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Abstract

We embed a holographic description of a quantum field theory with Galilean con-

formal invariance in string theory. The key observation is that such field theories may

be realized as conventional superconformal field theories with a known string theory

embedding, twisted by the R-symmetry in a light-like direction. Using the Null Melvin

Twist, we construct the appropriate dual geometry and its non-extremal generaliza-

tion. From the nonzero temperature solution we determine the equation of state. We

also discuss the hydrodynamic regime of these non-relativistic plasmas and show that

the shear viscosity to entropy density ratio takes the universal value η/s = 1/4π typical

of strongly interacting field theories with gravity duals.
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1 Introduction

The AdS/CFT correspondence [1, 2, 3] maps relativistic conformal field theories holograph-

ically to gravitational (or stringy) dynamics in a higher dimensional asymptotically Anti-de

Sitter spacetime. As such, the correspondence is an important tool for modeling the behav-

ior of strongly interacting field theories, as the dynamics on the field theory side is mapped

to classical string and gravitational dynamics in the dual description. Indeed, among other

achievements, this strong–weak coupling duality has improved, at least at a qualitative level,

our understanding of real-time dynamics and transport properties of the quark-gluon plasma

in QCD.

More recently, these holographic ideas have been applied to conformal field theories aris-

ing from condensed matter systems. There is a large class of interesting strongly correlated

electron and atomic systems that can be created and studied in table-top experiments. In

special cases, these systems exhibit relativistic dispersion relations, and the dynamics near

a critical point is then well described by a relativistic conformal field theory. It is precisely

such field theories which may be studied using holographically dual AdS geometries. Recent

work (see refs. [4] for a sampling) has already applied this AdS/CMat correspondence to

strongly correlated electrons, superconductors, the quantum Hall effect, and more.

More ambitiously, one can ask whether the holographic approach can be extended to the

non-relativistic theories describing most condensed matter systems. In particular, can field

theories with Galilean scaling symmetry (see refs. [5, 6, 7] for discussions of non-relativistic

CFTs) have a holographic dual? Just as the Poincaré algebra can be extended to the

conformal algebra in relativistic quantum field theories, one can extend the Galilean algebra

(symmetry of non-relativistic field theories) to the so called Schrödinger algebra [5]. Fermions

at unitarity are conjectured to realize this Schrödinger symmetry. The scale invariance is

achieved by fine tuning the fermions — with an external magnetic field for example —

to obtain a massless bound state, thus making the scattering length effectively infinite.

These systems are of increasing interest in the context of trapped cold atoms at a Feshbach

resonance. Indeed refs. [8, 9, 10, 11] claim that these cold atom systems provide another

example of a nearly ideal fluid with very low viscosity, like the quark-gluon plasma. See refs.

[12, 13, 14, 15, 16] for experimental studies of cold atom systems and their hydrodynamic

transport coefficients. Indeed the latest result of ref. [16] predicts a value of η/s slightly above

the values obtained for the quark-gluon plasma in heavy-ion collisions, putting it well into

the strongly coupled regime. Having a holographic description would certainly be helpful for

understanding the strongly coupled dynamics one encounters in these systems.

Important steps in this direction were taken in refs. [17, 18], where gravitational back-

grounds dual to non-relativistic conformal field theories were proposed.1 These dual geome-

tries involve a pp-wave deformation of AdS. In this paper, we will continue the exploration of

1See also refs. [19] for related work.
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the bulk geometry proposed as the dual of non-relativistic conformal field theories. We will

show how the geometry can be realized in a string theory context, and discuss non-extremal

generalizations, dual to non-relativistic conformal field theories at nonzero temperature. A

slightly different duality involving pure AdS bulk spacetimes was proposed in refs. [20, 21].

In the next section, we will review the proposed duality of refs. [17, 18], and consider the

advantages and disadvantages compared to the rival proposals of refs. [20, 21].2

In §3 we will show how the geometries of refs. [17, 18] can arise in string theory, and

construct nonzero-temperature generalizations of them. We describe how the solutions can

be constructed by the Null Melvin Twist [23, 24], which was originally invented to construct

asymptotically plane wave black holes. For the case of d = 2 spatial dimensions the con-

formally invariant theory will be realized as the world-volume theory on D3-branes with a

light-like twist in the R-symmetry directions. Starting from N = 4 Super-Yang Mills (SYM)

on the D3-brane world volume, the effect of the twist can be understood as adding a di-

mension five Lorentz violating operator, which deforms the asymptotic AdS geometry to the

desired pp-wave form. The twist will break the R-symmetry of N = 4 SYM from SU(4)

down to SU(3)×U(1).3 We thus realize a non-relativistic conformal field theory directly in

terms of a discrete light-cone quantization (DLCQ) of a deformation of N = 4 SYM. Such

theories were discussed previously in [25, 23] and belong to a class of non-local field theories

called dipole theories.4

Another interesting class of non-relativistic field theories which arise in string theory are

a special case of non-commutative field theories; in these theories the geometry is supported

by fluxes which break the spatial rotational symmetries. These do not have the Schrödinger

symmetry but obey a generalized scaling symmetry. The simplest such model is the light-like

non-commutative N = 4 SYM described originally in ref. [26], whose holographic dual was

constructed in ref. [27]. These geometries were investigated for their causality properties in

refs. [28, 29], where the Galilean structures were naturally shown to arise; we will discuss

this issue of causal structure further in §2 and some specific examples in Appendix A.

As the spacetime geometries we consider are constructed by the Null Melvin Twist solu-

tion generating technique, it is easy to construct the non-extremal versions of the solutions

considered in refs. [17, 18]. In §4, we give a preliminary consideration of the thermodynam-

ics of the non-extremal geometries. We argue that the black hole solution which is dual

to the thermal version of the twisted D3-brane theory corresponds to working in a grand

canonical ensemble with chemical potential for the particle number (realized as momentum

in the light-cone direction). Given this interpretation, we discuss how to obtain this grand

canonical partition function via a Euclidean quantum gravity saddle point computation. We

2See also ref. [22] for related work.
3There are twists of the R-symmetry that preserve as many as 8 supercharges [23]. We use a simple twist

which does not preserve any supersymmetry because of the resulting form of the H(3) flux.
4We would like to thank Allan Adams for mentioning this DLCQ interpretation in informal discussion.
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then undertake a detailed investigation of the asymptotics and action for the spacetimes

of interest in section §5, recovering from this analysis the complete thermodynamics of the

dual non-relativistic field theory. We then turn to the hydrodynamic description of the non-

relativistic conformal plasmas and calculate the shear-viscosity in §6. We find that η/s has

the universal value 1/4π typical of strongly interacting field theories with gravity duals [30].

We conclude with a discussion in §7. In Appendix A we discuss how to obtain metrics of the

form (2.1) supported by p-form fluxes that break rotational invariance and their realization

in string theory.

Note Added: In concurrent work Adams, Balasubramanian, and McGreevy [31] and Mal-

dacena, Martelli and Tachikawa [32] have obtained very similar results to ours. We would

like to thank Allan Adams for extensive discussions regarding their results during the BIRS

workshop.

2 The geometry dual to Galilean CFTs

We begin with a brief review of the proposed holographic duality for non-relativistic field

theories of refs. [17, 18, 20, 21]. In these proposals, the non-relativistic conformal symmetry

is realized as a subset of a relativistic conformal symmetry with an additional dimension.

The Schrödinger algebra is obtained from the relativistic conformal algebra by reducing along

a light-cone. The procedure is similar to light-cone quantization, where at fixed light-cone

momentum only a Galilean subgroup of the Lorentz group is manifest.

The holographic dual of a d spatial dimensional Galilean CFT is then a gravitational so-

lution in d+3 dimensions. This dual spacetime should realize the Galilean scaling symmetry

as an isometry. In ref. [17, 18], this spacetime is taken to have a metric of the form5

ds2 = r2
(

−2 du dv − r2ν du2 + dx2
)

+
dr2

r2
, (2.1)

where x = {x1 · · ·xd} are the spatial coordinates of the Galilean field theory. The light-cone

coordinate u is the boundary time coordinate: the field theory Hamiltonian is conjugate to
∂
∂u

. The role of the v-direction is unclear; it is proposed that we treat this as a compact

direction, in the spirit of DLCQ. As in AdS/CFT, the bulk coordinate r should correspond

to scale size in the boundary field theory. The Galilean scaling symmetry is realized as

x ∼ λx, u ∼ λν+1 u, v ∼ λ1−ν v, r ∼ λ−1 r. (2.2)

In the special case of ν = 1 it is expected that the scaling symmetry extends to full Galilean

conformal invariance, realizing the Schrödinger algebra. In this special case, v is invariant

under scaling; the Galilean scale invariance requires that the time coordinate, u, scales twice

5We consider here ν 6= 0, since ν = 0 is just AdSd+2.
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as fast as the spatial coordinates x. For details of the Schrödinger algebra we refer the reader

to ref. [7]. We will primarily focus on the ν = 1 case, but will also mention realizations of

the ν = 2 case in terms of non-commutative field theories in Appendix A.

The geometry (2.1) is a solution to Einstein’s equations with negative cosmological con-

stant, with matter whose stress tensor is of the null dust form Tuu ∝ r2ν+2. Ref. [17] modeled

the matter using a massive vector field, while ref. [18] used an Abelian-Higgs action. We will

discuss below how to embed the construction of ref. [17] into Type IIB string theory and

realize the line element (2.1) as the near-horizon geometry of a twisted D3-brane solution.

On the other hand, refs. [20, 21] proposed that the dual geometry can be pure AdS, with

the relativistic conformal symmetry broken to Galilean symmetry simply by compactification

of the v coordinate, which singles out a preferred light-cone direction. Such a modification of

AdS would certainly be a simpler setting in which to study Galilean symmetry, but we feel

that the geometry (2.1) is a more natural dual for such non-relativistic conformal theories.

The main reason we prefer the original proposal of refs. [17, 18] to the simplified proposal

of refs. [20, 21] is that the causal structure of (2.1) naturally reproduces the Galilean light

cone of the field theory. The causal structure of a non-relativistic field theory is degenerate

— interactions can propagate instantaneously. While a bulk geometry with a well-behaved

causal structure cannot be holographically dual to a non-relativistic field theory, the space-

time geometry (2.1) evades this issue beautifully — its causal structure is also degenerate

and in such a way as to be consistent with the boundary Galilean invariance.6

The spacetime (2.1) is conformal (with an overall conformal factor r2) to a pp-wave

spacetime, and this pp-wave spacetime is known to be non-distinguishing [33, 34]. Non-

distinguishing means that while the spacetime (2.1) is causal (in the sense of not having

closed causal curves), there are distinct points in the spacetime which have identical past

and future sets,7 thereby preventing us from distinguishing spacetime events by reference

to their past and future sets. In fact, in (2.1), all points on a surface with u = u0 (and

arbitrary values of other coordinates) have an identical causal future/past [34]. But Galilean

CFTs have precisely such a causal structure; all spatial points on an equal time surface can

influence any arbitrary spatial point at an infinitesimal time later.8 By contrast, a pure AdS

spacetime with boundary conditions engineered to give Galilean invariance does not possess

a bulk light-cone which agrees with the light-cone of the relativistic field theory.

6The special case ν = 0 is of course pure AdS with a well-behaved causal structure.
7The timelike future I+(p) for a point p is the set of points which can be reached from p by future-directed

timelike curves; timelike past is defined similarly. Causal future/past are defined likewise in terms of causal

(timelike or null) curves.
8Note that refs. [28, 29], in considering the holographic dual of non-commutative N = 4 Super-Yang Mills

with light-like non-commutativity [27], have already studied the causal properties of precisely this ν = 2

geometry.
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This consistency of the bulk spacetime causal structure with the boundary causal struc-

ture is a crucial ingredient in the AdS/CFT correspondence. Without this agreement, we

would easily be able to set up gedanken experiments where bulk physics and boundary

physics would not agree. Consider for example the question of the singularity structure of

the boundary correlation function as discussed in ref. [35]; in pure AdS the correlation func-

tions will have a singular locus consistent with the boundary light-cone having full Lorentz

invariance in one lower dimension. We however want a boundary light-cone consistent with

a Galilean invariant field theory living in two lower dimensions, which the bulk correlators

do not see unless we explicitly break boundary Lorentz invariance. On the contrary the

geometries (2.1) will indeed give a singular locus of the correlators which is commensurate

with a Galilean light-cone as discussed in ref. [28].

Another point in favour of the original proposal of refs. [17, 18] is that in the spacetime

(2.1), the symmetry is broken to Galilean invariance irrespective of whether v is compact

or not. For ν = 1, compactification of v to obtain a DLCQ description doesn’t break any

further symmetry, so the period of compactification ∆v is a physical parameter, which can

be interpreted as the inverse of the Galilean mass in the non-relativistic CFT. On the other

hand, if the spacetime is pure AdS, the symmetry is only broken to the Galilean invariance

by compactification in v. Prior to compactification, we have boost invariance u → λ u and

v → λ−1 v in addition to the scaling symmetry (2.2). This broken boost invariance can

be used to relate different values of ∆v, making the compactification radius an unphysical

parameter. To be more explicit, we rewrite (2.1) in a more general form,

ds2 = r2
(

−2 du dv − β2r2ν du2 + dx2
)

+
dr2

r2
. (2.3)

Here we have introduced an additional parameter β: we can set β = 1 by a boost u → β u,

v → β−1v. If v is compact, the combination β/∆v is invariant under this boost transfor-

mation. In the approach of refs. [17, 18], the boost is used to set β = 1, and the invariant

quantity β/∆v is then interpreted as the Galilean mass. We can now recognize the pure

AdS duality of refs. [20, 21] as the special case in which we set β = 0, so the boost invariant

is zero, and the coordinate period ∆v is not a physical parameter. From the non-relativistic

CFT point of view, β = 0 is a limit in which the Galilean mass vanishes. This clarifies the

observation in ref. [20] that the Galilean mass does not enter into the formula for operator

dimensions in this simplified case. Pure AdS as a holographic dual is a degenerate special

case of that of (2.1).

We will now proceed to embed (2.1) into string theory and realize a class of non-relativistic

CFTs using conventional D-brane physics.
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3 Embedding in string theory

The geometry (2.1) can be consistently embedded in a solution to string theory. Indeed,

geometries of this type have previously been studied, in investigations of the application of

solution generating transformations to construct geometries corresponding to twisted ver-

sions of the D3-brane worldvolume theory [27, 28]. In this section, we first review this

solution generating transformation, and use it to construct a string theory solution which

reduces to (2.1) in five dimensions. We then apply the same transformation to obtain a non-

extremal generalization, and construct a five-dimensional theory for which the non-extremal

geometry is a solution.

3.1 Generating the geometry dual to the vacuum state

To begin with, consider the geometry of AdS5×S5 in Poincaré coordinates, which is the

near-horizon geometry of D3-branes in flat space:

ds2 = r2
(

−dt2 + dx2 + dy2
)

+
dr2

r2
+ (dψ + A)2 + dΣ2

4,

F(5) = dC(4) = 2 (1 + ⋆) dψ ∧ J ∧ J, (3.1)

where we have written the metric on the unit S5 as a fibration over a CP2 base and now

x = {x1, x2}. The five-form is given explicitly in terms of the volume form of S5, which has

been decomposed into quantities related to the fibration. J is the Kähler form on CP2 and

A is the associated potential. Our conventions are

dA = 2 J , Vol
(

CP2
)

=
1

2
J ∧ J. (3.2)

We apply a Null Melvin Twist to this geometry, as described in [24]; the idea is to

generate light-like NS-NS flux by a series of boosts and twisted T-dualities. Algorithmically

we proceed as follows:9

1. Pick a translationally invariant direction (say y) and boost by amount γ along y.

2. T-dualize along y.

3. Twist some one-form σ: σ → σ + α dy.

4. T-dualize along y again.

5. Boost by −γ along y.

9The D3-brane geometry above has a full SO(1, 1) symmetry in the (t, y) plane which renders the first

step inconsequential here, but it will be meaningful for the non-extremal solution which follows.
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6. Scale the boost and twist: γ → ∞ and α → 0, keeping

β =
1

2
α eγ = fixed. (3.3)

The only data needed to describe the construction is the choice of the one-form σ. We

can choose σ to be along the world-volume directions (linear combination of dx1 and dx2)

or transverse to the D-brane. The former leads to turning on constant electric and magnetic

fields on the D-brane world-volume leading to a light-like non-commutative field theory

[27, 28]. Due to the presence of world-volume fluxes these geometries break the rotational

invariance in the x directions and they also give rise to geometries (2.1) with ν 6= 1 ; we

will not consider them in detail in the main text of the paper, but discuss aspects of these

geometries in Appendix A.

Twisting along the R-symmetry direction is more interesting. A natural choice is to take

the one-form σ to be along the fiber direction: σ = dψ. The Null Melvin Twist leads to the

geometry [28]

ds2 = r2
(

−2 du dv − r2 du2 + dx2
)

+
dr2

r2
+ (dψ + A)2 + dΣ2

4,

F(5) = 2 (1 + ⋆) dψ ∧ J ∧ J,
B(2) = r2 du ∧ (dψ + A), (3.4)

where the light-cone coordinates are

u = β (t+ y) , v =
1

2 β
(t− y). (3.5)

Note that our boosted uv coordinate frame scales β out not only from the metric but also

from the field strengths. The five-dimensional part of this metric is precisely the geometry

(2.1), with ν = 1 and d = 2. This geometry will correspond to the vacuum state of the dual

non-relativistic field theory.

The Null Melvin Twist construction makes the interpretation of the dual field theory

clean: it is nothing but N = 4 Super Yang-Mills twisted by an R-charge. The U(1) isometry

generating the R-charge is generated in the spacetime by ∂
∂ψ

. This twist breaks the SU(4)

symmetry of N = 4 down to an SU(3) × U(1) (the isometry group of CP2) through the

non-vanishing NS-NS potential B(2) (the metric (3.4) of course enjoys full SU(4) invariance).

3.2 The non-extremal solutions

As we have generated (3.4) by a solution generating technique, we can just as well generate

the non-extremal version of the solution. To do so, rather than starting with the near horizon

geometry of extremal D3-branes, we start with non-extremal D3-branes and repeat the Null
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Melvin Twist. Consider then the planar Schwarzschild-AdS black hole (times S5, with the

geometry supported by the five-form flux F(5))

ds2 = r2
(

−f(r) dt2 + dy2 + dx2
)

+
1

r2

(

dr2

f(r)
+ r2 dΩ2

5

)

, (3.6)

where as before we will write the S5 as a S1 fibration over CP2. The Null Melvin Twist

leads to the string frame metric [36]:

ds2
str = r2

(

−β
2 r2 f(r)

k(r)
(dt+ dy)2 − f(r)

k(r)
dt2 +

dy2

k(r)
+ dx2

)

+
dr2

r2 f(r)
+

(dψ + A)2

k(r)
+ dΣ2

4,

eϕ =
1

√

k(r)
,

F(5) = dC(4) = 2 (1 + ⋆) dψ ∧ J ∧ J,

B(2) =
r2 β

k(r)
(f(r) dt+ dy) ∧ (dψ + A), (3.7)

with

f(r) = 1 − r4
+

r4
, k(r) = 1 + β2 r2 (1 − f(r)) = 1 +

β2 r4
+

r2
. (3.8)

The solution has a horizon at r = r+. Note that the parameter β appearing in this metric is

an independent physical parameter; in the extremal case, we could set it to one by boosting

in the ty plane, but non-extremality has broken this boost symmetry. The remainder of the

paper will be devoted to an exploration of the physics of this non-extremal solution. First,

in the next section, we construct an appropriate five-dimensional Lagrangian which has (3.7)

as a solution.

3.3 Five dimensional effective Lagrangian

The solutions we have discussed above (3.4) and (3.7) satisfy the 10-dimensional Type IIB

equations of motion. In [17], the vacuum geometry (2.1) was considered as a solution to

Einstein-Proca theory with negative cosmological constant, which has the action

SEP =

∫

dd+2x dr
√−g

(

R− 2 Λ − 1

4
Fµν F

µν − 1

2
m2AµAµ

)

, (3.9)

with Fµν = 2∇[µAν]. The metric (2.1) with Av = 1 satisfies the field equations for the choice

Λ = −1

2
(d+ 1)(d+ 2) , m2 = 2 (d+ 2) . (3.10)

We would now like to understand the relation between this phenomenological Lagrangian

and the ten-dimensional IIB theory. Starting from Type IIB supergravity, we can KK reduce
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the solution (3.4) on the S5 (which is undeformed). The reduction of the metric is straight-

forward, and gives (2.1) in five dimensions. The NS-NS two-form, however, depends on the

S5 coordinates. In a linear analysis [37], such a mode of the two-form produces a massive

vector transforming in the 15 of SO(6): in AdS units (set here to 1) its mass is m2 = 8. This

is precisely the value of the mass required according to (3.10) (with Λ = −6 as necessary to

get AdS radius equal to 1).

From the CFT point of view, this massive vector field in the bulk corresponds to a

dimension 5 operator in N = 4 SYM. The twist by R-symmetry is by an irrelevant operator

of dimension 5 transforming in the antisymmetric tensor representation of SU(4). The

operator in question [23] is OIJ
µ = Tr

(

Fµ
ν Φ[I DνΦ

J ] +
∑

K

Dµ ΦK Φ[KΦIΦJ ]

)

+ fermions,

where ΦI are the adjoint scalars of N = 4 SYM transforming in the vector 6 of SU(4) and

Fµν is the gauge field strength. The Lorentz symmetry is broken by adding OIJ
u to the field

theory Lagrangian. This field theory realization makes it clear that the massive vector used

in the construction of [17] oxidises to NS-NS flux in ten dimensions.

It is, however, important to note that this massive vector is not part of gauged super-

gravity in five dimensions. Thus, it is not obvious that (3.9) is a consistent truncation of

the ten-dimensional theory. That is, while we have found an embedding of (2.1) in the ten-

dimensional geometry (3.4), we have no guarantee that solutions of (3.9) can in general be

oxidised to solutions of the ten-dimensional IIB equations of motion.

If we perform the same Kaluza-Klein reduction for the non-extremal solution (3.7), we

obtain

ds2
E = r2 k(r)−

2

3

(

−β2 r2 f(r) (dt+ dy)2 − f dt2 + dy2 + k dx2
)

+ k(r)
1

3

dr2

r2 f(r)
,

= r2 k(r)−
2

3

([

1 − f(r)

4β2
− r2 f(r)

]

du2 +
β2r4

+

r4
dv2 − [1 + f(r)] du dv

)

+ k(r)
1

3

(

r2dx2 +
dr2

r2 f(r)

)

, (3.11)

where we have introduced the light-cone coordinates (3.5) in the second line for future

convenience, with the massive vector and scalar

A =
r2β

k(r)
(f(r) dt+ dy) =

r2

k(r)

(

1 + f(r)

2
du− β2r4

+

r4
dv

)

,

eφ =
1

√

k(r)
, (3.12)

where f(r) and k(r) are given in (3.8). Note that in these light-cone coordinates, the solution

asymptotically approaches the extremal solution (2.1), but β remains a physical parameter,

as the full metric depends on β. We will henceforth work with the solution (3.11).
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This black hole solution is not a solution of (3.9), as it contains a scalar field. However,

it is a solution of the equations of motion from the effective 5 dimensional action

S =
1

16π G5

∫

d5x
√−g

(

R− 4

3
(∂µφ)(∂µφ) − 1

4
e−8φ/3FµνF

µν − 4AµA
µ − V (φ)

)

, (3.13)

where the scalar potential is

V (φ) = 4 e2φ/3(e2φ − 4), (3.14)

The scalar here appears from two sources: (i) the black hole geometry involves a non-

vanishing dilaton and (ii) the twist now causes the fibration over CP2 to be squashed.

Squashing is a common feature of solutions generated by the Null Melvin Twist [24] and

intuitively can be ascribed to the distortion of the asymptotics of the spacetime.

To summarize, it is easy to embed geometries of the form (2.1) into string theory. The

dimensionally reduced descriptions appear to involve exotic matter like Proca fields as in

(3.13), but their stringy origin is simply in terms of conventional supergravity p-forms.

Again, we do not have any argument that the five-dimensional action (3.13) describes a

consistent truncation of the full ten-dimensional theory, and indeed, one might in general

expect the modes transforming non-trivially under SO(6) which are turned on in our ansatz

to couple to other Kaluza-Klein harmonics which we have neglected. However, by construc-

tion we know this particular five-dimensional solution (3.11) uplifts to type IIB supergravity,

and from now on, we will work with the five-dimensional action (3.13). In Appendix A, we

discuss a different way of realizing geometries like (2.1), using p-form fluxes which break

the rotational invariance in the spatial directions. This alternative approach can be eas-

ily embedded in five-dimensional gauged supergravity, using a Null Melvin Twist along the

worldvolume directions.

4 Thermodynamics from gravity

We are interested in understanding the thermodynamics of the black hole solution (3.11).

The simplest thing to understand is the entropy of the black hole. The geometry (3.11)

has a horizon at r = r+ and one can compute the area of this horizon. In fact, since we

generated the solution by a series of boosts and dualities, it turns out that the horizon area

is independent of β [24]. We obtain thus

S =
1

4G5

r3
+ Vol(horizon) =

1

4G5

r3
+ ∆y∆x1 ∆x2. (4.1)

We can also compute the Hawking temperature of the black hole, which is most simply

done by computing the surface gravity of the horizon. Given the null generator of the horizon,

ξa, the surface gravity κ is defined as

κ2 = −1

2

(

∇aξb
)

(∇aξb) , (4.2)
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with the evaluation at the location of the horizon implicit. The Hawking temperature is

given in terms of the surface gravity as TH = 1
2π
κ.

It is clear from (3.11) that the Killing generator of the event horizon is proportional

to ∂
∂t

. To fix the constant of proportionality, we require that the component along the

boundary time-translation have coefficient one. The generator of time translation for our

non-relativistic CFT is ∂
∂u

in the light cone coordinates (3.5), so this requirement fixes the

normalization of the Killing generator of the horizon as

ξ =
1

β

∂

∂t
=

∂

∂u
+

1

2β2

∂

∂v
. (4.3)

With this definition we find that

T =
r+
π β

. (4.4)

The Killing generator of the event horizon (4.3) not only has components along the boundary

time translation direction u, but also along the light-like direction v. From the gravitational

perspective it therefore appears that we are dealing with a system where we have a chemical

potential for v-translations

µ =
1

2β2
. (4.5)

The conserved charge conjugate to this chemical potential is just ∂
∂v

momentum. We therefore

claim that the black hole solution (3.11) corresponds to thermodynamics described by the

density matrix for a grand canonical ensemble

ρ = exp

(

−Ĥ
T

− µ P̂v
T

)

. (4.6)

In the dual field theory, the operator generating translations in u is the Hamiltonian Ĥ, while

the v momentum corresponds to the integer quantized particle number N̂ , P̂v = 2πN̂/∆v.

Note that the operator N̂ commutes with the Hamiltonian Ĥ . In fact the only place it

shows up in the Galilean conformal algebra [7] is in the commutator of spatial momentum

and Galilean boosts, [P̂ i, K̂j] = −iδij N̂ , as it commutes with all the other generators of

the Schrödinger algebra. The Gibbs potential of this ensemble Q(T, µ, V ) can be calculated

from the partition function

Ξ(T, µ) = Tr(ρ) , Q(T, µ, V ) = −T log Ξ(T, µ). (4.7)

We can then pass to a more conventional ensemble with fixed particle number N by a

Legendre transformation leading to a free energy F (T,N, V ) in the canonical ensemble

F (T,N, V ) = Q(T, µ, V ) − µN. (4.8)

The non-relativistic theories we are dealing with are realized as a deformed version of a

relativistic quantum field theory. Hence it is not surprising that the natural ensemble is one
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where the particle number is allowed to fluctuate. Another argument for the naturalness of

the grand canonical ensemble comes from the geometry. The Galilean theories we constructed

are embedded into a higher dimensional Poincaré invariant theory (in the present case N = 4

SYM), in which we turn on some background fields to break Poincaré invariance. We can

reduce the theory on the light-cone to obtain a Galilean CFT, but in this procedure there is

no canonical choice of the Pv eigenvalue 2πN/∆v. It therefore seems natural to sample over

the space of eigenvalues weighted by some parameter µ.

5 Asymptotics and action

We now turn to the calculation of the Gibbs potential Q(T, µ, V ) in a saddle-point approxi-

mation. This potential can be obtained from the on-shell action of an analytically continued

version of the black hole solution. The geometry (3.11) does not have a real Euclidean

section because of the presence of non-zero chemical potentials, but we can still use the ana-

lytically continued metric in a saddle-point approximation: as argued in [38] (in the context

of the Kerr-Newman solutions), the appropriate saddle point for the thermodynamic parti-

tion function is obtained by analytic continuation of the time coordinate, even in cases where

the resulting metric is complex. The action evaluated on this analytically continued solution

is always real, so it can be used as a saddle-point approximation to the thermodynamic

potential.

We would also like to be able to derive a boundary stress tensor using an extension of the

Brown-York type analysis used in the context of AdS/CFT [39, 40]. It is not clear that this

technique can be straightforwardly applied to our solution, because of the inhomogeneity in

the asymptotic falloff conditions for different components of the metric, which implies that

we do not have a regular conformal structure on the boundary.10 However, a first step in

such a calculation is the determination of the necessary boundary terms required to obtain

a well-behaved action. A well defined action should have vanishing variation on-shell in a

classical phase space that encompasses the solutions we are interested in.

We will start by analyzing the asymptotic fall-off conditions for the black hole spacetime.

We then proceed to construct an action that is stationary with respect to an appropriate

class of variations. Our main result is summarized in (5.11), which we then use to extract

the Gibbs potential Q(T, µ, V ) from a saddle point evaluation.

10From the discussion of the causal properties in §2 it follows that we also cannot define a causal boundary

for (2.1).
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5.1 Naive asymptotics from metric expansion

To understand the asymptotics, let us focus on the five dimensional solution (3.11) in the

light-cone coordinates (3.5). We find

guu = −r4 +
2

3
γ2 r2 + O (1) , guv = −r2 +

2

3
γ2 + O

(

r−2
)

,

gvv =
γ2

r2
+ O

(

r−4
)

, g
xx

= r2 +
1

3
γ2 + O

(

r−2
)

,

grr =
1

r2
+

1

3

γ2

r4
+ O

(

r−6
)

,

(5.1)

and for the inverse metric,

guu = −γ
2

r6
+ O

(

r−8
)

, guv = − 1

r2
+

1

3

γ2

r4
+ O

(

r−6
)

,

gvv = 1 − 1

3

γ2

r2
+ O

(

r−4
)

, gxx =
1

r2
− 1

3

γ2

r4
+ O

(

r−6
)

,

grr = r2 − 1

3
γ2 + O

(

r−2
)

,

(5.2)

where for ease of notation, we introduce γ2 ≡ β2 r4
+, which encodes the leading deformation

of the vacuum spacetime (2.1). For the matter fields it follows from (3.12) that

Au = r2 − γ2 + O
(

r−2
)

, Av = −γ
2

r2
+ O

(

r−4
)

,

φ = − γ2

2 r2
+ O

(

r−4
)

.

(5.3)

It is worth remarking that these fall-off conditions are a result of a coupling between the

linearized fluctuations of the fields about the vacuum background (3.4); the fluctuations of

the gravitational, vector and scalar degrees of freedom do not decouple in the five-dimensional

effective action (3.13).

5.2 A stationary action

We want to evaluate the on-shell action for the solution (3.11). To get a well-behaved action,

we need to supplement the bulk action (3.13) with boundary terms to satisfy the condition

that δS = 0 on-shell, for variations satisfying suitable falloff conditions. In this subsection,

we construct an action satisfying this condition for a very restricted set of variations — the

minimal set including variations along the family of solutions we’re interested in.

We will construct an action principle by adding local covariant counterterms to the

bulk action plus a Gibbons-Hawking boundary term, as in asymptotically AdS spacetimes
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[39, 40]. If we add the most general combination of local counterterms which can make

non-zero contributions to the on-shell action, we have

S =
1

16πG5

∫

d5x
√−g

(

R− 4

3
(∂µφ)(∂µφ) − 1

4
e−8φ/3 FµνF

µν − 4AµA
µ − V (φ)

)

+
1

16πG5

∫

d4ξ
√
−h

(

2K − 2 c0 + c1 φ+ c2 φ
2

+c3AαA
α + c4AαA

αφ+ c5 (AαA
α)2
)

. (5.4)

Here ξα are boundary coordinates, hαβ is the induced metric on the boundary, and K =

Kαβh
αβ , with Kαβ the extrinsic curvature. We want to fix the coefficients c0, c1, c2, c3, c4 by

imposing δS = 0. In general, the variation of this action is

δS =
1

16πG5

∫

d4ξ
√
−h

[(

παβ +

(

c0 −
1

2
φ c1 −

1

2
φ2c2

)

hαβ

+

(

AαAβ −
1

2
AγA

γ hαβ

)

(c3 + φ c4)

+

(

2AαAβ −
1

2
AγA

γhαβ

)

c5
(

AδA
δ
)

)

δhαβ

+
(

−nµFµαe−8φ/3 + 2(c3 + φ c4 + 2c5(AγA
γ)2)Aα

)

δAα

+

(

−8

3
nµ∂µφ+ (c1 + 2φ c2 + AαA

α c4)

)

δφ

]

(5.5)

where nµ is the unit normal to the boundary, and παβ = Kαβ − hαβK.

We need to establish an appropriate class of variations. To do so, we need to define the

phase space of solutions: that is, we need to specify the asymptotic boundary conditions on

the fields. We choose our asymptotic boundary conditions to require that the leading falloff

agrees with the γ2 independent terms in eqs. (5.1, 5.2, 5.3). This requirement implies that

no variation of these terms is allowed; these terms are non-dynamical. We further require

that the subleading terms in the asymptotic falloff be related as in eqs. (5.1, 5.2, 5.3). This

restrictive but permissible choice of boundary conditions by construction admits our black

hole as an allowed solution. More precisely, the leading non-zero variation is required to be

of the form

δhab =
dhab
dγ2

δa , δAa =
dAa
dγ2

δa , δφ =
dφ

dγ2
δa , (5.6)

rather than allowing independent variations of the different fields at this order. We will

denote this variation of the fields collectively by δψd. In addition to this variation, we allow

arbitrary variations δψf where the variations of δhab, δAa and δφ are treated as independent

and fall off at least one power of r2 faster than in (5.6). Given that these δψf are independent,

instead of considering the full variation (5.6), we are free to take a linear combination of δψd
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and the δψf and replace δψd with its leading order behavior:

δψd : δhuu = − 1

r6
δa, δhuv =

1

3r4
δa, δhvv = − 1

3r2
δa,

δφ = − 1

2r2
δa, δAu = −δa, δAv = − 1

r2
δa.

(5.7)

Substituting the asymptotic fields (5.1, 5.2, 5.3) into the general variation of the action

(5.5), we find that the terms in δS which are independent of γ2 are

δS|γ2=0 =
1

16πG5

∫

d4ξ
√
−h

{

r4 (2 + c3 − c0) δh
uu − 2 r2 (c0 − 3) δhuv

+ r2 (c0 − 3) (δhx1x1 + δhx2x2) + c1 δφ+ 2 r2 (c3 − 1)δAu
}

. (5.8)

This part of the variation of the action will receive contributions that diverge like r2 from

δψd, and finite contributions from δψf . Since the variations of the different fields in δψf are

independent, we need to set c0 = 3, c1 = 0, and c3 = 1 to cancel these variations.

We are then left with contributions to δS which go like γ2,

δS =
γ2

16πG5

∫

d4ξ
√
−h

[

−
(

13

6
+
c4
2
− 2c5

)

r2 δhuu − 4 δhuv − 2

r2
δhvv

+

(

c4 − c2 −
8

3

)

δφ

r2
−
(

13

3
+ c4 − 4c5

)

δAu − 4

r2
δAv

]

. (5.9)

These terms will receive finite contributions from the variations δψd, and vanishing contri-

butions from the variations δψf . Using (5.7), the total variation of the action (5.9) becomes

δS =
γ2

16πG5

∫

d4ξ
√
−h c2 − 2c4 + 4c5 − 3

2 r4
δa , (5.10)

which will have the desired vanishing value provided c2 − 2 c4 + 4 c5 = 3.

To summarize, an action which satisfies δS = 0 for the restricted class of variations whose

leading behaviour is given by (5.7) is

S =
1

16πG5

∫

d5x
√−g

(

R− 4

3
(∂µφ)(∂µφ) − 1

4
e−8φ/3FµνF

µν − 4AµA
µ − V (φ)

)

+
1

16πG5

∫

d4ξ
√
−h

(

2K − 6 + AµA
µ + c4AµA

µφ+ c5 (AµA
µ)2

+(2 c4 − 4 c5 + 3)φ2
)

(5.11)

for some arbitrary constants c4 and c5.

5.3 Euclidean action for the black hole

Given the action (5.11) we can compute its value on the black hole solution (3.11), (3.12).

We find that the on-shell value of the action is rather simple,

S =
1

16π G5

∫

d4ξ r4
+ . (5.12)
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In fact, it is identical to the on-shell action of the Schwarzschild-AdS5 black hole (3.6)! Note

that the dependence on c4 and c5 cancels out of the on-shell action, as does the dependence

on γ2.

Let’s now use this action to compute the thermodynamics of the black hole in the Eu-

clidean approach. We will assume we compactify v with period ∆v and the spatial direc-

tions with a volume V , and obtain a “Euclidean” solution by analytically continuing t→ iτ .

Smoothness of this analytically continued solution then forces the Euclidean time to have

period ∆τ = π/r+, consistent with our identification of the temperature (4.4). Thus, the

full Euclidean action is

I = − β

16G5

r3
+ V ∆v , (5.13)

where we have used the fact that β∆v = ∆y at fixed u.

We want to interpret this action as the saddle-point approximation to the grand canonical

partition function,

Ξ(T, µ) = e−Q(T,µ)/T = Tr

(

exp

(

−Ĥ
T

− µ P̂v
T

))

≈ e−I , (5.14)

with temperature T and chemical potential µ given as in (4.4) and (4.5) respectively. Note

that the Euclidean action (5.13) is always negative, so the black hole solution makes the

dominant contribution to this partition function for any non-zero temperature.

Thus, we should be able to extract the expected energy and charge as

〈Pv〉 = −T ∂

∂µ
ln Ξ(T, µ) = T

∂

∂µ
I, (5.15)

〈E〉 + µ 〈Pv〉 = T 2 ∂

∂T
ln Ξ(T, µ) = −T 2 ∂

∂T
I. (5.16)

Furthermore, using ln Ξ = −Q/T , we should have Q/T = (E + µPv)/T − S = I. So the

entropy should be given by

S = −
(

T
∂

∂T
+ 1

)

I. (5.17)

The action written in terms of T and µ is

I = − π3 T 3

64G5 µ2
V ∆v , (5.18)

which leads to

S =
π3 T 3

16G5 µ2
V ∆v , (5.19)

which is the same as the result (4.1) we obtained earlier by direct calculation.11

11That S is given both in terms of the horizon area and by (5.17) is a consistency check of our calculation:

in general, by foliating the region outside the horizon by surfaces of constant time, we can always rewrite the

Euclidean action as I = 1
T

(E + µ N) − S, which implies the assumed relation between entropy and action.
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We then obtain the conserved charges

〈N〉 = 〈Pv〉
∆v

2π
=

π2 T 4

64G5 µ3
V ∆v2 , (5.20)

and

〈E〉 =
π3 T 4

64G5 µ2
V ∆v . (5.21)

Furthermore, the pressure is given in the grand canonical ensemble directly in terms of the

Gibbs potential Q(T, µ, V ):

P V = −Q(T, µ, V ) =
π3 T 4

64G5 µ2
V ∆v , (5.22)

leading thus to an equation of state

P V = E. (5.23)

A non-relativistic system with Galilean conformal invariance has different scalings for tem-

poral and spatial directions as given in (2.2) for ν = 1. This feature leads to an equation

of state d P V = 2E in d-spatial dimensions [17], which is satisfied by (5.23). So indeed,

the black hole solution constructed describes a state in the grand-canonical ensemble at

temperature T and chemical potential µ for a non-relativistic conformal field theory.

The black hole solution (3.11) has a translationally invariant horizon in the field the-

ory directions x and hence in analogy with N = 4 thermodynamics one expects that it

corresponds to the high temperature phase of the Galilean CFT. Indeed this expectation

is consistent with the fact that our free energy is always negative. In §7 we discuss the

possibility of a Hawking-Page like low temperature phase transition in finite volume.

6 Shear viscosity of non-relativistic plasmas

Strongly coupled non-relativistic plasmas that are encountered in cold atom systems, i.e.

fermions at unitarity, are believed to behave as nearly ideal fluids [8, 9], like the quark-

gluon plasma. Given that we have a holographic dual which describes the physics of a

strongly coupled non-relativistic system, it is worth inquiring whether the shear viscosity of

the plasma takes the universal value η/s = 1/4π typical of such holographic systems [30].12

In fact, given that the field theories we consider are similar to non-commutative Yang-Mills

theories where it is known that η/s = 1/4π [42], it is not surprising that we recover this

same value, as we now show.13

12The bulk viscosity of the non-relativistic conformal plasmas vanishes due to the scale invariance [41, 7].
13The viscosity result was first presented by Adams at the BIRS workshop, who emphasized that the

off-diagonal metric component behaves as a minimally coupled scalar and that the stress-tensor was dual to

a mode with zero v-momentum.

17



To compute the shear viscosity, we will use the Kubo formula. Consider the following

off-diagonal component of the Fourier transformed, retarded, two point function of the stress-

tensor:14

G12,12(ω, 0) = −i
∫

du d2x eiω u θ(u)〈 [Tx1x2
(u,x), Tx1x2

(0, 0)] 〉. (6.1)

The shear viscosity is given by the zero-frequency limit of this two point function,

η = − lim
ω→0

1

ω
Im (G12,12(ω)) . (6.2)

To compute the shear viscosity, we use the recipes of refs. [17, 18] to compute this

shear component of the two point function of the stress-tensor in the black hole background

(3.11). Generic linearized fluctuations between the fields in the action (3.13) involve coupling

between the gravitational, vector and dilatonic degrees of freedom. Happily, for the stress-

tensor two point function, the dual field in the bulk is the metric fluctuation δgx1x2
which

decouples from the rest of the fluctuations at linear order. In fact, it turns out that δg x2

x1

satisfies a massless, minimally coupled scalar equation in the background (3.11).

Consider then fluctuations of the bulk metric (3.11) in the spatial directions of the non-

relativistic field theory. To obtain the shear viscosity we only need to know the zero mo-

mentum p = 0 value of the correlator. Decomposing the fluctuation δg x2

x1
into Fourier

components and setting p = 0,

δg x2

x1
≡ e−i ω u+i n v χ(ω, r) , (6.3)

we have
f(r)

r5

d

dr

(

r5 f(r)
dχ

dr

)

+ Veff(r)χ(ω, r) = 0, (6.4)

where

Veff (r) =
1

r4

(

(1 − f) β2ω2 − (1 + f)ω n+

(

1

4
(1 − f) − β2 r2 f

)

n2

β2

)

. (6.5)

We have written the above expressions for general values of the v-momentum of the mode,

which we call n. However, the stress tensor of the non-relativistic CFT must correspond to

the n = 0 mode of the bulk metric. This can be seen in two different ways: first, as we

argued previously, v-momentum corresponds to particle number in the non-relativistic CFT,

and the stress tensor does not carry particle number. Second, the conformal dimension of

the operators in the non-relativistic CFT will explicitly contain n dependence; for a massless

minimally coupled bulk scalar field one has [17, 18]

∆ = 2 +
√
n2 + 4. (6.6)

14We will focus below mostly on the spatial components of the stress-tensor, which are the only tensorial

objects in a Galilean field theory. The energy density Tuu and mass current Tui can be incorporated if we

work with a generalized stress-tensor complex.
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Such a scalar will have the same conformal dimension as the stress tensor only for n = 0.

(The conformal dimension of a Galilean CFT in d spatial dimensions is d+ 2.)

For n = 0, we find that (6.4) simplifies considerably. In fact, it becomes identical to the

wave-equation for a massless scalar field at zero momentum on the Schwarzschild-AdS5 black

hole up to a trivial rescaling of the frequency by β. To calculate the Green’s function, we solve

as usual by demanding ingoing boundary conditions at the horizon, in the hydrodynamic

limit ω/r+ ≪ 1. Defining ζ(r) such that

χ(ω, r) ≡ A (r − r+)
−

i β ω

4 r+ ζ(r) , (6.7)

where the constant A is related to the boundary value of χ(ω, r), χ0(ω) = χ(ω,∞). Solving

for ζ(r) perturbatively in ω, we find that

ζ(r) = 1 − i β ω

4 r+
ln

(

f

r − r+

)

+ O((ω/r+)2) . (6.8)

The two-point function is then determined by the boundary term in the action for χ

Sχ = − lim
r→∞

1

16πG5

∫

dω

2π
dv d2x

1

2
r5 f(r)χ(−ω, r) dχ(ω, r)

dr
+ . . . (6.9)

We follow the recipe presented in ref. [43]. (See ref. [44] for a more rigorous treatment.)

Using eqs. (6.7) and (6.8), the boundary term can be written

Sχ =
1

16πG5

∫

dω

2π
dv d2xχ0(−ω)

(

i

2
r3
+βω

)

χ0(ω) (6.10)

from which the hydrodynamic retarded Green’s function may be extracted:

G12,12(ω) = − i

16πG5

β ω r3
+ ∆v . (6.11)

The Kubo formula for the viscosity then leads to

η =
1

16π G5
β r3

+ ∆v (6.12)

which, noting that β∆v = ∆y at fixed u, gives

η

s
=

1

4 π
. (6.13)

The result is in large part a consequence of the fact that the zero-frequency limit of the

two-point function has a trivial β dependence, as does the entropy density obtained from

(4.1).
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7 Discussion

We have discussed aspects of holography for non-relativistic conformal field theories, con-

centrating in particular on the nonzero temperature physics of these systems. We described

how non-relativistic field theories arise naturally in string theory from the world-volume

theories on D-branes. The specific construction we focused on is DLCQ quantization of an

R-charged twisted D3-brane world volume theory (N = 4 SYM). However, the construction

via the Null Melvin Twist makes it clear that one can generate a whole host of such theories

with and without conformal invariance.

To generate non-relativistic conformal field theories in d = 2 spatial dimensions with dual

geometries of the form (2.1) with ν = 1, one can start with any N = 1 superconformal field

theory with an AdS dual. The infinite class of N = 1 quiver gauge theories with AdS5×X5

duals, where X5 is a Sasaki-Einstein manifold [45] (a special case of which is the Klebanov-

Witten conifold theory [46]) provide excellent starting points for such constructions. In

the dual spacetime one has a U(1)R realized as an isometry in X5 analogous to the S1

fibration over CP2 used here. The Null Melvin Twist along this isometry will yield the

appropriate pp-wave geometries, and what we have discussed in the text can be applied to

Sasaki-Einstein spaces with little or no modification. It is easy to see that the non-relativistic

equation of state (5.23) will be respected by these field theories. Similarly, one could start

with relativistic field theories which have a non-trivial RG flow and construct non-conformal

analogs of Galilean field theories. All these examples provide 2-spatial dimensional non-

relativistic field theories.

It should be possible to generate solutions in higher dimensions d > 2 using other D-brane

world-volume theories, but these would typically not exhibit Galilean conformal symmetry.

To obtain a Galilean CFT in d = 3 spatial dimensions, we would need to start with an asymp-

totic AdS6 geometry, which would correspond to the strongly coupled fixed point of a five

dimensional CFT. Other generalizations of course include the M-brane world-volume CFTs,

wherein the asymptotic AdS4 and AdS7 spacetimes can be twisted with the R-symmetries,

which is geometrically achieved by turning on 3-form fluxes in the background.

Even without the precise non-extremal geometries at hand, one can infer some thermody-

namic features of the higher dimensional relativistic CFTs, if we assume that as in the case

studied here, the gravitational and matter degrees of freedom conspire to give a Euclidean

action which agrees with the action for the untwisted asymptotically AdS black hole. In

d-spatial dimensions we would then have (gathering all the irrelevant numerical coefficients

in Γ and Γ′)

I = −Γ′ β rd+1
+ = −Γ

T d+1

µ
d
2
+1

. (7.1)

The scaling here follows from T = (d+2) r+
4π β

and we expect µ is still given by (4.5). From here
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it is trivial to check that

E = Γ
d

2

T d+2

µ
d
2
+1

=⇒ E =
d

2
P. (7.2)

Note that in converting the entropy and Gibbs potential into field theory quantities, because

of the compact v direction, we introduce a chemical potential µ that plays no role in the

untwisted backgrounds. For the reasons outlined in §2 we believe that the appropriate

holographic description of these systems is in terms of the asymptotic pp-wave spacetimes

(2.1) even though the geometric evaluation of the Gibbs potential and the entropy of these

non-relativistic CFTs, expressed as a function of the horizon radius r+, leads to answers that

are identical to those obtained for black holes in untwisted AdSd+3.

The thermodynamics we have discussed is for non-relativistic CFTs in non-compact space.

It would be interesting to study these systems in finite volume, and to see if they exhibit phase

transitions like the Hawking-Page transition that is well known in the AdS case. We suspect

the answer is yes given the similarities of the Euclidean action computation (5.12), and the

fact that we obtain these theories by deforming relativistic gauge theories. However, if we

start from N = 4 SYM on a compact manifold, say S3×R, one needs to pick an appropriate

light-cone to carry out the deformation. For the case of S3 one could presumably use the

non-degenerate Hopf fibre direction to define appropriate light-cone coordinates and twist

the theory by the R-symmetry.

Apart from the intrinsic interest in developing gravity duals to non-relativistic condensed

matter systems, these Galilean CFTs may further the recent developments in the fluid-gravity

correspondence [47]. Any interacting field theory in an appropriate long-wavelength limit

can be modeled as a hydrodynamic system; recently ref. [47] developed a precise dictionary

between the dynamics of relativistic conformal fluids and asymptotically AdS black hole

solutions. While this construction provides an interesting avenue to explore the physics

of fluid dynamics in a holographic setting, our knowledge of relativistic fluids is less well

developed than that of non-relativistic fluids. There should be more ways of cross-checking

holographic duals of strongly coupled non-relativistic field theories.

The R-charge twisted N = 4 theory discussed in the paper provides in the hydrodynamic

limit an example of a two dimensional fluid, where hydrodynamic features such as turbulence

differ qualitatively from their higher dimensional counter-parts owing to the inverse cascade

phenomenon [48]. In the context of the fluid-gravity correspondence, ref. [49] suggested

that one might see qualitative differences between gravity in different dimensions, based on

qualitative differences in the turbulent regime. Precisely because most work on turbulence

is done for non-relativistic fluids, the non-relativistic system studied here may provide a

particularly good playground for exploring turbulence. It should however be borne in mind

that non-relativistic conformal fluids are also highly compressible,15 owing to the equation of

15It may however be possible to focus on the low lying shear mode to obtain incompressible Navier-Stokes

flow. We thank Dam Son for alerting us to this possibility.
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state (5.23), which is a consequence of scale invariance. The models which violate Galilean

conformal invariance would thus be better starting points to realize incompressible fluids.
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A Anisotropic Galilean field theories

The discussion in the text has been confined to spacetimes of the form (2.1) with ν =

1 supported by matter that preserves the rotational invariance in the spatial directions.

However, it is just as easy to construct spacetimes where the rotational invariance is broken

by a simple generalization of the construction in [17]. We would like to obtain the metric

(related to (2.1) by r = 1/z)

ds2 =
1

z2

(

−2 du dv + dxd + dz2
)

− 1

z2 ν+2
du2 (A.1)

in d-spatial dimensions as the solution for some equations of motion with some appropriate

matter. The matter stress tensor supporting the solution is

Tuu ∝
1

z2 ν+2
. (A.2)

In [17] this stress tensor was modeled by a massive vector. However, we can do just as

well with a pair of p-form fields. Let us consider the action

S =

∫

dd+3x
√−g

(

R − 2 Λ − 1

2
| H(p+1) |2 −

1

2
| F(d+3−p) |2

)

−ν
∫

B(p)∧F(d+3−p), (A.3)
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with H(p+1) = dB(p) and F(d+3−p) = dC(d+2−p). An appropriate source is

H(p+1) = −α (ν + p)

zν+p+1
dz ∧ du ∧ ω(p−1),

F(d+3−p) =
α (ν + p)

zν+d+3−p
dz ∧ du ∧ (⋆ ω)(d−p+1), (A.4)

where ωp is an arbitrary p-form on the spatial Rd (parameterized by xd) and (⋆ ω)(d−p) is

its Hodge dual. It is easy to check that this ansatz satisfies the field equations coming from

(A.3) and provides the appropriate stress tensor (A.2). In fact the massive vector theory of

[17] corresponds to choosing the ω(p−1) on the spatial sections that appears in the H-flux to

be a scalar and hence the dual form to be the top-form on Rd, which naturally gives a mass

term (like in massive Type IIA string theory). In more general cases, the presence of the

fluxes breaks rotational invariance — while the metric (A.1) has full SO(d + 1) rotational

symmetry, the fluxes break SO(d+ 1) down to SO(p) × SO(d+ 2 − p).

This construction is in fact inspired by the Null Melvin Twist along the world-volume di-

rections of the D-brane to obtain light-like non-commutative Yang-Mills theories [27]. Start-

ing from the non-extremal D3-brane solution (3.6), we find a solution to the IIB equations

of motion (for simplicity twisting only along x1 — for a more general twist see the solution

given in Eq (C.6) of ref. [28])

ds2
str = e2ϕ

[

r2
(

−f(r) dt2 + dy2 + dx2
1

)

− β2 f(r) r6 (dt+ dy)2
]

+ r2 dx2
2 +

dr2

r2 f(r)
+ dΩ2

5,

(A.5)

supported by NS-NS (B(2)) and RR (C(2) and C(4)) fluxes in 10 dimensional Type IIB su-

pergravity,

B(2) = β r4 e2ϕ (dt+ dy) ∧ dx1,

C(2) = −β r4 (dt+ dy) ∧ dx2,

F(5) = 4 (1 + ⋆) Vol(S5),

eφ =
1

√

1 + β2 r4
+

f(r) = 1 − r4
+

r4
. (A.6)

In the geometry (A.5) we have ν = 2 due to the fact that guu ∼ r6 and the dilaton is

constant. Furthermore, the S5 is also undeformed, unlike the situation encountered in (3.7).

Reducing (A.5) on the S5 we find an effective 5-dimensional action of the general form (A.3)

S5deff =
1

16πG5

∫

d5x
√−g

[

e−2ϕ(R− 2Λ − 1

12
HµνλH

µνλ) − 1

12
FµνλF

µνλ

]

+
1

4πG5

∫

B2 ∧ F3 . (A.7)
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The five dimensional solution is then given by the fields

ds2
str = e2ϕ

[

r2 (−f(r) dt2 + dy2 + dx2
1) − β2 f(r) r6 (dt+ dy)2

]

+ r2 dx2
2 +

dr2

r2 f(r)
,

B(2) = β r4 e2ϕ(dt+ dy) ∧ dx1 ,

C(2) = −β r4(dt+ dy) ∧ dx2,

eϕ =
1

√

1 + r4
+ β

2
, (A.8)

for a choice of the cosmological constant

Λ = −6 − 4 r4
+ β

2 e2ϕ (A.9)

which depends non-trivially on the deformation parameter γ2 = β2 r4
+. This solution is the

gravitational dual to light-like non-commutative N = 4 super Yang-Mills and it would be

interesting to study this example further to understand aspects of non-relativistic dynamics.

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and

supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.

[2] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from

non-critical string theory,” Phys. Lett. B428 (1998) 105–114, arXiv:hep-th/9802109.

[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998)

253–291, arXiv:hep-th/9802150.

[4] C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son, “Quantum critical transport,

duality, and M-theory,” Phys. Rev. D75 (2007) 085020, arXiv:hep-th/0701036;

S. A. Hartnoll, P. K. Kovtun, M. Muller, and S. Sachdev, “Theory of the Nernst effect

near quantum phase transitions in condensed matter, and in dyonic black holes,”

Phys. Rev. B76 (2007) 144502, arXiv:0706.3215 [hep-th];

S. A. Hartnoll and C. P. Herzog, “Ohm’s Law at strong coupling: S duality and the

cyclotron resonance,” Phys. Rev. D76 (2007) 106012, arXiv:0706.3228 [hep-th];

S. A. Hartnoll and C. P. Herzog, “Impure AdS/CFT,” Phys. Rev. D77 (2008) 106009,

arXiv:0801.1693 [hep-th];

S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building an AdS/CFT

superconductor,” arXiv:0803.3295 [hep-th];

S. S. Gubser and S. S. Pufu, “The gravity dual of a p-wave superconductor,”

arXiv:0805.2960 [hep-th];

24

http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/0701036
http://arxiv.org/abs/arXiv: 0706.3215 [hep-th]
http://arxiv.org/abs/arXiv: 0706.3228 [hep-th]
http://arxiv.org/abs/arXiv: 0801.1693 [hep-th]
http://arxiv.org/abs/arXiv: 0803.3295 [hep-th]
http://arxiv.org/abs/arXiv: 0805.2960 [hep-th]


M. M. Roberts and S. A. Hartnoll, “Pseudogap and time reversal breaking in a

holographic superconductor,” arXiv:0805.3898 [hep-th];

E. Nakano and W. Y. Wen, “Critical magnetic field in AdS/CFT superconductor,”

arXiv:0804.3180 [hep-th];

T. Albash and C. V. Johnson, “A Holographic Superconductor in an External

Magnetic Field,” arXiv:0804.3466 [hep-th];

E. Keski-Vakkuri and P. Kraus, “Quantum Hall Effect in AdS/CFT,”

arXiv: 0805.4653 [hep-th].

[5] C. R. Hagen, “Scale and conformal transformations in galilean-covariant field theory,”

Phys. Rev. D5 (1972) 377–388.

[6] T. Mehen, I. W. Stewart, and M. B. Wise, “Conformal invariance for non-relativistic

field theory,” Phys. Lett. B474 (2000) 145–152, arXiv:hep-th/9910025.

[7] Y. Nishida and D. T. Son, “Nonrelativistic conformal field theories,” Phys. Rev. D76

(2007) 086004, arXiv:0706.3746 [hep-th].

[8] B. A. Gelman, E. V. Shuryak, and I. Zahed, “Cold Strongly Coupled Atoms Make a

Near-perfect Liquid,” arXiv:nucl-th/0410067.

[9] T. Schafer, “What atomic liquids can teach us about quark liquids,” Prog. Theor.

Phys. Suppl. 168 (2007) 303–311, arXiv:hep-ph/0703141.
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