- other 

hand, the de'Uterium ion-cyclotron mode conversion surface on the outside of the 

plasma is: or:iented so that the peloidal field is parallel to the mode conversion 

surface, and it is the equilibrium density variation that induces the mode 

conversion process. In both these examples, the x-direction lies close to 
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the major radius direction, but this will evidently not be the case for the 

deuterium ion-cyclotron mode conversion surfaces of Fig. 3b. 

It is straightforward to obtain to the finite Larmer radius dispersion o I 

+-+ 
relation starting from the conductivity tensor a on p. 229 of Bekefi's book 

+-+ 
[9] or Swanson's dielectric tens0'f K [10]. Let the wave-vector be given by 

-+ -+ 
k.!. e 

1 
+ k 11 e 3 

(17) 

and wave electric field amplitude by E(x, t) 
~ """ ~ 
E exp (ik • x - iwt), so that 

the t.JKB ~vave equation becomes 

-+ -+ -+ 41TiW +-+ -+ 
k x (k x E) + 

2 
a • E 0 (18) 

c 

In component form, equation (18) is 

0:: A,-
2 

+ i(~ D
0

)E 2 + k,)El a n 
k,k, EJ 0 (19) 

o: k~ 
2 

0 (20) -i(I D )E
1 

+ A k,)E
2 a a a a 

2 

- k~)E 3 k.!.k" El + ( w . \.] 0 ( 21) 
c2k~D2 e 

e 

where the subscript a denotes an ion/. species and 

... 
2 k2 

? 

w 

[n2 
2 

(1 T ) 
2 c ~~)] ____p_Q_ w .!. 

~ + ._"w 

w2 t/ (22) A "2 0 2 2 r.i c - w H ML 
a a 0 0 a 
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w

2 

[ 2 

2 
2 

r~ :~~ (1 -

3k, T.) 
___EQ_ w - 1 w (23) A 2 + a 
c

2 ri - w
2 

M n 4Si 2 M 
a a a a w a a 

w2 [ ~ ( 2 
2k

2 

Ti) wQa c~ Ti) J pa a w l. 
(24) 

Da 
c2 n2 - w2 n2 

2 + 
4Q2 - 2 M n2 M n 

a a a a a w a a 

;;{ 
2 

-x 
we; ) xe 

dx . (25) w = 
0 e X- [ - i£ ·e 

-co 

1/2 

;e ~. ( 2;e) 
(26) 

? 
/4Tin e 

2 
(2 7) n- T 

e e e 

Formulas (22-24) are based on the inequalities 

(w- n ) (Maf2 w - 2Qa ( Ma )1/2 a 
>> 1 >> 1 (28) 

k, 2T. k, 2T. 
l. 1 

so that ion-cyclotron damping effects are small. 1Vhen we wish to consider 

cyclotron damping processes, we will use the replacement 

-n-=n-a.;:.:;l ___ w_ --> k~, (2 ~\Y'
2

[ -x--=e_---=~-:-=d_;.:x_i_E 
' ·-00 

( 

M )1/2 1 a --- . 
k, 2Ti 

z c; ) : 
n , 

(29) 

where 

w - nQa ( Ma ·)1/2 . 

k, 2T. . 
1 

(30) 

The cogn~scenti will also recognize that the 2-3 and 3-2 elements of the 

conductivity tensor should not be precisely zero unless I; I >> 1. These 
e 
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and other neglected terms contribute to the wea~ electron damping of other-

wise undamped m~gnetosonic waves. Our use of W only in the 3-3 element 
e 

adequately describes the electron Landau damping of short wavelength con-

verted waves which is the topic of principal interest here. 

Setting the determinant of the coefficient equal to zero yields the dis-

persian relation 

! [c ? k2 
Bcr 2 

2S":l w) ( -
1 

- k;; - L- (w -
2 .!. a 2 a 

0
2 _ 

w ·a 

[B - 2 k2 
Ba 2 

( n2 

1 
k .. LT (w + 2S":l w) 

2 .!. cr 
a - w 

·a 

') 

k~ 

where 

8'TT n. T. 
. 1.0 1. 

' B2 

and A, B, C are given by .(S-7) and Fig. 1. 

4S":l2 1- w2 )] 
a 

4Q2 ~ w2 )] 
a . 

2' 
w ) 

0 (31) 

Fortunately, equation (31) per.mi ts a considerable simplification. The 

procedure is to collect powers of k·~ and examine the contributions to the ..., 

coefficients. We shall discard ter,ms that are (1) finite B contributions 

' 
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2 2 -1 
with a fundamental resonance denominator (n

0 
- w ) to coefficients where 

there is already a cold plasma term (i.e., A, B) with a fundamental re-

sonance denominator, (2) contributions to coefficients that are of the order 

2 k2 D2 T k2 
C II e II 

A "' --'-e __ << 1 

w~ Mw
2 w 

e e 

relative to other contributions to the coefficient, or (3) of 9rder B relative 

~ . 
to other contributions. The simplified dispersion relation is;then 

2 2 2 

6 c D k 11 8 ( 2 
k e \' a --:-=w=----

.!. 2 ·l.z 2 2 
w w a 4n - w 

e a 

2 2 
(B- k,) (C- k,) I) 

In the slRh geometry of Fig. 5, one has to have a good approximation 

k, 

where 

k + 
z 

~ ~ 

B •k 
p .!. 

B 

-+ -+ 
xk + y k 

x~ y 

(B /B) cos 6 
p 

- k 
z 

+ e:k + O(e:k ) 
X y 

(r/Rq) cos 8 « 1 

q being the usual tokamak safety factor. 

(32) 

(33) 

(34) 

(35) 
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Snell's law demands that waves propagate with fixed w, k , k . Only 
z y 

the x-component of the wave number is permitted to vary so that the dis-

persian relation remains satisfied as the equilibrium quantities, A, B, ncr, 

vary. 

The mode conversion and abs.orption phenomena governed by (32) are best 

brought out by discussions of partic~lar cases. 

A. Minority protons in a deuterium plasma. This case c6rresponds to 

the present experiments in ATC, TFR_, and TM-IHF [1-3]. It has the unique 

feature that the second harmonic of the major species is degenerate \vith the 

fundamental of the minority species and thus close to the ion-hybrid resonance 

frequency. Fig. 2 informs us that the peripheral region where ion-cyclotron 

mode conversion takes place is small, and hence we neglect it. Since the 

mode conversion takes place la-rgely in high density plasma, we can also 

neglect the k contributions to k., and, after some manipulation and discarding 
z 

of small terms, we arrive at the dispersion·relation 

6 -2 
t:; 

c 

8W 
e 

(36) 

where S ·= k c/w D' i3 D refer to that of the electrons and- deuterium ions, 
x p ·e, 

and x represents the distance inwar:d in major radius from the w = 2nD surface. 

The argument of the W function is 
e 

k~, (2;c )
1/2 

= 
2 r2D c (__.!!!__ )1 I 2 

E S w D 2T 
p c 

·~ ( )1/2 ~ m . 

r~·s MSe 
< 1 ' (37) 

' 
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while the ion damping can be ignored provided 

. w - 2nn (~)1/2 
e:k 2T. 

X . 1 

= (38) 

Let us also show that the term in s6 
is negligible. Treating the three 

highest powers of S as a quadratic\ equation, one finds that the s6 
term is 

negligible provided b
2 

<< 4ac which yields 

s! e:4 (4 n R)2 
-- _E_ 

64 3 X 

Rlxl -1 
an inequality true since >> 1 for tokamaks. 

relation of interest is 

s8 Be BD R 2 

32W X 
e 

+ 

(39) 

Hence the dispersion 

0 (40) 

What physics can one extract tram equation (40)? It is evident that 

2 4 
the coefficients of S and S can vanish, indicating that two mode conver-

sion processes will take place. Let us follow the wave energy through the 

mode conversion processes until we can establish that it is being absorbed 

via a collisionless damping process. By comparing the values of x at 

which the coefficients·of s4 
and s2 

vanish, one establishes that the details 

of the mode conversion process depend upon the value of the parameter 

2 
We shall examine both limits: (a) 3 e: n/Bn » 1 and (b) 

Limit (a) applies to most of the region of present day 

experiments as the nominal values for the ATC experiment demonstrate (see 

Table 1). Limit (b) applies to·t~e higher B experiments planned for the 



18 

future as well 'as regions in present experiments where £ is small because 

r cos 8 is small. Figure 6 sketches the roots of the dispersion re1ation in 

the two limits. Both graphs make t~te same point: Energy· can propagate away 

from the mode c'onversion region only a:long the propagating part of the 8-4 

branch of the dispersion relation. As this branch of the dispersion rela-

tion crosses the cyclotron resonance, surface, ion-cyclotron damping by 

deuterium takes place. Utilizing (,.2·9) ,, (38) and (.40), one finds that the 

width ot the deuterium tyclott'Oii. dam.pfng region is 

ox 
c 

(8) 1/4 R £1/2 B .. 1/2 B -1/4 
Dt e 

while the spatial damping decrement is determined from the equation 

with k 11 

and that 

ox 
c 

-1 
S £ wpD c Using a pertuxbation approach one finds that 

1/2 1/2 (3 1/2 
(8TI) Be D 

w DR 2.5 
~ _.::..,£ ~=­

c B 0.75 
. e 

>> 

where nominal values have been used~ 

(41) 

(42) 

(43) 

Inequality (43) assures us that energy converted into the 8-4 branch 

of the dispersion relation will be aosorbed by deuterium ion-cyclotron 

damping when it finally reaches the cyclotron resonance layer. On the 

' 
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other hand, electron damping operates th~oughout the mode conversion region. 

On the 8-4 branch, one can use (40) to obtain 

(44) 

while the characteristic distance comes from the separation of the (4-2) -+ (8-4) 

2 
mode conversion layer from cyclotron resonance surface: o~C ~ B

0
R/4E: . 

Hence the ~otal attenuation due to electrons is 

exp(-5) ( 45) 

a strong attenuation which appears not to permit propagation of the 8-4 branch 

to the cyclotron layer. However, the cyclotron layer and mode conversion 

point are roughly coincident because 

1 (46) 

pointing out that both cyclotron absorption and electron damping will take 

place. The ratio of the two attenuation coefficients is 

ImS
0 

ImS 
e 

18 £3 

rr B 1/2 
D 

1 

3 
(4 7) 

suggest.ing that electron absorption is lar.ger than deuterium ion-cyclotron 

absorpiion, but not by a large factor. Proton cyclotron effects play no 

role on the 8-4 branch. 



20 

In sunnnary, minority protons in a deuterium plasma produce an ion-

hybrid mode conversion absorption of magnetosonic waves. The converted 

waves are damped, in roughly equal proportions, by second harmonic deuterion 

cyclotron absorption and electron Landon damping. In all our work, the para~ 

meter E play~ .a key role pointing out the importance of the rotational trans-

form. 

B. Deuterium-Tritium Plasmas. The. deuterium-tritium plasma provides a 

good example of ion-hybrid mode-conversion pr0cesses and in particular, the 

~ase of a minority heavy ion in a light ion plasma. In addition, degeneracies 

between second harmonic and fundamental frequencies are ahsent. We shall 

develop our equations for the case ~~ere tritium is a minority ion, but our 

results apply qualitatively up to tritium concentrations of roughly 50%. 

Figures 3 and 4 point out that no less than three mode conversion processes 

occur in this case - tritium and de~terium ion-cyclotron mode conversion as 

well as the ion-ion hybrid mode conversion resonance. Let us concentrate 

here on the ion-hybrid mode conversion; ion-cyclotron mod~ conversion proc-

esses which occur only at the edge of the plasma will be discussed below. 

The appropriate dispersion relation comes from (32) and'is 

2 
9 E Be 3D 

32 w 
e 

2 7(3 

80 
e 

2 
.1 E'. B 

e (1
5
2 _ R:T) 

B~ nT R) - ~ ( 12, - RnT ) + 485 (2 - nTxR ) . = 
4x 3 5 · x 

0 (48) 

where we have included first and seqond harmonic deuterium contributions in 

the coefficients of s4 
and s8

. We $ball also assume that BD << E
2

, as is 

generally appropriate for existing gnd planned tokamaks. But, in the reactor 

regime, this inequality may not be ~rue. 



21 

Evidently, the coefficients of all powers of s
2 

can vanish indicating 

that the mode conversion ~roblem posed by (48) is not well-defined. But the 

2 2 -1 
highest powers of S generate values of S given by S - 8 (i.e., 

2 2 k.!. T /Ms-2 ... 1) where our finite Larmor radius expansion procedure has broken 

down. Hence we must try to simplify the physics to get a well-posed mathe-

m~tical problem, consistent with our FLR expansion. 

8 
Our s.implification will consist of ignoring the S term c,ampletely, and 

dropping the 12/5 contribution to the coefficient of s6
. The physical basis 

for this simplification originates with Fig. 7 which shows the mode conver-

sian diagram approrpiate to the simplified dispersion relation 

2 

(R T)T·) 4 2 _£(g_!T)) ( 2 - ll;R) - s6 
3c B 

8 e 
0 (49) 

8 
-- +S.e: +45 w .X 3 5 X T 

e 

and contrasts it with that of (48). 

The key difference is that in our simplified model the branch of the 

dispersion relation labeled A permits propagation of energy away from the 

mode conversion layer, whereas the true one does not. On the other hand, 

the scale lengths associated \vith branch A are always short compared to 

those oi branches B and C which connect to the cold plasma fast-wave branch. 

Hence the coupling between branch A and branches B and C will be weak and a 

simplified.model of branch A will suffice. Our full wave calculation car-

ried out ih equations (~8) to (75) reaches the same conclusion. 

How is the energy absorbed in this mode conversion situation? Figure 7 

shows that; the energy absorbed from the fast wave will appear on the short 

wavelength portion of branch B, propagating away from the tritium cyclotron 

resonance surface. In terms of physics, this wave is a deuterium electro-
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magnetic ion-cyclotron wave, and the principal damping mechanism is the 

electron damping associated with the s6 
term of (49). Computing the spatial 

damping decrements one obtains 

Im S 
e 

:::: 

1/2 
4/IT r3 e ( mM )1/2 
15 ___:,_-=3-

E 

(SO) 

which is sufficient to damp the wave within a distance c/wpD - 10 crri of the 

mode conversion layer. 

Qualitatively, the prediction is that for future, larger tokamaks, mode 

conversion at the tritium-deuterium ion ·hybrid resonance leads to a fairly 

local electron heating. This prediction holds for any heavy minority ion in a 

plasma composed of lighter ions. Again, E and the rotational transform play 

crucial roles. One can also ~eadily check that for nT > 10-
2

, the cyclotron 

absorption region is sufficiently far from the mode conversion layer so that 

tritium cyclotron resonance absorption does not occur. 

C. Ion-Cyclotron Mode Convers~on. In the low density peripheral regions 

of a tokamak plasma, Figs. 3 and 4 ~how that an ion~cyclotron resonance mode 

conversion process takes place which corresponds to the ion-cyclotron mode 

conversion processes in single-species plasmas [4,11]. In configurations where 

these mode conversion surfaces occu.py a fair fraction of the plasma perimeter, 

the pol~idal field is almost paralltl to the mode conversion surface and the 

quantity E, defined by (35), is very small. Consequently., rotational trans-

form does not· couple the k ·and k,. •wave numbers, and the mode conversion 
X 

process occurs at constant k,. = k • In addition, the parallel wavenumber 
z 

determines the density at which the mode conversion takes place. We shall 

treat the simp~e~t form of ion-cyti~tron mode - that of a single species 



23 

deuterium plasma - as illustrative of the physics of ion-cyclotron mode con-

version. As the frequency falls substantially below the gyrofrequency, ion-

cyclotron mode conversion heating transforms into the Alfven wave heating 

process discussed by Hasagawa and Chen [12] and by Tataronis [13]. 

. . 
The dispersion relation which governs ion-cyclotron mode conversion in 

a deuterium plasma can be obtained from (32) with the following simplifica-

tions: (1) The mode conversion is brought about principally by the density 

variation and so one can write 

2 
w D p 

2 
c 

2 
w 

2 2 
w D w 

--=-"-p ___ 2_ ( ~L ) 

c
2 

($1~ - w ) 

which serves to define the density gradient scale length L. The mode con-

? 2 
version takes place at x = 0 .. (2) The relation between k~ and wpD at the 

mode conversion point is used to evaluate k~ in the k~ and k~ terms of (32). 

(3) Because the frequency is close to the deuterium gyrofrequency, only the 

fundamental gyroresource terms are! retained. (4) The term C is negligible 

2 
compared to k, in the low density peripheral regions. Straightforward 

aJePhrR thRn generates the dispersion relation 

0. (51) 

where the B's refer to the plasma at the mode conversion surface. The ar-

gument of the W function is 
e 



~ 
e 

w ( m )1/2 
k" 2T , 

e· 

indicating electron damping will be important. Indeed, one can readily 

calculate that 

c 

~.J'ith 

I W » 1 
m e 
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(52) 

(5~) 

so that. the mode converted wave is absorbed .by e;lectron Landau damp.ing close 

to the mode conversion surface. He.t:lce ion-cy.clotro.n mode conversion processes 

le~d to surface electron heating. 

Figure 8 sketches the mode comrersion diagram for ion-cyclotron mode 

conversion. Evidently, the 6-4 br?rch of the dispersion relation plays a 

6 
small role, and the S term in (51) can b~ safely neglected. 

Summary. The most important rgsult of this section has been the iden-

tification of the dominant physical processes as manifested in the 'various 

simplified dispersion r.elations (40), (49), an9 (~1). In addition, we have 

established that the converted shor~ wavelengtq modes are p.ll quick~y atten-

uated in space, implying that no r~flected energy can propagate into a mode 

conversion layer. These consideraH.ons directly impact on the full wave 

solution of the next ~ection. Las§!y, by co~sidering wha~ processes con-

tributed to the spatial damping, w~ were able to det.ermine whether electron 

or ion heating should result. For ~xample, equ~tions (42) -· (47) predict 

that a fair amount of deuteron he~tipg should occur in present experiments 

;ij~~~--
.. ~.__...-,. 
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with minority protons. But, in a D-T plasma, equations (49) and (50) pre-

diet that ion-ion hybrid mode conversion results in electron heating. The 

ubiquitous presence of £ (eq. 35) in our formulas indicates the strong in-

fluence of the poloidal field on the physics of the converted waves. 

5. FULL WAVE CALCULATIONS OF MODE CONVERSION 

The role of full wave calculations in mode conversion problems is two-

fold. First, we wish to show that the total energy extracted from the cold 

plasma branches is the same in the Budden model as in mode conversion models 

which radiate short wavelength waves away from the mode conversion point. 

Secondly, full wave calculations are required to show that the short-wave-

length energy is in fact radi~ted in~o the expected branches of the dispersion 

relation: For example, in Fig. 7b the energy could in principle be radiated 

in both the A and B branches of the dispersion relation. However, because 

only the B branch goes continuously into a cold plasma branch, we expect 

most of the radiated energy will appear on .that branch. The reader who is 

interested solely .in practical results is advised to read only the summary 

of this section, leaving the saddle points and asymptotic formulae for the 

aficionados. 

The Budden Model. The Budden model is derived from the ideal model by 

treating tqe frequency as a Laplace transform variable with a small positive 

imaginary part w -+ w + i o. 2 
Consequently, the coefficient A - k 11 does not 

precisely vanish, and the coefficients of k~ and k~ in (32) give rise to the 

differential equation of the form 
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0 (54) 

which no longer is singular because of the small positive number b. • . Equa-

tion (54) is a confluent hypergeometric equation having a cutoff at .; = 11 

and resonance at ; = 0. A similar ·equation was a·nalyzed by Budden ( 8]. The 

precise interpretation of the dependent variabie ~ is not yet clear, since 

(54) has merely been written down by an·a-logy with the dispen:::i,on relation 

(32). Derivations of the Budde~ ~qtiati6n ~tdm.the differential equation 

for wave propagation follow in the next section, which will determine the 

parameter 11 and the nondimensional variable ;. 

It should also be pointed out that (54)' which yeilds propagating wave·s 

for j;j >> 11, is the appropriate equation for ion-ion hybrid mode conversion 

in a high density plasma. Ion-cyC16tron mode conversion yields an equation 

of the form 

0 (55) 

which produces evanescent waves for j;j >> ll· 

Equation (54) can be solved by taplace'i method [14] ~ith the result 

1 dk 

- ~ k2 
c 

dk' J 
- k' 2 . 

(56) 

and the contour C must be chosen sd that the exponential factor in (56) 

vanishes or returns to the same vaili~ at the end points. An.integration 

by parts transforms (56) into 
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tjJl 2 , 
= (E,;+i6)1 (l+k)in/2 eikf,;-k6 

n 1-k 

cl 2 , 

dk (57) 

where Fig. 9 shows two contours- c
1

, c
2 

corresponding to two independent 

solutions to (55). The asymptotic ·formula for these solutions are 

where the constants are 

Kl 
-(errn/2 _ e-rrn/2) -1 

K2 -(errn- 1) n 

± 
and the functions tjJ have the asymptotic formula 

.~ c 
it: cin/2 t,; >> 

tjJ+ 
e n 

{c ·c- in/2 1-, 
It,; I t,; << e -n 

(59) 

{ * -iF 
t,;in/2 C e "' t,; >> n 

tjJ 
-

~. . 
Jt,;Jin/2 " -lf,; 

t,; C e << -n 

and where 



28 

These results are the same as Budden's: Solution ~l corresponds to a wave 

incident on the resonance with zero reflection coefficient and transmission 

coefficient T exp(-nn/2). The linear combination 

~c 

corresponds to a wave incident on the cutoff with reflection coefficient 
1 

-rrn 
R = 1 - e and transmission coe.ffieient T = - exp (-nn/2). 

One should also note that 1/J, which does not depend on a positive 6. 
~ 

(60) 

[as is evident from (56) and contour ~ 2 of Fig. 9] represents the solution of 

(54) which is r~gular at the origin. Since this solution involves no sin-

gularities, it ~ill not produce any e:nergy absorption- a point made_by 

Swanson [ 15]. 

Our principal goal is to demonstrate that the Budden model yields the 

correct energy ?bsorption. Our arguments that this is so proceed as,follows. 

He shall employ Laplace's method [14~ to generate solutions of highef order 

differential equations corresponding ~o dispersion relations (40) an9 (49). 

We shall 'then examine what types of eon tours are allowed in the region k - 1, 

and show that any contour which connects to a short wavelength branch pro-

pagating away from mode conversion r~:gion is of the type c
1 

of Fig. 9. We 
\ 

\ 

shall also establish the contours of type c
2 

are possible. Since the con-

tours c
1 

and c
2 

repres~nt independent solutions of the second order differential 

equation, we conclude that· the Budden model satisfactorily describes the energy 

dissipation. Furthermore, by examin:i,;ng the saddle points which correspond 

to the short wavelength modes, we ~h~ll demonstrate that energy emerges from 

the mode conversion region only on sh.Qrt wavelength branches whl.ch are 
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continuously connected to the ideal branches. This argument justifies our 

use of W.K.B. concepts in identifying how the mode-converted energy will · 

eventually heat the plasma. 

Let us now provide these results for dispersion relation (40) which 

governs minority protons in a deuterium plasma. The eighth-order differential 

equation is: 

0 (61) 

where 

3 w DR 2 2 2 W D x 

£8 
p 

E: S e (3D' £4 3£ ' ~ = 
p 

c c 
(62) 

n Rw D 2 
~1 3n < 1 - A) , n 

p p 
A BDI 3 E: n . 

c p 
(6 3) 

The three quantities ~l' n, and A are all more or less of order unity while 

3 
E

4 
<< 1 andES<< £

4
. Laplace's me,thod yields the solution to (61) to be 

k 

~k 4 exp (ik~ + if 
k c

4
k 

(64) 

c 

where the exponential term must either vanish or return to the same value at 

the ends of the contour C. Branch. cuts must emanate from the points k = ~ 1 , 

+ . -1/2 
k = _ 1. c::

4 
' to maintain the k' -integral single valued. The saddle points 

of this exponential factor correspond to solutions of the equation 

0 (65) 
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which is dispersion relation (40) rewritten. The allowed trajectories of the 

contour Cas ikl ~ 00 must satisfy 

-iTT 
2 2TTin 

~ oo e e (66) 

which implies that 

e = (6 7) 

Figure 10 shows that we can find two contours which reproduce the topology 

of contours cl' c2 in the region k ~ 1, and involve only the saddle point 

k ( I ) l/ 4 h. h d . . . h 8 4 
a~ = e:

8 
s

4 
w 1c correspon s to outgo1ng energy propagat1on o~ t e -

branch of the dispersion relation. [This can be seen by using eighth and fourth 

d f (40) d X/R -- <.402- w2) /8~"'~n2· J . or er terms o · an . "' ~' 

Now let us turn to the deuterium"-tritium plasma. The sixth order dif-

ferential equation corresponding to dispersion relation (49) and Fig. 7b is 

~ 36 
E

4 
(t;; -Sn) 

a4 
t;; 

a2 
C' ~ n} ~ 0 (68) lE6 --6 + --+ --+ ~ 

at;;4 a~2 
'? 

at;; .., 

where 

2 w Dx 10 2 5 2 nT RwpD 
(69) t;; -~ E6 - E B n E4 -E n -

3 9 . c 9 • 18c c 

As a rule, E6 << 
2 

Laplace's methb'd yields the solution tor 1]1 E4. 

k 
n+ k'6 I {I 

J dk (ik< -1 (6 sn~:: 4 k 
dk') tfJ = exp 

- k ,2 k'4 
(70) 

l-k
2

+e:k
4 

1 + E4 
c 4 



31 

where the exponential term must again have the same value at both ends of 

the contour C. 
- + + -1/2 Branch cuts must come from k - _ 1, _ E

4 
to make the 

k'-integral single valued. The saddle points associated with exponential 

factor are given by the equation 

6 4 2 
E 

6 
k + E 

4
.( £; + Sn) k + F,; ( 1 - k ) - n 0 

which is di'spersion relation (49) rewritten. Figure 11 shows the contours 

and s~ddle .points associated with the integral (70). 

ponential term will vanish at the contour ends provided 

E6 3 3i8 -irr + 2rrin 
-i I k I e -+ oo e 

3E
4 

or 

e = - rr/6 + 2rrn/3 

-+ 00 , the ex-

Since one cannot deform the contour and the branch cut of Fig. llb 

(71) 

into the lower half plane until eaddla point A is passed (and still have the 

saddle point contributions dominate the integral), it is evident that contour c1 , 

which corresponds to solution 1/Jl. of (58) of the Budden equation, in principle 

contains;·outgoing radiation in both the A and· B branches of the dispersion 

relation (see Fig. 7b). Contour c
2

, whiGh corresponds to ~ 2 ~f (58), again 

does not couple to the short wavelength branches because it is the solution 

of the second order equation which is regular at the origin. In order to 

determine the relative importance of the A and B branches, we must evaluate 

integral (70) along the contour. 
2 

Because k ? l/E
4 

>> 1 for these branches, 

the intP~rRl can be simplified to 



32 

(72) 

where K is a constant determined by the integration near k - 1 and 6 is a 

function which is discontinuous across the cut due to branch cut originating 

at k = 1. 

Now we would like to estimate the contributions to ~ coming from saddle 

points A and B. -The integration of the argument of the exponential can be 

performed w~th the result that 

+ i( sn 

2 1/2 
Using the fact that t.

6
!t.

4 
<< 1 and the substitutions q = t.

4 
k- 1, 

-1/2 
t = q (t,; + Sn) £

4 
one can rewrite the contributions to ( 73) coming from 

the neighborhood of saddle point B as 

·c~+sn) ·r::; 
1/2 ~ 1/'2 -l_T) 

it+6 

(~)B 
£4 

£4 ( ~ + sn) 2 
dt e 

1 + iSn e 1/2 i1!l 
. £4 1-

2 2 2 

CR 
t 

where CB denotes the contour near sad,dle point B. T,he contribution from 

the neighborhood of saddle point A can be calculated to be 

e 

1/2 

i l(~) U~+Sn) 312 
3 €6 

<~ + sn)9/4 

(73) 

( 74) 

(75) 
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where !J.' is the di!;;cOntinuity across the contour associated w.i th. the branch. 

points at k 
1/2 

= 1, £4 • The salient feature in comparing (74) and (75) is to 

note that the coefficient in (75) is very small compared to that of (74). 

This is the mathematical manifestation of the physical concept .that if two 

branches of. the dispersion relation have dissimilar scales, tha.n there is 

very little coupling between them. In our case, the scales are: different 
! 

Hence we have shown that most of the mode conver~ion ·energ)· 

appears on branch B. 

Summary. This section has proved the expected results: Solutions of the 

Budden equation have been shown to correspond with full mode conversion solu-

tions where the short wavelength waves propagate away from the mode conversion 

surface. Furthermore, a comparison between (74) and (75) showed that the mode 

converted energy appears on the,branches of the dispersion relation which are 

directly connected to the cold plasma branches. Hence, one can use Figs. 6- 8 

to determine where the energy dissipated by a mode conversion resonance appears. 

And, by calculating the spatial damBing decrements on these shortwavelength 

branches one can decide whether electron or ion heating will occur. This jus-

tifies procedure which was followed in equations (42), (44), (47), (49) and 

(53) of the preceding section. 

6. EFFECT OF RESONANCES ON TOROIDAL EIGENMODES 

The complicated geometries displayed in Figs. 2- 4 make it clear that no 

simple-yet-precise calculations of the effect of the ion-ion hybrid resonance 

on toroidal eigenmodes can be made - even with the second order equations of 

the Budden model. \fuat this section does is to pose simplified geometrical 

models which will permit semiquantitative conclusions to be drawn regarding 
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the effect of the ion-ion hybrid and ion-cyclotron resonances on eigenmorles. 

Our approach regards the .complex parallel wave number as the eigenvaiue to 

be determined as a function of f~equertcy, density, etc., and utilizes the Budden 

formulation to obtain the correct dissipation. 

Ion-Ion Hybrid Resqnance. Our simplified model for assessing the effect 

of the ion-ion hybrid resonance on toroidal eigenmodes is portrayed irt Fig. 12. 

The model assumes: (l) A plasma of unifo.rfn density and composition exists be-

t~een two conducting plates. (~) Th~ magnetic intensity varies in the x-direction 

according to B =~ B
0 

(R+x) /R so as to create arr ion-ion hybrid resonance-cutoff 

pair. (3) One of the ion species is a minor species so that the ion~ion 

hybrid resonance frequency is near the gyroresonances for that species. (4) The 

resonance cutoff pair are closely s·paced !::.x << a. (5) The y and z directions 

are directions of symmetry. Hence we use a Fourier transform in the y-direction 

and a Laplace transform in the z-directiort since we are interested in the 

spatial damping. 

sohance region. 

The z-Lapalce transform produces a Budden model of the re-

(6) The electric field E vanishes at the conducting walls. 
y 

(7) The parallel E field can be ignOred. 
z 

What physips does this model rep·resent? First, in the absence of an ion-· 

ion hybrid resonance, the model will produce an undamped, propagating eigen-

mode provided the density is suffici~ntly high. Secondly, acco_tding to Figs. 2-4 

the ion-ion hybrid surface occurs in high density regions and this model 

·should adequately describe the energy dissipation there. Third, since the 

resonahGe cutorf layer is thin, we can use formulas (57-58) to connect the 

amplitudes on either side of the lay~Y. Although these formulas are derived 

for negative imaginary part of k, 1 (i.e., a Laplace transform variable), they 
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are still vali4 for modest positive imaginary parts of k,. by analytic con-

tinuation. Therefore, this model will yield the effect of the ion-ion hybrid 

resonance on an undamped eigenmode. To within factors of order unity, it does 

not matter that the undamped eigenmode is oversimplified by ignoring density 

gradients. 

I . 

Let us now turn to the task of generating a Budden model ~quation from 

i 
the differential equations for wave propagation. As we shall see below, .this 

requires a ~articular choice of dependent variable, since spatial changes in 

the wave polarization can cause apparent singularities for an arbitrary choice 

of dependent variable (e.g. E). 
y 

The differential equation for wave propagation 

+-+ + 
+ + + 
'V x('IJ x E) 

4wicr•E 
2 

c 

becomes in our model 

i(D(x) - k ...£.._) E 
;)x y 0 

- i( D(x) + k 3
3
x ) Ex + ( A(x) - k~ + ::2 ) Ey = 0 

! 

where we have assumed that all quantities vary as exp[i(ky + k,.z- wt)] 

and A, Date given by (3,4). Utilizing (4) - (7), let us def~rie A and C 

by 

A 
2 

A - k,. 

.. 

c 2 c - k,. D- A- C. 

(76) 

( 77) 

While both A and D vary rapidly near a resonance, C does not. In Lhe mat"tip-

ulations.below, C will be treated as a constant, while variations in A and D 

will be permitted. 
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:· 

The rrocedure for deriving a Budden equation is as follows: Solve (76) 

for E and substitute into. (77) obtaining the second order equation 
X 

By introducing·the variables 

E 
y 

= 
k 

:____ 2 
C(A- k ) 

A-cE -kDE (- a ) 
0x :';/: - y 

one can recast (78) in terms of two gpupled first-order equations 

~ext, one can define the variables 

(78) 

(79) 

(80) 

+ 
and obtain from (80) a coupled set of first order equattons for ¢ and ¢ . 

+ 
2k~ ux 

2A o¢­
ox ( 

A C ) ( - AkC )A-.+ 2kA - k · ¢- + 4kC - 4ki\ - '+' 

Straightforward manipulations then le<;id to an equation of the Budden form 

+ 
for ¢ 

( 
2 - c2 

) + 
k - 2C + ~ ¢ 

A 

(81) 

(82) 



37 

as A is the quantity which vanishes (except for the small positive imaginary 

part). Retracing our steps, one obtains the relations between ~+, ~- and E 

At the conducting boundary, the condition E = 0 leads to ~+ = ¢-, and via 
y 

(81) to 

y 

(84) 

which is the boundary condition we will use in our eigenvalue calculations. 

Let us note here that the derivation leading to (82) is also valid for the 

- 2 
ion-cyclotron resonance because in the low density peripheral plasmas C ;:: ~k., 

and hence Cis constant. In comparing (78) and (82), one notes that the ap-

2 
parent singularity at A = k has been eliminated. The role of this singular-

i.ty is simply to make the wave polarization such that 

r~t this point. 

Let· us next rewrite (82) in terms of actual physical var ables. The 

plasma consists of two species: deuterium and a minor species denoted by the 

subscript "2". The ion-ion hybrid ·frequency will then be very close to n
2 

and we can write the formulas for A and C as 
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2 ( 
si f

2
R 

&) A 
wpD 2 

= - ---
2 2 rl c u

0 2 
2x 

(85) 

2 ( 
rl 

~) 
w D 

c 
-;- (QD 

2 

:+ S12)QD 

where we have assumed that 

'L if Z /A << 1 
2 2 2 

x/R (86) 

and used the definition N :: c
2 k~ /w~D introduced following (13). Since our. 

principal inter'est lies in the high density regime, we will assume N >> 1 

-1 
and retain only terms of first order inN . Substituting (85) into (82), 

one obtains 

2 a2 + c 
- <P 

') 2 
w~D ax 

-2 
with k 

the· equation 
? 

[ nz -h] 
( n; 1) 

f-? X (QD + S12) QD - N 

"( -
2 

(QD + ~2)SiD + ¢+ 
2 

( Q2 . - 1:_) X - f 2R 

0
2 _ n2 N 2 

"D 2 

If one next introduces x' x - xD, where 

- l )-1 
N 

_? -1 
and performs straightforward algebra in which terms of order N ~ f 2N 

are neglected, the res~lting differential equation is 

d2 + 
<P 

dx'
2 

r 2rr ~- n2 . + 2] 
2 (X '+i~/ '1, ) . ¢ 

( 87) 

(88) 

(89) 
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where it can be readily verified that a small negative imaginary part of k 11 , 

leads to a small positive imaginary part of A, which is represented by ~. 

Evidently, equation (89) has the form of a Budden equation, and the simple 

rescaling of variables leads to 

= 0 (90) 

where ~has been rescaled, 

(91) 

n 

and where boundary condition (84) takes the form 

(92) 

- -1 
when k,N + 0 and the appropriate values are .used, formulas (~1) give the 

sama expH15iistions; for n .<mrl F, 11s rli rl thP \v. K. R. analysis for p-D plasmas 

(6~,63) anrl n-T plAsm~~ (o9). 

tp+ 

The general solution to (90) takes the form 
! 

and has, from (58)-(59), the asymptotic formula 

(93) 
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( -rrn 7T4n ) 
-in rrn in 

e 4 + it,; t,; 2 4 -it,; t,;2 a e e + a e L e r >> n . .., 

'/J -
(~ -nn ) -in -rrn +in 

(94) 

e 4 + ' 4 
eit,;.l t,; I· 2 4 e -it,; It.: I 2 a e + a e L F; « -n 

where L = L(n) = C*/C 1."s a phas·e fac'·tor. ·When k has a p "t" · · '' ., . os1. 1.ve 1.mag1.nary 

part, the boundary conditions are applied at 

= 

where · 

and 

1 

N 

Application ot the boundary cond:i:ti(;}.n (92) leads to t,wo formulas for a -

( 9.5) 

(96) 

(9 7) 

one based ·on the condition at t,;
2

, the other on ·the condition at_t,;;. Equating 

these two expressions for a generate's the .eigenvalue equat-ion 

1 + exp [- 2a.x
2 

E + i(<P
2

- 2etx
2
)J 

e -~n 11 + exp[2 a x1 £ + i(2 "x1··i+-·,Pd I (98) 

where the phase factors are defined~y 
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(99) 

and B comes from the boundary condition (92) 

B (100) 

Hhile the phases ¢
1

, ¢
2 

do vary with n and x, as a rule their.magnitude is 

smaller and their variation less rapid than the phases 2ax
1 

and 2ax
2

. Con­

sequently ¢
1 

and ¢
2 

are effectively constant with respect to variations in 

A separation of (98) into .real and imaginary parts yields the two 

equations 

-2ax
2

E 

1 + e cos (2 a x
2 

- ¢
2

) (101) 

-2ax
2

E 

- P sin(2 a x
2 

- ¢
2

) [ 

2ax
1

E 
-rrn . (? e e s1n _ax

1 
(102) 

' 
for which we have to solve for the two free parameters a, E. Simple ex-

pressions can be obtained for the limits rrn >> 1 and rrn << 1. The results 

are for nn >> 1 

(103a) 

(103b) 
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and for ·1rn << 1, 

(104a) 

Evidently, the spatial damping can Y?-nish if .2 a x
1 

+ ¢
1 

= (2n + l)TT. This 

correspond~ to the case where the ~-igenmode is a pure 1JJ
2 

solution [c.f. (58)] 

and has no dissipation. In general, ··the freedom permitted ·to .adjust a by 

2 2 2 
varying N = k,, c !w D is required to satisfy conditions (103~) or (104R). 

lL 

\-lith a so determined, the spatial daiJ,lping does no·t generally vanish. 

Practically, the most interesting case is when TTT) << 1. Utilizing (91), 

(96) and .(9 7), we c~m compu.te the .a.m0t,mt of spatial damping a mode experi-

ences once around the torus tq be 

(]n k,) 2 TT R ::: 

? Rw 
2 

2Z 
TT- ( _____EQ) ! ( _2 T) ) 

2n c . a A
2 

2 

where n is the toroidal mode number :;k11 :: ·n/R. 
< -2 

.Unle§? nL •.. 10 , this 

damping is severe and toroidal eigen~odes do not exist. 

Although the case where TTT) >> 1 ~~pears to have small damping, the 

simplifications of the model do not ~!=ike into account the va-riable width 

(105) 

of the resonance-cutoff points accor~~ng to Figs. 2-4. Hence if TTT) >> 1, 

near the center of a machine, there w~ll be regions close to the magneto-

sonic cu·toff (surface C in Figs. 2-4') where TTT) \-lill be of order unity, 

and which will provide the damping o~ an eigenmode. 

Hence, we c·onclude from (105) t.l;tat the ion-ion hybrid resonance sup-

presses toroidal eigenmodes. 
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The Single Species Ion-Cyclotron Resonance. Any attempt to heat plasma 

ions via the fundamental cyclotron resonance must, as Fig. 13 makes clear, 

involve an ion-cyclotron mode conversion surface. As a rule, this surface 

is constrained to lie in the low density peripheral plasma, so the absorption 

resulting from it is weak. On the other hand, the damping of a magnetosonic 

toroidal eigenmode by fundamentally resonant ions is also weak [4], and it is 

appropri~t~ to compare the two absorption rates. If one tries to increase 

the resonant ion absorption by making the resonant ion a minority species in 

the plasma:[l6], then ion-ion hybrid resonance processes come into play as 

Figs. 2 and 3 demonstrate. Formula (105) then indicates that the dominant 

absorption is via the ion-ion hybrid resonance. 

Figure 14 portrays our slab model for estimating the effects of ion-

cyclotron mode conversion. The ion-cyclotron mode conversion results entirely 

from the density variation; the magnetic field is in the z-direction and of 

uniform strength, so that D >> 0, - w > 0 everywhere. The scale length L for 

the plasma density variation near the edge is taken small su that 

k L << 1, k, L << 1 (106) 

Consequently, evanescence of the wave amplitude in the density gradient 

region can be ignored. He shall also estimate that k a - k,a - 1, as is 

typical of:tokamak applications. But we shall be concerned with large, 

dense tokamaks so that w Dale >> 1, which is characteristic of most of the 
. p . 

planned tokamak heating experiments. The boundary conditions are that 

E 0 at x = 0 and that aE /ax = 0 at x = a (which corresponds to a solu-
Y y 

tion which is even around the point x =a). 
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It is evident from Fig. 14 that the mode conversion ~rocess operates 

strictly at the periphery of the plasma. Mathematically, its effect :on eigen­

modes will be to change the boundary condition at x = 0 from the nondissipative 

condition E = 0 to one involving dissipation. Hence our calculation is a 
y 

two-step one. First, we investigate the small region where the mode conversion 

takes place to find the new boundary condition. Then, an eigenmode calculation 

is done for a uniform plasma with the temporal damping determined by the new 

dissipative boundary condition. Finally, we compare the damping ciel:'remen.r:: 

resulting from mode conversion with that caused by fundamental 'reson~n~P 

absorption by ions. 

The: equation \.rhich governs mode conversion is (82). Let us simplify nota­

. + 
tion by ~enaming the dependent variable ¢ + ~. and noting that when A~ 0, 

c is accurately given by C = - ·k~ provided (r2- w) /r2 << 1. Hence, the equation 

appropriate to dte mode conversion region is 

2 2 
2 W X w 

2 ED 

(;1
2

1+1 
2 2 2 

- k .. 

k2 2 c L (Q - w ) 
2 

+ k .. 2 2 
ax w 'xw 

2 pD 

c 2 L ( r22 - w 2) 
- kn 

Introducing the non-dimensional variable 

whe.re 

( l 2 ,.2 
l { AD 

2 7 [· 7.;- 1 ]·I ,1,, 
+ kll ~ f,; - 1 + i6 ~ I' 

[ 
2 2 2] 2 2 2 

L (~ - w ) /w (k" c /wpD) 

ljJ . (107) 

= x/xD, one trans-forms (107) int.n 

(108) 

(109) 
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and the small imaginary part ~ is associated with a Laplace-transform inter-

pretation of w. The inequalities discussed above serve to establish that 

Mathematically, the principal effect of (108) is 

to provide a discontinuity in slope as the ~ = 1 point is passed. 

2 2 
- i 7T k,. k

0 
\jJ (110) 

Combining (110) with (84), we find that the boundary condition for the eigen-

mode calculation at x = 0 is 

k~ +k
2 

k 
. k2 

-11T ,.xD (111) 

Combining (83) and (81) wi.th inequalities A » C » k
2 

appropriate to 

the dense plasma, and using the condition dE /ax = 0, one finds that the 
y 

appropriate boundary condition at x = a is 

- 2k . 

In the high density plasma, the equation governing the eigenmode is 

2 
2 

[ k2 + 
w 

(1-i%)]\jl 
a ~; 

2k,~ pDo 

ax
2 --2-

c 

(112) 

(113) 

where we used w ~ 0 and assumed y > 0 represents a temporal damping of the 

wave. The .Lwo solutions to (113) are evidently 

\jll exp(i a. X + Ox) exp(- i Ct. X -OX) (114) 
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where 

(115) 

Writing the general solution as W = w
1 

+ cw
2

, and app~ying boundary conditions 

(111) and (112) leads to the complex eigenvalue equation 

( 

ia. 

~ct 

+ 0 + ( k~ + k 
2

) k -l 

+ 6 - tk?. +.k2)k -l 

+ ink~ "n ): 

- iTT k~ '11 (

. ia. + 0· + 2k ) 

ict + 6 - 2k 

2ia.a + 2oa e . 

The solution to (116) is obtained by i.t.eration. Assume first that o and 

2 . 2ia.a i¢ 
TT k, xD can be ignored. We then f~nd t;hat e e with 

2 L 2 "L 
¢ :::: 2(k -: k,)c /~pD « 1, so that a. is determined by 

a.a ::: nTT . 

Also, o i~ given by 

2 
TTk,; ~ 

= 
a a. 

(116) 

(117) 

(118) 

f 1 . .b . k/ 2 k 2/ 2 << 1 h b . 1 d where terms o re at~ve contr~ ut~on .:. aCt. - . Ct. , ave . een neg ecte . 

Combining (109), (llS), and (l18), on~ fin.ds the damping decrement Y to be 

y 

n 

2 2 -2 
For tokamak applicatioAs we can esti'l!l~~,te that (Sf. - w )w - ~ 2a/R and 

L = a/3 to obtain 

y -· (k~ c

2 
)
2 

Sl-TT ') 

tJJ~Do . 

a 
R:· 

(ll9) 

(120) 



which is to be compared to the resonppt ion damping decrement [4] of 

r. 
n 
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(121) 

For planned tokamak experiments, the mode coupling d~mping decrement 

dominates for S. < 10-
2

, indicating that fundamental resonance heating of 
~ 

tokamak piasmas ~s not efficient. Most nf the ~nergy will go into the edge 

electron heating associated with the ion-cyclotron mode conversion - a con-

elusion that agrees with the results of the ST-Tokamak heating experiment [17]. 

A qualitative prediction of (120) is that modes with the smallest values of 

k 11 will have the highest Q toroidal eigenmodes. 

Our t~eatment of the ion-cyclotron mode-conversion process differs from 

the one implicit in the work of. Hosea and Sinclair [18]. They used a strictly 

cold plasma theory to describe the short wavelength waves radiated by the 

mode conversion layer. Since no damping processes were available to these 

waves in the cold plasma model, the¥ reflecled from the wall and returned to 

the mode conversion layer and henc.e did not give rise to a net dissipation. · 

'fhe tuLal system; ion-cy~lnrron plus short wavelength waves, propagated un-

damped. By constrast, the short wavelength waves according to our hot plasma 

theory are rapidly attenuated by electron Landau damping [c. f. (53)] and 

hence produce a net damping of an eigenmode. · 
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7. DISCUSSION AND TO~< APPLICATIONS 

Let us begi~ this section with. a,. summary of our principal arguments 

and results, hoping that the reader w~ll thus see the forest instead of the 

trees, branch nuts, and poles. 

It was shown following (10) that the ideal, cold plasma equations which 

govern propagation o.f the fast magnetosonic and electromagnetic ion-cy,clotron 

modes break down along certAin sn-r:f.ao'il.a., Hhi.ch ar~ .:Alleu luu..,.i,Ol'l hybrid re-

sonance or ion-cyclotron resonance surfaces. The geometry of these surfaces 

.i.~ slwwn by curves "A;' ln Figs. 2- 4, where it is seen that the ion-cyclotron 
I 

and ion-ion hybrid resonance surfaces are actually continuations of one 

another, the term ion-cyclotron resonanae applying, to the low density regions 

and vice-versa. There are three p.rinc.ipal points made by Figs. 2- 4: First, 

the ion-ion hybrid resonance surface can occur in the high density centri'!.l 

regions of a tokamak where it affects. the propagation of the fast mag_neto-

sonic mode. Indeed, if the applied ftequency is close to the cyclotron fre-

quency of a minority ion, then i·on-ion hybrid resonance effects are impossible 

to avoid, as shown by Figs. 2 and 3. Second·, ion-cyclotron resonance surfaces 

are impossible co avoid if the freque:ncy i"s close to the cyclotron frequency 

of a plasma ion, as is the case in p~oposed fundamental resonance heating 

experiments (see also Fig. 13). Thir4, the geometry of the resonance surfaces 

is complicated, precluding simple-yet-,precise models of the energy absorption 

caused by· these surfaces. Instead, w.e' use simple one-dimensional idealizations 

(Fig. 5) based on the approximation tl_f}at the resonance layers are thin. These 

calculations provide semi-quantitativ.e estimates of the effects of resonance 

layers. The accuracy of the final f:q:r:_mulas in this paper is roughly a factor 
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of three. But they do provide the appropriate scaling laws and estimates 

of being large or small. 

What physical processes occur at the resonant surfaces? When hybrid 

order finite Larmor radius, finite conductivity, peloidal field, and hot 

plasmas effects are added to the wave propagation equation, as discussed in 

the several paragraphs preceding (17), the wave equation no longer breaks 

down but has ·Hev~r~l br:anch~~ nf the dispersion relation. The result is .that 

energy leav;es the "ideal" branch of the dispersion relation and,via mode con­

version [19], emerges on the short wavelength branches, where it is absorbed 

by various collisionless absorption processes. The peloidal field parameter 

.E, defined in (35), plays an important role in the propagation and absorption 

of the short wavelength waves generated by an ion-ion hybrid layer. But it 

is argued, in the paragraphs ~receding (51), that the peloidal field is not 

important in ion-cyclotron mode conversion. 

Several specific cases of the general dispersion relation (32) are dis­

cussed: The case of minority protops in a deuterium plasma corresponds to 

present experiments [1-3], but has the unique feature. not found in fusion DT 

plasmas, that th~ RAcond harmonic cyclotron frequency of the majority species 

is degenerate with thP. fundamental cyclotron frequency.of the minority species 

which is very close to the ion-ion hybrid resonance frequency. The appro­

priate dispersion relation is (40) whose ro6ts are sketched in Fig. 6. Equa­

tions (42-47) show that energy emerging on the 8-4 branch of the dispersion 

relation is absorbed by electron Landon damping and deuteron second.harmonic 

cyclotron damping, with the electron damping being roughly a factor of three 

larger. This agrees with the experimental results [1] that show a modest but 

not highefficiency of ion heating. 
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I ~ 

I 
I 

/ 
For th~ case of a deuterium-tritium plasma, dispersion relations 

I 
(48-49), Fig. 7, and equation (50) show that all the energy absorbed by mode 

I 

/ 
conversion goes into electron heating. 

/ 
/ 

A1 single-sp'ecies ion-cyclotron resonant layer, as a rule, is oriented 

/ 
so t~at the peloidal field plays no role and the short wavelength waves are 

/ 

destribed by dispersion relation (51) and Fig. 8. According to (52-53), 
j 

tHese waves are absorbed by electron Landau damping resulting in electron 
I 

~eating. 

The next question which arises i's: How strnn~ ic the. ~b:;.uqJLlon caused 

by the resonant layers? The W.K.ll. dispersion relation do not answer this 

question, and a full wave solution must be used. The easiest way to do this 

is via the Budden model where the frequency is interpreted to be a Laplace 

transform variable having a sma.ll positive imaginary part which preve,nts the 

b reakrlown of the ideal equations. In the sPrti.on enti tlcd "Full- W:-we Calcula-

tions of Hade Conversion," we prove that full wave calculations based on dis-

persinu relations (40) and (49) provide the same solutions to the ide.al 

branches as does the Rudden model, jus:tifying the use :e;f a Budden mocle11 to 
' 

compute the absorption of energy from the ideal branches. The derivation 

of a Budden equation f~om differential equations for wave propagations (76-77) 

was done in Fquation!:> (78-82). This -Budden equation ~vas used to estimate the 

da~ping of a toroidal eigenmode by the ion-ion hybrid resonance. The final 

result is formula (105) which shows that the ion-ion hybrid resonance effec-

ti vely prevent-s toroidal eigenmodes. In particulr~r, the minority he a tiug 

scheme propose·d by Stix [ 16] will not have high-Q eigenmodes. 

A Budden-madel calculation was also made of the damping decrement caused 

by a surface ion-cyclotron mode conversion layer. The Re·sult (119-120) shows 
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that the damping decrement caused by ion-cyclotron mode conversion is larger 

than the damping decrement resulting from fundamental resonant ion absorption 

(121). Consequently, fundamental ion-cyclotron heating experiments will lead 

predominantly to surface electron heating, as observed by Iiyoshi ~ al. [11]. 

Any ion heating will be inefficient - in agreement with experiments on the 

ST tokamak [17]. 

The predictions of the theory developed in this paper are in qua! :.tative 

agreement with the global parameters measured in several tokamak experiments: 

eigenmode Q's [1,2], ion heating efficiencies [1,3,17) and electron heating [11]. 

But the detailed physics of the mode conversion process remains unexamined 

experimentally. Basic research experiments are called for to investigate the 

nature and damping of the short wavelength waves, especially as a function of 

the poloidal field parameter E: • [c. f. (35)]. 

Perhaps the most important question is: Is heating a tokamak via the 

ion-ion hybrid superior to heating via the ion second harmonic absorption or 

electron transit time damping of toroidal eigenmodes? The answer appears to 

be no. The ion-ion hybrid resonance suppresses the toroidal eigenmodes, which 

lowers the loading resistance of the launching coil [17]. High loading 

resistance results in technologically much simpler wave launching coils -

a very desirable fearure from the reactor engineering point-of-view. Also 

second harmonic heating leads to efficient energy input into the bulk of the 

ion distribution - a feature required to make an ICRF-driven Tokamak Fusion 

Test Reactor.work well [20]. One should point out that true second harmonic 

heating of a tokamak plasma has yet to be carried out experimentally. In 

both the Princeton [1,17] and Kurchatov [3] experiments, attempts to heat 

dc>.uter.ons at the :set:ond harmonic were most lik~ly contaminated .by ion-ion 



52 

hybrid effects caused by proton impurities. Experiments on TFR [2] at the 

second harmonic of the proton gyrofrequency, where there is no possibility 

of ion hybrid resonance effects, have shown the expected high-Q eigenrnodes 

but have not yet had sufficient power to perform a heating experiment. 

What are the possibilities of perfoFming a true second harmonic heating 

experiment on t~e PLT tokamak with the planned 55 MHz generator? The most 

interesting ~ossibility is that of Using p - He
3 

plasmas and ~erformiag second 

harmonic heatirig of HeJ at a magnetic field strength of 27 kG. One should 

" 3 
note that a p - He plasma is a precise model of a D-T plasma in the ratio of 

gyrofrequencies. Since we wish to avoid ion-cyclotron mode conversion effects 

associated with the fundamental proton frequency, the geometry requir~d for 

the second harmonic surface in the minor' cross-section is that given by Fig. 15, 

which also applies to an ICRF-qriven n~T plasma reactor [20]. 

True second harmonic heating of deuterium can proceed only if there is no 

contamination bY, proton ion hybrid effects which requires proton concentration 

n $ufficiently small so that 
p 

< 

2T 1/2 

n ( i) L 
2R M . st 

p p 

n 1/2 
200 TkeV 

(122) 

where n is the toroidal mode number. Even if (122) is satisfied, fundamental 

resonant absorption by protons will dominate second harmonic deuterium absor:p-

tion provided np > Bi. Heating experiments which initially deposit the energy 

in a minority species comprising less than 1% of the particles can lead tu a 

.3 
thermal runaway of the minority species. Hence the p - He plasma appears to 

offer the most direct approach to s~c6nd harmonic heating as well as being a 

good model for a D-T reactor. 
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TABLE I. 

Nominal Parameters of the ATC and PLT 

Ion-Cyclotron Heating Experiments 

ATC PLT 

17 kG 35 kG 

-3 
em 

200 eV 1000 eV 

not" measured 0.05 
n 0.10 used 

p 

-o.o5 -0.10 

-1.5 -0.6 
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Figure Captions 

FIG. 1~ The nondimensional functions K corresponding to the functions A! B, 

C of equations (5-7). 
2 2 

K = c A/w 
0

, .. etc. 
p . 

curve is off-s~ale and negative. 

In the region 1.0 < y < 1.5, the B 

FIG. 2. Mode conversion re.sonances and cut.offs for a 95% deuterium plasma 

with a 5% proton coq.,s:entration. (a) Curve A is the mode conversion re~onance 

while curve B glves the associr~ted cutoff. Curve C is the .fast magnetosonic 

cutoff. The nondtmensiona·l ciPnl';i ty ·N can be converted to the d~..:Lual tlensiry 

by formula (13). (b) S~etch of the ~r.esonance and cutoff surfaces on a tokamak 

minor c~oss-section. The quantity 8aA denqtes the distance between the· mode 

conversion resonance and the protqn ion-cyclotron surface. 

FIG. 3. Cutoffs and resonances in a ?lasma composed of 95% deuterium and 5% 

tritium. (a) Curve A is the mode conversion r.esonance while curve B is the 

associated cutoff. Curve C is the m~gnetosonic wave cutoff. (b) Geometry of 

curves in a tokamak minor cross-sectJon f9r aspect r~tios small enough to have 

both the deuterium and tritium cyclotron resonances in the plasma. (c) Geometry 

of curves when only the tritium cycl9.tron resonance is in the plasma. 

FIG. 4. Cutoffs and reso~ances fpr .~ plasma composed of SO% deuterium and 

50% tritium. (a) Curve A is the mo~~ conversion resonance while curve B is the 

associated cutoff. Curve C is the ma;gnetoso.nic wave cutoff. (b) Geometry of 

curves in a tokamak minor cross-sect;ion when both deuterium and tritium re-

sonances are in the plasma. (c) .GeQ;I)1etry of cu.rves when only the deuterium 

resonance is in the plasma. 
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FIG. 5. One dimensional model for a mode conversion layer. The x-direction 

is normal to the cutoff (B) and resonance (A) surfaces. The variation of the 

equilibrium in the x-direction can be due to either major radius variation in 

magnetic field or minor radius variation in plasma density depending on 

whether ion-ion hybrid or ion-cyclotron mode conversion processes are being 

-+ 
considered. The angle B between the peloidal field B and the x-direction 

p 

depends on the ori~ntation of the mode conversion surfaces (consult Fi6s; 2- 4). 

FIG. 6. ?-lode conversion diagrams for a plasma composed of minority protons in a 

deuterium plasma. (b) Limit b where 

2 
, 3E np/BD = ob << 1. The notation 4-2, etc. refers to a branch of the dis-

4 2 
persion relation where terms in S are balancing those in S . The hatched 

region shmvs the magnitude of s2 
in regions where it is imaginary. 

FIG. 7. Mode conversion diagram for a deuterium plasma containing minority 

tritium ions. The symbols A, B, C refer to the various branches of the dis-

persian relation referred to in th~ text. (a) Complete mode conversion 

diagram based on dispersion relation (48). (b) Simplified diagram based on 

dispersion relation (49). 
2 -1 2 2 

Wlteu 3 •· (3 , then k!. T /Mn - J , And our FLR 

treatment breaks down. 

FIG. 8. Ion-cyclotron mode conversion diagra~ for a single-species deuterium 

plasma. The notation 4- 2, etc. refers to branches of the dispersion relation 

obtained by retaining only the s4
, s2

, etc. terms in dispersion relation (51). 

In the shaded portion where s
2 

> B- 1
, our finite Larmor radius ~xpansion breaks 

down. 
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FIG. 9. Contours for solutions to the Budden equation (54). The heavy lines 

correspond to branch cuts emanatin~ from k ~ ±1. The contour c
2 

corresponds 

to the solution df (54) which is regular at the origin. 

FIG. 10. Contours and branch cuts for the integral (64). (a) The contour and 

cuts corresponding to the solut;i.on of the Budden equation which is regular 

at the ori&in. (b) Contour corresROflding to solution l/.1

1 
of equation. (58). 

The open circles and crosses correspond to saddle points wh.en t,; >> 1· and 

~ << -1 respectively. The doubl~ arrow segmen~s indicate the appropriate end 

points for contours according to (67). 

FIG. 11. Conto~rs and branch cuts for the integral (70). (a) The contour 

and cuts corresponding to the sol4tion of the Budden equation which is regular 

at the origin. (b) Contour co~responding to solution l/Jl of equation' (58). 

The open circles and crosses designate saddle points for ~ >> 1 and t,; << -1 

respecti~ely. The notation A, B identifies the various saddle points with the 

branches of dis.persion r.elation (49) for ~/nTR >> 1 as depicted in Fig. 7b. 

The double arrow segments indi_cate t~he appropriate .end points for contours 

according to (71). 

FIG. 12. Slab geometry model for calculating the effect o~ the ion-ion hybrid 

resonance on toroidal eigenmodes. A plasma of uniform density.and composition 

occupies the region between two cond~cting boundaries. The magnitude of the 

magnetic field B chang~s with x to produce the ion-ion hybrid resonance R 

cutoff CO pair. 

'•· 
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FIG. 13. Sketch of resonant and cutoff surfaces in a single-species deuterium 

plasma. The surface A is the ion-cyclotron mode conversion surface described 

by (11). The surface B is the ion-cyclotron cutoff while C denotes the magneto­

sonic cutoff surface given by (12). 

FIG. 14. Model plasma density profile used to estimate ion-cyclotron mode 

conversion absorption. The letters A, B, C denote the corresponding surfaces 

uf Fig. 13. The model is a slab model with a uniform magnetic field such 

that 1 » (S".l- w) /S".l > 0. 

FIG. 15. Geometry of various cyclotron resonant surfaces for second harmonic 

heating of tritium in a deuterium-tritium plasma. This diagram also applies 

to second harmonic heating of He
3 

in a proton - He
3 

plasma. The major radius 

R scale is normalized to unity at the second harmonic resonance for tritium. 

The circles represent the limiter radius for tokamaks of the indicated aspect 

ratio R/a. They are drawn so that the fundamental deuterium resonance is just 

avoided, placing the resonant heating surface as far towards the outside as 

possible, as suggested by flux-conserving high-B tokamak equili~ria [21]. 
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