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The emergence of the bipolaronic phase and the formation of the heavy-electron state in the anharmonic Holstein

model are investigated using the dynamical mean-field theory in combination with the exact diagonalization method.

For a weak anharmonicity, it is confirmed that the first-order polaron–bipolaron transition occurs from the observation

of a discontinuity in the behavior of several physical quantities. When the anharmonicity is gradually increased, the

polaron–bipolaron transition temperature is reduced as well as the critical values of the electron–phonon coupling

constant for polaron–bipolaron transition. For a strong anharmonicity, the polaron–bipolaron transition eventually

changes to a crossover behavior. The effect of anharmonicity on the formation of the heavy-electron state near the

polaron–bipolaron transition and the crossover region is discussed in detail.

KEYWORDS: heavy electron, anharmonicity, rattling, bipolaron, dynamical mean-field theory

1. Introduction

Recently, heavy-electron phenomena have attracted re-

newed attention in the research field of condensed matter

physics.1) A traditional mechanism of the emergence of the

heavy-electron state is based on quantum criticality induced

by the competition between the Kondo effect and

Ruderman–Kittel–Kasuya–Yosida interaction. The Kondo

effect due to local magnetic moment has been well under-

stood,2) but the Kondo-like phenomenon occurs in a more

general manner, when a localized entity with internal degrees

of freedom is embedded in a conduction electron system and

quantum-mechanical exchange interaction effectively works

between local degrees of freedom and conduction electrons.

In particular, the Kondo phenomenon with a phonon origin

has been potentially discussed. First, Kondo himself has

considered a conduction electron system coupled with a local

double-well potential.3,4) Having two possible electron

position in a double-well potential play roles in pseudo-

spins, and the Kondo-like behavior is considered to appear in

such a two-level system. In fact, it has been shown that the

two-level Kondo system exhibits the same behavior as the

magnetic Kondo effect.5–7) Another important issue regard-

ing the Kondo effect with a phonon origin has been shown by

Yu and Anderson.8) They have pointed out that the scattering

process between spinless s-wave conduction electrons to

p-wave ones is induced by ion displacement. The model

proposed by Yu and Anderson has been shown to be mapped

to the two-level Kondo model at low temperatures.9,10)

A recent revival of research on the Kondo effect with a

phonon origin has been triggered by active experimental

investigations on cage structure compounds such as filled

skutterudites,11–14) clathrates,15–20) and �-pyrochlore oxi-

des.21–25) In these materials, a guest atom is contained in a

cage composed of relatively light atoms and oscillates with a

large amplitude in a potential with a strong anharmonicity.

Such local oscillation with a large amplitude is called

rattling, and exotic phenomena induced by rattling have

attracted much attention in the research of strongly

correlated electron materials with a cage structure.

An example of such active investigations is the study of

a magnetically robust heavy-electron behavior observed in

SmOs4Sb12.
14) The electronic specific heat coefficient �e is

in proportion to the effective mass of electrons, but in this

material, �e is several hundred times larger than that of a

free-electron system and is found to be almost unchanged

even if a magnetic field up to 30 T is applied. If the heavy

effective mass originates from the quantum criticality due

to the traditional Kondo effect with a magnetic origin, �e

should be significantly suppressed by the applied magnetic

field. The origin of the heavy-electron state in SmOs4Sb12 is

considered to be electron-rattling interaction. In fact, four-

and six-level Kondo systems have been analyzed and the

magnetically robust heavy-electron state has been actually

obtained.26–28) The periodic Anderson–Holstein model has

been analyzed using the dynamical mean-field theory, and

the mass enhancement due to large lattice fluctuations and

phonon softening towards a double-well potential have been

addressed.29–31)

Kondo phenomena in the conduction electron system

coupled with local Jahn–Teller phonons32,33) and Holstein

phonons34,35) have been discussed for the realization of a

nonmagnetic Kondo effect. From the numerical evaluation

of �e in the conduction electron system coupled with local

anharmonic Holstein phonons, it has been shown that �e is

largely enhanced by rattling and is actually robust under an

applied magnetic field.36) Furthermore, it has been pointed

out that the Kondo effect due to rattling should exhibit a

peculiar isotope effect, which is experimental evidence of

rattling-induced heavy-electron phenomena.37) Quite re-

cently, the vibration of magnetic ions has been explicitly

included in the spinful Yu–Anderson model, and the two-

channel Kondo effect has been comprehensively dis-

cussed.38–40)

When we turn our attention to the �-pyrochlore oxide

KOs2O6, significant effects of the rattling of a K ion in a

tetrahedral cage composed of O and Os ions have been

discussed. The rattling-associated anomaly is found in the

form of the first-order structural transition at Tp � 7:5K,

which is difficult to be influenced by a magnetic field and is
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not accompanied by any symmetry breaking.23,24) It has been

reported that electric resistivity is in proportion to T 2 for

T < Tp, while it behaves as /
ffiffiffiffi

T
p

for T > Tp. In the pecu-

liar behavior at high temperatures, it has been suggested that

anharmonic phonons play important roles.41) The transition

at Tp has been discussed in the context of electron-rattling

interaction. A possible liquid–gas-type rattling transition and

the multipole transition driven by the octupole component of

K ion rattling have been pointed out.42,43) From the analysis

of the harmonic Holstein model, it has been reported that the

first-order transition from the polaronic state to the

bipolaronic state occurs in the strong-interaction region at

low temperatures.44–47)

In this study, to obtain deep insight into the effect of

anharmonicity on the polaron–bipolaron transition and the

heavy-electron state, we analyze the anharmonic Holstein

model using the dynamical mean-field theory (DMFT) in

combination with the exact diagonalization method at

low temperatures such as 10
�4 of the conduction electron

bandwidth.48) When the anharmonicity is weak, i.e., for

nearly harmonic phonons, we again find the first-order

polaron–bipolaron transition due to the observation of a

discontinuity in the behavior of physical quantities. When

the anharmonicity is increased, the polaron–bipolaron

transition temperature is reduced and the critical value of

electron–phonon interaction becomes smaller. For a strong

anharmonicity, the polaron–bipolaron transition disappears

and it becomes to a crossover behavior. We discuss the

effect of anharmonicity on the heavy-electron state near the

polaron–bipolaron transition and crossover regions.

The organization of this paper is as follows. In x2, we
introduce the anharmonic Holstein model and explain the

anharmonic potential used in this paper. We also provide

a brief explanation of the DMFT. In x3, we discuss the

properties of the system obtained using the DMFT. Several

physical quantities are discussed when we change the

electron–phonon interaction, the anharmonicity of phonons,

and temperature. Finally, in x4, we summarize this paper.

Throughout this paper, we use such units as h� ¼ kB ¼ 1.

2. Model and Method

In this section, we introduce the Hamiltonian as

H ¼
X

k�

"kc
y
k�ck� þHeph; ð1Þ

where "k is the energy of conduction electrons, cy
k� is a

creation operator for conduction electrons with a wave

vector k and a spin �, and Heph denotes a local electron–

phonon term. In the following, we describe Heph and the

potential for the vibration of the guest atom. Then, we briefly

explain the scheme of the DMFT to solve the Hamiltonian.

2.1 Electron–phonon coupling term

We consider a situation in which electrons are coupled

with the local oscillation of an atom. Such a situation is

expressed by

Heph ¼
X

i

gQiðni � 1Þ þ
P2

i

2M
þ V ðQiÞ

� �

; ð2Þ

where g denotes the coupling constant between electron

density and the oscillation of the atom, i indicates the atomic

site, ni ¼
P

� c
y
i�ci�, ci� is the annihilation operator of an

electron with a spin � at a site i, Qi is the normal coordinate

of breathing-mode oscillation of the atom, Pi indicates the

corresponding canonical momentum, M is mass of oscillator

atom, and V ðQiÞ is a potential for atom, which is expressed

by

V ðQiÞ ¼ k2Q
2

i þ k4Q
4

i : ð3Þ

Here, k2 and k4 respectively denote the coefficients for the

second- and fourth-order terms of the potential for the atom.

Note that in the coupling between electrons and oscilla-

tion, we subtract unity from the electron number for

convenience in the numerical calculation. If we do not

carry out this subtraction, the electron–phonon coupling is

effectively enhanced at doubly occupied sites and it is

necessary to prepare a large number of phonon basis to

obtain convergent results. Since we are interested in the

bipolaronic state, it is crucial to perform the calculation with

a significant amount of double occupancy with sufficient

precision. Thus, we use the electron–phonon term in eq. (2).

For more calculations, it is convenient to introduce the

second-quantized phonon operator by following the standard

quantum mechanical procedure. The displacement is ex-

pressed by Qi ¼ Q0ðbi þ b
y
i Þ, where Q0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2M!0

p
, !0 is

the phonon energy, and bi is the annihilation operator of

phonons. Note that Q0 denotes the amplitude of zero-point

oscillation for harmonic phonons. Since we consider the

anharmonic oscillation including the case of a negative k2,

we do not impose an explicit relation between k2 and !0.

Then, we rewrite Heph using phonon operators as

Heph ¼ !0

X

i

�

ffiffiffi

�
p

ðbi þ b
y
i Þðni � 1Þ þ b

y
i bi þ

1

2

þ �2ðbi þ byi Þ
2 þ �4ðbi þ byi Þ

4

�

; ð4Þ

where �, �2, and �4 are given by

� ¼
g2

2M!3

0

; �2 ¼
1

4

2k2

M!2

0

� 1

� �

; �4 ¼
k4

4M2!3

0

: ð5Þ

Among them, � indicates the nondimensional electron–

phonon coupling constant, while �2 and �4 denote the

nondimensional second- and fourth-order anharmonicity

parameters, respectively. Note that the anharmonicity of

the potential is controlled by adjusting �2, which becomes

both positive and negative, while we always set �4 > 0 to

restrict the oscillation of an atom in a finite space. We also

note that the harmonic case is denoted by �2 ¼ �4 ¼ 0.

2.2 Anharmonic potential

Now, we discuss the anharmonic potential for the

oscillation of an atom. For this purpose, it is convenient to

introduce the nondimensional displacement qi through the

relation qi ¼ Qi=Q0 in accordance with the second-quanti-

zation of a phonon. Using nondimensional displacement, we

obtain the potential as

V ðqiÞ ¼ !0 �2 þ
1

4

� �

q2i þ �4q
4

i

� �

: ð6Þ

Note that the energy scale of V ðqiÞ is taken as !0.

In Fig. 1(a), we show several anharmonic potentials by

changing �2 for �4 ¼ 0:02. For �2 > �0:25, the potential
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minimum is always situated at qi ¼ 0 and the shape of a

single-well potential is similar to that for a harmonic

potential. However, in the region of 0 > �2 > �0:25, the

bottom of the potential is found to be wide and flat, since at

�2 ¼ �0:25, the second-order term of the potential vanishes.

When �2 is decreased from �0:25, the potential shape is

changed, since potential minima appear at �qmin, given by

qmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2 þ 1=4Þ=ð2�4Þ
p

. For �2 < �0:25, the potential

minimum rapidly decrease, leading to the double-well

potential. We consider that the decrease in �2 indicates the

increase in anharmonicity.

In Figs. 1(b)–1(e), we show some typical shapes for a

single-well type for �2 ¼ 0, a flat-bottom type for �2 ¼
�0:25, a shallow double-well type for �2 ¼ �0:5, and a

deep double-well type for �2 ¼ �0:7. We also show the

eigenenergy levels obtained by the diagonalization of Heph.

It is observed that the energy levels tend to move to the

lower side and that the width between adjacent levels

becomes smaller, when �2 is decreased. In the double-well

type cases shown in Figs. 1(d) and 1(e), several levels are

found inside the wells. When we further decrease �2, the

levels of the ground and first-excited states exist deep inside

the wells and the width between adjacent levels is extremely

small. We expect that the ground and first-excited states

finally become degenerate for a large negative �2 with a

deep double-well type potential.

In Fig. 2, we show several excitation energies and the

depth of the potential well, defined by V ð0Þ � V ðqminÞ. We

also depict !0 ¼ 0:4 line in the graph, which corresponds to

the first excitation energy in the harmonic phonon case.

When we decrease �2, i.e., increase anharmonicity, we find

that the excitation energies are totally suppressed. For

�2 < �0:25, the potential wells are formed at qi ¼ �qmin.

When we decrease �2, the first excitation energy is gradually

decreased and eventually at �2 � �0:7, it becomes almost

zero. On the other hand, the second and third excitation

energies are rather increased in the region of �2 < �0:5,

since the ground-state energy is rapidly decreased.

2.3 Dynamical mean-field theory

To solve the model Hamiltonian, it is necessary to use

appropriate approximation depending on the problem. Here,

we adopt the dynamical mean-field theory (DMFT).49) In the

present case, the model is mapped onto an effective impurity

Anderson–Holstein model.50) In the following, we briefly

explain the scheme of the DMFT.

The local electron Green’s function Gði!nÞ is given by

Gði!nÞ ¼
X

k

1

i!n � "k � ���ði!nÞ
; ð7Þ

where !n is the fermion Matsubara frequency, given by

!n ¼ �T ð2nþ 1Þ with an integer n, T is the temperature, �

is the chemical potential, and �ði!nÞ is the electron self-

energy. Note that, in the DMFT, the momentum dependence

of the self-energy can be ignored.

To perform momentum summation, it is necessary to

specify the lattice type. Here, we consider the Bethe lattice

with a semielliptic density of states (DOS) given by

�ð"Þ ¼
4

�W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 � 4"2
p

; ð8Þ

where W is the bandwidth. Using this DOS, we obtain the

condition for the local Green’s function as

G0ði!nÞ�1 ¼ i!n � ��
W

4

� �2

Gði!nÞ; ð9Þ

where G0ði!nÞ is the bare local electron Green’s function. In

the present work, we determine G0 by the effective impurity

Anderson–Holstein model with � ¼ 0 in an effective

medium determined self-consistently. The effective impurity

Anderson–Holstein model with a finite � is solved by the
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Fig. 1. (Color online) (a) Local phonon potential V ðqÞ for several values
of �2 from 0 to �0:7 with �4 ¼ 0:02. (b)–(e) Several typical potentials with

�2 ¼ 0, �0:25, �0:5, and �0:7, respectively. We show eigenenergy levels

with dotted horizontal lines.

-0.5 0
0

1

2

ω0=0.4
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(β4=0.02)

β2

Fig. 2. (Color online) Energies in the local phonon potentials. The first,

second, and third excitation energies of the local phonon and the depth of

the potential well are shown. The phonon frequency !0 ¼ 0:4 is also

indicated.
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exact diagonalization method for a finite-sized cluster to

obtain Gði!nÞ at a finite temperature, given by

Gði!nÞ ¼
1

Z

X

j;‘

e
�E‘=T þ e

�E j=T

i!n þ E j � E‘

jh jjci�j‘ij2; ð10Þ

where Z is the partition function given by Z ¼
P

j e
�E j=T ,

jji is the eigenstate of the effective impurity Anderson–

Holstein model, and E j is the corresponding eigenenergy.

In the present paper, we use the five-site cluster and the

cutoff number Nc for the phonon basis is set to be 12.

We have checked the convergence of the calculations in

comparison with the results for the six-site cluster and

Nc ¼ 15. We concentrate our attention to the half-filling

case with hnii ¼ 1. We set W ¼ 4 and !0 ¼ 0:4 in the

following calculations. Note that we restrict ourselves to the

case with the normal state without any symmetry breaking.

3. Results of DMFT Calculations

3.1 Lattice fluctuations

Let us start our discussion about the anharmonicity

dependences of various physical quantities for a fixed

temperature. First, we discuss the anharmonicity effect on

the lattice fluctuation
ffiffiffiffiffiffiffiffi

hq2i
p

. In Fig. 3, we show the �

dependence of the lattice fluctuation
ffiffiffiffiffiffiffiffi

hq2i
p

for several

values of �2 with �4 ¼ 0:02 and T ¼ 0:0025. It is found that

the curves for
ffiffiffiffiffiffiffiffi

hq2i
p

are monotonically increasing functions.

In the following, we discuss the change in the curves for

different values of �2.

When we decrease �2, i.e., strengthen the anharmonicity,

the amplitude of the lattice fluctuations becomes larger. In

fact, at � ¼ 5, the lattice fluctuation increases from 2.2 to

�4:1 when �2 decreases from 0 to �0:7. Note that the lattice

fluctuation at � ¼ 0 already exhibits a similar tendency as it

increases from �0:9 to �3:2 when �2 is changed from 0 to

�0:7. This tendency can be understood from the potential

shape, as shown in Fig. 1. Namely, when �2 is decreased, the

total width of the potential becomes larger and the amplitude

of the oscillation in the potential increases owing to

thermally activated and quantum tunneling motions.

Next, we comment on the change in the function shape

due to �2. For small absolute values of �2, the shape of the

curve is convex-downward for a small �, while it becomes

slightly convex-upward for a large �. For instance, for

�2 ¼ 0, the change in the behavior can be observed at � � 4.

When the absolute value of �2 becomes larger, the curve

becomes steeper and � at which the convex-downward

behavior changes to a slightly convex-upward one becomes

smaller. Finally, for �2 ¼ �0:6 or �0:7, the behavior for a

small � also becomes a linear function. These changes are

thought to be caused by the enhancement of the effective

electron–phonon interaction coupled with the anharmonic

potential.

For a negative �2 with small absolute value, we find the

hysteresis region at approximately � where the increasing

behavior is changed. In actual calculations, we obtain two

solutions for the same � by gradually increasing and

decreasing �. One of the solutions is stable and the other

is metastable. Thus, this region can be accounted for by the

hysteresis behavior observed in the experimental measure-

ments as well as by the first-order phase transition point

where the stable and metastable solutions are switched.

With decreasing �2, the hysteresis region becomes

smaller. For �2 < �0:5, it eventually disappears and

becomes a smooth crossover between the two solutions.

Since the size of the hysteresis region is considered to be

related to the energy scale of the first-order phase transition

temperature, this result indicates that the anharmonicity

suppresses the first-order phase transition. Note that in the

present calculations, the systematic reduction in the size of

the hysteresis region is obtained at a certain accuracy. When

we attempt to quantitatively obtain improved results, it is

necessary to resort to an extrapolation technique to estimate

the size of the hysteresis region.

3.2 Double occupancy

Now we move to the discussion of the electronic states.

For this purpose, we examine the behavior of the double

occupancy d ¼ hn"n#i as one of the typical physical

quantities. In Fig. 4, d is plotted as a function of � for

several �2 values with �4 ¼ 0:02 and T ¼ 0:0025. For

� ¼ 0, we find d ¼ 0:25, since four local electron states are

degenerate in the noninteracting case. When we increase �,

d increases monotonically, but the increasing behavior

changes during the transition or the crossover. For a small

�, d is a convex-downward (almost linear) function at a large

(small) �2, while it is a convex-upward function for a large

�. For a sufficiently large �, d asymptotically approaches

0.5, since the vacant and the double-occupied states are

degenerate at half-filling in the large � limit.

We remark that d directly indicates the amount of the

bipolaronic state in which electrons with antiparallel spins

are coupled due to the effective attractive interaction

mediated by phonons. Thus, we characterize the two

solutions in the hysteresis region using d. Namely, among

the two solutions, we define the solution with a larger d as

the bipolaronic solution, while that with a smaller d is called

the polaronic solution. Note that, in the definition, the

polaronic solution does not indicate d ¼ 0.

When we consider the �2 dependence, we again find

several remarks that we have already described in the

0 2 4

1

2

3

4
q2

α

β2=0
-0.1

-0.2

-0.25

-0.3

-0.4

-0.5

-0.6

-0.7

Fig. 3. (Color online) Lattice fluctuations
ffiffiffiffiffiffiffiffi

hq2i
p

vs � for several �2
values with �4 ¼ 0:02 and T ¼ 0:0025.
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previous subsection. Namely, the coexistence region dis-

appears for a small �2 and the polaron–bipolaron transition

or crossover point decreases with decreasing �2. For a small

�2, a steep increase in d with increasing � is also observed.

3.3 Local spin and charge susceptibilities

In the bipolaronic state with a large d, it is expected

that the local charge fluctuation is enhanced together with

the local lattice fluctuation, while the local moment is

suppressed. In fact, from the definition of d in the previous

subsection, we obtain hðni � hniiÞ2i ¼ 2d and hs2zii ¼ ð1�
2dÞ=4, where szi ¼ ðcyi"ci" � c

y
i#ci#Þ=2. Then, we examine the

local charge and spin susceptibilities 	loc
c and 	loc

c , defined as

	loc
c ¼

Z

1=T

0

d
hnið
Þnii; ð11Þ

and

	loc
s ¼

Z

1=T

0

d
hszið
Þszii; ð12Þ

respectively.

In Figs. 5 and 6, we show 	loc
s and 	loc

c , respectively,

for several anharmonic potentials with T ¼ 0:0025. With

increasing �, 	loc
s is a decreasing function, while 	loc

c is an

increasing function. The degree of decrease or increase

tendency is enhanced, when �2 is decreased, i.e., the

anharmonicity is increased. The behavior agrees well with

our expectation of the local charge and spin fluctuations,

mentioned above. For the solutions with a sufficiently large

�, irrespective of �2, 	
loc
s asymptotically approaches zero,

while 	loc
c approaches a finite specific value, �400. The

behavior has been obtained in the calculations for a

harmonic phonon.47) Thus, the present result confirms that

the states with a large � describe the bipolaronic state, in

which charge fluctuations are dominant, while spin fluctua-

tions are totally suppressed.

3.4 Renormalization factor

In this subsection, we discuss the possibility of the heavy-

electron state due to the strong electron–phonon interaction

with the anharmonicity. For this purpose, we estimate the

renormalization factor z defined by

z�1 ¼ 1�
dRe�ð!Þ

d!

�

�

�

�

!¼0

; ð13Þ

where �ð!Þ is the electron self-energy with a real frequency

!. In general, z means the renormalization effect of the

conduction electron state.

In Fig. 7, we plot z as a function of � for several �2 values

at a low temperature T ¼ 0:0025. With increasing �,

irrespective of �2 values, z monotonically decreases and

finally goes to zero. As well as other physical quantities

discussed in the previous subsections, for a weak-anharmo-

nicity cases with �2 � �0:3, we find the hysteresis region, in

which large- and small-z solutions coexist at the same �.

On the other hand, for strong-anharmonicity cases with

�2 < �0:4, the crossover between the two solutions is

observed. The behavior of the decreasing z seems to depend
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Fig. 4. (Color online) Double occupancy d vs � for several �2 values

with �4 ¼ 0:02 and T ¼ 0:0025.
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on �2. For the harmonic-like potential with �2 > �0:25, z is

a slightly convex-upward function for a small �, while for

the double-well potential with �2 < �0:25, it changes to a

convex-downward function. For a smaller �2, we find a

steeper decrease in z for a small � with a polaronic solution.

Here, we recall that the inverse of z indicates the mass

enhancement of electrons, expressed by z�1 ¼ m�=m, where

m� denotes the effective mass of the conduction electron and

m is the bare electron mass. Thus, the small-z solution

indicates the formation of a heavy-electron state. Note that

the solution in the limit of z ! 0 indicates the bipolaronic

state with a large �. The heavy-electron state should appear

in the polaronic phase in the vicinity of the bipolaronic

phase. In this sense, the case in which the solutions with a

small z are widely distributed in the parameter region seems

to be advantageous for the emergence of the heavy-electron

state.

For weak-anharmonicity cases such as �2 ¼ 0, small-z

solutions with a possible heavy-electron state are found only

in the vicinity of the two-solution coexistence region. Thus,

there are small possibilities of the heavy-electron state for

weak-anharmonicity cases. On the other hand, for strong-

anharmonicity case with crossover solutions such as �2 ¼
�0:5, z exhibits a convex-downward behavior in the

crossover region. Namely, small-z solutions are distributed

in the relatively wide region of �. When �2 is decreased, the

tail-like structure can be found in the z behavior in the

crossover region, indicating that the region of small-z

solutions becomes wide. Therefore, the heavy-electron state

due to the electron–phonon interaction is brought about by

the large anharmonicity.

To discuss the heavy-electron state in more detail, we

show the phase diagram concerning z in the (�; �2) phase

for T ¼ 0:0025 in Fig. 8. Here, we define that the heavy-

electron state is characterized by the solution with 10 �
z�1 � 1000 and that the corresponding region is indicated in

blue (or black, in the case of black-and-white printing). Note

that the polaronic metallic region with a large z is expressed

in red (dark gray), while the polaronic phase with smaller z

is shown in green (light gray). The red (dark gray) and green

(light gray) regions are continuously connected and the

polaronic phase with a very small z is defined by the heavy-

electron state. The bipolaronic insulating phase is expressed

by the solution with an extremely small z and is shown in

white in the figure.

The green (light gray) region with a smaller z is shown

on the left-hand side of the graph, while the white region

with z ! 0 is shown on the right-hand side of the figure. The

blue (black) region with the possible heavy-electron state

exists between them. Note that the narrow blue (black)

region with a small z on the order of 1/1000 can be found

near the bipolaronic state with � > �c2 for large a �2, where

�c2 is the upper critical value of the polaron–bipolaron

transition. The white region cannot be regarded as the heavy-

electron state owing to the strong localization in the

bipolaronic state.

When the anharmonicity increases with decreasing �2,

the small-z region expands in the wider region of � around

the two-solution coexistence or crossover region. When

we decrease �2, the expansion of the small-z region is

pronounced for �2 . �0:25, where the potential shape is

changed from the flat single-well type to the double-well

type. The present results suggest the close relation between

the heavy-electron state and the anharmonicity.

3.5 Electron and phonon spectral functions

Now, we discuss the spectral functions of electrons and

phonons. For this purpose, we evaluate the DOS obtained

from the imaginary part of Green’s function. The electron

DOS �elð!Þ and the phonon DOS �phð!Þ are respectively

given by

�elð!Þ ¼ �
1

�
ImGð!þ i�Þ; ð14Þ

and

�phð!Þ ¼ �
1

�
ImDð!þ i�Þ; ð15Þ
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Fig. 7. (Color online) Renormalization factor z vs � for several �2 values

with �4 ¼ 0:02 and T ¼ 0:0025.
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where � is a positive infinitesimal quantity, G is defined

in eq. (10), and the phonon Green’s function D is given

by

Dði�nÞ ¼
1

Z

X

j;‘

e
�E‘=T � e

�E j=T

i�n þ E j � E‘

jh jjðbi þ byi Þj‘ij
2: ð16Þ

Here, �n ¼ 2�Tn is the boson Matsubara frequency. Note

that we set � ¼ 0:004 in order to draw the continuous

spectrum function for clear visibility.

In Fig. 9, we show the curves for the electron DOS at

T ¼ 0:0025 for three typical potentials (a) �2 ¼ 0, (b)

�0:25, and (c) �0:5, corresponding to the harmonic, the

flat single-well, and the double-well types, as shown in

Figs. 1(b)–1(d), respectively. For each panel, we show the

curves in the order of � from bottom to top. Note that, in the

two-solution coexistence region, we plot the results for the

polaronic metallic solution with a large z.

At � ¼ 0, a set of two large peaks for high energy ! > 0

(low energy ! < 0) and a small peak at ! ¼ 0 can be

commonly seen in the three panels. Note that the bilaterally

symmetric graph is due to the particle–hole symmetry. For

a small �, the structure is almost unchanged. On the other

hand, for a large �, the set of two large peaks in ! > 0

(! < 0) moves to the right-hand side (left-hand side) of the

graph with increasing �. Then, the disappearance of the peak

at ! ¼ 0 is also observed, indicating the disappearance of

quasi-particle band. The critical values of the disappearance

of the peaks at ! ¼ 0 are � � 4, 2, and 1 for �2 ¼ 0, �0:25,

and �0:5, respectively, which agree well with the � which

the transition or crossover is indicated.

Note here that the renormalization factor z discussed

above should correspond to the decrease in the bandwidth,

which is well known as the polaronic band narrowing

effect. However, it is difficult to observe such a band

narrowing effect for a small � in these graphs, in spite of

the significant change in z. This is seemingly incompre-

hensible at a glance, but similar results have already been

found in the harmonic Holstein model.51–53) According to

previous studies, in the polaronic phase, with increasing

effect of electron–phonon interaction, the central peak at

! ¼ 0 becomes narrower and more pronounced with the

corresponding weight z, while the other peaks with total

weights of 1� z exhibit almost no changes. The reason

why the other peaks do not move at all is that the Holstein

model has few energy distribution corresponding to the

upper and lower Hubbard bands, which are split upward

and downward depending on the Coulomb interaction.

Thus, the conservation of the DOS for a small � is valid, at

least within the present calculation on the basis of the

exact diagonalization. As for the reproduction of the

central peak behavior, it is necessary to improve the

precision of the calculation, for instance, by increasing the

cluster size.

Next we move to the phonon spectral function. In Fig. 10,

we show �phð!Þ at T ¼ 0:0025 for three typical potentials

with �2 ¼ 0, �0:25, and �0:5. At � ¼ 0, for each three
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Fig. 9. Electron DOSs �elð!Þ for three typical potentials as (a) harmonic

type with �2 ¼ 0, (b) flat single-well type with �2 ¼ �0:25, and (c) double-

well type with �2 ¼ �0:5. We set �4 ¼ 0:02 at T ¼ 0:0025. We show the �

dependence from 0 to 5 from bottom to top for each panel. For each 0.2 step

in the increase in �, the graph is shifted upward by 0.02.
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panel, distinct peaks can be seen at ! � 0:43, 0.3, and 0.04

for �2 ¼ 0, �0:25, and �0:5, respectively. These ! values

correspond to quasi-harmonic phonons, which agree well

with the first excitation energies observed in Fig. 2.

With decreasing �2, the shift of the peaks to the lower-

energy side is indicated. In the polaronic state for small �,

the shifts of the low-energy peaks are significant with

increasing �, implying the softening of phonons and the

divergence of charge susceptibility. The heavy-electron

tendency caused by phonon softening due to anharmonicity

has been discussed in refs. 54 and 55. In the polaron–

bipolaron transition or crossover region, the disappearance

of the peaks at lower energy can be seen, suggesting the

marked change in phonon properties. The critical value of

� at which the lowest energy peak disappears is in good

agreement with the transition point or crossover region. In

the bipolaronic state, the second lower peaks are continu-

ously connected to those in the polaronic state and they

move to the high-energy side with increasing � as well as in

the electron spectrum cases.

3.6 Temperature dependence of physical quantities

Thus far, we have discussed several physical quantities

focusing our attention on the fixed temperature with

T ¼ 0:0025. In this subsection, we mention the temperature

dependence briefly. Here, we consider three typical

potentials with �2 ¼ 0, �0:25, and �0:5 for �4 ¼ 0:02. In

Fig. 11, we show the � dependences of several physical

quantities such as (a) lattice fluctuation
ffiffiffiffiffiffiffiffi

hq2i
p

, (b) the

renormalization factor z, (c) the double occupancy d, (d)

the local spin susceptibility 	loc
s , and (e) the local charge

susceptibility 	loc
c for several temperatures from T ¼

0:0015{0:0105.

The marked changes in the physical quantities due to the

difference in temperature can be seen only in the vicinity of

the two-solution coexistence or crossover region, and the

amplitude of the local charge susceptibility. With increasing

temperature, the reduction in the size of the two-solution

coexistence region is indicated. The edge point for a larger �

of the two-solution coexistence region �c2 moves to the left-

hand side of the graph. As for the shift in �c1, the edge point

for a smaller �, it is relatively small compared with that in

�c2. Furthermore, �c1 and �c2 coincide with each other at

high temperatures. Then, the two-solution coexistence

region disappears and the first-order transition changes to a

crossover. Meanwhile, 	loc
c in the bipolaronic solution for a

large � rapidly decreases with increasing T . The temperature

dependence of 	loc
c in the bipolaronic state exhibits the

Curie-law behavior 	loc
c / 1=T ,47) which is similar to that in

the case with the localized spin in the Mott insulator, where

the local spin susceptibility shows the Curie law behavior

	loc
s / 1=T . In the harmonic case, the 	loc

c in the present

anharmonic case also follows the Curie law.

In the strong-anharmonicity case with �2 ¼ �0:5, we

point out that the crossover behavior is shown at all

temperatures, even below T ¼ 0:0015 (not shown here). As

indicated in the lowest-energy phonon spectrum in Fig. 10

and the energy levels shown in the bare local phonon

potential in Fig. 1(d), the low-temperature crossover is

attributed to the small excitation energy of phonons.

Namely, the amplitude of the excitation energy is considered

to correspond to the energy scale of the polaron–bipolaron

transition. Near the crossover region at high temperatures, a

smooth tail-like behavior with a small z is observed. For

instance, in the graph for �2 ¼ �0:25, the tail-like behavior

is observed near � � 2:1 for T > 0:0055 around the

crossover region. Moreover, for �2 ¼ �0:5, such behavior

can be found at all the temperature, indicating the possibility

of the heavy-electron state.

3.7 First-order polaron–bipolaron transition

In the previous subsection, the two-solution coexistence

regions are indicated for �2 ¼ 0 and �0:25 at low

temperatures. Namely, the first-order polaron–bipolaron

transition occurs in the region of �c1 < � < �c2. To discuss

this transition, we show the �–T phase diagrams for �2 ¼ 0

and �0:25 in Figs. 12(a) and 12(b), respectively, in which

we plot �c1 and �c2 for several T obtained from the

discontinuity in the lattice fluctuation.

With increasing T , both �c1 and �c2 show a decreasing

tendency, with the change in the former being moderate,

while that in the latter being pronounced. We find that �c1

and �c2 coincide with each other at a critical point, denoted

by �cr or Tcr. Above this critical temperature, a smooth

crossover is observed instead of a discontinuous change

between the polaronic and bipolaronic solutions.
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Fig. 11. (Color online) (a) Lattice fluctuation
ffiffiffiffiffiffiffiffi

hq2i
p

vs �, (b) renormal-

ization factor z vs �, (c) double occupancy d vs �, (d) local spin

susceptibility 	loc
s vs �, and (e) local charge susceptibility 	loc

c vs � for

�2 ¼ 0, �0:25, �0:5 with T ¼ 0:0025, 0.0035, 0.0045, and 0.0055 with

�4 ¼ 0:02. In the �2 ¼ 0 case, the graph with the crossover result at

T ¼ 0:0105 is also indicated. Several 	loc
c dependences for a large � are

omitted to avoid overlaps of the graph. Note that 	loc
c approaches to a finite

specific value depending on T for a large �.
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For �2 ¼ 0 and �0:25, the estimated values of Tcr are

�0:01 and �0:005, respectively. Below Tcr, the first-order

polaron–bipolaron transition is expected to take place

similarly to that in the case with the Mott transition.49)

Then, we plot a possible first-order transition point in the

graph. Here, we focus on the largeness of the two-solution

coexistence region, i.e., the region width of j�c2 � �c1j and
the critical temperature Tcr height on the �–T plane. It is

found that the area for �2 ¼ �0:25 is smaller than that for

�2 ¼ 0 in both the � width and the Tcr height. Since the

reduction in the area can be associated with the energy scale

of the first-order transition, this result suggests that the

enhancement of the anharmonicity suppresses the first-order

polaron–bipolaron transition.

Then, we discuss the development of the critical point of

the first-order polaron–bipolaron transition. In Fig. 13, we

show the �2 dependences of the critical point �cr, Tcr. Note

here that �cr in the crossover region is determined from the

value at which the curvature of the lattice fluctuation
ffiffiffiffiffiffiffiffi

hq2i
p

changes. In the graph, when �2 decreases, both �cr and Tcr
decrease. The decrease in �cr indicates the enhancement of

the effective electron–phonon interaction coupled to the

anharmonicity. As for Tcr, we observe a gradual decrease for

a large �2, while the shape changes to a slightly steeper

curve for �2 � �0:25 and finally approaches zero. This Tcr
behavior seems to be similar to the �2 dependence of the first

excitation energy of phonons in Fig. 2. Thus, the suppres-

sion effect is thought to be caused by the reduction in the

excitation energy of phonons. For �2 < �0:5, we find no

evidence of the two-solution coexistence region for the

temperature region where we have performed our calcula-

tions. For this reason, we set Tcr to 0 in Fig. 13; however,

we do not exclude the possibility of a polaron–bipolaron

transition point with an extremely low transition temperature

in the region of �2 . �0:5, since a small but finite excitation

energy is indicated in the local phonon problem.

4. Discussion and Summary

In this paper, to discuss the effect of the anharmonicity of

phonons on the emergence of the heavy-electron state and

the polaron–bipolaron transition, we have analyzed the

anharmonic Holstein model, which describes the interaction

between conduction electrons and the atom oscillation in the

potential with second- and fourth-order anharmonic terms,

using the dynamical mean-field theory by the exact

diagonalization method. We have obtained various physical

quantities as functions of the electron–phonon interaction �

for several types of anharmonic potential.

First, we have discussed the effect of anharmonicity on

the first-order polaron–bipolaron transition. For a weak-

anharmonicity case with a large �2, with increasing �, we

have observed an increase in lattice fluctuation, double

occupancy, and local charge susceptibility, but a decrease in

the renormalization factor z and local spin susceptibility.

Moreover, at low temperatures, evidence of the phase

transition from the polaronic state to the bipolaronic state,

accompanied by the changes in the physical quantities, is

found for a strong-coupling region as the two-solution

coexistence region. When temperature increases, the region

becomes narrower and it finally disappears at a certain

critical temperature, resulting in a smooth crossover between

the two states.

The polaron–bipolaron transition behavior has been

reported in a previous study with harmonic phonons47) and

there is no qualitative difference between their tendencies. In

a previous study with a phonon frequency !0=W ¼ 0:1, the
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(b) �2 ¼ �0:25 with �4 ¼ 0:02. In the region �c1 < � < �c2, both the

polaronic and bipolaronic solutions coexist. The dotted-dashed curve shows

a possible first-order transition temperature and the cross indicates its
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transition temperature is estimated to be on the order of

1/1000 of the bandwidth W. Since the transition is

dominated by charge fluctuations and it is a relatively

spin-independent phenomenon, we suggest its similarity to

the first-order phase transition Tp ¼ 7:5K in the �-pyro-

chlore oxide KOs2O6. Here, we note that in this case, the

polaronic (bipolaronic) state corresponds to the T < Tp
(T > Tp) side. On the other hand, when anharmonicity

increases with decreasing �2, we have indicated several

changes such as the increase in the amplitude of the lattice

fluctuation, the decrease in the critical value of �, and the

transition temperature suppression. Thus, in the anharmonic

phonon system, a strong electron–phonon interaction is not

required for the occurrence of the polaron–bipolaron

transition, even though a lower-temperature environment is

necessary. This is considered to be advantageous for the

explanation of the Tp transition.

Then, let us discuss how the anharmonicity contributes to

the heavy-electron state. In this study, we have discussed the

effective mass of electrons through the renormalization

factor z as functions of � and �2. With increasing �, z

monotonically decreases, namely, the effective mass in-

creases. The heavy-electron state with a small-z solution has

been found in the narrow region of the polaronic phase near

the polaron–bipolaron transition. Although smaller values of

z have been indicated in the bipolaronic solutions, quasi-

particles have been destroyed owing to the strong localiza-

tion tendency. We have found that the possibility of the

heavy-electron formation is large in the region in which

the small-z solutions are widely distributed. In this sense,

the heavy-electron state can be found in the region where

the crossover is indicated. The crossover behavior can be

seen even in the weak-anharmonicity cases with a large

�2 at high temperatures, although at low temperatures, it

becomes a polaron–bipolaron transition with a narrow small-

z region in the polaronic phase. Thus, the crossover region

with a high possibility of exhibiting the heavy-electron state

is only found in the strong-anharmonicity case with small

�2.

Throughout this paper, we have restricted ourselves to the

case with the normal state and have not considered the

possible phase transition to the charge-density-wave (CDW)

state, which is realized in the Holstein model. Within the

DMFT, the transition temperature TCDW to the CDW state

in the Holstein model was found to be Oð1=100Þ of the

bandwidth.56) As the critical temperature Tcr of the polaron–

bipolaron transition obtained in the present study is

Oð1=1000Þ of the bandwidth and is much smaller than

TCDW, it seems to be impossible to observe the polaron–

bipolaron transition in the normal state above TCDW. The

effect of the frustration, however, is expected to largely

suppress TCDW, while keeping Tcr almost constant as the

polaron–bipolaron transition is exclusively determined by

the local DOS, resulting in TCDW < Tcr. The effect of the

anharmonicity �4 was also found to suppress TCDW except

in a small �4 regime.57) In addition, in the presence of the

Coulomb interaction between electrons, the polaron–bipo-

laron transition in the Hubbard–Holstein model was found

to be realized for a large-g regime, where Tcr markedly

increases owing to the Coulomb interaction and becomes

Oð1=100Þ of the bandwidth,58) while TCDW is not markedly

increases but rather reduced.59) Therefore, we may expect

that the polaron–bipolaron transition will be observed in the

normal state above TCDW in the case with the frustration

and/or Coulomb interaction. Explicit calculation including

the effects of the frustration and the Coulomb interaction

together with the effect of the doping60,61) will be an

important future problem to address.

In summary, we have investigated the half-filled anhar-

monic Holstein model using the dynamical mean-field

theory in combination with the exact diagonalization

method. We have found that, for the weak-anharmonicity

case, the first-order polaronic–bipolaronic phase transition

takes place at a critical value of the electron–phonon

coupling �, at which each physical quantity shows

discontinuity. When the anharmonicity is enhanced, the

polaron–bipolaron transition temperature is reduced and the

critical value of � decreases. For a strong-anharmonicity

case, the polaron–bipolaron transition eventually changes to

a crossover, in which a heavy-electron state with a large

effective mass is realized owing to the effect of anharmonic

phonons.
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31) K. Mitsumoto and Y. Ōno: J. Phys. Soc. Jpn. 79 (2010) 054707.

32) T. Hotta: Phys. Rev. Lett. 96 (2006) 197201.

33) T. Hotta: J. Phys. Soc. Jpn. 76 (2007) 023705.

34) T. Hotta: J. Phys. Soc. Jpn. 76 (2007) 084702.

35) T. Hotta: Physica B 403 (2008) 1371.

36) T. Hotta: J. Phys. Soc. Jpn. 77 (2008) 103711.

37) T. Hotta: J. Phys. Soc. Jpn. 78 (2009) 073707.

38) S. Yashiki, S. Kirino, and K. Ueda: J. Phys. Soc. Jpn. 79 (2010)

093707.

39) S. Yashiki, S. Kirino, K. Hattori, and K. Ueda: J. Phys. Soc. Jpn. 80

(2011) 064701.

40) S. Yashiki and K. Ueda: J. Phys. Soc. Jpn. 80 (2011) 084717.

41) T. Dahm and K. Ueda: Phys. Rev. Lett. 99 (2007) 187003.

42) K. Hattori and H. Tsunetsugu: J. Phys. Soc. Jpn. 78 (2009) 013603.

43) K. Hattori and H. Tsunetsugu: Phys. Rev. B 81 (2010) 134503.

44) G. Verbist, F. M. Peeters, and J. T. Devreese: Phys. Rev. B 43 (1991)

2712.

45) G. A. Farias, W. B. da Costa, and F. M. Peeters: Phys. Rev. B 54

(1996) 12835.

46) W. B. da Costa and F. M. Peeters: Phys. Rev. B 57 (1998) 10569.
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