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Abstract— Automatic kinship recognition using Computer
Vision, which aims to infer the blood relationship between
individuals by only comparing their facial features, has started
to gain attention recently. The introduction of large kinship
datasets, such as Family In The Wild (FIW), has allowed large
scale dataset modeling using state of the art deep learning mod-
els. Among other kinship recognition tasks, family classification
task is lacking any significant progress due to its increasing
difficulty in relation to the family member size. Furthermore,
most current state of-the-art approaches do not perform any
data pre-processing (which try to improve models accuracy)
and are trained without a regularizer (which results in models
susceptible to overfitting). In this paper, we present the Deep
Family Classifier (DFC), a deep learning model for family
classification in the wild. We build our model by combining two
sub-networks: internal Image Feature Enhancer which operates
by removing the image noise and provides an additional facial
heatmap layer and Family Class Estimator trained with strong
regularizers and a compound loss. We observe progressive
improvement in accuracy during the validation phase, with a
state of the art results of 16.89% is obtained for the track 2 in
the RFIW2019 challenge and 17.08% of familly classification
task on FIW dataset.

I. INTRODUCTION

Kinship recognition using Computer Vision techniques,

a.k.a visual kinship recognition, has attracted the interest of

the research community in recent years [11], [23]. This is

due to the wide range of applications such as searching for

a missing human, human trafficking, or for recent issues of

refuge crisis [23]. The main goal of kinship recognition is to

train a model to recognize the kin or Non-Kin relationship

between different individuals from facial features[11]. Cur-

rently, kinship recognition can be split in two tasks: kinship

verification which tries to predict if there is a relationship

between two individuals; Family classification, which aims

to map certain individuals to specific family classes.

The introduction of The large kinship datasets i.e. Family

In The Wild (FIW) [23]- has accelerated the development

of kinship recognition solutions and allowed the utilization

of powerful deep learning models that reach state of the

art results, especially for kinship verification [32]. In spite

of the current progress, the problem is still open, which

is specially true in the case of Family classification, where

difficulty increases as the number of family members (and

therefore the diversity of classes) [23]. For such reasons,

family classification has been overlooked in the literature

compared to kinship verification.

Because of its challenging nature, in this work we focus

on family classification by improving the main limitation

of the current approaches that deal with it: 1) no data

understanding or pre-processing is done (which has been

known to improve the overall model accuracy [9], [15])

and 2) no strong regularization techniques applied (which

may hinder the model learning [2], [26]). Specifically, we

propose a deep learning-based model that integrates a strong

regularizer in model learning and incorporates the appropri-

ate data pre-processing via an internal image enhancer. The

internal image enhancer is based on a Deep Image Denoiser

build with Auto-Encoder architecture [8] coupled with a

Facial Heatmap Estimator built with the Inception-Resnet

architecture [27]. As final pipeline, we adopt the state-of-

the-art Squeeze and Excitation Network [13] trained using

compounding losses of center loss [29] with sample weight

normalization. The main contributions of this paper are:

1) We introduce a deep learning based image enhance-

ment stage that normalizes the input and produces an

accurate heatmap layer to guide the feature learning.

2) We show progressive improvement of our model ac-

curacy to justify the effectiveness of our learning

approach.

3) We show state-of-the-art results on the family clas-

sification of [23] and second track of RFIW 2019

challenge.

II. RELATED WORK

Kinship recognition, where the goal is to identify the

relationship between individuals, is an active research field

in physiology [10], biology [3] and recently computer vision

[21], [17]. Early attempts to automatically model these

type of relationships were made by extracting hand-crafted

features such as Local Binary Pattern (LBP)[17], Scale In-

variant Feature Transform (SIFT) [33], Gabor Filter [31], and

Histogram Of Gradient (HOG) [35] which were later used

to train a Support Vector Machine(SVM) classifier [11] or to

be clustered with techniques such as K-Means clustering[17].

Generally, these models were limited to identify the relation-

ship accross a single generation e.g Father Daughter (F-D)

or Sibling-Sibling (S-S) [12], [30]. However, recent progress

with larger datasets such as KFW [17] or FIW [23], [22]

jointly with the end to end deep learning models, allows

for the identification accross multiple generation kinship

relationships with state of the art accuracy [32], [28].

Simultaneously, other Kinship Recognition tasks, like fam-

ily classification, have been overlooked in the literature. Thus

lacking any similar progress. Family classification, which

aims to identity the set of members to family classes, is

another important task given the better simulation of the



Fig. 1. Overview of our models pipeline

inheritance biological process [11], and becomes more chal-

lenging as the number of family increase [23]. The first work

on this task [11] used SIFT features from several facial parts

and evaluatedon a relatively small Family101 dataset. The

introduction of larger datasets, such as FIW[24], has allowed

the development of more expressive deep learning based

architecture. Convolutional network with VGG[19], Res-

net, and CenterFace[29] currently hold the state-of-the-art

accuracy[23]. In spite of the success of these models, there

is still a lack a significant progress compared to the kinship

verification, as typically, straight-forward learning strategy is

adopted by performing cross domain transfer learning with

plain image as input. Such an approach neglects significant

data pre-processing, which has been shown to benefit the

models performance [9], [15] and is prone to overfit on

account of their large networks size [2], [26]. We tackle these

shortcomings in our approach by putting the emphasizes

on the image feature enhancement technique and inclusion

of proper training strategy using strong regularizers and

compounding loss.

III. METHODS

Our Deep Family Classifier (DFC) consists of two main

sub-networks, each responsible for their specific task: Im-

age Feature Enhancer (IFE) and Family Class Estimator

(FCE). Given an individual with corresponding image input

(I), the IFE sub-network normalizes the image by minimiz-

ing the known image noise, and it also provides additional

facial heatmaps as an added layer to guide the feature

learning[6]. These spatial features are then passed into the

DFC to estimate the family class c of the corresponding

family member I.

c(I) = DFC(I) = FCE(IFE(I)) (1)

Figure 1 visualizes the overall structure of our pipeline.

A. Image Feature Enhancer (IFE)

We argue that the final estimation of the overall model

will be improved by using the enhanced image input. We

introduce two main sub-modules to perform a two-stage of

enhancement : Deep Image Denoiser(DID), which normal-

izes the input image, and Facial Heatmap Estimator(FHE)

which generates an additional facial heatmap layer.

IFE(I) = concat(I, FHE(DID(I))) (2)

The end result of IFE is the concatenated facial heatmap

layer with three RGB layers of normalized input, which are

then fed onto the FCE sub-network.

1) Deep Image Denoiser (DID): In this setup, we nor-

malize the input image by minimizing the known noise. To

do this, we build our image normalizer by using internal

Multi-Task noise Classifier(MTC) and Specialized Internal

image Denoising Auto-Encoder (SDAE) which operate in

tandem.

DID(I) = SDAEφ2(MTCφ1(I), I) (3)

We adopt the Hourglass shaped Auto-Encoder Architecture

(DAE) with skip connection [18], [8] as the base architec-

ture of both MTC and SDAE. We train the DID to clean

synthetically perturbed image with four classes of noise: First

is image down-sampling, second is gaussian blurring, third

is gaussian noise, and fourth is color scaling [36]. The first

task of DID is to estimate the noise class cn as follows:

MTCφ1(cn|I) = fpr(c,
e
WMTC

φ1

k

⊙ convMTC

φ1

k

(I)

∑K

k=1 e
WMTC

φ1

k

⊙convMTC

φ1

k

(I)
), (4)

fpr(x, S) =

{

1, if x = argmax{s1, s2..sK}

0, otherwise
, (5)

where WMTC is multinomial bottleneck regression layers

parameterized by Φ1, S is the set of scores for all K, conv

is the set of convolutional layers of MTC, and the fpr
is the indicator function. If noise is present (i.e. cn > 0),

SDAE, which consists of specialized denoisers SDAE =
{DAE1, DAE2...DAEK} will use specific DAE class to

remove the noise cn. Otherwise, the denoising process is

skipped to preserve the characteristics of the image.

SDAEφ2(cn, I) = DAEφ2
cn
(I), (6)



where Φ2
c is the parameter learned for specific DAE and

specific noise class cn.

2) Facial Heatmap Estimator: FHE augments the input

features by introducing an additional facial heatmap layer

centered around the landmark estimates of lt [6]. To do this,

we first obtain the facial landmark points lt using the FLL

part of Recurrent Tracker [4], which consist of Inception-

Resnet (res) [27] and a regression layer of weight matrix

WFLL parameterized by Φ3 :

lt = FLLΦ3(X) = WFLL
Φ3 ⊙ resΦ3(X) (7)

Given the lt, FHE produces the facial heatmap layers by ac-

tivating the circular area following 2D Gaussian distribution

centered on each landmark points on lt with radius r.

FHE(I), by g(lt, I) = flt : I → Ih (8)

flt(I) = 0xi±a,yi±b + fx(xi, yi|µ, σ) for xi, yi ∈ lt (9)

with a and b satisfy :

(x− a)2 + (y − b)2 = r2 (10)

Where µ denotes the center of each facial landmarks, σ is

the specified radius r, and fx is the 2D normal probability

density function.

B. Family Class Estimator (FCE)

1) Model Definition: We build our final pipeline of FCE

using the state-of-the-art Squeeze and Excitation Network

(SENET) [13] which has been pre-trained on the recently

published VGGFace2 [7] facial dataset 1. This is used to

estimate the family class label c. Specifically, we replace the

first 2D convolutional layer to accommodate the additional

facial heatmap input channel and add an additional 524

bottleneck regression layer for the corresponding 524 family

classes. The FCE consists of relatively similar operations

of MTC:

FCEφ4(c|I) = fpr(c,
e
WFCE

φ4

k

⊙ SENETFCE

φ4

k

(I)

∑K

k=1 e
WFCE

φ4

k
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φ4

k

(I)
) (11)

2) Compounding Loss (CL): To improve the convergence

on training FCE sub-network, we propose to add the

compounding loss based on the center loss [29] and the

sample weight normalization, along with standard cross

entropy loss. The center loss is used to minimize intra-class

variations and the weight normalization factor accommodates

the unbalanced classes of the training dataset. The final loss

of the FCE is as follows :

LFCE = λsigℓsig + λctrℓctr (12)

ℓsig =

N
∑

i=1

ni

N
log

e
WFCE
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k
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k=1 e
WFCE

φ4

k
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(13)

ℓctr =
1

2

m
∑

i=1

‖xi − ctryi
‖, (14)

1https://github.com/ox-vgg/vgg face2

Fig. 2. Examples of normalized input with facial heatmap layer of FIW
dataset

Where the λ is the regularizing coefficient for each term,

ctryi denotes the yi-th class center of embedding features,

ni is the total instances of class i, and N is the normalization

factor for the total of estimated classes, i.e 524.

C. Model training and setup

1) Training IFE: Considering that we do not have the

noise-free image as ideal reference in the original FIW

dataset, we resort to the cross-dataset capability of our model

by training the IFE independently using 300-W [25] and

Menpo [34] dataset. Specifically, we used standard ℓ2 loss,

learning rate of 0.001, and ADAM[14] optimizer.

An example of the normalized image from FIW dataset

jointly with its corresponding facial heatmaps layer can be

seen on the Figure 2. Notice that IFE model is able to

normalize the input according to the image conditionss :

the model sharpens the image in if is too blurry (column

1), and it scales up the image intensity in case of low

illumination(column 2). Furthermore, the estimated facial

heatmaps are too visually accurate.

2) Training FCE: It is well known that very deep models

can be too expressive and may lead to overfiting if trained

without any regularizer [2]. To avoid this, we incorporate two

regularization strategies : (1) we perform data augmentation

procedure of −45◦ to 45◦ degree rotations, random-centered

cropping and horizontal flipping; (2) we add a series of

dropout layer [26] with high probability value of 0.5. During

training, we set the value of each λ to 0.5, r by 1% the value

of the facial bounding box norm, learning rate of 0.0001

with weight decay every 1000 iterations and trained using

SGD [5] optimizer. Finally, we used the FIW training dataset

provided within the challenge for training.

3) Technical Specifications: All model were collectively

implemented using both Tensorflow[1] and Pytorch [20].

Trainings was done using five Titan X GPUs and took over

three days for each model. Our trained models are available

on our github page 2.

IV. EXPERIMENTS

A. Experiment Settings

We evaluated the performance of our model on the Second

Track of Recognize Families in the Wild 2019 Challenge

(RFIW2019) which deals with the family classification task.

Additionally, we also provide comparison on the original

2https://github.com/deckyal/DFC



Fig. 3. Examples of families member on the FIW[23] dataset

TABLE I

THE ACCURACY OF OUR MODELS ON THE VALIDATION DATASET ON THE

SECOND TRACK OF RFIW2019

Networks Train. Acc Val. Acc.

B1(FCE) 100 4.52
B2(FCE +R) 95.5 10.89
B3(FCE +R+ IFE) 97.3 13.73
DFC(FCE +R+ IFE + CL) 97.8 14.28

familiy classification task on original FIW dataset [23]. The

goal of family classification is to classify a family mem-

bership of hold-out individual from 524 classes of family.

Several samples of family in the FIW dataset can be seen on

the Figure 4.

For the second track of RFIW2019 challenge, the training

samples are provided for each family class with the remain-

ing unseen data used for both validation and test phase.

This ensures the generalization of the model on the real

unseen test samples [24]. While on the original FIW family

classification task, five cross validation scheme is employed

with at least 4 family members used for training and 1 for

testing[23]. On all scenario, precision score is used for the

evaluation of the models accuracy.

B. Result and Discussion

1) Ablation Studies: We first present the ablation studies

on the validation dataset on the second track of RFIW2019

challenge to see our models accuracy under different settings

: 1) Baseline-1 (B1) consisting of FCE sub-network trained

directly with data training without any pre-procesing; 2)

Baseline-2 (B2) Similar to B1 but includes the regularization

strategy (R); 3)Baseline-3 (B3) Extension of B2 but using

the enhanced data from IFE instead of original image as

input; 4) DFC, our full model which follow all pipeline de-

scribed in methodologies including Compounding Loss(CL).

We can observe the progressive improvement of the overall

accuracy of our model in the Table I.

Specifically, we found that a direct approach using only

FCE without any regularizer results in over-fitting due to

our models size. This fact is indicated by perfect training

accuracy but poor validation result. Adding the regularizers

remedies this problem producing a better validation accuracy

(B2) with the sacrifice of slightly lower training accuracy.

Fig. 4. Examples of correctly classified families

TABLE II

TEST RESULT ON THE ORIGINAL FIW DATASETS

Networks Acc.

VGG-Face, fc7 (4,096D)+one-vs-rest SVMs [23] 3.04
VGG-Face, replaced softmax (564D)+fine-tuned [23] 10.42
ResNet-22 + softmax (564D) [23] 14.17
SphereFace(564D)[23] 13.86
ResNet-22 + CF (512D) + softmax (564D)[23] 16.18
DFC (Ours) 17.08

The model accuracy of B3 further increased by using the

internal IFE proving the benefit of pre-processing strategy.

Finally, we found the further accuracy improvements using

the compounding losses to our final DFC model.

The examples of correctly predicted family of individual

can be seen on the Figure 4. In these examples, we found

that our model is not only able to relate the individuals with

existing multiple relationship such as on the first column,

but also correctly predict the family class where only few

kin-relationship available. This occurs in the second column

where only Mother-Daughter(M-D)/Son(M-S) relationship

exists, and on third column where only single relationship

exists, i.e Sibling-Sibling(S-S). Note that, less available

relationships also signifies fewer training samples which

suggests the benefit of our sample weight normalization.

2) Result on FIW dataset and 2nd Track of RFIW2019

Challenge: Finally, we present the results of our model, both

tested on the original five cross validation scheme in the work

of [23] (Table II) and also on the test dataset of second track

of RFIW 2019 challenge (table III). We can see the state-of-

the-art accuracy of our model on the original FIW challenges,

compared with current baselines [23], which includes the

deep VGG-based [19] model and SphereFace [16].

V. CONCLUSIONS

In this paper, we present our state-of-the-art deep learning

based model for family classification in the wild. Different

from other approaches, our model puts emphasis on the data

pre-processing with image normalization, additional features

TABLE III

TEST RESULT ON THE SECOND TRACK OF RFIW2019

Networks Acc.

DFC (Ours) 16.89



input, and multiple regularizers of compounded training

loss to improve the model learning. We utilized Denoising

Autoencoder to reduce the variability on the dataset and

generate an additional facial heatmap layer on top of the

normalized input to guide the feature learning. Furthermore,

we trained the state-of-the-art Squeeze Excitation Network

for family class estimation using a compound loss of the

center loss and sample weight normalization. Finally, the

dropout and data augmentations technique used to regularize

the training process. On the validation phase, we see the

progressive improvement confirming the benefit of each our

approach with the test on FIW dataset and the second track of

RFIW2019 shows the state-of-the-art accuracy of our model.

In the future, we seek to improve the models and to employ

on other kinship recognition tasks.
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