
Eur. Phys. J. C (2022) 82:889
https://doi.org/10.1140/epjc/s10052-022-10844-6

Regular Article - Theoretical Physics

Heavy + heavy and heavy + light pseudoscalar to vector
semileptonic transitions

Hui-Yu Xing1,2,a , Zhen-Ni Xu1,2,b , Zhu-Fang Cui1,2,c , Craig D. Roberts1,2,d , Chang Xu1,2,e

1 School of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
2 Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, Jiangsu, China

Received: 2 June 2022 / Accepted: 25 September 2022 / Published online: 8 October 2022
© The Author(s) 2022

Abstract Using a symmetry-preserving regularisation of
a vector × vector contact interaction (SCI), we complete a
systematic treatment of twelve semileptonic transitions with
vector meson final states: D → ρ, D(s) → K ∗, Ds → φ,
B → ρ, Bs → K ∗, B(s) → D∗

(s), Bc → B∗
(s), J/ψ, D∗; and

thereby finalise a unified analysis of semileptonic decays of
heavy + heavy and heavy + light pseudoscalar mesons to both
pseudoscalar and vector meson final states. The analysis is
marked by algebraic simplicity, few parameters, and the abil-
ity to consistently describe systems from Nambu-Goldstone
modes to heavy + heavy mesons. Regarding the behaviour
of the transition form factors, the SCI results compare well
wherever sound experimental or independent theory analyses
are available; hence, the SCI branching fraction predictions
should be a reasonable guide. Considering the ratios R(D(∗)

(s) ),
R(J/ψ), R(ηc), whose values are key tests of lepton univer-
sality in weak interactions, the SCI values agree with Stan-
dard Model predictions. The B(s) → D∗

(s) transitions are
used to predict the precursor functions that evolve into the
universal Isgur–Wise function in the heavy-quark limit, with
results that conform with those from other sources where
such are available. The study also exposes effects on the
transition form factors that flow from interference between
emergent hadron mass from the strong interaction and Higgs
boson couplings via current-quark masses, including flavour
symmetry violation.
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1 Introduction

Nature has two known mechanisms for mass generation.
In connection with quantum chromodynamics (QCD), that
associated with the Higgs boson (HB) is responsible for the
current-quark masses, which range from a few MeV for the
lightest quarks to nearly 200 GeV for the top quark. Within
the Standard Model of particle physics (SM), each current
mass is generated by a distinct HB coupling; so, one has
a parametric representation but not a satisfying explanation
for this hierarchy of scales [1]. The other source of mass
appears to be a dynamical feature of QCD; namely, emergent
hadron mass (EHM), which is thought to be responsible for
an array of phenomena that include [2–5] the generation of
nuclear-size masses for baryons constituted from light quarks
and nearly-massless pseudoscalar Nambu–Goldstone bosons
whose existence is crucial to the stability of known nuclei.

Pseudoscalar mesons are special because they are mass-
less in the absence of HB couplings. Consequently, weak-
interaction mixing between quark flavours, parametrised
using the Cabibbo–Kobayashi–Maskawa (CKM) matrix,
links both Nature’s sources of mass via the study of semilep-
tonic decays of heavy + heavy and heavy + light pseudo-
scalar mesons. In such transitions, the mass of the initial
state owes to HB couplings and constructive EHM plus HB
interference, with the following HB:EHM+HB mass bud-
gets [6]: Bc(87 : 13), B(s)(80 : 20), D(s)(70 : 30). When the
final states are also pseudoscalar mesons, these mass bud-
gets can be dramatically reversed, e.g. [7]: K (20 : 80),
π(5 : 95). In contrast, vector meson mass budgets are
more like those of baryons, being nonzero even in the
absence of HB couplings, with EHM alone delivering the
bulk of their masses in lighter-quark cases, e.g., ρ(97 : 3)

[8]. Thus, whilst semileptonic pseudoscalar-to-pseudoscalar
decays have received most attention, there are also good rea-
sons to consider pseudoscalar-to-vector transitions that go
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beyond their use as independent constraints on the CKM
matrix elements.

The typically large disparity in masses between initial and
final states is a significant challenge in the study of heavy
pseudoscalar meson semileptonic transitions. No framework
with a traceable link to QCD can directly surmount this
difficulty today. Nevertheless, using a variety of methods,
attempts are being made for pseudoscalar [9–51] and vector
[9–13,15,16,18,20–28,30,32–35,49,50,52–55] final states.
Given the challenges involved, unified treatments of pseu-
doscalar and vector final states are of particular value.

Using a symmetry-preserving formulation of a vector
× vector contact interaction (SCI) [56,57], a study of ten
pseudoscalar-to-pseudoscalar semileptonic transitions was
described in Ref. [6]: D → π , D(s) → K , B → π ,
Bs → K , B(s) → D(s), Bc → B(s), ηc. Combined, these
transitions provide information on four elements of the CKM
matrix: |Vcd |, |Vcs |, |Vub|, |Vcb|. Herein, we extend that anal-
ysis to a large array of analogous transitions with vector
meson final states, all sensitive to the same set of CKM
matrix elements, viz. the following twelve decays: D → ρ,
D(s) → K ∗, Ds → φ, B → ρ, Bs → K ∗, B(s) → D∗

(s),
Bc → B∗

(s), J/ψ, D∗.
As Ref. [6] provided a benchmark for Ref. [48], which

used continuum Schwinger function methods (CSMs) to
deliver a coherent, parameter-free treatment of pseudoscalar-
to-pseudoscalar transitions, so will the current study serve
for the extension of Ref. [48] to vector final states. This is
because contemporary implementations of the SCI preserve
the essence of more sophisticated treatments of the contin-
uum bound-state problem yet introduce an algebraic sim-
plicity. Widespread use has revealed that, when interpreted
judiciously, SCI predictions provide a valuable quantitative
guide, see e.g. Refs. [58–69]. Thus, SCI results provide a
means by which one may check the validity of algorithms
employed in calculations that rely (heavily) upon high per-
formance computing.

Section 2 presents some general material on the struc-
ture of currents and definitions of form factors in semilep-
tonic pseudoscalar-to-vector meson transitions. Section 3,
augmented by an extensive appendix, explains our imple-
mentation of the SCI, including constraint of the ultravio-
let cutoff and determination of values for the interaction-
dependent current-quark masses. Section 4 reports our anal-
ysis of D0 → ρ−, D+

s → K 0∗, D+ → K̄ ∗0, Ds → φ transi-
tions. Section 5 describes B → ρ, Bs → K ∗, B(s) → D∗

(s),
Bc → B∗

(s), J/ψ, D∗, including a discussion of the Isgur-
Wise function. Section 6 considers the evolution of semilep-
tonic transition form factors as the Higgs mechanism of
current-quark mass generation becomes a more significant
component of the final-state meson’s mass, viz. it discusses
the issues of environment sensitivity and flavour symme-

try breaking in electroweak transitions. Section 7 provides
a summary and perspective.

2 Transition form factors

Semileptonic decays of pseudoscalar mesons (P) to vector
meson (V) final states are described by the following transi-
tion matrix element:

MP→V
μ;λ (P, Q) = 〈V (pV ; λ)|q̄V i(γμ − γμγ5)qP |P(k)〉

= 2mV
Qμελ·Q

Q2 A0(t) + [mP + mV ]T Q
μνε

λ
ν A1(t)

+ [Pμ + Qμ
m2

P−m2
V

Q2 ] ε
λ · Q A2(t)

mP + mV

+ εμνρσ ελ
ν kρ pVσ

2V (t)

mP + mV
, (1)

where Q2T Q
μν = Q2δμν −QμQν , P = k+ pV , Q = k− pV ,

with k2 = −m2
P , p2

V = −m2
V ; ελ

ν (pV ) is a polarisation

four-vector, with
∑3

λ=1 ελ
ν (pV )ελ

μ(pV ) = T pV
μν ; the squared-

momentum-transfer is t = −Q2; and t± = (mP ±mV )2. (t−
is the largest accessible value of t in the identified physi-
cal decay process.) The scalar functions in Eq. (1) are the
semileptonic transition form factors, which express all effects
of hadron structure on the transitions. Ensuring the absence
of kinematic singularities in Eq. (1), symmetries guarantee

A0(0) = mP+mV
2mV

A1(0) − mP−mV
2mV

A2(0). (2)

Once results for the transition form factors are available,
one can calculate the associated decay branching fractions
from the differential decay width for P → V �+ν�:

dΓ

dt

∣
∣
∣
∣
P→V �ν�

= G2
F |VqPqV |2

192π3m3
P

λ(mP ,mV , t)(1 − m2
�

t )2 H 2,

(3)

where GF = 1.166 × 10−5 GeV−2; |VqPqV | is the relevant
CKM matrix element, λ(mP ,mV , t)2 = (t+ − t)(t− − t);

H 2 = (H2+ + H2− + H2
0 )(1 + m2

l
2t ) + 3m2

l
2t H2

t , (4)

m2
� ≤ t ≤ t−, m� is the lepton mass; and

1√
t H± = (mP + mV )A1(t) ∓ λ(mP ,mV , t)

mP + mV
V (t) , (5a)

H0 = 1

2mV

[
(m2

P − m2
V − t)(mP + mV )A1(t)

−λ(mP ,mV , t)2

mP + mV
A2(t)

]

, (5b)

Ht = λ(mP ,mV , t) A0(t) . (5c)
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It is plain from Eq. (4) that the contribution from A0(t) to any
cross-section is kinematically suppressed. After integrating
Eq. (3) to obtain the required partial widths, one quotes the
branching fractions, BP→V �ν�

, with respect to the total width
determined from the pseudoscalar meson’s lifetime [70].

3 Matrix elements

When employing CSMs, the leading-order approximation
to a matrix element like that in Eq. (1) is provided by the
rainbow-ladder (RL) truncation [71], which we choose to
illustrate using the D0 → ρ− transition:

MD0→ρ−
μ;λ (P, Q) = 2Nctr

∫
d4t

(2π)4 ΓD(k)Sc(t + k)

× iW cd
μ (Q)Sd(t + p)Γρ(−p; λ)Su(t) ,

(6)

where Nc = 3 and the trace is over spinor indices. Three
distinct types of matrix-valued function feature in Eq. (6):
propagators for the dressed-quarks involved in the transition
process, here S f (t), f = u, d, c; Bethe-Salpeter amplitudes
for the initial- and final-state mesons, ΓM , M = D0, ρ−; and
the dressed cd weak transition vertex, W cd

μ . The P → V
weak transition vertex has two pieces, viz. vector and axial-
vector:

W cd
μ = V cd

μ − A cd
μ . (7)

Physically, the vector part, V cd
μ , must exhibit poles at Q2 +

m2
D∗,D∗

0
= 0 and Acd

μ has poles at Q2 + m2
D,D1

= 0. The
presence of such poles is a prerequisite for any valid analysis
of P → V semileptonic transitions; and as will become
apparent, they are manifest in our treatment.

The general structure of Eq. (6) is the same for any quark
+ antiquark interaction treated in RL truncation. However, in
writing Eq. (6), we have implicitly assumed a SCI for all inte-
gral equations relevant to the problem. This is signalled by
the simplicity of the arguments of the Bethe-Salpeter ampli-
tudes and weak transition vertex, as elucidated in Appendix
A.

4 Weak D(s) semileptonic transitions

In the isospin-symmetry limit, there are four essentially dis-
tinct such processes: D0 → ρ−, D+

s → K 0∗, D+ → K̄ ∗0,
Ds → φ. The first two measure c → d and the last two,
c → s. Each provides information on the environmental
sensitivity of these transitions.

On the physical domain, all D(s) transition form factors
are monotonically increasing functions of t that can reliably

A

B

Fig. 1 A D → ρ transition form factors. SCI predictions: A2(t) –
dot-dashed red curve; A1(t) – long-dashed purple; A0(t) – solid blue;
V (t) – dashed green. Thinner, like-texture and -colour curves within
shaded bands are elementary monopole fits to data drawn from Ref.
[73, CLEO]. B SCI predictions for Ds → K̄ ∗ transition form factors,
with associations as in A. In this case, no comparable empirical form
factors are available

be interpolated using

F(t) = f0/[1 − at/m2
P + b(t/m2

P )2] , (8)

where mP is the calculated mass of the initial-state pseu-
doscalar meson. Our predictions for each of the transitions
considered in this subsection are described by Eq. (8) and the
appropriate interpolation coefficients in Table 1A.

4.1 Cabibbo disfavoured c → d transitions

Regarding D0 → ρ−, data are available in Refs. [73, CLEO]
and [74, BESIII]. Using contemporaneous values for |Vcd |
and D-meson lifetimes [75] and fitting their data using ele-
mentary monopole functions, CLEO reported the following
t = 0 results

A1 = 0.56(3) , A2 = 0.47(7) , V = 0.84(11) ,

r2 = 0.83(12) , rV = 1.48(16) .
(9)

Following an analogous procedure, BESIII obtained consis-
tent values for the t = 0 ratios: r2 = 0.845(69), rV =
1.695(97). As evident in Table 1, our SCI predictions are
compatible with these empirical results.
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Table 1 Upper panel – A. SCI predictions for almost all electroweak
transition form factors can reliably be interpolated using Eq. (8) and the
coefficients in columns 1-12. For A1(t) in B0 → ρ−, Bs → K ∗−, an
accurate interpolation requires Eq. (14) instead, with c = 0.64, 0.77,
respectively. Column 13 lists r2 = A2(0)/A1(0) and column 14, rV =
V (0)/A1(0). Lower panel – B. SCI computed branching fractions for
kinematically allowed transitions (columns 1–3) and associated ratios

(columns 4–5), obtained using experimentally determined masses, com-
pared with empirical results [70,72], where available. (All numerical
entries should be multiplied by 10−3.) Ref. [70] lists |Vcd | = 0.221(4),
|Vcs | = 0.987(11) |Vub| = 0.00382(24), |Vcb| = 0.0410(14); and
the following lifetimes (in seconds): τD0 = 4.10 × 10−13, τD+ =
10.4 × 10−13, τD±

s
= 5.04 × 10−13, τB0 = 1.519 × 10−12, τB0

s
=

1.515 × 10−12, τB±
c

= 0.51 × 10−12

A. A0(t) A1(t) A2(t) V (t) t = 0 ratios
f0 a b f0 a b f0 a b f0 a b r2 rV

1 Dρ 0.61 1.29 0.27 0.52 0.15 −0.14 0.36 0.60 −0.042 0.83 0.87 0.0009 0.69 1.58

2 Ds K̄ ∗ 0.62 1.40 0.27 0.56 0.22 −0.20 0.40 0.72 −0.047 0.94 0.98 −0.0011 0.72 1.68

3 DK̄ ∗ 0.68 1.13 0.14 0.61 0.18 −0.13 0.41 0.56 −0.038 0.91 0.82 −0.0036 0.68 1.50

4 Dsφ 0.66 1.28 0.19 0.61 0.23 −0.17 0.44 0.69 −0.049 1.00 0.92 −0.0042 0.72 1.64

5 Bρ 0.38 1.49 0.42 0.34 0.20 0.056 0.32 0.98 −0.034 0.45 1.19 0.10 0.95 1.34

6 BsK ∗ 0.36 1.52 0.41 0.33 0.26 −0.018 0.31 1.05 −0.052 0.46 1.27 0.13 0.95 1.39

7 BcD∗ 0.28 1.95 0.51 0.28 0.063 −2.24 0.28 1.26 −0.52 0.49 1.64 0.023 1.00 1.75

8 BD∗ 0.74 1.16 0.11 0.68 0.42 −0.32 0.61 0.98 0.011 0.83 1.12 0.078 0.90 1.22

9 Bs D∗
s 0.64 1.22 0.099 0.60 0.46 −0.40 0.54 1.03 −0.021 0.75 1.17 0.059 0.91 1.26

10 Bc J/ψ 0.58 1.56 −0.045 0.56 0.61 −1.01 0.52 1.24 −0.43 0.88 1.46 −0.19 0.93 1.56

11 BcB∗ 0.41 20.4 48.6 0.43 10.5 −56.6 0.72 15.1 10.8 3.01 15.3 −12.2 1.66 6.93

12 BcB∗
s 0.45 18.0 26.5 0.47 9.95 −59.5 0.72 14.5 0.034 3.11 14.5 −16.6 1.54 6.65

B. SCI [70, PDG] or other, if indicated
eνe μνμ τντ Rμ/e Rτ/μ eνe μνμ τντ Rμ/e Rτ/μ

1 BD0ρ− 1.27 1.21 0.95 1.50 (12)

2 BD+ρ0 1.64 1.56 0.95 2.18 (17)
(25) 2.4 (4) 1.12 (19)

3 BDs K̄ ∗ 1.76 1.68 0.95 2.15 (28)

4 BD0K ∗− 21.0 19.7 0.94 21.5 (1.6) 18.9 (2.4) 0.88 (13)

5 BD+ K̄ ∗0 54.5 51.3 0.94 54 (1) 52.7 (1.5) 0.98 (3)

6 BDsφ 24.5 23.0 0.94 23.9 (1.6) 19 (5) 0.79 (57)

7 BB0ρ− 0.445 0.443 0.232 1.00 0.52 0.294 (21) 0.294 (21) 1.0 (1)

8 BB0
s K

∗− 0.468 0.466 0.249 1.00 0.53

9 BBcD∗ 0.143 0.142 0.076 1.00 0.54

10 BBD∗ 62.9 62.6 15.3 1.00 0.24 50.6 (1.2) 50.6 (1.2) 15.7 (9) 1.00 (3) 0.31 (2)

11 BBs D∗
s

48.7 48.5 11.8 1.00 0.24 54(5)

12 BBc J/ψ 15.8 15.7 3.62 0.99 0.23 0.71(25) [72]

13 BBc B∗ 1.33 1.27 0.95

14 BBc B∗
s

17.5 16.4 0.94

The SCI D → ρ transition form factors are depicted in
Fig. 1A, wherein they are compared with monopole forms
inferred from data [73, CLEO]. Given the simplicity of those
fits, the agreement is good. Using the calculated form fac-
tors, Eq. (3) yields the fractions in Table 1B - Rows 1–2. Con-
trasted with model results in Ref. [33], the individual SCI
branching fractions are 30% smaller. On the other hand, those
models produce Rμ/e = 0.95(2), in agreement with the SCI
prediction. Combining SCI and model results [20,33,54],

one obtains

10−3 eνe μνμ Rμ/e

BD0ρ− 1.66(30) 1.58(28) 0.95(1)

BD+ρ0 2.14(38) 2.04(35) 0.95(1)

; (10)

outcomes which suggest that the Ref. [70, PDG] value for
BD+ρ0μ+νμ

is too large.

Turning to D+
s → K̄ ∗, data on the e+νe mode are avail-

able in Refs. [76,77, CLEO] and [78, BESIII]. SCI pre-
dictions for the form factors are depicted in Fig. 1B. They
are reliably interpolated using Eq. (8) with the coefficients in
Table 1A - Row 2. Little empirical information is available on
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the form factors; but Ref. [78, BESIII] reports r2 = 0.77(29),
rV = 1.67(38), values which agree with the SCI results in
Table 1A - Row 2.

Our predictions for the branching fractions to the kinemat-
ically allowed semileptonic final states are listed in Table 1B -
Row 2. No experimental results are available for the μ+νμ

mode; but the SCI values are commensurate with model
estimates collected in Ref. [33]. Combining those results
[20,33,54] with the SCI predictions, one obtains

10−3 eνe μνμ Rμ/e

BDs K̄ ∗ 1.98(26) 1.88(26) 0.95(1)
. (11)

4.2 Cabibbo favoured c → s transitions

SCI predictions for the D+ → K̄ ∗ semileptonic transition
form factors are drawn in Fig. 2A. They are reliably interpo-
lated using Eq. (8) with the coefficients in Table 1A - Row 3.
Regarding these form factors, some empirical information is
available, e.g., in Refs. [79, FOCUS] and [80, BESIII]. Using
available data, Ref. [70, PDG] compiles the following aver-
ages: r2 = 0.802(21), rV = 1.49(05). Whilst the value of rV
agrees with the SCI result, that for r2 is significantly larger.
In this connection, the SCI predictions are compatible with
the model results collected in Ref. [33]; and combined with
those values, one obtains r2 = 0.64(24), rV = 1.44(14).
Apparently, with r2, there is some tension between experi-
ment and theory.

Table 1B - Rows 4 - 5 list our predictions for the D0 →
K ∗−, D+ → K̄ ∗0 branching fractions to the allowed
semileptonic final states. They compare favourably with the
averages reported in Ref. [70, PDG]. Combined with com-
mensurate model estimates [20,54], one obtains

10−3 eνe μνμ Rμ/e

BD0K ∗− 21.2(0.3) 19.9(2) 0.94(1)

BD+K̄ ∗0 54.6(1.0) 51.2(1) 0.94(1)

. (12)

Our Ds → φ transition form factors are drawn in Fig. 2B.
Reliable interpolations are obtained by using Eq. (8) with
the coefficients in Table 1A - Row 4. Lattice QCD (lQCD)
results for the form factors [53] are also drawn in Fig. 2B.
They agree with our predictions. This is further highlighted
by a comparison between values computed at the maximum
recoil point:

Ds → φ r2 rV r0 = A0(0)/A1(0)

SCI 0.72 1.64 1.08
lQCD [53] 0.74(12) 1.72(21) 1.14(6)

. (13)

The results match well and also compare reasonably with the
averages determined from available data [70, PDG]: r2 =
0.84(11); rV = 1.80(8).

Table 1B - Row 6 lists our predictions for the Ds → φ

branching fractions to the allowed semileptonic final states.

A

B

Fig. 2 A SCI predictions for D → K ∗ transition form factors: A2(t)
– dot-dashed red curve; A1(t) – long-dashed purple; A0(t) – solid blue;
V (t) – dashed green. B SCI predictions for Ds → φ transition form
factors, with legend as in A. Thinner, like-texture and -colour curves
within shaded bands are lQCD results from Ref. [53]

They agree with the experimental results tabulated in Ref.
[70, PDG]. However, there is only one measurement of the
μ+νμ mode and it has a large error. Given the agreement
between SCI and lQCD determinations of the semileptonic
form factors, there is merit in improving the precision of the
Ds → φ measurements.

5 Weak B(s,c) semileptonic transitions

In the isospin-symmetry limit, there are eight distinct pro-
cesses, which we choose to be: (i) B0 → ρ−, B0

s → K ∗−;
B+
c → D∗0; (ii) B0 → D∗−, B0

s → D∗−
s , B−

c → J/ψ ; (iii)
B+
c → B∗0; and (iv) B+

c → B∗0
s . The first three measure

b → u (i); the next three, b → c (ii) the sixth, c → d (iii);
and the last, c → s (iv); plus, naturally, their environmental
sensitivity.

All B(s,c) transition form factors are monotonically increas-
ing functions of t on their respective physical domains. How-
ever, for decays involving a ρ or K ∗ in the final state, those
domains can be large; consequently, we found that a reliable
interpolation of A1(t) needs a t3 term in the denominator:

F(t) = f0/[1 − at/m2
P + b(t/m2

P )2 − c(t/m2
P )3] , (14)
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with mP the calculated mass of the initial state pseudoscalar
meson. Thus, whilst our predictions for almost all transition
form factors considered in this subsection are well described
by Eq. (8) and the appropriate interpolation coefficients in
Table 1A, there are two cases where Eq. (14) and c 	= 0
are necessary and we note this explicitly in the associated
discussion.

5.1 Cabibbo suppressed b → u transitions

SCI predictions for B0 → ρ− semileptonic transition form
factors are depicted in Fig. 3A. Accurate interpolations are
obtained using the coefficients in Table 1A - Row 5 (c = 0.64
for A1, otherwise c = 0) in Eq. (14).

Results from a simulation of quenched lQCD using
unphysically large light-quark masses are available [81].
Those for A1(t), V (t) are displayed in Fig. 3A in order to
illustrate both their precision and t-domain coverage. Noth-
ing more recent is available from lQCD.

The SCI form factors in Fig. 3A yield the branching frac-
tions to allowed semileptonic final states listed in Table 1B -
Row 7. Where comparison is possible, the SCI results are
roughly 50% larger than those quoted in Ref. [70, PDG].
Notably, SCI predictions for B0 → π− exceed experiment
by a factor of ∼ 2.8 [6, Table 3b] because the maximum
recoil value of the vector transition form factor is too large
[6, Table 3a]. We therefore compared the form factor max-
imum recoil values in Table 1A - Row 5 with the results
in Refs. [10,15,18,23,52], finding that the SCI values are
39(9)% larger. This is sufficient to explain the overestimated
branching fractions. Given the huge disparity in mass-scales
between the initial and final states in the B0 → ρ− transi-
tion, it is not too surprising that the SCI description is imper-
fect in this case. Nevertheless, it is markedly better than the
analogous treatment of B0 → π−; hence, the form factors
should be a semiquantitatively sound guide, given that those
for B0 → π− are broadly compatible with experiment [6,
Fig. 5].

The SCI B0
s → K ∗− transition form factors are drawn in

Fig. 3B, C. Interpolations are obtained using
Eq. (14) and the coefficients in Table 1A - Row 6 (c = 0.77
for A1, otherwise c = 0).

Results for Bs → K ∗ transition form factors are avail-
able from a simulation of unquenched lQCD, with four
points on t/GeV2 ∈ [14, 19] at each of three pion masses,
mπ/GeV = 0.31, 0.34, 0.52, using lattice non-relativistic
QCD to describe the b-quark [82]. Those points were then fit-
ted and extrapolated therein so as to arrive at estimates of the
form factors on the entire kinematically accessible domain.
The fits for V , A1, A0 are drawn in Fig. 3B, C. A2 was not
accessible in the lattice calculation. Compared with the SCI
prediction in Fig. 3B, the lQCD estimate for V (t) is system-
atically lower on the entire t domain. The very low value

A

B

C

Fig. 3 A SCI predictions for B → ρ transition form factors: A2(t) –
dot-dashed red curve; A1(t) – long-dashed purple; A0(t) – solid blue;
V (t) – dashed green. Selected results from a simulation of quenched
lQCD are also displayed [81]: A1(t) – purple open circles; V (t) – green
open squares. B SCI Bs → K̄ ∗ transition form factor V (t) – dashed
green curve. The thinner, like-textured and -coloured curve within the
shaded band is a lQCD result from Ref. [82].CSCI Bs → K̄ ∗ transition
form factors, A2(t), A1(t), A0(t) – legend as in A. Thinner, like-texture
and -colour curves within shaded bands are lQCD results for A1(t),
A0(t) from Ref. [82]

of V (0) = 0.04(11) is a particular problem for the lQCD
result. There is better agreement between lQCD estimates
and SCI predictions for A1(t), A0(t) – Fig. 3C, although the
lQCD curves again fall below on t � 8 GeV2. Here it is
worth recalling that all the lower-t lQCD results involve a
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Fig. 4 SCI predictions for B+
c → D∗0 transition form factors: A2(t)

– dot-dashed red curve; A1(t) – long-dashed purple; A0(t) – solid blue;
V (t) – dashed green

long reaching extrapolation from a small number of points
on t/GeV2 ∈ [14, 19].

Working with the SCI form factors in Fig. 3B, C and the
appropriate form of Eq. (3), one finds the branching frac-
tions listed in Table 1B - Row 8. No data are available on
B0
s → K ∗− semileptonic transitions. In comparison with the

results in Refs. [23,52], the SCI values for the form factors
at the maximum recoil point are 35(21)% larger. Considering
how a possible SCI overestimate of the Bρ maximum recoil
values might have affected the related branching fractions –
Table 1B - Row 7, one may estimate a correction to the results
in Table 1B - Row 8 and therewith arrive at

10−3 eνe μνμ τντ

B rescaled
Bs K ∗− 0.29 0.29 0.16

. (15)

SCI predictions for the B+
c → D∗0 semileptonic tran-

sition form factors are drawn in Fig. 4. In this case, inter-
polations are obtained using Eq. (8) and the coefficients in
Table 1A - Row 7. The associated semileptonic branching
fractions are listed in Table 1B - Row 9. No data are avail-
able. On the other hand, there are many calculations. For
instance, averaging the results in Refs. [9,11–13,16,50]
yields BBc→D∗e+νe = 0.14(5)0/00, viz. a central value that
matches the SCI prediction. Including the SCI result in the
average, one finds

B̄Bc→D∗e+νe = 0.14(4)0/00. (16)

Further, Rτ/μ = 0.58 can be read from Ref. [22], a value
which complements the SCI result. Notwithstanding these
remarks, regarding B+

c → D∗0 semileptonic transitions, it
is plain that theory precision can improve, calculations with
closer links to QCD are necessary, and the want of data is
sorely felt.

5.2 Cabibbo inhibited b → c transitions: singly heavy

In this sector, we first consider B0 → D∗− semileptonic
transitions. The SCI results, drawn in Fig. 5A, are accurately
interpolated using Eq. (8) and the coefficients in Table 1A -
Row 8. They yield the branching fractions in Table 1B -
Row 10. Notably, whilst the τντ fraction is commensurate
with the current data average [70, PDG], the �ν�, � = e, μ,
fractions are significantly larger. Consequently, the value of
Rτ/μ – often denoted R(D∗) – is of special interest. The SCI
result matches fairly with the value considered to be the SM
prediction [83]: 0.252(3). It therefore confirms a 2.9σ ten-
sion between theory and experiment on this ratio, which is a
key test of lepton universality in Nature’s weak interactions.

Analogous SCI results for B0
(s) → D(s) transitions are [6]:

R(D) = 0.27 , R(Ds) = 0.26 . (17)

The former compares well with the accepted SM predic-
tion [83]: R(D) = 0.297(17). Empirically: [84]: R(D) =
0.34(3). This value is 17% smaller than the 2016 estimate
0.397(49) [85] and only 1.25σ larger than the SM result.

Similar tensions are discussed in connection with Bc →
J/ψ semileptonic transitions [49,72], to which we return in
Sect. 5.4.

SCI predictions for the B0
s → D∗−

s semileptonic transi-
tion form factors are depicted in Fig. 5B, C. They are reliably
interpolated using Eq. (8) and the coefficients in Table 1A -
Row 9 and yield the branching fractions in Table 1B - Row 11.
Notably, each B0

s → D∗−
s fraction is uniformly 23% smaller

than the kindred B0 → D∗− fraction. This outcome is
incompatible with the averages presented in Ref. [70, PDG].

On the other hand, there are many model studies of
B0

(s) → D∗−
(s) semileptonic transitions and the results are

widely scattered. For instance, considering an analysis that
uses two related methods in a simultaneous treatment of both
sets [34], one finds

BB0
s →D∗−

s μ+νμ
/BB0→D∗−μ+νμ

= 1.0(3) , (18a)

BB0
s →D∗−

s τ+ντ
/BB0→D∗−τ+ντ

= 1.0(3) . (18b)

The SCI results fit well within these bands. Moreover, profit-
ing from the kindred study of P → P transitions [6, Table 3],
we arrive at the SCI prediction

BB0
s →D−

s μ+νμ
/BB0

s →D∗−
s μ+νμ

= 0.52 , (19)

which is commensurate with a recent inference from mea-
surements [86, LHCb]: 0.46 ± 0.013stat ± 0.043syst.

Lattice results for the B0
(s) → D∗−

(s) transition form fac-
tors are now available [87]. Curves developed from those
results are drawn alongside the SCI predictions in Fig. 5B,
C: within their uncertainties, the curves agree with the SCI
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A

B

C

Fig. 5 A SCI predictions for B0 → D∗ transition form factors: A2(t)
– dot-dashed red curve; A1(t) – long-dashed purple; A0(t) – solid blue;
V (t) – dashed green. B Bs → D∗

s transition form factors: A2(t) – dot-
dashed red curve; V (t) – dashed green. Panel C. Bs → D∗

s transition
form factors: A1(t) – long-dashed purple curve; A0(t) – solid blue; in B
and C, the thinner, like-texture and -colour curves within shaded bands
are lQCD results from Ref. [87]

predictions. There is, perhaps, some tension between the
results for the vector form factor: the t = 0 value of the
lQCD curve is unexpectedly large when compared with the
many observable-constrained model calculations, e.g., Refs.
[27,34]. Nevertheless, even in this case, the absolute relative
difference between the SCI and lQCD curves is just 23(14)%.

Such comparisons suggest that the BB0
s →D∗−

s μ+νμ
data

average in Ref. [70, PDG] deserves reconsideration.

5.3 Isgur–Wise function

It is common to discuss B0
(s) → D∗−

(s) transitions in terms of
form factors related to the Isgur-Wise function [88], defined

as follows:

hF (w) = F(t (w))/T+ , F = A0, A2, V , (20a)

hA1(w) = A1(t (w))2T+/[1 + w] , (20b)

where T+ = [mP +mV ]/[2√
mPmV ]; t (w) = m2

P +m2
V −

2mPmVw; and 1 < w < [m2
P+m2

V ]/[2mPmV ], with w = 1
corresponding to the zero recoil point. This is because, in
the true heavy-quark limit, hA0(w) ≡ hA1(w) ≡ hA2(w) ≡
hV (w) =: ξ(w), viz. the transitions are described by a single,
universal form factor with the property ξ(1) = 1. A similar
statement is true for B(s) → D(s) transitions.

In the present cases, one cannot a priori be certain that
the conditions defining the heavy-quark symmetry limit are
realised because the c-quark mass is not necessarily very
much greater than the corresponding u, d, s-quark masses,
e.g., referring to Appendix A. - Table 2, the s/c ratio of
dressed-quark masses is ≈ 1/3. Consequently, the degree
to which the heavy-quark limit is accessible in Nature is an
empirical question.

Regarding the transitions discussed in Sect. 5.2, one finds
the following zero recoil values of the functions in Eq. (20):

w = 1 hA0 hA1 hA2 hV w = 1 ξ f+
B → D∗ 0.86 0.94 1.12 1.25 B → D 1.00
Bs → D∗

s 0.79 0.85 1.02 1.18 Bs → Ds 0.99
. (21)

In the last column, we have included results from the SCI
analysis of B(s) → D(s) transitions [6, Sec. 7].

Results for hA1(1) are available from lQCD [89]: B →
D∗ = 0.914(24); Bs → D∗

s = 0.902(13). They are com-
mensurate with the SCI values. Evidently, the SCI predicts
that with the c-quark involved in vector-meson final-states,
there is a mean absolute relative deviation of 14(8)% from
the heavy-quark limit result ξ(1) = 1.

In Fig. 6 we plot the precursor Isgur-Wise functions
defined in Eq. (20), each divided by its zero recoil value.
All drawn curves can reliably be described using

ξ(w) = 1/[1 − ρ2(w − 1)] , (22)

with the following values of ρ2:

ρ2 ĥV ĥ A0 ĥ A1 ĥ A2 ξ̂ f+
B → D∗ 1.42 1.48 1.16 1.20 0.91
Bs → D∗

s 1.56 1.63 1.26 1.33 0.95
. (23)

Here, “reliably” means the mean absolute relative difference
between a given function and the fit is < 0.2%.

The values of ρ2 equate to the slope parameters of the
precursor Isgur–Wise functions; and the results in Eq. (23)
emphasise that, in both sectors, ĥV (w) ≈ ĥ A0(w) and
ĥ A1(w) ≈ ĥ A2(w). The SCI values may be compared with
a contemporary uncertainty-weighted average of B → D∗
results [84]: ρ2

A1
= 1.122(24). The associated empirical
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A

B

Fig. 6 A SCI predictions for precursors to the Isgur–Wise function,
Eq. (20), obtained from B0 → D∗, D transitions: hA2 (w)/hA2 (1)

– dot-dashed red curve; hA1 (w)/hA1 (1) – long-dashed purple;
hA0 (w)/hA0 (1) – solid blue; hV (w)/hV (0) – dashed green;
ξ f+ (w)/ξ f+ (1) – mid-dashed, thin black curve [6, Sec. 7]. Empirical
result [84, Eqs. (177), (181)] – thinner tomato-coloured curve within
like-coloured bands. B SCI predictions as in Panel A, but obtained
using Bs → D∗

s , Ds transitions. Both panels: gold stars, Isgur–Wise
function inferred from measurement of B → D [90, Belle]

curve, drawn in Fig. 6A, agrees well with the SCI predic-
tions for ĥ A1(w) ≈ ĥ A2(w).

5.4 Cabibbo inhibited b → c transitions: doubly heavy

SCI results for the Bc → J/ψ semileptonic transition
form factors are drawn in Fig. 7, wherein they are com-
pared with predictions obtained using a systematic, sym-
metry-preserving continuum approach to strong-interaction
bound-state problems [49]. Notwithstanding the SCI’s alge-
braic simplicity, its results agree well with the sophis-
ticated calculations: the mean error-weighted χ2 values
are 0.14, 0.27, 1.25, 1.15 for V , A0, A2, A1, respectively.
Notably, too, the predictions in Ref. [49] and the lQCD
results in Ref. [91] agree within mutual uncertainties; hence,
the SCI curves also agree with those obtained using lQCD.

The SCI form factors in Fig. 7 are accurately interpolated
using Eq. (8) with the coefficients in Table 1A - Row 10 and
produce the branching fractions listed in Table 1B - Row 12.
Unsurprisingly, the SCI predictions agree with those in Ref.
[49]; hence, confirm the 2σ discrepancy between the SM

A

B

Fig. 7 SCI predictions for B+
c → J/ψ semileptonic transition form

factors. A A2(t) – dot-dashed red curve; A0(t) – solid blue; V (t) –
dashed green. B A1(t) – long-dashed purple curve. In both panels, the
thinner, like-texture and -colour curves within shaded bands are the
CSM predictions from Ref. [49]

prediction for R(J/ψ) and the measurement in Ref. [72,
LHCb].

The kindred SCI analysis of Bc → ηc transitions [6] pro-
duces R(ηc) = 0.25, a value 7% larger than the SCI result
for R(J/ψ) in Table 1B - Row 12. This size increase agrees
semiquantitatively with that found in Ref. [49].

5.5 Cabibbo disfavoured c → d transition

SCI predictions for the B+
c → B∗0 transition form factors

are depicted in Fig. 8A. They are interpolated using Eq. (8)
with the coefficients in Table 1A - Row 11. In this instance,
we have plotted V (t)/2 because the vector form factor is
markedly enhanced compared with all axial form factors. In
fact, on the physically accessible domain, VBcB∗(t) is signif-
icantly larger than all other form factors considered above.
This result is consistent with that found in Ref. [30].

The form factors in Fig. 8A produce the branching frac-
tions listed in Table 1B - Row 13. No data are available. On
the other hand, the SCI value for the eνe final state is consis-
tent with the results in Refs. [16,25,30], the average of which
is 1.32(12)0/00. Including the SCI value, the average becomes
1.32(9)0/00. Concerning the ratio of branching fractions, Ref.
[30] reports 0.95, matching the SCI prediction.
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A

B

Fig. 8 A SCI predictions for Bc → B∗ transition form factors: A2(t)
– dot-dashed red curve; A1(t) – long-dashed purple curve; A0(t) – solid
blue curve; 1

2 V (t) – dashed green curve.BSCI predictions forBc → B∗
s

transition form factors, with legend as in A

5.6 Cabibbo favoured c → s transition

Our predictions for the B+
c → B∗0

s transition form factors are
drawn in Fig. 8B. The functions are accurately interpolated
using Eq. (8) with the coefficients in Table 1A - Row 12. Here,
for the same reasons as with B+

c → B∗0, we have drawn
V (t)/2, whose magnitude and behaviour is similar to that
found elsewhere [30].

Using the form factors in Fig. 8B, one obtains the branch-
ing fractions listed in Table 1B - Row 14. In the absence of
data, we note that the SCI result for the eνe final state is con-
sistent with the values in Refs. [16,25,30], which average
to 19.8(2.9)0/00. Including the SCI prediction in the average,
one obtains 19.3(2.6)0/00. Regarding the ratio of branching
fractions, Ref. [30] reports 0.93, matching the SCI predic-
tion.

6 Environment sensitivity

Considering Nature’s two mass generating mechanisms, it
is worth considering the evolution of the form factors with
increasing mass of the valence-quark that is a spectator to
the transition; namely, as the current-mass contributed by
the Higgs boson becomes a more significant part of the final-
state meson’s mass when compared with the EHM compo-

B

A

Fig. 9 SCI predictions for the transition form factor spectator current-
mass dependence at maximum-recoil, labelled by the transition class
defined when opening Sect. 6.A A2(0) – red 5-point stars; V (0) – green
6-points stars – 1

2 V (0) is plotted in the b-quark column for Vcd , Vcs .
Panel B. A1(0) – purple down-triangles; A0(0) – blue up-triangles;
f+(0) in analogous pseudoscalar-to-pseudoscalar transitions [6] – teal
circles

nent. Restricted to the {u, d, s} quark sector, such effects
express SU(3) flavour symmetry violation. Four classes can
be defined for the semileptonic decays considered herein.

(I) D → ρ, Ds → K ∗, Bc → B∗: c → d transition with
spectator quark, respectively, u, s, b. These are analogues
of the pseudoscalar-to-pseudoscalar transitions D → π ,
Ds → K , Bc → B.

(II) D → K ∗, Ds → φ, Bc → B∗
s : c → s transition with

spectator quark, respectively, u, s, b; and analogues of
D → K , Bc → Bs .

(III) B → ρ, Bs → K ∗, Bc → D∗: b → u transition with
spectator quark, respectively, u, s, c; and analogues of
B → π , Bs → K .

(IV) B → D∗, Bs → D∗
s , Bc → J/ψ : b → c transition with

spectator quark, respectively, u, s, c; and analogues of
B → D, Bs → Ds , Bc → ηc.

The SCI predictions split into two fairly distinct groups:
Fig. 9A displays the results for A2(0), V (0); and Fig. 9B, the
values for A1(0), A0(0), and f+(0), the last being the vec-
tor form factor in analogous pseudoscalar-to-pseudoscalar
transitions. Regarding Fig. 9A, V (0) typically grows as the

123



Eur. Phys. J. C (2022) 82 :889 Page 11 of 18 889

spectator mass increases. A2(0) follows a similar pattern for
c → d, s transitions – Classes (I) and (II), but this is reversed
for b → u, c – (III) and (IV). Turning to Fig. 9B, the gen-
eral trend is for the zero-recoil value of each form factor to
decrease with increasing spectator mass. In the pseudoscalar-
to-pseudoscalar case, the pattern in Fig. 9B can be understood
by recalling that f+(t) is kindred to an elastic form factor
when the current-quark masses in the initial- and final-states
are similar. No link to an elastic form factor can be made in
any other case drawn in Fig. 9, so the behaviour expresses
novel features of EHM-HB interference in electroweak tran-
sitions.

Restricting our considerations to cases with u/d, s specta-
tor quarks, the median absolute relative difference between
maximum recoil values is ard = 7.2% and the associated
mean is ard = 6.5(4.4)%. Working with available informa-
tion on leptonic decay constants – Table 2, the analogous
results are ard = 19% and ard = 17(6)%, viz. 2.7-times
larger.

Notably, the Ward–Green–Takahashi identities satisfied
by the two pieces of the weak transition vertex – Ref. [6,
Eq. (29)] and Eq. (A.21) – involve differences and sums of
quark current-masses multiplied by vertices whose structure
can be greatly affected by EHM. Consequently, one should
anticipate complex interference effects. The SCI predictions
can be checked, e.g., by expanding the array of transitions
studied in Ref. [49] and extending that analysis to vector-
meson final-states.

7 Summary and perspective

Working with a symmetry-preserving regularisation of a
vector×vector contact interaction (SCI), we presented a
unified treatment of twelve independent pseudoscalar-to-
vector meson (P → V ) semileptonic transitions: D → ρ,
D(s) → K ∗, Ds → φ, B → ρ, Bs → K ∗, B(s) → D∗

(s),
Bc → B∗

(s), J/ψ, D∗, each with four form factors; and the
masses and leptonic decay constants of twenty-three mesons
that are either involved in the transitions or contribute in a
material way to the weak transition vertex. In completing this
analysis, we simultaneously unified P → V semileptonic
transitions with ten kindred pseudoscalar-to-pseudoscalar
(P → P) transitions, which were calculated elsewhere [6]
using precisely the same framework; and thereby finalised a
comprehensive, coherent analysis of the semileptonic decays
of heavy+heavy and heavy+light pseudoscalar mesons.

Our implementation of the SCI has four parameters, which
are values of a mass-dependent quark + antiquark coupling
strength chosen at the current-masses of the u/d, s, c, b
quarks. The merits of the approach are its algebraic simplic-
ity; paucity of parameters; and simultaneous applicability to
a wide variety of systems and processes, sometimes involv-

ing large disparities in mass-scales between initial and final
states.

Concerning meson masses, which are long-wavelength
properties of the systems, the agreement between SCI pre-
dictions and experiment is good (Table 2). The comparison
yields a median absolute relative difference ard = 2% and
mean ard = 4%. Including the leptonic decay constants,
ard = 3% and ard = 10%. Since leptonic decay constants
are dominated by ultraviolet momenta, they are more of a
challenge for the SCI.

Concerning the t dependence of the P → V transition
form factors, wherever experiment or solid theory results
are available for comparison, the SCI results compare well
(Sects. 4, 5). The stiffness found with P → P transitions
is largely avoided in P → V form factors because the SCI
does not support a tensor term in the vector-meson Bethe–
Salpeter amplitude when the quark+antiquark scattering ker-
nel is treated in rainbow-ladder truncation. The least satis-
factory comparisons are found with B → ρ and Bs → K ∗;
but owing to the huge disparity between mass-scales of the
initial and final states, these transitions present difficulties for
all available methods. In every other case, our analysis sug-
gests that the SCI branching fraction predictions should be
a sound guide. Of special interest are the SCI results for the
branching fraction ratios R(D(∗)

(s) ), R(J/ψ), R(ηc), whose
values are key tests of lepton universality in Nature’s weak
interactions. In all cases, the SCI values agree with accepted
Standard Model predictions.

Working with B(s) → D∗
(s) transitions, we provided pre-

dictions for each of the functions that evolves into the univer-
sal Isgur–Wise function in the heavy-quark limit (Sect. 5.3)
and combined those results with the analogous functions in
B(s) → D(s) transitions (Fig. 6). The SCI predictions for
zero-recoil values are commensurate with lattice-QCD cal-
culations and the functional form matches the curve inferred
from experiment. Recapitulating an observation from Ref.
[6], when compared with B → D data from the Belle Col-
laboration, the SCI curve produces χ2/datum= 1.9.

Since the SCI delivers a qualitatively and semiquanti-
tatively reliable expression of both Nature’s mass gener-
ating mechanisms, i.e., emergent hadron mass and Higgs
boson effects, it enables a comparison between the impacts
of these effects on the entire array of electroweak transi-
tions (Fig. 9). Exploiting this and focusing on the evolu-
tion of the maximum-recoil value of each form factor as the
mass of the spectator quark, mspec, is varied, we found that
some patterns emerged. For instance, V (0) tends to increase
as mspec increases, whereas A1,0(0), f+(0) decrease; and
A2(0) increases for c → d, s transitions, but decreases for
b → u, c. These responses are expressions of the information
encoded in the Ward–Green–Takahashi identities satisfied by
the two pieces of each weak transition vertex.
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Our analysis has highlighted the need for an extension of
studies using symmetry-preserving formulations of realistic
interactions in the analysis of semileptonic transitions involv-
ing heavy+heavy and heavy+light pseudoscalar mesons in
the initial state. There is a scarcity of such theory in this
area, especially for transitions with a vector meson in the
final state. Work is therefore underway to adapt the frame-
work exploited in Refs. [49] for use in treating Bc → B(s),
Bc → D, B(s) → D(s), and all the transitions considered
herein, with the exception of the J/ψ final state, which was
studied in Ref. [48].
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Appendix A: Contact interaction

The keystone for the continuum meson bound-state problem
is the quark+antiquark scattering kernel; and in RL trunca-
tion, it can be written (k = p1 − p′

1 = p′
2 − p2):

K α1α
′
1,α2α′

2
= Gμν(k)[iγμ]α1α

′
1
[iγν]α2α

′
2
, (A.1a)

Gμν(k) = G̃(k2)T k
μν . (A.1b)

The defining quantity is G̃. After roughly twenty years of
study, it is now known that, owing to the emergence of a
gluon mass-scale in QCD [7,92–94], G̃ is nonzero and finite
at infrared momenta; hence, can be written as follows:

G̃(k2)
k2�0= 4παIR

m2
G

. (A.2)

In QCD [94]:mG ≈ 0.5 GeV, αIR ≈ π . Following Ref. [66],
we retain this value of mG and, profiting from the fact that a
SCI cannot support relative momentum between bound-state
constituents, simplify the tensor structure in Eq. (A.1):

K CI
α1α

′
1,α2α′

2
= 4παIR

m2
G

[iγμ]α1α
′
1
[iγμ]α2α

′
2
. (A.3)

A rudimentary form of confinement is implemented in the
SCI by including an infrared regularisation scale, Λir , when
defining all integral equations relevant to bound-state prob-
lems [95]. This artifice excises momenta below Λir , thereby
eliminating quark+antiquark production thresholds [96]. The
usual choice is Λir = 0.24 GeV= 1/[0.82 fm] [57], i.e.,
which relates to a length scale that is roughly the same as the
proton radii [97].

All integrals appearing in SCI bound-state equations
require ultraviolet regularisation in a step that breaks the link
between infrared and ultraviolet scales that is characteristic
of QCD. The associated ultraviolet mass-scales, Λuv, thereby
become physical parameters, which may be interpreted
as upper bounds on the domains whereupon distributions
within the associated systems are effectively momentum-
independent. For instance, the ρ-meson is larger in size than
the B∗-meson; hence, one should expect 1/Λ

ρ
uv > 1/ΛB∗

uv .
As explained elsewhere [6,66,98] and sketched below, this
observation leads to a completion of the SCI through intro-
duction of a scale-dependent coupling.

For a quark of flavour f , the SCI gap equation is

S−1
f (p) = iγ · p + m f

+ 16π

3

αIR

m2
G

∫
d4q

(2π)4 γμS f (q)γμ , (A.4)

where m f is the associated quark current-mass. Using a
Poincaré-invariant regularisation, the solution is

S−1
f (p) = iγ · p + M f , (A.5)

with M f , the dynamically generated dressed-quark mass,
obtained by solving

M f = m f + M f
4αIR

3πm2
G

Ciu
0 (M2

f ) , (A.6)

where (τ 2
uv = 1/Λ2

uv, τ 2
ir = 1/Λ2

ir)

Ciu
0 (σ ) =

∫ ∞

0
ds s

∫ τ 2
ir

τ 2
uv

dτ e−τ(s+σ)

= σ
[
Γ (−1, σ τ 2

uv) − Γ (−1, σ τ 2
ir)

]
. (A.7)

Here, the “iu” superscript stresses that the function depends
on both the infrared and ultraviolet cutoffs and Γ (α, y) is
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the incomplete gamma-function. In general, functions of the
following type arise in solving SCI bound-state equations:

Ciu
n (σ ) = Γ (n − 1, σ τ 2

uv) − Γ (n − 1, σ τ 2
ir) , (A.8)

Ciu
n (σ ) = σCiu

n (σ ), n ∈ Z
≥.

Pseudoscalar mesons are generated as quark+antiquark
bound-states, f ḡ. They are described by a Bethe-Salpeter
amplitude, whose SCI form is [6]:

ΓP (Q) = γ5

[

i EP (Q) + 1

2M fg
γ · QFP(Q)

]

, (A.9)

M fg = M f Mg/[M f + Mg], Q is the bound-state’s total
momentum, Q2 = −m2

P , mP is the meson’s mass. Addi-
tional details concerning these states as described by the SCI
are provided elsewhere [6, Sec. 2]. It is nevertheless useful
to specify the kernel:

KP
EE =

∫ 1

0
dα

{

Ciu
0 (ω f g(α, Q2))

+
[

M f Mg − αα̂Q2 − ω f g(α, Q2)

]

×Ciu
1 (ω f g(α, Q2))

}

, (A.10a)

KP
EF = Q2

2M fg

∫ 1

0
dα

[

α̂M f + αMg

]

×Ciu
1 (ω f g(α, Q2)), (A.10b)

KP
FE = 2M2

f g

Q2 KP
EF , (A.10c)

KP
FF = −1

2

∫ 1

0
dα

[

M f Mg + α̂M2
f + αM2

g

]

×Ciu
1 (ω f g(α, Q2)) , (A.10d)

where (α̂ = 1 − α)

ω f g(α, Q2) = M2
f α̂ + αM2

g + αα̂Q2 . (A.11)

In arriving at the kernel in Eq. (A.10), we followed Ref.
[6] in using the SCI identity

0 =
∫ 1

0
dα

[
Ciu

0 (w f g) + Ciu
1 (w f g)

]
, (A.12)

which is a consequence of requiring that there are no
quadratic or logarithmic divergences in the treatment of inte-
gral equations; namely, that shifting integration variables is
permitted [99]. This condition is kindred to those imple-
mented via dimensional-regularisation.

The SCI Bethe–Slpeter amplitude for a vector meson with
polarisation λ is [57]:

Γ ε
V (Q; λ) := ελ · ΓV (Q; λ) = ελ · γ EV (Q) . (A.13)

It is normalised canonically by rescaling such that

1 = d

dQ2 ΠV (Z , Q)

∣
∣
∣
∣
Z=Q

, (A.14)

where, with the trace over spinor indices and t+ = t + Q:

ΠV (Z , Q) = 2Nc
1
3

∑

λ

trD

∫
d4t

(2π)4

× Γ ε
V (−Z; λ)S f (t+) Γ ε

V (Z; λ) Sg(t) . (A.15)

In terms of the appropriate canonically normalised Bethe-
Salpeter amplitudes, pseudoscalar and vector meson leptonic
decay constants are given by the following formulae:

fP = Nc

4π2

1

M fg

[
EPKP

FE + FPKP
FF

]
Q2=−m2

P
, (A.16)

fV = −EV
3Ncm2

G

8πmV
KV (Q2 = −m2

V ) , (A.17)

where

KV (Q2) = − 2αIR

3πm2
G

∫ 1

0
dα

[
M f Mg − M2

f α̂

− M2
gα − 2αα̂Q2]Ciu

1 (w f ḡ) . (A.18)

With our normalisation, the empirical value of the pion’s
leptonic decay constant is fπ = 0.092 GeV [70].

Improving upon the SCI introduced in Ref. [57],
Ref. [6] kept all light-quark parameter values therein but
determined the s-quark current mass,ms , and K -meson ultra-
violet cutoff, ΛK

uv, through a least-squares fit to measured
values of mK , fK whilst imposing the relation:

αIR(ΛK
uv)[ΛK

uv]2 ln
ΛK

uv

Λir
= αIR(Λπ

uv)[Λπ
uv]2 ln

Λπ
uv

Λir
. (A.19)

This procedure eliminated one parameter by imposing the
physical constraint that any increase in the momentum-
space extent of a hadron wave function should be matched
by a reduction in the effective coupling between the con-
stituents. One useful consequence is that critical over-binding
is avoided. The procedure was repeated for the c-quark/D-
meson and b̄-quark/B-meson. The complete set of results is
collected in Table 2.

The evolution of Λuv with mP reported in Table 2 is
described by the following interpolation (s = m2

P ):

Λuv(s) = 0.306 ln[19.2 + (s/m2
π − 1)/2.70] . (A.20)

Using this formula, then the associated coupling for a
meson H is obtained using Eq. (A.19) with [ΛK

uv]2 → m2
H =

s. The properties of any meson for which a mass estimate
is available can subsequently be calculated by solving the
associated Bethe–Salpeter equation with the thus prescribed
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Table 2 Couplings, αIR/π , ultraviolet cutoffs, Λuv, and current-quark
masses, m f , f = u/d, s, c, b, that deliver a good description of
flavoured pseudoscalar meson properties, along with the dressed-quark
masses, M , and pseudoscalar meson masses, mP , and leptonic decay
constants, fP , they produce; all obtained with mG = 0.5 GeV, Λir =

0.24 GeV. Empirically, at a sensible level of precision [70]: mπ = 0.14,
fπ = 0.092; mK = 0.50, fK = 0.11; mD = 1.87, fD = 0.15;
mB = 5.30, fB = 0.14. (We assume isospin symmetry and list dimen-
sioned quantities in GeV.)

quark αIR/π Λuv m M mP fP

π l = u/d 0.36 0.91 0.0068u/d 0.37 0.14 0.10

K s̄ 0.33 0.94 0.16s 0.53 0.50 0.11

D c 0.12 1.36 1.39c 1.57 1.87 0.15

B b̄ 0.052 1.92 4.81b 4.81 5.30 0.14

cutoff and coupling, using the dressed-quark propagators
already determined. This leads to the pseudoscalar and vector
meson masses and decay constants listed in Table 3. Calcu-
lated axial-vector meson masses are also reported in Table 3,
but the leptonic decay constants are omitted because empir-
ical comparisons are unavailable. Kindred SCI predictions
for these quantities are reported elsewhere [66, Table 1].

Considering the absolute value of the relative differences
between the SCI results in Table 2 and listed comparison
values, the median is 3.3% and the mean is 7.6% with a
standard deviation of 10%. A more detailed discussion is
presented in connection with Fig. 1 in Ref. [6]. Evidently, as
noted therein, the SCI is not a precision tool for electroweak
physics; but when employed judiciously, it is qualitatively
reliable and usually a good quantitative guide.

Turning now to the electroweak vertex in Eq. (7), a detailed
discussion of the vector part is contained in Ref. [6, Sec. 3.2].
Herein, therefore, we describe our SCI treatment of the axial-
vector part. In paralleling that of the vector vertex, it effec-
tively serves to recapitulate that analysis. We continue to use
the cd transition as our exemplar.

The axial-vector component of the cd weak transition ver-
tex satisfies a Ward–Green–Takahashi identity:

QμA cd
μ (Q) + i(mc + md)P cd(Q)

= S−1
c (t + Q)iγ5 + iγ5S

−1
d (t) , (A.21)

where Pcd(Q) is an analogous Dirac-pseudoscalar vertex. As
with all n-point functions, caution must be exercised when
formulating the SCI solution procedure for Acd

μ (Q), Pcd(Q).
The two vertices in Eq. (A.21) satisfy inhomogeneous

Bethe–Salpeter equations, viz. in RL truncation:

A cd
μ (Q) = γ5γμ − 16

3

παIR

m2
G

×
∫

d4t

(2π)4γαSc(t + Q)Acd
μ (Q)Sd(t)γα ,

(A.22a)

P cd(Q) = γ5 − 16

3

παIR

m2
G

×
∫

d4t

(2π)4 γαSc(t + Q)Pcd(Q)Sd(t)γα .

(A.22b)

So long as the regularisation scheme is symmetry preserving,
then the solutions are

A cd
μ (Q) = γ5γ

T
μ Fcd

A (Q2)

+ γ5γ
L
μ F̃cd

A (Q2) + i Qμγ5E
cd
A (Q2) , (A.23a)

iP cd(Q) = iγ5E
cd
P (Q2) + γ5γμ

Qμ

2Mcd
Fcd
P (Q2) , (A.23b)

where Qμγ T
μ = 0, γ T

μ + γ L
μ = γμ.

Considering Eq. (A.22b), one readily obtains the follow-
ing algebraic equation for the two terms in the pseudoscalar
vertex:
[
Ecd
P (Q2)

Fcd
P (Q2)

]

= [I − K]−1
[

1
0

]

, (A.24a)

I − K =
[

1 0
0 1

]

− 4αIR

3πm2
G

[
KP

EE KP
EF

KP
FE KP

FF

]

, (A.24b)

where the kernel elements are given in Eq. (A.10) with f →
d, g → c. As promised, straightforward calculation reveals a
pole in [I − K]−1 at the mass of the pseudoscalar D-meson;
hence, so does the complete cd electroweak vertex.

Working with Eqs. (A.22a), (A.23a) and continuing via
analogy with Ref. [6, Sec. 3.2], one finds:

Fcd
A (Q2) = 1

1 + Kcd
A (Q2)

,

Kcd
A (Q2) = 2αIR

3πm2
G

∫ 1

0
dα

[
MdMc + M2

d α̂ (A.25)

+M2
c α + 2αα̂Q2]Ciu

1 (wdc) . (A.26)
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Table 3 Calculated masses (column 1), Bethe-Salpeter amplitudes
(columns 3 and 4), and decay constants (column 5) for a representa-
tive selection of mesons. Measured masses (column 2) from Ref. [70];
entries marked by “∗” in this column from Ref. [100]. Leptonic decay

constants (column 6): measured values, where known, from Ref. [70];
and others, marked with “∗”, drawn from lQCD studies [70,101–104].
(Dimensioned quantities in GeV. Underlined entries from Table 2.)

J P Meson mCI me/l E F f CI f e/l

0− π(ud̄) 0.14 0.14 3.59 0.47 0.10 0.092

K (us̄) 0.50 0.50 3.70 0.55 0.11 0.11

D(uc̄) 1.87 1.87 3.25 0.39 0.15 0.15 (1)

Ds(sc̄) 1.96 1.97 3.45 0.54 0.16 0.18

ηc(cc̄) 2.90 2.98 3.74 0.90 0.20 0.24 (1)

B(ub̄) 5.30 5.30 2.98 0.18 0.14 0.13∗

Bs(sb̄) 5.38 5.37 3.26 0.27 0.16 0.16∗

Bc(cb̄) 6.16 6.28 4.25 0.79 0.21 0.30∗

ηb(bb̄) 9.30 9.40 4.54 1.21 0.41 0.41 (1)

1− ρ(ud̄) 0.93 0.78 1.53 0.13 0.15

K ∗(us̄) 1.10 0.89 1.31 0.15 0.16

φ(ss̄) 1.22 1.02 1.31 0.15 0.17

D∗(uc̄) 2.09 2.01 1.25 0.15 0.16 (1)∗

D∗
s (sc̄) 2.18 2.11 1.30 0.15 0.19 (1)∗

J/ψ(cc̄) 3.07 3.10 1.54 0.18 0.29

B∗(ub̄) 5.36 5.33 1.26 0.13 0.13∗

B∗
s (sb̄) 5.45 5.42 1.34 0.14 0.15∗

B∗
c (cb̄) 6.24 6.33∗ 1.97 0.20 0.30 (1)∗

1+ D1(uc̄) 2.27 2.42 0.77

Ds1(sc̄) 2.39 2.46 0.71

B1(ub̄) 5.50 5.73 0.80

Bs1(sb̄) 5.62 5.83 0.72

Bc1(cb̄) 6.54 6.74∗ 0.48

Calculation reveals that Fcd
A (Q2) exhibits a pole at the SCI

mass of the axial-vector D1-meson. Furthermore,

[
F̃cd
A (Q2)

Ecd
A (Q2)

]

=
[
I − K̃

]−1
[

1
0

]

, (A.27a)

I − K̃ =
[

1 0
0 1

]

− 4αIR

3πm2
G

[
KP

FF κKP
FE

1
κ
KP

EF KP
EE

]

, (A.27b)

where κ = Q2/[2Mcd ] and, again, the basic kernel elements
are given in Eq. (A.10) with f → d, g → c. A little algebra
now reveals that [I − K̃]−1 also exhibits a pole at the mass
of the pseudoscalar D-meson.

Return now to Eq. (A.21). This Ward–Green–Takahashi
identity entails

F̃cd
A (Q2) = 1 − mc + md

2Mcd
Fcd
P (Q2) , (A.28a)

Q2Ecd
A (Q2) = Mc + Md − (mc + md)E

cd
P (Q2) . (A.28b)

These identities are guaranteed so long as the regularisation
ensures there are no logarithmic or quadratic divergences. As
noted above, this is typically achieved by using Eq. (A.12).

It is worth remarking that when refocused on the axial-
vector vertex relevant for neutron β-decay and working in
the chiral limit, the analogue of Eq. (A.28b) entails that the
du transition vertex exhibits a pion pole at Q2 = 0 whose
residue is intimately connected with the dressed-quark mass.
This has long been a known feature of QCD [105]

Testing Eq. (A.28a), we find it satisfied with an absolute
relative discrepancy of 0.5(0.6)%. Turning to
Eq. (A.28b), the result is 2.3(1.7)%. The nonzero values arise
because whilst Eq. (A.12) is sufficient to guarantee the iden-
tities when the couplings and cutoffs are the same for both
quarks connected to the vertex, it requires minor adjustments
when these quantities are allowed to be flavour dependent,
Eqs. (A.19), (A.20). Nonetheless, all mismatches are small
and well within the standard SCI error; hence, have no dis-
cernible impact on our SCI predictions.
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