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The problem of small heave and pitch motions of a slender ship in shallow water 

including the effect of forward speed is analysed using the method of matched 

asymptotic expansions. Formulae valid to first order in slenderness are given for the 

added-mass and damping coefficients in terms of the frequency and subcritical 

Froude number. 

1. Introduction 

Owing to the increasing size, especially draft, of modern ships and the necessity 

for thein to negotiate water oflimited depth, there has been current interest generated 

in the study of ship motions in restricted waters. According to Beck, Snyder & Tuck 

(1974), there are two approaches to the analysis of finite-depth ship motions. First, 

in the case of moderate depth, a modified strip theory can be used as in Kim (1968). 

Second, one can assume that the water is shallow and therefore all wavelengths are 

large compared with the depth. In this approach, which will be pursued here, the 

depth effect is a dominant one. 

Tuck (1970) developed a slender-body theory for ship motions in shallow water at 

zero forward speed using the method of matched asymptotic expansions, which is 

applicable when the wavelengths of interest are comparable to the ship length. The 

solution technique was introduced by Tuck (1966) in his study of a slender ship 

translating at constant speed in shallow water. Beck & Tuck (1971, 1972) have 

computed the motions of several ships using the theory. 

It is the purpose of this research to extend the results of Tuck (1970) to include the 

effects of forward speed in the study of heave and pitch motions of a slender ship in 

shallow water. The solution technique, which uses the method of matched asymptotic 

expansions, closely parallels Tuck's and added-mass and damping coefficients are 

obtained as functions of frequency and subcritical Froude number. 

2. Problem formulation 

Consider a rigid slender ship of length 2l translating with speed U and oscillating 

in pitch and heave. A translating Cartesian co-ordinate system (figure 1) is introduced 

with its origin in the undisturbed free surface at the mean position of the midship. xis in 

the direction opposite to the translation and z is positive upwards. With no oscillation, 

t Permanent address: Aerospace Engineering Department, University of Maryland, College 

Park. 
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------~----~~~ 

~::=-Eh 

''''''''~~~~~~ ''''''~~ 
FIGURE 1. Co-ordinate system. 

the ship hull is given by z = ef0(x, y), where the beam and draft are small, 0( e), with 

respect to the length. (Note that gauge functions are exhibited explicitly throughout 

this paper.) Consider harmonic oscillation with frequency w and small amplitude, 

O(e8), where 8 is a small parameter characteristic of the motion. The ship hull is then 

given by z = ef
0
(x,y)+£

3
e8e-iwt_x£

6
e8e-;wt = ef(x,y,t). (1) 

The bottom and free surface are described by 

z+eh = 0, z = ?J(x,y,t). (2), (3) 

The water is shallow, so that the undisturbed water depth is O(e) and the length of 

all generated waves is much larger than the depth. Following Tuck (1970), we take 

wlfc to be 0(1), where c = (ghe)! is the shallow-water phase speed and g is the gravita

tional acceleration. Following Tuck (1966) we choose the depth Fronde number 

F = U fc to be 0( 1 ), which means that the conventional Fronde number based on 

length is small, O(e!). This is a range where wave making is significant. The flow is 

subcritical with F < 1. It is convenient, to keep track of the ordering of terms in the 

following analysis, to let U and l be 0(1) and g be O(e-1
} (see, for example, Ogilvie 

1967). 

For incompressible irrotational flow the velocity is represented as the positive 

gradient of a velocity potential ¢(x, y, z, t) which satisfies Laplace's equation. The 

complete set of equations is given in Plotkin (1976a) as 

¢xx + ¢vv + ¢zz = 0 in fluid domain, 

¢z = 0 on z = - eh, . 

eft+eDfx+e¢xfx+e¢vfv-¢z = 0 on z = ef, 

?Jt+ U?Jx+¢x?Jx+¢v1lv-¢z = 0 on Z = '1], 

Y?J+¢t+ D¢x+i(¢;+¢~+¢_;) = 0 on z = ?J. 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

Since e is an appropriate scale in the vertical direction, the co-ordinate Z = zfe will 

be used. The velocity potential and free-surface elevation are split into steady and 

unsteady parts and only terms linear in 8 are kept: 

¢ = <l>(x, y, Z) + 8'l"(x, y, Z) e-iwt, 

'I] = ~(x, y) + 80(x, y) e-iwt. 

(5a) 

(5b) 
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3. Inner expansion 

In the region near the ship, the co-ordinates have the magnitudes x = 0(1) and 

y, z = O(e). The inner variable Y = yfe is introduced. The velocity potential is ex

panded in an asymptotic series in e: 

To O(e2), (4a) becomes 

where 

while (4b) becomes 

~ = €~(1)+€2~(2)+ ... , 

'¥ = e'¥<1) + e2'¥(2) + ... . 

(6a) 

(6b) 

(7) 

(8) 

The body boundary condition (4c) is transferred to the mean hull position Z = fo 

to yield 

~~v = '¥~> = o, 
~W =- Ufox(1 + f~y )-t, 

'¥~> = [ iw(;a- x£s) + U So- (sa- x£s) Uor ~<fk- ~~k)] ( 1 + f~r )-i, 

(9a) 

(9b) 

(9c) 

where N is the outward normal in the Y, Z plane expressed in inner variables. The 

free-surface conditions (4d, e) are combined and transferred to Z = 0 to yield 

~~) = ~~) = '¥~) = '¥~) = 0. 

Tuck (1966) has obtained the solution for~. which may be written as 

~(1) = ~(l>(x), 

~(2) = ~(21>(x) + ~(22)( Y, Z; x), 

where ~< 1 > and ~< 21 > are arbitrary and from conservation of mass 

~(22)-+ US'(x)! Yl/2h+o(1) as I Yj-+oo, 

where e2S(x) is the wetted hull cross-sectional area. 

We may write 
'¥<1> = 'P'(l>(x), 

'¥(2) = '¥(21)( X) + '¥(22)( y, Z; X), 

(10) 

(11 a) 

(11b) 

(12) 

(13a) 

(13b) 

where '¥<1> and '¥<21> are arbitrary. The unsteady flux leaving the inner region is obtained 

by integrating 'P'W in (9c) around the wetted cross-section. For a ship with symmetry 

about the centre-plane Y = 0 and with a vertical tangent at the waterline, use of 

(9b) gives the flux as 

(14) 

where eB(x) is the width of the waterline. A suitable boundary condition as I Yj-+ oo 

for 'V<22> is determined from conservation of mass as 

'¥<22)-+ (Flux)j Yjf2h +o(1). (15) 
IS-2 
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4. Outer expansion 

In the region far from the ship, the co-ordinates have the magnitudes x,y = 0(1) 

and z = 0( e). The velocity potential is expanded in an asymptotic series in e: 

<I> = e¢P> + e2¢<2> + es¢<a> + ... , 

'Y = e1fr<1> + e21fr<2> + ealfr<a> + ... . 

To O(ea), (4a) becomes 

while ( 4 b) becomes 

,!,(3) = _ ,/,(1) _ ,/,(1) ,fr(3) __ ,f.(1) _ ,fr(1) 
'f'ZZ 'f'xx 'f'YY' 't'zz- 't'xx 't'yy• 

¢>'}> = ¢>'i> = ¢<i> = Jfr<J> = Jfr'i> = Jfr<J> = 0 on Z = -h. 

If (17 a-c) are integrated once with respect to Z then use of (18) leads to 

¢<1) = ¢><1>(x, y), ¢<2> = ¢><2>(x, y), 1fr<1> = Jfr<I>(x, y), 1fr<2> = Jfr<2>(x, y), 

rj><J> = - (Z +h) (¢~ 1 1 + ¢~ 1 J), Jfr<J> = - (Z +h) (1/f~l.J: + lfr~IJ). 

{16a) 

(16b) 

{17 a) 

(17b,c) 

(18) 

(19a) 

(19b,c) 

The free-surface conditions are combined and transferred to Z = 0 to yield the 

following equations: 
(20a) 

(20b) 

with {J2 = 1-F2 • Equation (20a) is the equation for the first-order outer potential in 

Tuck (1966) and (20b) is the reduced wave equation in a translating co-ordinate 

system and also appears in Plotkin (1976a), which treats the translation of a slender 

ship over a wavy wall in shallow water. 

The equations are solved formally using Green's function source distributions to 

yield 

with 

¢<1
> = J:co G(x-~,y)p,mag, 

JfrC1l = J:co QC1l(x-£,y)p,<l>(£)d£, 

G(x, y) = (27Tj1)-1log (x2 + pzy2)l, 

G<1>(x, y) = - i(4jl)-1 exp (- iwFxfcfJ2) HJ1
> [w(x2 + fl2y2)lfcfl2]. 

5. Matching 

(21a) 

(21 b) 

(21 c) 

(21d) 

To determine the unknown functions <1><1>, '¥<1>, p, and pP>, the inner and outer 

expansions are matched using a matching principle from Van Dyke (1975, p. 90). 

The two-term inner expansion of the one-term outer expansion is 

(22a) 

The one-term outer expansion of the two-term inner expansion is 

e<l><1>(x) + u eS'(x) IYI/2h + eo'f"{ll(x) e-iwt 

+ eo(2h)-1 [iw(£3 - x£5) B(x) + U£5 B(x)- U(s3 - x£5) B'(x)]\Yi e-iwt. (22b) 
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Setting (22a) equal to (22b) gives 

<I><Il(x) = rjP>(x, 0), 'F<ll(x) = ljF<I>(x, 0), tt(x) = DS'(x)fh, 

tt<1>(x) = [iw(~a-x~ 5 )B(x)+ D~ 5 B(x)- U(~a-xg 5 )B'(x)]h-
1 . 

The lowest-order velocity potential in the inner region is therefore 
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(23a-c) 

(23d) 

¢ = e<I><Il(x) + e8'F<1l(x) e-iwt, (24a) 

with <1><1
> = U(211{Jh)-1 J: 00 S'(~)log lx-~1 d~, (24b) 

'¥<1
> = - i(4(Jh)-1 J: }iw(~a- 6~ 5 ) B(~) + D~ 6 B(~)- D(~a- ~~s) B'(~)] 

x exp [- iwF(x- ~)/cfJ 2 ]HJ 1 >[wjx- ~ifcfJ 2 ]d~. (24c) 

<I><1> has previously been obtained by Tuck (1966). Tuck (1970) has also obtained 

'{l'(l) for the case D = 0. 

6. Unsteady hydrodynamic pressure and forces 

To lowest order in e, the unsteady hydrodynamic pressure in the near field is 

obtained from the linearized Bernoulli equation 

P = -p(r/Jt+ Dr/JaJ, 

where pis the fluid density and the unsteady part of¢ is 

¢ = e8'F<1l(x) e-iwt. 

Substitution of (26) into (25) leads to 

p = - pe8(- iw'¥<1> + U'¥~ 1 >) e-iwt. 

(25) 

(26) 

(27) 

Note that the unsteady pressure and velocity poteittial depend spatially only on the 

stream wise co-ordinate x. To this order these quantities are constant in cross-sectional 

planes. The ship geometry appears only through B(x) and its streamwise derivative. 

There is no effect of underwater geometry. Also, the results depend globally on the 

axial distribution of B(x) through the Green's function integrals. 

The heave force, positive upwards, is 

Fa = e f~l(x) B(x) dx 

and with an integration by parts and use of (27) becomes 

Fa= pe28e-iwt f_pwB(x)+ DB'(x)]'F(ll(x)dx. 

The pitching moment, positive clockwise, is 

(28) 

(29) 

F6 = -€ f~ 1 xp(x)B(x)dx = -pe28e-iwt f~pwxB(x)+ D(xB(x))']'F<1l(x)dx. (30) 

Tuck (1970) defines the appropriate components of the transfer matrix Tg1 by 

Fa= e8e-iwt[~aTaa+~ 5 T 36 ], (31a) 

F6 = e8e-iwt[~aT 63 +~ 6 T 66 ]. (31b) 
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The added-mass and damping coefficients aii and bii• respectively, are related to 7i1 by 

(32) 

With the use of the equations of this section and (24c) and after some manipulation, 

we obtain aii and bii for i,j = 3 or 5 as 

where 

aa3 = -p(4fJh)-1e f~J~ 1 {[B(x)B(g)+ U2w-2B'(x)B'(g)]cos 

+ Uw-1[B(x)B'(g)-B@B'(x)]sin}Y0 dgdx, (33a) 

baa= pw(4fJh)-1e f~J~ 1 {[B(x)B(g) + U2w-2B'(x)B'(g)] cos 

+ Uw-1[B(x)B'(g)-B(g)B'(x)]sin}J0 dgdx, (33b) 

aas = p(4fJh)-1e f_J~/[gB(g) B(x) + D2w-2B'(x) (gB(g))'] (Y0 cos- J0 sin) 

+ Uw-1[B(x) (gB(g))' -;B(g)B'(x)] (J0 cos+¥;,sin)}dgdx, (33c) 

bas = - pw(4fJh)-1e f~J~z{[gB(£) B(x) + D2w-2B'(x) (gB(£))'] (J0 cos +Y0 sin) 

- Uw-1[B(x) (gB(g))'- gB(g) B'(x)] (Y0 cos- J0 sin)}dg dx, (33d) 

as3 = p(4fJh)-1e f~J~ 1 {[xB(x)B(g) + D2w-2(xB(x))' B'(g)] (Y0 cos-J0 sin) 

+ Uw-1[xB(x) B'(£) -B@ (xB(x))'] (J0 cos+ Y0 sin)}dgdx, (33e) 

b53 = - pw(4fJh)-1e f~J~ 1 {[xB(x) B(g) + D2w-2B'(g) (xB(x))'] (J0 cos+ Y0 sin) 

- Uw-1[xB(x)B'(g) -B(g) (xB(x))'] (Y0 cos-J0 sin)}dgdx, (33/) 

ass = - p(4fJh)-1e f~J~/[xGB(x) B(g) + U2w-2(xB(x))' (gB(g))'] cos 

+ Uw-1[xB(x) (gB(g))'- gB(g) (xB(x))'] sin}Y0 dg dx, (33g) 

bss = pw(4fJh)-1e f_J~ 1 {[xgB(x) B(g) + U 2w-2(xB(x))' (gB(g))'] cos 

+ Uw-1[xB(x) (gB(g)}'- gB(£) (xB(x))'] sin}J0 dg dx, (33h) 

cos= coswF(x-£)fcfJ2
, sin= sinwF(x-g)fcfJ2

, 

J0 = J0(wjx-gjfcfJ2
), Y0 = Y0(wlx-glfcfJ2

). 

(34a) 

(34b) 

Tuck (1970) has obtained the results (33a-h) for the case U = 0. 

7. Discussion 

Consider the added-mass and damping coefficients in (33a-h). It is noted that the 

effect of forward speed appears both explicitly and implicitly (through the trigono

metric and Bessel functions in the integrands). It is seen that in general the pure heave 

and pitch coefficients aaa• a55 , b3a and bs5 are even functions of the forward speed. For 

a ship with fore-and-aft symmetry, the cross-coupled coefficients are non-zero only 
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FIGURE 2. (a) Heave, (b) heave-pitch and (c) pitch added-mass and damping coefficients for ship 

with parabolic waterline of beam eB0 and half-length l, in water of depth eh, plotted against 

non-dimensional frequency wlfc. --, F = 0; --- -, F = 0·3; ---, F = 0·6; -+, high frequency 
limit. 

for U =1= 0. Also, the cross-coupled coefficients are odd functions of forward speed. For 

fore-and-aft symmetry, a 35 = -a53 and b35 = -b53• The above symmetry conditions 

are identical to those derived for ship oscillations in deep water by Timman & Newman 

(1962). 

The shallow-water ship-motion theory developed here has the same restrictions on 

Froude number as the theory of Tuck (1966) and the same restrictions on frequency 

as the theory of Tuck (1970). The solution is not valid in the neighbourhood ofF= 1, 

the transcritical region. Lea & Feldman (1972) have extended the steady theory of 

Tuck (1966) into this region by solving a nonlinear transonic flow equation instead 

of (20a). Pathological behaviour as F-+ 1 is expected in the present unsteady theory 

since the coefficients are proportional to ( 1-F 2)-l. 

It is noted that the coefficients in (33a-h) become independent of both forward 

speed and frequency as the frequency becomes large. The high frequency limit of the 
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FIGURE 3. (a) Heave and (b) heave-pitch added-mass and damping coefficients for ship with 

parabolic waterline of beam eB0 and half-length l, in water of depth eh, plotted against Froude 

number F.--, wlfc = 0·5;--- -, wlfc == 1·0; ---, wlfc = 2·0. 

equations is therefore the same as the high frequency limit of the Tuck (1970) results. 

In this limit, the added-mass coefficients approach zero and the damping coefficients 

become constant. These results are physically unacceptable and indicate that the 

theory needs to be supplemented by a true high frequency theory such as that of 

Kim (1968). 

8. Sample problem 

Tuck (1970) presents heave and pitch added-mass and damping coefficients for 

zero forward speed for a symmetric hull of revolution with parabolic waterline 

(35) 

For the general case of a forward speed and wlfc [ = 7T (ship length/wavelength)] of 

order 1, the coefficients in (33a-k) for this geometry are displayed in figure 2 for values 

of the depth Froude number F of 0, 0·3 and 0·6. The high frequency limits discussed 

in the previous section are also indicated. The heave and cross-coupled coefficients are 

plotted against Froude number in figure 3 for values of the reduced frequency wlfc 

of 0·5. 1·0 and 2·0. 
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The effect of forward speed is clearly most significant in the low frequency range. 

It is interesting to note that the high frequency limits of the theory are approached 

at frequencies which normally can be considered to be 0(1). 

This research was supported by the National Science Foundation under Grant 

no. ENG 74-20573. 
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