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We review a selection of recent developments in the application of ideas
of string theory to heavy ion physics. Our topics divide naturally into equilib-
rium and non-equilibrium phenomena. On the non-equilibrium side, we discuss
generalizations of Bjorken flow, numerical simulations of black hole formation in
asymptotically anti-de Sitter geometries, equilibration in the dual field theory,
and hard probes. On the equilibrium side, we summarize improved holographic
QCD, extraction of transport coefficients, inclusion of chemical potentials, and
approaches to the phase diagram. We close with some possible directions for
future research.
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1 Introduction

1.1 Gauge-gravity duality and the strong force

Quantum chromodynamics (QCD) has been understood to be the correct theory of the
strong interaction for four decades. However, because the theory is strongly coupled
at low energies, many strong interaction phenomena remain difficult to successfully
characterize theoretically. Lattice QCD is a powerful method that has had numerous
successes, but certain kinds of phenomena, notably real-time and finite density physics,
are not so easily accessible using lattice techniques. The physics of heavy ion collisions
is both real-time and apparently strongly coupled, and as a result alternate theoretical
tools to help in understanding heavy ion physics are welcome.

The idea that QCD might simplify in the limit of a large number of colors Nc is
almost as old as the theory itself [1], and has led to significant conceptual progress.
Non-planar diagrams drop out of perturbative calculations when the ’t Hooft coupling
λ ≡ g2Nc is kept finite, and meson and glueball states become stable as the large-Nc

limit is approached. Calculations of real-time processes remained difficult to address
even in the large-Nc context until a fundamental breakthrough took place in 1997, with
the formulation of the AdS/CFT, or gauge/gravity, correspondence [2, 3, 4]; for reviews
see for example [5, 6, 7, 8]. Motivated from calculations in string theory involving the
dynamics of D-branes, the correspondence states that certain non-Abelian gauge theo-
ries can be described in a wholly different way, as theories of quantum gravity living in
a higher-dimensional spacetime, in particular a spacetime with the asymptotic behav-
ior of anti-de Sitter space (AdS). The AdS/CFT correspondence provides a concrete
realization of the holographic principle, the idea — motivated by the scaling of the
entropy of black holes as the surface area rather than the volume — that quantum
gravitating theories are in some sense hugely redundant, and can be described by a
non-gravitational theory in fewer dimensions ([9, 10]; for a review see [11]).

The AdS/CFT correspondence relies essentially on the asymptotic properties of
anti-de Sitter space. In AdS space, massive particles must stay at finite spatial values
(the “bulk”) but massless trajectories can reach spatial infinity, called the “boundary”.
As a result, describing physics in an asymptotically AdS space requires more than
ordinary initial conditions: it requires boundary conditions as well, fixing the behavior
of the various dynamical fields at infinity. The geometry of the boundary has one less
dimension than the bulk,1 and is identified with the space on which the dual quantum
field theory lives. The precise statement of the AdS/CFT correspondence is then that
for every field φ(r, ~x) in the bulk, there is a an associated “dual” operator Oφ(~x) in the
quantum field theory, and that the suitably-defined boundary conditions φ0(~x) on the
field φ correspond to sources in the Lagrangian for the dual operator. Schematically,
this may be thought of as an equality between path integrals:

Zgrav[φ→ φ0] = 〈ei
∫
φ0O〉QFT . (1)

As part of the correspondence, an identification exists between the isometries of the
geometry of the gravity theory, and the symmetries of the dual quantum field theory.
Five-dimensional anti-de Sitter space may be described by the metric

ds2 =
r2

L2

(

−dt2 + d~x2
)

+
L2

r2
dr2 , (2)

1Neglecting additional compact space factors, such as the five-sphere in AdS5 × S5.

3



5

t, x1

x , x32

z

Thermal N=4 SYM

3,1

AdS  −Schwarzschild

R

horizon

Figure 1: The AdS5-Schwarzschild geometry is dual to a thermal state of N = 4 super-
Yang-Mills theory, which can be understood as living on the boundary. (Color online.)

where slices of constant radial coordinate r are four-dimensional Minkowski space, with
the boundary at r → ∞, and L is the radius of curvature, related to the number of
degrees of freedom in the dual field theory.2 The AdS5 geometry has the isometry
group SO(4, 2), which is also the conformal group in four spacetime dimensions; thus
the dual quantum field theory has no scale, and is a conformal field theory (CFT).
The most celebrated of the original dualities discovered by Maldacena is the duality
between type IIB string theory living in the spacetime AdS5 × S5 with Nc units of
flux through the five-sphere S5, and the maximally supersymmetric four-dimensional
gauge theory N = 4 Super-Yang-Mills with gauge group SU(Nc), which is indeed an
exactly conformal theory. The isometry realizing overall scale transformations in AdS
corresponds to a translation in the fifth (radial) direction along with an overall rescal-
ing of the coordinates shared with the field theory. Consequently the fifth, holographic
direction can be identified with a change of scale, with the region near the boundary
corresponding to the high energy (ultraviolet) limit and the region far from the bound-
ary encoding the low energy (infrared) physics; this is realized by the redshift factor
r2/L2 weighting the Minkowski metric in (2). Other gauge symmetries of the gravity
side are mapped to globally conserved currents in the field theory.

Natural generalizations of the original AdS/CFT relation are possible, notably in-
troducing features that break conformal symmetry, producing a duality with a non-
conformal field theory. One notable way to break conformal symmetry and introduce
a scale is to generalize to the AdS-Schwarzschild solution, a black hole in anti-de Sitter
space:

ds2 =
r2

L2

(

−h(r)dt2 + d~x2
)

+
L2

r2h(r)
dr2 , h(r) ≡ 1− r40

r4
, (3)

interpreted as being dual to a thermal state of the dual field theory [4, 12]. The surface
gravity and surface area of the black hole horizon are identified with the temperature
and entropy density of the QFT, providing a concrete realization of the thermodynamic
properties of the black hole.

In addition to the gravity-side flux parameterNc being identified with the number of
colors of the gauge theory, the string coupling gs is identified with the Yang-Mills cou-
pling g2YM. The strongest statement of the duality is that the two systems are equivalent

2When the dual is N = 4 super-Yang-Mills, the radius of curvature is related to the number of
colors by L3/κ2 = (Nc/2π)

2, where κ2 = 8πG5 and G5 is the five-dimensional gravitational coupling.
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for all values of the two parameters. However, over generic parts of parameter space,
the string theory coupling is not small, and when Nc is not large, the characteristic
size of string excitations is comparable to the curvature scale; both mean that stringy
and quantum gravity corrections, which are in general not well-understood, must be
taken into account. However, in the limit of large Nc and large ’t Hooft coupling,
string theory reduces to smooth, classical gravity, and these corrections become unim-
portant. Thus precisely for this limit, when the field theory is strongly coupled and at
large Nc, the gravity description becomes tractable. This is the source of the power of
the AdS/CFT correspondence: difficult strongly coupled large-Nc gauge theories are
described by relatively simple classical gravity.

The utility of AdS/CFT took another step forward with the study of transport
coefficients and other real-time phenomena: see for example [13, 14]. It was found
that across a wide swath of gravity theories, the shear viscosity over entropy density
is constant and small, η/s = 1/4π [13, 15, 16]. When the results from the Relativistic
Heavy Ion Collider (RHIC) indicated that the quark-gluon plasma can be understood
as a near-perfect fluid with η/s numerically close to the AdS/CFT result (see below
for a review), the idea that holography could provide a useful, experimentally testable
model for heavy ion collisions took root.

We believe that the correspondence between AdS5 × S5 and N = 4 Super-Yang-
Mills is exact; however, N = 4 Super-Yang-Mills is not QCD. It is at best a cousin,
sharing the features of being an SU(Nc) non-Abelian gauge theory coupled to fermions,
but adding the properties of adjoint matter, scalars, conformality and supersymmetry
not shared by the theory of the strong force. Nonzero temperature breaks conformality
and supersymmetry, bringing the theories closer together, but they remain distinct.
The ideal would be to formulate via string theory a gravity dual for QCD itself; even
in the large-Nc limit this would be monumentally useful. However, prospects for for-
mulating such a dual seem unlikely. Nevertheless, since no perfect tractable theoretical
framework for studying all aspects of heavy ion physics exists, it is still of natural
interest to discover just how useful gauge/gravity calculations can be.

There are several approaches for how to model QCD using AdS/CFT. One is to use
N = 4 Super-Yang-Mills itself or one of its related cousins. QCD at higher energies
becomes more closely conformal; it is possible that N = 4 Super-Yang-Mills may
provide a description of certain aspects of the quark-gluon plasma that is at least
approximately realistic. It is also possible to search for quantities like η/s that are
universal over a wide class of accessible theories, and attempt to probe whether general
lessons for the properties of strongly coupled non-Abelian gauge theories can be derived
from these that may also apply to QCD. Lastly, it is possible to “engineer” gravity
duals that do not descend directly from string theory; the duality map is not precisely
known in these so-called “bottom-up” models, but certain aspects such as symmetries
and thermodynamics can be built in by the theorist constructing them, in the hopes
of matching certain aspects of QCD as closely as possible. All of these techniques will
be described in this review.

1.2 Heavy ion collisions, QCD at finite density, and the scope
of this review

Before continuing we wish to summarize the dynamics and observables in a heavy
ion collision, which will motivate the AdS/CFT computations described in the rest
of this work. For a fairly complete pre-LHC summary of heavy ion collisions, see
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Refs. [17, 18, 19, 20]. For a post-LHC review see Ref. [21], and especially Ref. [22] for
an up-to-date account of the observed flow that provides the primary motivation for
this review. To our knowledge, there is one available review of jet-quenching in the
LHC era [23], in addition to conference the summaries [24, 25].

In a heavy ion collision the initial nuclei pass through each other leaving behind
an excited non-equilibrium state of matter. There is compelling experimental evidence
that this non-equilibrium state evolves and thermalizes, and is reasonably described
by viscous hydrodynamics for the bulk of the evolution. Indeed, the hydrodynamic
modeling of heavy ion collisions has become remarkably sophisticated. On an event
by event basis the azimuthal distribution of particles around the beam pipe can be
expanded in a Fourier series

dN

dφp

=
N

2π

(

1 + 2
∑

n

vn cos(n(φp −Ψn))

)

, (4)

where the phases and magnitudes, Ψn and vn, fluctuate from event to event. The
observed rms values of the harmonic coefficients,

√

〈v2n〉, are significantly too large to
be explained by 1/N statistical fluctuations. The heavy ion community has largely
accepted that these fluctuations arise from event-by-event spatial inhomogeneities in
the initial energy density. The associated pressure gradients then induce collective flow
converting the spatial anisotropy to a momentum space anisotropy, which is ultimately
measured. Hydrodynamics simulations account for the rms magnitudes

√

〈v2n〉 [26, 27,
28, 29], the fluctuations in vn (i.e. P (vn)) [30, 31, 32], and the angular correlations
between the harmonics of different orders (i.e. 〈cos(5Ψ5 − 2Ψ2 − 3Ψ3)〉) [33, 34, 35, 36].
Further, the harmonic flows depend on transverse momentum, the centrality of the
collision, the particle mass, and the beam energy in characteristic ways [37]. All of
these features are reproduced qualitatively by viscous hydrodynamics, and striking
quantitative agreement is found for most observables. This overall pattern of agreement
is reached if η/s is in the range 0.08 <∼ η/s <∼ 0.4 [22], though it is significantly more
difficult to place a lower bound [27].

Clearly, one of the open problems in heavy ion collisions is to provide a coher-
ent theoretical explanation for the transition to hydrodynamics. Gauge-string duality
should be a useful starting point for addressing this transition because it provides a
tractable framework which interpolates smoothly between non-thermal physics in the
ultraviolet and hydrodynamics in the infrared. Using the correspondence the equili-
bration and subsequent hydrodynamic expansion of the system is studied in various
ways in Section 2 and Section 3.

In Section 2 we show that for boost invariant collisions of conformal field theories
much can be said about the initial collision and the hydrodynamics expansion. The
power of conformal symmetry became clear through gauge-gravity duality where the
conformal group is manifest in the isometries of AdS5. In Section 2.1 we will consider
an AdS/CFT model for colliding nuclei, based on a dual collision of point particles
in the bulk, which historically elucidated the consequences of conformal symmetry for
high energy collisions. Here we will show how the conformal symmetry of this model
can be used to determine the marginally trapped surface, which provides a lower bound
on the entropy produced during the collision. With a clear understanding of the roles
of conformal symmetry and boost invariance, an exact hydrodynamic solution for a
boost invariant flow with a non-trivial radial profile was found in Ref. [38], which is
very useful to the heavy ion community. Perturbations to this flow can be classified
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according to the symmetry properties of the background fluid, and this provides an
analytical framework for studying how the inhomogeneities in the initial state are
transformed into collective flow, and how viscosity affects the resulting vn and their
correlations.

Gauge-gravity duality can also be used to study the thermalization process more
directly. In Section 3, we review several calculations which investigate how specific
initial states of varying degrees of complexity thermalize. This involves numerically
determining the evolution of the gravitational fields in order to see how the fluid-gravity
correspondence emerges at late times. Since this is a challenging numerical enterprise,
we have provided a short review of numerical relativity in Section 3.1. The results of
these methods can be used to understand the transition to hydrodynamics from an
arbitrary initial state, and the effect of the pre-equilibrium phase on the subsequent
evolution. This work is described in Section 3.2.

The equilibration of the system can also be studied by examining the two-point
functions of the system. Indeed, this is not academic as two-point functions control
the rate of photon emission (current-current correlators) and heavy quark diffusion
(force-force correlators). As both of these quantities have active experimental programs
[39, 40, 41, 42], it is important to quantify the effect of the initial non-equilibrium
phase on these observables. This is done in Section 3.3 where the emission rate of
non-equilibrium photons is studied with gauge-gravity duality.

Most of these studies of non-equilibrium phenomena rely on the original duality
between supergravity on AdS5 and N = 4 Super Yang-Mills theory. We will describe
several efforts to make the underlying field theory look more like QCD. To introduce
such “bottom-up” models, in Section 4 we will first provide a brief technical account
of black brane geometries and their thermodynamics, the calculation of transport co-
efficients, and the energy loss of energetic particles. This section explains how a scalar
coupled to gravity in anti-de Sitter space breaks conformal invariance and affects the
calculation of transport coefficients. An example of this type of theory is improved
holographic QCD, which we describe in section 5. The parameters of the model can
be fit to lattice data on the equation of state, and then many other quantities can be
computed such as glueball masses, the bulk viscosity, and the drag force of a heavy
quark.

A common approximation in studying the physics of the quark-gluon plasma is to
neglect the chemical potential µ for baryons. At least at mid-rapidity, this can be
quantitatively justified based on the relative abundance of particle species, as summa-
rized in [43] for recent heavy ion data from the LHC. But QCD dynamics at finite µ
is quite interesting: in particular, it is believed that the cross-over at µ = 0 between
confined and deconfined phases in QCD sharpens into a first order phase transition
as µ becomes non-zero, with a critical point at finite µ and T (for a review, see for
example [44]). Beam-energy scans at RHIC [45] and the CBM project at FAIR [46]
aim to explore as much of the µ-T phase diagram as possible, and hopefully to create
laboratory conditions in which an equilibrated quark-gluon plasma crosses through or
near the critical point on its way to hadronization. A significant obstacle to making
clear predictions about this type of experiment is that different theoretical approaches
lead to no consensus on the position of the critical point [47]. As we review in sec-
tion 6, AdS/CFT offers some insight here, generating from zero-density lattice data a
realistic phase diagram with a first-order line ending on a critical point, albeit with
mean field critical exponents and suppressed energy-momentum transport. We also
discuss a related top-down construction of the phase transition, and comment briefly
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on gauge/gravity approaches to color superconductivity.

Other reviews of the interplay between heavy ion collisions and the AdS/CFT
correspondence exist, notably [48] and [49]. While there is some overlap in content, the
topics emphasized in the respective reviews are distinct, leaving them complementary.
[48] has more discussion of heavy quark and quarkonia topics, while [49] also devotes
substantial attention to ultracold gases. The current work devotes more attention to
non-equilibrium dynamics as well as to physics at nonzero baryon density. For better
or for worse, this review is also shorter.

2 Bjorken flow and symmetries

According to modern understanding of relativistic heavy ion collisions, the quark-gluon
plasma is created from low-momentum partons which linger near the collision plane
while the nuclear pancakes recede at nearly the speed of light. A widely used approxi-
mation in treating the mid-rapidity region is the assumption of boost-invariance, which
was justified at the level of an early-time parton model [50] by arguing that the low-
momentum partons’ longitudinal velocity shortly after the collision is proportional to
their distance from the collision plane. Assuming that these partons locally equilibrate
into a fluid, and making the further idealization of a uniform distribution of matter
in the transverse plane, one can derive the famous Bjorken flow solution, in which the
rapidity of each element of fluid equals its spacetime pseudorapidity, and the energy
density in the local rest frame scales as τ−4/3, where τ =

√

t2 − x23.

With longitudinal boost invariance as a first simplifying assumption, one is still left
with challenging questions about initial conditions, local equilibration, transverse or
radial flow, and anisotropies. The gauge-string duality should be a useful starting point
for at least some of these questions, providing a graceful transition from an arbitrary
initial state to hydrodynamics. It also makes symmetries more obvious through five-
dimensional geometric constructions. We begin with an exposition in sections 2.1
of an SO(3) symmetry which emerges in AdS/CFT as the symmetry group of the
transverse space in collisions of lightlike particles. In the bulk gravity theory, this
symmetry facilitates the computation of the entropy of trapped surfaces formed when
lightlike particles collide. The same SO(3) can be used to generate new solutions to the
Balitsky-Kovchegov equation describing the behavior of Wilson line correlators in the
presence of a high-rapidity hadron, as we explain in section 2.2. These correlators are
key ingredients to the color-glass condensate (CGC) picture of initial conditions. The
same SO(3) symmetry allows for an analytic generalization of Bjorken expansion which
includes radial flow, as we explain in section 2.3. A somewhat different deformation
of Bjorken flow, aimed at accounting for rapidity dependence in a symmetry-based
context, is reviewed in section 2.3.5. We defer to section 3 a detailed discussion of
equilibration. It is in the study of equilibration that AdS/CFT provides particularly
interesting dynamical information: by preparing a variety of initial conditions in the
bulk and seeing how they settle into geometries with regular black hole horizons, one
can extract a lot of detailed information about how non-equilibrium states evolve and
thermalize in the dual field theory.
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Figure 2: A schematic of the head-on collision of two massless point particles in the
bulk. Also shown is marginally trapped surface S1∪S2 that forms around the collision.
The transverse geometry is H3, a three-dimensional analog of the upper half-plane.
Finding the intersection curve C of the two halves of the trapped surface is a key step
toward the entropy estimate (8). From [51].

2.1 Trapped surface estimates of multiplicity

In this section we will first consider the head-on collision of two massless pointlike
particles in AdS5 as a model for colliding nuclei. As explained in the introduction, this
model was historically important in realizing the powerful constraints of conformal
symmetry and boost invariance. In Poincaré coordinates the incoming trajectories of
the colliding point particles have x3 = x0 with x1 = x2 = 0 and z = L, i.e. the
incoming particles are at constant “depth” below the boundary. Figure 2 presents a
schematic of this collision together with the marginally trapped surface, which will be
described below.

Gauge-string duality makes the conformal symmetries of the problem manifest: the
conformal group SO(4, 2) of R3,1 is the group of isometries of AdS5. This is seen most
directly by embedding global AdS5 into R4,2 as the solution of the equation

X2
−1 +X2

0 −X2
1 −X2

2 −X2
3 −X2

4 = L2 . (5)

These coordinates are related to the usual (t, ~x, z) coordinates of the Poincaré patch
by

X−1 =
z

2

(

1 +
L2 + ~x2 − t2

z2

)

X0 = L
t

z

Xi = L
xi
z

X4 =
z

2

(

−1 +
L2 − ~x2 + t2

z2

)

.

(6)

Thus, the lightlike trajectories of the incoming particles in AdS5 are given by the global
coordinates X3 = X0 with X1 = X2 = X4 = 0. Ordinarily, a lightlike particle in four
dimensions has a little group SO(2), corresponding in our case to rotations of the x1-x2
plane. In AdS5, the little group becomes the SO(3) that rotates X1, X2, and X4 among
themselves. The transverse “plane” in the bulk is obtained by setting X3 = X0 in (5):
then one finds X2

−1 − X2
1 − X2

2 − X2
4 = L2, which is the equation for the Euclidean

manifold H3, also called the three-dimensional hyperbolic plane. The SO(3) little
group acts as the group of isometries of H3 that preserve the point X1 = X2 = X4 = 0.
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An obvious question is how the SO(3) symmetry, which is evident in global AdS5,
acts in the dual field theory. As a first step in this direction, we note (following
for instance [51]) that the stress tensor induced in the boundary by the right-moving
lightlike particle at depth z = L takes the form

T−− =
2L4E

π(L2 + x21 + x22)
3
δ(x−) , (7)

where we define x± = t±x3. Other components of Tµν in the (x+, x−, x1, x2) coordinate
system vanish. Thus, the collision of two point particles in the bulk corresponds to
the collision of two shock waves in the boundary field theory with a definite transverse
profile given by (7). Evidently, the profile of (7) is normalizable in the transverse
directions, like a boosted nucleus. However, it has only a few finite transverse moments,
which is quite unlike the Wood-Saxon profile for a nucleus, whose exponential tails
make all transverse moments finite. It can be argued [51] that the form (7) of the
stress tensor follows from SO(3) symmetry alone, without reference to a holographic
dual theory.

Although the full dynamics of the collision cannot be determined analytically, the
SO(3) symmetry was employed in [51, 52, 53] to obtain an analytical lower bound on the
black hole entropy which is produced during the point-particle collision in AdS5. The
dual bound on entropy production from the collision of shock waves in the boundary
theory yields estimates for the total charged particle production in a model nucleus-
nucleus collision. This section is devoted to summarizing some of the main features of
these results, namely: 1) Good agreement with measured multiplicities at top RHIC

energies,
√
sNN = 200GeV; 2) a rapid growth of the multiplicity, Ncharged ∼ E

2/3
beam,

which is in conflict with data; 3) A slower asymptotic scaling, Ncharged ∼ E
1/3
beam, when

an ultraviolet cutoff is imposed; and 4) Impact parameter dependence which predicts
too slow a fall-off of rapidity as centrality decreases.

The key calculation in [51] is to locate a trapped surface in the collision of two
energetic pointlike particles in AdS5. These pointlike particles are dual to distributions
of stress-energy as indicated in (7): that is, profiles which are normalizable in the
transverse plane and localized in the longitudinal direction. Such a distribution is
a tolerably good approximation of a relativistic nucleus, except that the transverse
profile of the energy density of a nucleus falls off exponentially at large transverse
radii, whereas distribution indicated in (7)—sometimes called a conformal soliton—
falls off as a power of transverse radius. The advantage of considering collisions of
conformal solitons first is that head-on collisions preserve an SO(3) symmetry of the
type described in previous sections. This makes it relatively easy to find the shape
of a trapped surface that forms around the collision point. A cartoon of the trapped
surface is shown in Figure 2.

Trapped surfaces are a standard means of estimating the position of a black hole
horizon. Intuitively, a trapped surface in a spacetime of D dimensions is a closed,
spatial D − 2-dimensional hypersurface such that any light-ray starting at the surface
falls toward its interior rather than out toward infinity. A marginally trapped surface
has the property that of the two light rays starting at a point along the surface and
directed normal to the surface, one falls inward and one propagates forward in time
without moving outward or inward—in a sense made mathematically precise in terms of
the covariant derivative of the light rays along the surface. A snapshot at fixed Killing
time of the surface of a Schwarzschild black hole is a trivial example of a marginally
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trapped surface, because of the two light rays normal to the horizon, one propagates
inward while the other propagates exactly along the horizon. Spherical surfaces inside
the horizon are examples of trapped surfaces, whereas spherical surfaces outside the
horizon are not trapped. Thus in the Schwarzschild geometry, the outermost trapped
surface is the horizon. In more general settings, it is generally believed that trapped
and marginally trapped surfaces must reside at or inside the event horizon.

Because the black hole entropy is calculated as the area of the horizon divided by
4G5, one can set a lower bound on the entropy by computing the area of a marginally
trapped surface and dividing by 4G5. There is a heuristic argument that this lower
bound should be close to the true entropy, since after the horizon is formed the subse-
quent time dependence of the black hole is mostly dual to the hydrodynamical expan-
sion of a thermal plasma with small viscosity. This expansion generates little additional
entropy. The entropy of the marginally trapped surface for head-on collisions of con-
formal solitons as estimated in [51] is

Strapped ≈ π

(

L3

G5

)1/3

(2EL)2/3 . (8)

In order to link this estimate of entropy production in the collision of conformal solitons
to the total multiplicity in heavy ion collisions, three numerical estimates are required:

• Lattice results show that ǫ/T 4 ≈ 11 for 1.2Tc . T . 2Tc, which is the approx-
imate temperature range for top-energy RHIC collisions. This ratio of ǫ/T 4 is
recovered for black holes in AdS5 provided L3/G5 ≈ 1.9.

• The factor of L in (2EL)2/3 is to be understood as the transverse extent of the
conformal soliton, dual to the depth in AdS5 of the dual pointlike particle. If the
latter depth is modified to z = z∗, then one replaces (2EL)2/3 → (2Ez∗)

2/3 in (8),
without altering the (L3/G5)

1/3 factor. E is the beam energy, and L ≈ 4.3 fm is
the root-mean-square transverse radius of a gold nucleus.

• The total multiplicity of charged particles is related to the entropy by S ≈
7.5Ncharged. One way of reaching this estimate is to employ free field estimates
of both entropy density and number densities of hadron species, summing over
known hadron resonances and setting T = 170MeV, close to the transition tem-
perature of QCD.

The result of plugging these numerical estimates into (8) is Ncharged ≥ 4700. This is
satisfyingly close to observed values Ncharged ≈ 5060 [54]. However, at LHC energies,
one obtains from the same formula Ncharged ≥ 27000, whereas data indicates Ncharged ≈
17000.

In [53], a modification of the trapped surface calculation was considered which
reduces the asymptotic growth from E2/3 to E1/3 at high energies. The modification
uses only the part of trapped surface below a depth in AdS5 corresponding to some
energy scale ΛUV. The rationale is that at sufficiently high energy scales, the dynamics
of QCD is weakly coupled, and little entropy is produced. An additional infrared
cutoff was also considered, whereby the part of the trapped surface below a depth
corresponding to some energy scale ΛIR is discarded. This additional infrared cutoff
does not further alter the E1/3 asymptotic scaling, and for reasonable values of ΛIR

(namely, close to the QCD scale), the infrared cutoff has much less effect on the total
trapped surface entropy than the ultraviolet cutoff.
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Figure 3: (Color online.) Lower bounds on the total number of charged particles
Ncharged produced in head-on lead-lead collisions with center of mass energy per nucleon
pair

√
sNN. From [53].

The trapped surface model of [53] incorporating an ultraviolet cutoff ΛUV = 2GeV
is quite successful: it has only a slightly lower prediction for total multiplicity at top
RHIC energies, and at

√
sNN = 2.76TeV it predicts Ncharged & 16800. One may object

that the parameter ΛUV can be adjusted to get any desired Ncharged (within limits);
while this is true, the choice ΛUV = 2GeV was made in 2009, well before LHC heavy-
ion data was available.3 The predictions of the UV cutoff model of [53] for central
lead-lead collisions at higher LHC energies are available from Figure 3.

Extensions of the above results have been developed in [55], together with some
new ideas. Notably, it was proposed that the UV cutoff in AdS5 should be chosen to
correspond to the saturation scale in the dual theory, which runs slowly with energy as
Qs ∼ Eλ where λ ≈ 0.15. Adopting such a prescription leads to modestly faster growth
of Ncharged with energy. Indeed, the particular version treated in detail in [55] gives
Ncharged ∼ E0.483 at large energies, which can be compared to the Landau expectation
Ncharged ∼ E1/2. The model finds good agreement at the LHC (

√
sNN = 2.76TeV) as

well as at RHIC (
√
sNN = 0.2TeV) due to the subleading energy dependence in the

model. Similarly good fits to data were achieved in [55] in an Improved Holographic
QCD (IHQCD) framework where the multiplicity increases as Ncharged ∼ E0.451 up to
logarithmic enhancements.

2.2 SO(3) conformal symmetry in initial conditions

As remarked in the previous section, SO(3) symmetry tightly constrains the stress
tensor T−− of a right-moving shock wave, which is dual to a lightlike particle in AdS5.
In this section we will describe how the same SO(3) symmetry can be used in a rather
different context to classify solutions to the Balitsky-Kovchegov equation.

In QCD, a useful quantity in describing initial conditions is the correlator S(r1, r2;Y )
of lightlike Wilson lines at transverse positions r1 and r2, evaluated in the presence

3The model with both ultraviolet and infrared cutoff model predicts Ncharged & 3820 at
√
sNN =

200GeV and Ncharged & 15000 at
√
sNN = 2.76TeV.
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of a hadronic target at rapidity Y . It obeys the Balitsky-Kovchegov (BK) equation
[56, 57, 58], which at leading order reads

∂S(r1, r2;Y )

∂Y
=
ᾱs

2π

∫

d2z
|r1 − r2|2

|r1 − z|2|r2 − z|2 [S(r1, z;Y )S(z, r2;Y )− S(r1, r2;Y )] , (9)

where

ᾱs ≡
αsNc

π
. (10)

A standard simplification is to require S to depend on the transverse positions r1 and
r2 only through the separation |r1 − r2|. This amounts to requiring planar symmetry
in the transverse plane of the collision. Because (9) possesses conformal invariance (a
feature of which is modified by subleading corrections in QCD), one can simplify in a
different way, demanding SO(3) symmetry in the transverse plane rather than planar
symmetry. Precisely what this SO(3) symmetry is can be best understood from the
explicit form of the solution: It is

S(r1, r2;Y ) = Sq(dq(r1, r2);Y ) (11)

where

dq(r1, r2) ≡
|r1 − r2|

√

(1 + q2|r1|2)(1 + q2|r2|2)
, (12)

and q is a parameter with dimensions of inverse length. If the transverse plane is
mapped stereographically to the sphere, as is common in complex analysis, then dq is
the chordal distance from one point on the sphere to another.4

It is consistent to require that S(r1, r2;Y ) takes the form indicated in (11) because
the BK equation respects conformal symmetry: thus initial conditions of the form (11)
will lead to solutions which have the same form. A more ambitious claim, conjectured
but not proven in [59], is that arbitrary initial conditions with finite extent in the
transverse plane lead to solutions that tend toward the form (11) at very large Y , for
some q whose value depends on the initial conditions and characterizes the transverse
width of the hadron. It was also argued in [59] that, as a consequence of the form (11),
the saturation scale as a function of distance b from the center of the hadron takes the
form

Qs(b;Y ) =
Qmax

s (Y )

1 + q2b2
. (13)

This form was previously considered [60] on more phenomenological grounds, and the
large b behavior was understood earlier, for example in [61].

Formally, the ansatz (11) is a natural starting point for describing the gauge theory
dual of a lightlike point particle in AdS5. Recalling that the little group of massless
particles is SO(3) in five dimensions, we can think of the symmetry arguments leading
to (7) and (11) as being consequences of enhancements of the little group from SO(2)
to SO(3). It would be interesting to develop field theory calculations to higher orders
in N = 4 super-Yang-Mills theory, where the analog of the BK equation must respect
conformal symmetry to all orders. Possibly some more direct comparison with gravity
duals will emerge.

4To make the stereographic map precise, we must specify how radius |r| maps to polar angle θ.
The relation needed is |qr| = tan(θ/2).
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Phenomenologically, a deficiency of the forms (11) and (13) for describing individual
hadrons (for instance protons) is that confinement strongly modifies the power-law fall-
off at large ri or b. In particular, in order to obtain reasonable agreement with the
phenomenon of geometric scaling in deep inelastic scattering, one needs some form of
infrared cutoff: for example, Qs may follow the form (13) out to b = b∗ ≈ 0.7 fm,
and then fall immediately to 0. Agreement with data is mostly a matter of choosing
the correct value of b∗. Values of q between 0.1GeV and 0.5GeV, or perhaps even
a broader range, can be accommodated once the infrared cutoff is in place. One can
see the need for an infrared cutoff already in the stress tensor (7): the profile of (7) is
normalizable in the transverse directions, like a boosted nucleus; but it has only a few
finite transverse moments, which is quite unlike the Wood-Saxon profile for a nucleus,
whose exponential tails make all transverse moments finite.

2.3 Variants of Bjorken flow

Having seen in section 2.2 that an SO(3) subgroup of SO(4, 2) has some interesting
consequences for initial states, let’s ask how it might constrain the final state. The
easiest context in which to address this is boost-invariant hydrodynamics, where one
additionally assumes invariance under boost symmetry in the beamline direction. In-
vestigations of SO(3)-invariant, boost-invariant hydrodynamics, and its perturbations,
have been the aim of several works [38, 62, 63, 64].

Our presentation is organized as follows. In section 2.3.1, we will explain the action
of the conformal group on R3,1 and then outline a systematic procedure in which we
start with a specific type of subgroup of the conformal group and develop from it a
solution to the Navier-Stokes equations. In section 2.3.2, we will summarize the main
features of SO(3)-invariant, boost-invariant hydrodynamics, which include radial flow
and analytical expressions for energy density only somewhat more complicated than
for Bjorken flow. In section 2.3.3, we explain a choice of coordinates on R3,1 which
amounts to mapping the SO(3)-invariant flow into the geometry dS3 ×R, where dS3

is three-dimensional de Sitter space. In section 2.3.4 we summarize phenomenological
studies of perturbations made possible by this mapping. Finally, in section 2.3.5 we
detour to a deformation of Bjorken flow [65] which retains its usual symmetries in
the transverse plane but modifies the beamline boost invariance so as to achieve an
interpolation between Bjorken flow at central rapidities and a glasma-like regime at
forward rapidities.

2.3.1 Formal features

The conformal group SO(4, 2) has an obvious action on AdS5, inherited from its action
on R4,2. In order to discuss the consequences of conformal symmetry more quantita-
tively in the dual field theory, we need to explain the action of SO(4, 2) on R3,1, as
well as the action of the SO(3) subgroup that we previously identified as the enhanced
little group. To this end, we first enumerate the 15 continuous symmetries in SO(4, 2)
in terms of differential operators ξ = ξµ∂µ acting on R3,1, as follows:

• Translations, T(µ) = ∂µ. Thus, for example, T(1) is translation in the x1 direction.

• Spatial rotations, R(ij) = xi∂j − xj∂i.

• Boosts, B(i) = t∂i + xi∂t.
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• Dilations: D = xµ∂µ.

• Special conformal transformations: K(µ) = xνxν∂µ − 2xµx
ν∂ν .

Then a general element of the Lie algebra of SO(4, 2) may be expressed as

ℓ = t
µT(µ) + rijR(ij) + biB(i) + dD + k

µK(µ) , (14)

where tµ, rij, bi, d, and k
µ are real numbers. The standard isometries of the transverse

plane form a group ISO(2) generated by R(12), T(1), and T(2), while the beamline
boost-invariance group SO(1, 1) is generated by B(3). Note that all elements of ISO(2)
commute with all boosts in SO(1, 1).

The SO(3) symmetry of interest to us is based on leaving the SO(1, 1) as it is, and
also leaving in place the rotational symmetry R(12) of SO(2) ⊂ ISO(2), but making
the replacement

T(i) → W(i) ≡ T(i) − q2K(i) for i = 1, 2 , (15)

where q is a parameter whose dimensions are inverse length. One may straightforwardly
check that the W(i) commute with B(3), and that along with R(12) they form the SO(3)
algebra. It is a little more involved to show that this particular SO(3) algebra is dual
to the SO(3) which preserves a pointlike null trajectory in AdS5 at a constant depth
z = 1/q.5

Consider a spacetime symmetry group of the form A×B where B is a one-parameter
abelian group, while A is a three-parameter non-abelian group. Describing this group
as a spacetime symmetry group means that it must be a subgroup of SO(4, 2). Let Lξ

denote the Lie derivative with respect to a vector field ξµ: in particular, if f = f(xµ)
is a function of the spacetime coordinates, then Lξ = ξµ∂µf . There is an essentially
unique combination g of the xµ satisfying

Lξg = 0 for ξ ∈ A× B . (16)

There are four such equations (because there are four generators of A × B), but only
three are independent, because one element of A can be generated from the other two.
Each of the three independent equations can be written in the form ξµvµ = 0, where

vµ = ∂µg . (17)

Three constraints of the form ξµvµ = 0 leave only one possible direction for vµ at each
point in spacetime. That is why there is essentially only one solution to (16), where by
“essentially” we mean that given one solution, any other can be written as a function
of it.

Although it appears we have started very abstractly, the quantities introduced so
far are physically interesting. For example, when A = ISO(2) and B = SO(1, 1)
as for Bjorken flow, then g = t2 − x23 is essentially Bjorken time, and we know that
the main result of a hydrodynamic analysis will be a functional form ǫ = ǫ(g) for
the energy density. For inviscid, conformal hydrodynamics, ǫ = ǫ0/g

2/3 where ǫ0 is a

5The attentive reader will notice that we had the AdS5 radius L playing the role of a transverse
length scale in (7) (alternatively, depth in AdS5), whereas now 1/q plays a comparable role. The
explanation for this transition is that we previously chose q = 1/L purely for notational convenience,
but there is no reason to stick with this choice since we can change q by applying an overall spacetime
dilation.
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constant of integration. The following paragraphs essentially explain how to generalize
the hydrodynamic analysis to more a wider choice of symmetries.

The example of Bjorken flow highlights another constraint that must be imposed:
vµ must be timelike in the region of physical interest—which for Bjorken flow is the
causal future of the collision plane, i.e. t > |x3|. Intuitively, then, the strategy is to
invent some interesting variant of Bjorken time and then require the fluid velocity to
be the gradient of this new “time” coordinate.

With a function g in hand, we next seek a solution to the equation

Lξh = −1

4
(∇λξ

λ)h for ξ ∈ A× B . (18)

As before, it is possible to find a function h(xµ) satisfying (18) because only three of
the equations are independent. With g and h constructed, one may straightforwardly
show that, for any constant α, the general function satisfying the equations

Lξf = −α
4
(∇λξ

λ)f for ξ ∈ A× B (19)

takes the form f(xµ) = hαf̂(g). In particular, this shows the sense in which h is
essentially unique. When A×B is composed entirely of isometries ofR3,1 (as in Bjorken
flow), we may choose h = 1 because ∇λξ

λ = 0 for all isometries (i.e. translations,
rotations, and boosts).

The construction of a hydrodynamic flow that is invariant under A×B now hinges
on tensors with definite conformal weights, by which we mean tensors Qν1ν2···

µ1µ2··· satisfying

LξQ
ν1ν2···
µ1µ2··· = −α

4
(∇λζ

λ)Qν1ν2···
µ1µ2··· for ξ ∈ A× B , (20)

where α is the conformal weight. In particular, the metric tensor gµν automatically
has weight −2, the invariant scalar g has weight 0, and the scalar h has weight 1.
Moreover, the four-velocity profile

uµ = ± vµ
√

−gαβvαvβ (21)

is (up to the sign ambiguity) the only unit vector field with conformal weight −1. The
sign ambiguity is fixed by requiring ut > 0. The projection tensor Pµν = gµν + uµuν
has weight −2. The stress tensor Tµν needs to have weight 2 in any conformal field
theory: see e.g. [62] for a general argument to this effect. Already from conformal
inviscid hydrodynamics, where

Tµν = ǫuµuν +
ǫ

3
Pµν , (22)

we see that ǫ must have weight 4; this weight assignment doesn’t change as one adds
viscous corrections. Recall that uµ has already been completely fixed in (21), and that
the energy density must take the form

ǫ = h4ǫ̂(g) . (23)

The hydrodynamic equations ∇µTµν = 0 must boil down to an ordinary differential
equation for ǫ̂(g). Intuitively this is because the hydrodynamic equations are compat-
ible with conformal invariance.
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2.3.2 Bjorken flow generalized to include transverse expansion

As soon as we specify the four-parameter symmetry group A × B, the machinery of
the previous section can be brought to bear to reduce hydrodynamics to an ordinary
differential equation. Let’s choose the SO(3) group indicated in (15) for A, and of
course beamline boost symmetry for B. After a little experimentation, it is not hard
to see that

g =
1− q2τ 2 + q2x2⊥

2qτ
h =

1

τ
(24)

where τ =
√

t2 − x23 is the usual Bjorken time and x⊥ =
√

x21 + x22 is the transverse
radius. If one expresses uµ in (τ, η, x⊥, φ) coordinates, where η is spacetime rapidity
and φ is the azimuthal angle around the beamline, then uτ = γ⊥ and u⊥ = v⊥γ⊥ where
γ⊥ = 1/

√

1− v2⊥ and the transverse radial velocity is

v⊥ =
2q2τx⊥

1 + q2(τ 2 + x2⊥)
. (25)

(The components uη and uφ vanish by symmetry.) The ordinary differential equation
satisfied by ǫ̂(g) as a consequence of energy conservation is

ǫ̂′(g)− 8g/3

1 + g2
ǫ̂(g) = 0 , (26)

where viscous corrections have been neglected. The final result for the energy density,
from (23) together with the solution of (26), is

ǫ =
ǫ̂0
τ 4/3

(2q)8/3

[1 + 2q2(τ 2 + x2⊥) + q4(τ 2 − x2⊥)
2]

4/3
. (27)

First order viscous corrections can be included without too much difficulty [38]. The
four-velocity is unaffected by viscous corrections: recall that it is entirely determined
by the symmetry principles. The energy density does receive corrections which can be
expressed in closed form in terms of a hypergeometric function.

2.3.3 Conformally adapted coordinates

There is a useful coordinate system [62] in which the SO(3) symmetry discussed so far
becomes more manifest. If we start with coordinates (τ, η, x⊥, φ), where τ is Bjorken
time, η is spatial rapidity, x⊥ is distance from the beamline, and φ is azimuthal angle
around the beamline, then the new coordinate system is (ρ, θ, φ, η), where we define ρ
and θ via the equations

sinh ρ = −1− q2τ 2 + q2x2⊥
2qτ

tan θ =
2qx⊥

1 + q2τ 2 − q2x2⊥
(28)

Clearly, ρ is a new version of the symmetry-invariant, timelike coordinate g that we
made heavy use of in section 2.3. The angular coordinate θ is not the usual angle
from mid-rapidity: that information is still carried by the spatial rapidity η. Instead,
θ parametrizes distance from the beampipe in a τ -dependent way. The standard flat
metric on the future wedge of R3,1 can be expressed as

ds2 = −dτ 2 + τ 2dη2 + dx2⊥ + x2⊥dφ
2 = τ 2dŝ2 , (29)
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where
dŝ2 = −dρ2 + cosh2 ρ(dθ2 + sin2 θdφ2) + dη2 (30)

is the metric of dS3×R, where dS3 is three-dimensional de Sitter space. Now the SO(3)
symmetry acts by ordinary rotations on the S2 which forms the constant ρ time-slice of
dS3. Boost symmetry acts by translations in the η direction. As we pass from dS3×R
quantities (hatted) to flat space quantities (unhatted), we must include factors of τ
that account for the fact that these two spacetimes are only conformally equivalent:

uµ = τ
∂x̂ν

∂xµ
ûν ǫ =

ǫ̂

τ 4
. (31)

The advantage of the new coordinates is that the fluid’s velocity field is obvious in
dS3 ×R:

ûρ = −1 ûθ = ûφ = ûη = 0 . (32)

In other words, we have a static fluid in a time-dependent geometry, and we map it
using (31) to a time-dependent fluid in ordinary flat space.

Several points are now worth noting:

• The part of dS3 × R that maps to the future wedge of R3,1 is the contracting

Poincaré patch. This is obvious if we write the flat space metric as

ds2 = τ 2
(−dτ 2 + dx2⊥ + x2⊥dφ

2

τ 2
+ dη2

)

, (33)

because the first term in parentheses is precisely this contracting patch in stan-
dard Poincaré coordinates. In contrast, the coordinate system (ρ, θ, φ) covers all
of global dS3.

• Finite chemical potentials can be included, even in the presence of viscous correc-
tions, and closed form expressions can still be found for the hydrodynamic stress
tensor provided the equation of state obeys conformal invariance.

• A gravity dual of the fluid flow can be found, similar to the boost-invariant flow
of [66], but preserving the enhanced SO(3) little group symmetry of colliding null
geodesics at X1 = X2 = X4 = 0.

2.3.4 Perturbations around the SO(3)-invariant flow

A complete linear stability analysis was performed in [62], including first-order viscous
corrections, with the result that the flow (32) is stable in the regime where hydrody-
namics is applicable. We are unaware of any comparable stability analysis for semi-
realistic heavy-ion flows. Stability is interesting because it gives some indication that
turbulence is not necessarily involved in the hydrodynamic phase of collisions. This
conclusion is intuitive in terms of dS3 ×R: the claim is simply that a stationary fluid
in this geometry is stable against small perturbations. Technically, the tools are sim-
ple: a scalar quantity such as the variation in energy density is expressed in separated
form as δ(ρ, θ, φ) = R(ρ)Yℓm(θ, φ) (assuming that boost invariance is preserved by the
perturbations), and then one develops ordinary differential equations for the functions
such as R(ρ) that capture the time dependence.

Perturbations to the SO(3)-invariant, boost-invariant flow were studied phenomeno-
logically in [64], with Glauber initial conditions; see also the recent work [67]. A power

18



spectrum emerges which is reminiscent of acoustic oscillations in the early universe.
This even makes sense since in the dS3 ×R frame, the perturbations of interest actu-
ally are acoustic oscillations within a cosmological geometry. The upshot is that there
is a maximum in the power spectrum for azimuthal quantum number m = 3, then a
minimum around m = 7, and a smaller maximum near m = 9. Modes of higher m
feel the effects of viscosity much more strongly, so it is crucial to treat the perturba-
tions using linear Navier-Stokes rather than the Euler equations. Indeed, modes with
wave-number k are suppressed by a factor

Pk = exp

(

−2

3

η

s

k2t

T

)

. (34)

2.3.5 Action of a complexified boost symmetry

Because deformations of the ISO(2) symmetries of the transverse plane into SO(3) were
successful at introducing finite size and radial flow, it is natural to inquire whether some
deformation of boost symmetry might lead to a phenomenologically appealing rapidity
structure. Rapidity profiles [68, 69, 70] at RHIC are in fact an embarrassment to the
Bjorken picture: although the distribution of particles in pseudorapidity shows a nearly
flat central region, full particle identification reveals that the rapidity distribution is in
essentially perfect agreement with the hydrodynamical Landau model, in which dN/dy
has a Gaussian profile. Nevertheless, the Landau model is rightly criticized for assuming
the validity of hydrodynamics far before any known process in QCD could achieve local
thermalization. If there were a symmetry principle which would enforce a Landau-like
rapidity profile—independent of the validity of the hydrodynamic approximation—it
would explain a lot. To this end, a deformation

B(3) → b ≡ B(3) + t3T(3) (35)

was considered in [65]. If t3 is real, then b is just a boost around a different point inR3,1,
namely the point t = −t3 and ~x = 0. But if instead t3 is imaginary, it was explained in
[65] how to pass through a formal construction of a complex stress tensor whose real
part is conserved and shows global properties which are essentially what one wants for
heavy ion collisions. The construction is simple because it hinges on uniformly sending
t→ t+ t3 in the treatment of inviscid Bjorken hydrodynamics. Thus we have

uCµ =

(

− t+ t3
√

(t+ t3)2 − x23
, 0, 0,

x3
√

(t+ t3)2 − x23

)

ǫC =
ǫC0

((t+ t3)2 − x23)
2/3

TC

µν = ǫCuCµ u
C

ν +
ǫC

3
(gµν + uCµ u

C

ν ) ,

(36)

where ǫC0 is a (complex) constant. As promised,

Tµν = ℜ{TC

µν} (37)

is real and conserved; moreover, provided arg ǫC0 = π/3 when arg t3 = π/2, Tµν satisfies
appropriate positive energy conditions in the future light-wedge of the collision.

The future wedge divides up into regions illustrated in Fig. 4: A Bjorken-like re-
gion at late times and central-to-moderate rapidities, with glasma-like regions at very
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Figure 4: A simplified cartoon of the rapidity structure of the complex deformation of
Bjorken flow indicated in (36)-(37), with arg ǫC = π/3 and arg t3 = π/2. From [65].

forward rapidities and a Landau-like region at early times and rapidities not too large.
Bjorken-like means that standard Bjorken flow is recovered; glasma-like means that
the stress tensor approaches the form T µ

ν = diag {ǫ,−ǫ,−ǫ, ǫ} characteristic of lon-
gitudinal color-electric and color-magnetic fields; and Landau-like means that there is
almost full stopping, with hydrodynamic constitutive relations satisfied. The Landau-
like region is a surprise, and the validity of hydrodynamics doesn’t last; instead it is
asymptotically recovered in the Bjorken-like region, and not recovered at all in the
glasma-like region. Another interesting and simple feature of the stress tensor defined
by (37) is that the Landau frame may be defined everywhere in the future light-wedge,
and doing so leads to a relation

y =
η

2
when τ = |t3| (38)

between the fluid rapidity y and the spatial rapidity of its location in the wedge.
Compared to Bjorken’s relation y = η, the result (38) indicates more clustering of
particles near central rapidity. Indeed, if one hadronizes the Bjorken region, with
some assumptions spelled out in [65], the resulting dN/dy is peaked at central rapidity
with strong decay at forward rapidities. The decay is in fact somewhat faster than it
should be to make a really successful comparison with data. However, it’s possible that
improved hadronization and proper inclusion of the glasma-like regions will improve
the fit.

The construction (37) is somewhat ad hoc; however, an appealing feature is that
the complexified boost symmetry (35) commutes with wave operators. This is because
it is a linear combination of a boost and a translation, and hence in the complexified
algebra of the Poincaré group. It is interesting to inquire whether solutions to wave
equations can be usefully classified in terms of their content under complexified boost
symmetry.

3 Lessons from the AdS/CFT for non-equilibrium

dynamics

From a theoretical perspective, it is important to understand the dynamics of the equili-
bration process, and the imprints of the non-equilibrium initial state on the subsequent
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evolution of the system. It is here that holography can be a useful tool, offering a foil
to perturbative descriptions of the thermalization process.

Of necessity, much of the literature on equilibration in holographic theories goes
beyond analytically tractable models and relies upon numerical methods in the bulk
gravitational theory. So we will start in section 3.1 by reviewing three of the main
numerical methods in active use. We will then focus in on a set of work which simulates
with holography the evolution of a non-equilibrium boost invariant initial condition of
infinite transverse extent [71, 72]. Initially there were two approaches to creating the
non-equilibrium state: first by turning on a boost invariant source on the boundary [71],
and second by setting up an ensemble of initial conditions and studying the subsequent
dynamics [72]. We will focus on the latter approach [72] and then indicate the common
conclusions.

3.1 Numerical relativity in anti-de Sitter space

Recent years have seen increased effort to use methods of numerical relativity to extract
useful information from the gauge-string duality for heavy-ion physics. The recurring
theme in this work has been rapid thermalization. The aim of this section is to provide
a summary of some of the different numerical schemes which have been employed and
also to give some indications of results obtained. We will focus on the generalized
harmonic gauge approach of [73], the null coordinate method of [74], and the ADM
formalism of [75].

3.1.1 Generalized harmonic gauge

The general harmonic gauge approach relies upon a specific method for making a gauge
choice, together with two modifications of the Einstein equations which fix diffeomor-
phism freedom and result in numerically tractable hyperbolic differential equations. To
understand the gauge choice, consider first the identity

�xµ = −gαβΓµ
αβ . (39)

Diffeomorphism freedom is realized by making coordinate shifts xµ → xµ+ξµ, where ξµ

is allowed to vary over the spacetime. At least locally, this is enough freedom to impose
harmonic gauge, �xµ = 0. Once coordinates are chosen, the plan is to specify Cauchy
data on the slice t = 0, and then to evolve forward time-slice by time-slice. This doesn’t
quite work because, in general, t doesn’t stay timelike. A highly successful, broadly
applicable method for simulating general relativity in asymptotically flat space [76, 77]
has emerged from a relaxation of the harmonic gauge condition together with some
further technical tricks. We provide a brief summary of this method at the end of this
subsection. But first, let us survey the broad outlines of how the method is applied to
geometries in AdS5 involving black hole horizons, together with the conclusions reached
in [73].

Regions of strong curvature develop during any numerical study which involves
gravitational collapse and/or black hole formation. The strategy for dealing with this is
to excise regions of the geometry which are behind black hole horizons. More precisely,
one looks for apparent horizons, defined as locations where one of the forward directed
null directions points inward and the other points tangent to the apparent horizon. On
fairly general grounds, event horizons must enclose all apparent horizons (a fact used
heavily in the trapped surface estimates of total multiplicity summarized in section 2.1).
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The key property of an apparent horizon is that nothing that happens inside can
propagate causally to the nearby outside geometry. In generalized harmonic schemes,
horizon excision doesn’t have to be very precise: one needs only to make sure that
enough geometry is excised to avoid excessively strong curvatures, while preserving the
property that information about the excised regions is not needed in order to correctly
evolve the geometry that remains. In other words, the excision surface is chosen to be
slightly inside the outermost trapped surface, such that all characteristics point inward.

Significant technical issues still have to be worked out in order to successfully apply
the generalized harmonic gauge method in an asymptotically anti-de Sitter geometry.
The metric components diverge near the boundary, so it is advantageous to work
not with the metric components themselves, but with quantities proportional to the
deviation of the geometry from pure AdS5. Likewise, asymptotic behavior of source
functions near the boundary must be treated carefully. Another challenge is to specify
initial conditions in a physically interesting way. In [73], an initial time-slice was set
up which corresponds to a perfectly isotropic fluid on the boundary at t = 0 which is
very unevenly distributed over the boundary geometry, corresponding to a distorted
black hole in AdS5. The initial time-slice in the bulk is conformal to AdS5, and it
is supported by a scalar field which is sufficiently focused at the center of AdS5 that
its subsequent disappearance behind a black hole horizon is very rapid. The upshot
of the study of [73] is that when the fluid begins in an isotropized state, it remains
remarkably close to hydrodynamical throughout its evolution—particularly when first
and second derivative corrections to the ideal hydrodynamic stress tensor are included.
These results support the notion that strongly coupled gauge theories are surprisingly
good at maintaining near-hydrodynamic stress tensors even in dynamical situations
that are far from equilibrium. The simulations in [73] were performed in global AdS5

with the imposition of an SO(3) symmetry of the type discussed in section 2. This
means that the numerical problem is 2 + 1-dimensional. In principle, the underlying
methods generalize immediately to less symmetrical situations. The boundary of global
AdS5 is S3 × R, but after a conformal mapping to Minkowski space R3,1, the initial
state corresponds to a pancake which has finite extent in the transverse directions and
is highly compressed in the longitudinal direction. Altogether, the setup is similar to
the Landau model [78], but it is demonstrated rather than assumed that the system
remains close to hydrodynamical equilibrium throughout its evolution.

Now let’s turn back to an explanation of generalized harmonic gauge. As previously
mentioned, the difficulty with harmonic gauge is that there is no guarantee that x0 ≡
t will be everywhere timelike, and if it does not, standard numerical methods for
advancing from one “time”-slice to the next will break down. The generalized harmonic
gauge scheme starts by choosing five so-called “source functions” Hµ, defining

Cµ ≡ Hµ −�xµ , (40)

and demanding Cµ = 0 as the gauge condition. Note that Hµ need only be prescribed
timeslice-by-timeslice; indeed, one need only have a definite set of equations that can
be solved on each new time-slice for the source functions. Much of the art of the
generalized harmonic gauge method comes down to choosing these equations cleverly.

The Einstein equations can be cast in the form

Rµν = T̄µν ≡ 8π

(

Tµν −
1

3
gµνT

α
α

)

, (41)
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where we have set G5 = 1 and absorbed the cosmological constant into the definition
of Tµν . More explicitly, (41) reads

−1

2
gαβgµν,αβ − gαβ,(µgν)α,β −∇(µ�xν) − Γα

βµΓ
β
αν = T̄µν , (42)

where (µν) = 1
2
(µν+νµ). If it weren’t for the third term in (42), the Einstein equations

would take the form �gµν+ . . . = T̄µν , where . . . represents terms which involve at most
first derivatives of the metric. Such a form would be good for numerical work because
it is linear in second derivatives and hyperbolic. It can be achieved by subtracting
∇(µCν) from the Ricci tensor:

Rµν −∇(µCν) = −1

2
gαβgµν,αβ − gαβ,(µgν)α,β −∇(µHν) − Γα

βµΓ
β
αν = T̄µν . (43)

Using (43) and the identity ∇µRµν = 1
2
∂νR, one can show that

�Cµ = −Cµ∂(µCν) − CµT̄µν . (44)

We can arrange to have Cµ = 0 and ∂tC
µ = 0 on the initial timeslice. It follows

then from (44) that Cµ = 0 everywhere. In other words, correct propagation of the
constraint is implied by the equations of motion, in either the form (43) or the form (45).
But it has been found that when (43) is discretized, round-off error accumulates quickly
(in fact exponentially) to make Cµ non-zero. This is the phenomenon of constraint-
violating modes. The solution is to add some further terms to the Einstein equations:

Rµν −∇(µCν) − κ
(

2n(µCν) − (1 + P )gµνn
αCα

)

= T̄µν . (45)

where κ is a negative constant and P ∈ [−1, 0] is another constant. In [73] the choices
κ = −10 and P = −1 were made. To obtain the final form of the evolution equations,
one uses the definition (40) to eliminate Cµ in favor of Hµ in (45), as was done explic-
itly in (43) above. One then solves the evolution equations, together with the gauge
evolution equations for the source functions, for gµν and H

µ. All the equations for met-
ric components evidently have the schematic form �X = . . ., where . . . means terms
involving at most first derivatives. Of course, Cµ is required to be small, and to show
signs of converging to 0 with decreasing grid spacing, in order to have a trustworthy
solution. In [73], the method of spatial discretization was second order finite-difference
stencils, on which we will provide a bit more detail in section 3.1.2. Time-stepping was
accomplished in [73] using an iterative Newton-Gauss-Seidel relaxation procedure.

3.1.2 A null coordinate method

An alternative approach, pursued for example in [74], is based on choosing the following
specific form for the metric:

ds2 = −Adv2 + Σ2
[

eBd~x2⊥ + e−2Bdx23
]

+ 2dv(dr + Fdx3) , (46)

where ~x⊥ = (x1, x2) and A, B, Σ, and F can be functions of v, r, and x3. Explicit
forms of the equations of motion are then found. Their form is sufficiently complicated
as to be unenlightening to record in full. We will comment on the broad outlines of the
solution strategy for the equations of motion after presenting, in the next paragraph,
a pedagogical example of a similar strategy applied to a simpler problem.
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Consider a massless scalar in a fixed AdS5-Schwarzschild background, which we
write as

ds2 =
L2

z2

[

−
(

1− z4

z4H

)

dv2 − 2dvdz + d~x2
]

, (47)

where ~x = (x1, x2, x3). Let’s set L = zH = 1 as an additional simplification. To recover
the more familiar form of AdS5-Schwarzschild, one may define t through

dt = dv +
dz

1− z4
, (48)

and then eliminate v in favor of t throughout. Note that setting z = 0 inside the square
brackets in (47) results in the metric of R3,1, with v playing the role of time. Thus v is
in fact a perfectly good timelike variable on the boundary of AdS5-Schwarzschild, and it
is privileged among bulk extensions of boundary time by being a null coordinate which
is constant on trajectories which fall inward, away from the boundary. An additional
favorable feature is that all metric components remain finite at the black hole horizon,
which is located at z = zH .

In the geometry (47), the scalar equation of motion �φ = 0 reads

(3− 2z∂z)∂vφ =
[

(3 + z4)∂z − z(1− z4)∂2z − z∂2x3

]

φ . (49)

Notably, this is first order in v. In broad terms, the plan is to specify φ along a
v = const slice of AdS5-Schwarzschild and then find ∂vφ in order to advance to the
next timestep. From (49) it’s clear that in order to do this, we need only invert the
differential operator (3 − 2z∂z), which is to say we solve a linear ordinary differential
equation for each value of x3 and at each timestep.

In practice, there are some additional important details. First, we must specify
boundary conditions. Assuming there is no deformation of the Lagrangian by the
operator dual to φ, the boundary conditions on φ are that it falls to 0 as z4 when
z → 0. This fourth-order behavior is hard to see numerically, so it is more efficient to
define

φ̃ ≡ φ

z4
. (50)

An additional trick is to introduce

d+φ̃ ≡ ∂vφ̃− 1− z4

2
∂zφ̃ , (51)

which is the partial derivative of φ̃ along the lightlike direction in the v-z plane other
than the v direction itself. That is, we derive from (49) an equation of the form

Ld+φ̃ = Mφ̃ , (52)

where L is a linear differential operator involving only z and ∂z, and M is a linear
differential operator expressible in terms of z, ∂z, and ∂2x3

. To evolve forward one

timestep, we first invert L to get d+φ̃ = L−1Mφ̃—imposing appropriate boundary
conditions on d+φ̃ so that the inverse is uniquely determined—and then obtain ∂vφ̃
straightforwardly from the definition (51).

Before turning back to the full gravitational problem, let us briefly discuss numerical
methods for handling differential equations of the form (52). Because the differential
equation is linear and there is translation invariance in the x3 direction, we could
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decompose φ̃ into Fourier modes proportional to eik3x3 and solve the equations mode-
by-mode. Methods based on truncated Fourier series converge very quickly; however,
they don’t immediately generalize to problems with non-linear effects. Therefore the
method of choice is the pseudospectral representation of derivative operators. Reviews
of these methods can be found in [79, 80]; however, we will give sufficient indications
in the next paragraph to orient the reader unfamiliar with this approach.

Consider a function f(x) of a periodic variable x ∼ x + L sampled at N evenly
spaced points (the so-called “collocation points”)

xn = na where a =
L

N
. (53)

and n = 0, 1, 2, . . . , N−1. Knowing the sampled values f(xn), how do we calculate the
approximate derivative f ′(xn)? The simplest method in active use is the second order
stencil

f ′(xn) =
f(xn+1)− f(xn−1)

2a
+O(a2) . (54)

(For example, precisely this stencil was employed for spatial discretizations in [73]).
A fourth-order scheme would have remainders scaling as O(a4) for small a. Pseu-
dospectral methods arrange for the remainder to scale to zero faster than any power
of a, provided f(x) itself is infinitely differentiable. Conceptually, the pseudospectral
method amounts to taking derivatives in momentum space and then passing immedi-
ately back to position space. Explicitly, we first perform a discrete Fourier transform:

f̃N(kj) =
1

N

N−1
∑

n=0

f(xn)e
−ikjxn for kj =

2πj

L
, (55)

where j runs from −N/2 to N/2, with N assumed even. Next we take the derivative
in Fourier space: f̃ ′

N(kj) ≡ ikj f̃N(kj). Finally we perform a discrete inverse Fourier
transform to find

f ′
N(xn) =

N/2
∑

j=−N/2

1

cj
ikj f̃N(kj)e

ikjxn , (56)

where cj = 1 except for c±N/2 = 2. The true derivative f ′(xn) equals f ′
N(xn) plus

corrections vanishing faster than any power of a because of the convergence properties of
discrete Fourier transforms. Note that all the computational steps are linear operations;
thus one can write

f ′
N(xn) =

N
∑

m=1

M(N)
nm f(xm) , (57)

where M(N)
nm is a matrix which can be worked out in advance (and for which closed

form expressions are known). Remarkably, M(n)
nm generically has all entries non-zero:

thus differentiation is a non-local operation. One might fear that this property is in
conflict with the locality of relativistic theories; however, experience seems to show
that convergence to the correct, local dynamics is not problematic.

The discussion above shows how to handle x3 derivatives, since we can certainly
compactify this direction on a circle. Using pseudospectral methods in the z direction,
where boundaries are an essential part of the story, requires one more trick: instead
of using discrete Fourier transforms, one expands a function f(z) in a basis of N
Chebyshev polynomials, which have the form Tk(z) = cos kθ where θ = cos−1(2z − 1),

25



so that the boundaries are at z = 0 and z = 1. Instead of sampling at equally spaced
points in z, one samples at points equally spaced in θ. Expressions analogous to (57)
can be derived, and the convergence properties are again better than algebraic provided
f(z) is infinitely differentiable. Both the horizon at z = 1 and the boundary at z = 0
are included explicitly in the list of collocation points: thus it is essential to define
fields in such a way that they are explicitly finite at these endpoints.

To apply pseudospectral methods to the classical scalar field theory problem (52),
one finds matrix versions of the differential operators L and M by replacing ∂x3 and
∂z by their pseudospectral approximations. The matrix for L will be non-invertible
because there is no information about boundary conditions included in it. A standard
approach for solving this is so-called boundary bordering, whereby the rows of L cor-
responding to z = 0 are explicitly replaced by linear equations that enforce the desired
boundary conditions.

Returning now to the problem of solving gravity in an asymptotically anti-de Sitter
background: The form of the metric (46) allows a treatment remarkably similar to the
scalar field. One can express Einstein’s equations in a form which reads, schematically,

LℓXℓ = Sℓ for ℓ = 2, 3, 4, 5, 6 . (58)

Here Xℓ = (B,Σ, F, d+Σ, d+B,A) (so that X1 = B, X2 = Σ, etc.), and in general
d+X = ∂vX + 1

2
A∂rX. The source term Sℓ depends only on the previous Xℓ and their

spatial derivatives: for example, S3 depends only on X1 and X2, not X3 or X4. In
general, the linear operators Lℓ also have coefficients depending on the previous Xℓ.
The upshot is that once one specifies B at a given timestep, one can solve the equations
(58) in order, with appropriate boundary conditions, and once they are all solved one
can resort to the definition of d+B to extract ∂vB and thereby take one timestep.
For actual computations, the equations (58) should be rewritten in terms of a radial
variable z which runs from 0 at the boundary to 1 at the horizon, with field redefinitions
such that all quantities are explicitly finite at the boundary. A particularly subtle issue
is the choice of boundary conditions at the horizon. This is because the horizon is not
known in advance, but must be determined timestep-by-timestep. The approach used
in [74] is to find a differential equation satisfied at the apparent horizon (cast in terms
of vanishing expansion) and use it as a boundary condition at z = 1.

The null-coordinate method described in this section has been used to simulate the
formation a thermal black hole after driving vacuum AdS out of equilibrium [81]. All
of the results of Section 3.2.2 investigating the transverse and longitudinal dynamics
of the collision have also been obtained with this method [74, 82].

3.1.3 An ADM formulation

Finally, we will discuss an ADM [83] formulation of numerical relativity that has been
used to simulate the boost invariant plasma of infinite transverse extent, which will
be described in Section 3.2 [75]. In the numerical study of this problem, the initial
conditions for the gravitational fields at Bjorken τ = 0 are a function of the holo-
graphic coordinate only, gµν(0, u). Specifying these initial conditions for the metric
amounts to specifying the initial state of the field theory. The gravitational fields are
then evolved in the temporal coordinate t (which equals the proper time τ =

√

t2 − x23
on the boundary), and eventually form thermal AdS, the gravitational dual of equili-
brated plasma. The more refined variants of the ADM equations, known as the BSSN
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equations [84, 85], have so far not been used to simulate asymptotically AdS space-
times. The BSSN formulation is generally competitive with the generalized harmonic
coordinate schemes described in the previous subsection [86, 87], and both schemes
were used in the breakthroughs of 2005 [77, 88, 89].

In an ADM formulation of numerical relativity, the initial data is specified on
a spatial surface, and the Einstein equations provide an update rule for temporal
evolution. The induced metric of each spatial slice is

γab = gab + nanb , (59)

where na is the normal to the hypersurface, n2 = −1, and the extrinsic curvature of
the hypersurface is

Kab = −1

2
Lnγab = −γ c

a γ
d
b ∇(cnd) , (60)

where Ln is the Lie derivative along the normal direction, na. Introducing coordinates
yi = (η, x1, x2, u) for the spatial slice, the metric in the ADM formalism is parametrized
by the lapse and shift, α̃ and βi,

ds2 = −α̃2dt2 + γij(dy
i + βidt)(dyj + βjdt) . (61)

t is the temporal coordinate in the gravitational theory, and α, βi and γij are functions
of t and the holographic coordinate, u. The lapse and shift describe how the spatial
slices fit together to provide a foliation of space-time. In Ref. [75] the shift was set
to zero βi = 0, though it should be remarked that most of the current advances in
numerical relativity using the BSSN formalism exploit the shift to select a numerically
reasonable gauge based on the local derivatives of the induced metric, e.g. γlmΓi

lm

[90, 88, 89]. Thus, in more refined BSSN treatment of boost invariant plasma, βu

would be non-zero and could adapt the temporal coordinate to changes in the bulk
geometry.

Given the symmetries of boost invariant Bjorken flow, the metric, the extrinsic
curvature, and the lapse are parametrized by seven functions of t and u

γij =diag [γηη, γx1x1 , γx2x2 , γuu] , (62a)

=diag

[

t2a2(u)b2(t, u)

u
,
c2(t, u)

u
,
c2(t, u)

u
,
d2(t, u)

4u2

]

, (62b)

Kij =diag [Kηη, Kx1x1 , Kx2x2 , Kuu] , (62c)

=diag

[

ta(u)L(t, u)√
u

,
M(t, u√

u
,
M(t, u)√

u
,
P (t, u)

4u
√
u

]

, (62d)

α̃(t, u) =
a(u)α(t, u)√

u
. (62e)

This parametrization is chosen so that the functions a, b, c, d, L,M, P are regular at the
boundary. We note that a time independent function a(u) has been factored out of the
lapse for reasons described below. Our next goal is to record the evolution equations
for these functions following the standard ADM-York treatment.

The five dimensional curvature tensor, Ra
bcd, can be decomposed into a four dimen-

sional curvature tensor describing the intrinsic geometry of a spatial slice and products
of the extrinsic curvature [91]

γa1a2γ
b2
b1
γc2c1γ

d2
d1
Ra2

b2c2d2
= Ra1

b1c1d1
+Ka1

c1
Kb1d1 −Ka1

d1
Kc1b1 , (63)
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which is known as the Gauss equation. Ra
bcd is the curvature intrinsic to the spatial

hyper-surface, and can be determined from the induced metric. Using this identity in
the Einstein equations yields two constraint equations, known as the Hamiltonian and
momentum constraints, which are analogous to Gauss’ law in electrodynamics

R+K2 −KabK
ab =16πGNρ , (64)

DbK
b
a −DaK =8πGNja . (65)

In these formulas ρ and ja are the projections of the stress tensor, ρ ≡ Tabn
anb and

jc ≡ −Tabnaγbc, and Da denotes the covariant derivative with respect to the induced
metric, Da ≡ γ b

a ∇b.
The remaining evolution equations for the extrinsic curvature and the induced met-

ric are found by projecting their Lie derivatives in the temporal coordinate6

∂tγab =− 2α̃Kab , (66)

∂tKab =−DaDbα̃ + α̃(Rab − 2KacK
c
b +KabK)− 8πGN α̃

[

Sab +
ρ− S

d− 1
γab

]

, (67)

where Sab ≡ Tcdγ
c
aγ

d
b with S ≡ gabSab, and d = 3 + 1 is the number of space-time

dimensions in the boundary theory. So far the setup parallels the standard treat-
ments of the ADM-York formalism except that the five dimensional stress tensor Tab
is determined by the radius of curvature of the AdS space

Tab =
d(d− 1)

16πGNL2
gab . (68)

As we will see, both the boundary and the infrared require special treatment when
simulating asymptotically AdS geometries.

In general, the strong curvature near the boundary did not seem to create difficul-
ties. It was necessary, however, to analyze the equations analytically near the boundary
in order to determine temporal update rules for the boundary fields. The infrared cut-
off in the bulk required additional considerations. Indeed, the authors implemented
the IR-cutoff by parametrizing the lapse as

α̃(t, u) =
a(u)α(t, u)√

u
, with a(u) = cos

(

π

2

u

uo

)

. (69)

The leading factor, cos(πu/2uo), freezes space-time at u = uo, since initial data with
u > uo does not influence the simulation. As long as uo is within the event horizon
this choice is acceptable for all times, and the simulation can be run until a singularity
is formed in the computational domain. In practice, uo was first chosen somewhat
arbitrarily, and then the geometry was evolved for modest simulation times. This
exploratory run was used to estimate the (u-coordinate) location of the true event
horizon at t = 0, which was set to uo in subsequent runs. In this way a singularity which
is inside the event horizon does not form within the computational domain, and the late
(boundary) time dynamics can be studied. Presumably, an excision technique could
have been used to excise the singular geometry, and obviate this two step procedure.

The final factor α(t, u) was chosen by trial and error as the standard choices of the
BSSN scheme, e.g. 1 + log det γij, did not lead to stable results. The lapse measures

6Note, we have assumed that the shift βi = 0 when writing these equations.
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Figure 5: The formation of thermal AdS from a given initial state for a boost invariant
plasma [75]. The background colors correspond to the scalar curvature as a function
of the Bjorken time τ and the holographic coordinate u, with blue corresponding to
regions of small curvature. (The boundary is at u = 0, the left hand side of the plot, and
all coordinates are measured in terms of the initial effective temperature T i

eff ∝ (ǫi)1/4.)
(a) In the left figure, the arrows indicate inward going lightlike geodesics. The red line
is a radial null geodesic sent from the boundary into the bulk. (b) In the right figure,
the arrows indicate outward going lightlike geodesics. The red line indicates the event
horizon. Here the parameter of the lapse (which cuts off the geometry in the IR) is

u0 ≃ 0.26 (T
(i)
eff )

2. In subsequent runs the event horizon estimate uEH
o ≃ 0.20 (T

(i)
eff )

2 is
used for uo.

how the spatial slices at fixed time fit together to foliate the space-time geometry, and
choosing the lapse amounts to selecting a numerically satisfactory coordinate system
based on the induced metric. The simplest reasonable choice (for example lapse4 of
Ref. [75]), takes α(t, u) = d(t, u)/d(0, u). This choice is somewhat ad hoc and will
require further investigation. Clearly, the holographic direction (which is parametrized
by d(t, u)) plays an essential role in deciding the appropriate foliation.

Fig. 5 shows the formation of thermal AdS from an arbitrary initial condition (initial
condition 23) in the numerical simulations of Ref. [75]. Similar figures are produced by
a variety of initial conditions. The boundary physics of these gravitational solutions
will be described in the next section, Section 3.2.

3.2 Equilibration and the onset of hydrodynamics

3.2.1 Equilibration of a Bjorken expansion

In the previous section we described an ADM formulation of numerical relativity. To
date this has been used to study the equilibration of a boost invariant plasma initialized
at τ = 0+, and the approach to hydrodynamics at late times [72]. Here we will review
the boundary physics extracted from this holographic simulation.

We first note that the energy density at mid-rapidity is finite as τ → 0+, and thus
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the energy density can be used to define an initial effective temperature:

ǫi =
3

8
π2N2

c

(

T i
eff

)4
. (70)

After specifying the energy density (but not its time derivatives), the only other non-
zero component of the stress tensor not determined by boost invariance, transverse
translational invariance, and conformal invariance is the longitudinal pressure PL:

(T ττ , T xx, T yy, τ 2T ηη) ≡ (ǫ,PT ,PT ,PL) , PT = 1
2
(ǫ− PL) . (71)

Specifying the stress tensor does not completely specify the initial conditions for the
gauge theory even at large Nc. Rather it specifies the one point function, and does
not specify the full variety of momentum space configurations that lead to this one
point function. In the gravitational set-up this ambiguity means that there is consider-
able freedom in choosing a five-dimensional asymptotically AdS metric which has the
boundary stress tensor specified by Eq. (71) [75]. After specifying initial conditions for
the five dimensional metric functions (as will be detailed shortly), the Einstein equa-
tions determine the subsequent evolution. The evolution of the boundary stress tensor
satisfies the boundary conservation laws, ∂µT

µν = 0, which reduce to an ordinary
differential equation for boost invariant plasma

dǫ(τ)

dτ
= −ǫ(τ) + PL(τ)

τ
. (72)

Thus, the longitudinal pressures and transverse pressures are completely determined
by the energy density and its time derivative. Physically, this equation says that the
energy density per space-time rapidity, τe(τ), decreases due to longitudinal PL dV work
of the expansion.

In the holographic setup, the short time behavior of boost invariant plasma prepared
in an arbitrary initial state is determined by the expansion of the metric near the
boundary at τ = 0 [92]. In Fefferman-Graham coordinates the five dimensional metric
compatible with the boundary stress, Eq. (71), can be parametrized by

ds2 =
−eaFG(τ,z)dτ 2 + τ 2ebFG(τ,z)dη2 + ecFG(τ,z)dx2

⊥ + dz2

z2
. (73)

where metric parameters aFG, bFG, and cFG are related through a coordinate transfor-
mation to the metric parameters defined in the previous section, Eq. (62). With this
parametrization, the Einstein equations relate the τ derivatives of ǫ(τ) at τ = 0 to the
z derivatives of a(0, z). Through second order these relations read [92]

aFG(τ, z) = −ǫ(τ) z4 +
(

−ǫ
′(τ)

4τ
− ǫ′′(τ)

12

)

z6 + . . . . (74)

Demanding regularity of the metric functions near the boundary together with finite
energy density as τ → 0, leads to the requirement that the first derivative de/dτ vanish
as τ → 0. In more physical terms, this implies (from Eq. (72)) that the longitudinal
pressure is negative and the transverse pressures satisfy

(PT ,PT ,PL) = (ǫ, ǫ,−ǫ) . (75)
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Figure 6: Left: The logarithmic time derivative of w = τTeff , d(logw)/d(log τ) ≡
F (w)/w, versus w for different initial conditions (the grey curves) from Ref. [72]. The
(red) dotted, (blue) dash-dotted and (green) dashed curves show the predictions of
hydrodynamics at first, second and third order. Right: Evolution of the pressure
anisotropy, 1−3PL/ǫ, as a function of w from Ref. [72]. Only one representative initial
condition is shown, together with the hydrodynamic curves.

This initial condition should be compared with the initial conditions used in boost
invariant classical Yang Mills simulations of heavy ion collisions [93],

(PT ,PT ,PL) =
(

1
2
ǫ, 1

2
ǫ, 0
)

. (76)

After specifying the initial gravitational fields (i.e. aFG(0, z)), the Einstein system is
evolved numerically with the ADM formulation of Section 3.1.3 in order to see the for-
mation of thermal AdS at late times [75, 72]. A large variety of initial metric functions
aFG(0, z) were considered and evolved to equilibrium. The results are summarized in
Fig. 6, which plots the longitudinal pressure versus τ in a slightly rewritten form mo-
tivated by hydrodynamics. More precisely, defining w(τ) = τTeff , the time derivative
w(τ) is determined by Eq. (72),

τ

w

dw

dτ
=

1

4

(

3− PL

ǫ

)

≡ F (w)

w
, (77)

and the LHS is plotted for a wide range of gravitational initial conditions. Fig. 6 shows
that each different initial condition gives rise to a different early time behavior. The
goal of non-equilibrium studies in gauge-gravity duality is to characterize the common
features of these curves.

Indeed, a striking feature of these curves is their approach to a universal hydrody-
namic limit at late times. Close to equilibrium, the hydrodynamic constituent relation
determines the value of PL (and hence F (w)/w) as a function of the energy density
and flow velocity, and their spatial derivatives, which may be directly evaluated for a
Bjorken flow. In conformal hydrodynamics this constituent relation is

T µν = ǫuµuν + P (ηµν + uµuν)− ησµν + 2nd order + . . . , (78)
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where −ησµν is the viscous stress tensor. We will not write out the form of the second
order spatial gradient terms explicitly, but refer to the original work [94, 95] and the
pedagogical review [19]. For the Bjorken flow these spatial derivatives are evaluated
easily, yielding powers of 1/τ that determine the longitudinal pressure through second
order

PL = P − 4

3

η

τ
+ (λ1 − ητπ)

8

9τ 2
+ . . . . (79)

With the known transport coefficients ofN = 4 SYM theory [94, 95], the hydrodynamic
expansion for the longitudinal pressure, or F (w)/w, reads7

F (w)

w
=

2

3
+

1

9πw
+

1− log 2

27π2w2
+ . . . , (80)

where each additional term is suppressed by a power of w ≡ 1/τTeff . The third order
term has been given explicitly [96], and recently the first 240 orders of the hydrody-
namic expansion have been computed numerically to investigate the asymptotics of the
hydrodynamic expansion [97].

Fig. 6(a) compares the evolution of F (w)/w from a variety of initial conditions
to the hydrodynamic prediction at first, second, and third order. The figure shows
that although hydrodynamics determines the late time evolution, it can yield qualita-
tively wrong results at early time, and underestimate the magnitude of non-equilibrium
corrections. There have been various attempts to resum higher order terms in the hy-
drodynamic expansion in order to reproduce some non-equilibrium physics [98, 99, 100].
If such resummations were applicable as opposed to genuine non-equilibrium dynam-
ics, the evolution in Fig. 6(a) would be described a single universal curve, F (w)/w
[72]. However, the curves in this figure do not exhibit a universal behavior until late
times. Indeed, the corrections to hydrodynamics are determined by the decay time of
“non-hydrodynamic” modes, rather than still higher order terms in the gradient ex-
pansion. Thus, the utility of such hydrodynamic resummations seems limited. Similar
conclusions were originally reached by studying plasma formation with boost invari-
ant kinematics [71], and subsequently at weak coupling by comparing kinetic theory
simulations for a heavy quark propagating through plasma to the corresponding hy-
drodynamic expansion [101].

The rapid approach to viscous hydrodynamics, sometimes called “hydroization”, is
extremely characteristic of gauge-gravity duality and has been found in essentially all
holographic non-equilibrium studies of strongly coupled plasmas [102, 103, 71, 74, 72].
However, it is important to note that viscous corrections to the equilibrium isotropic
state are large [71, 74, 72]. Fig. 6(b) shows the pressure anisotropy 1−3PL/ǫ as a func-
tion of w = τTeff for a representative initial condition, together with hydrodynamics at
various orders. Clearly, although the system is well described by viscous hydrodynam-
ics at w = 0.8, the pressure tensor is rather anisotropic, (PT − PL)/(PT + PL) ≃ 1

3
,

and remains anisotropic until late times. This anisotropic regime is out-of equilibrium,
but the stress tensor is well characterized by gradients around the equilibrium state.
Presumably, other measures of equilibration such as the emission rates studied in Sec-
tion 3.3 are also corrected gradients [104, 105, 106, 107, 108], although the form of
these corrections remains to be fully clarified. The holographic description of Bjorken

7 Specifically, we substitute the equation of state P = ǫ/3, the first order transport coefficient
η/(ǫ + P) = 1/4πT , and the second order transport coefficients, λ1 = 2 η2/(ǫ + P), and ητπ =
(4− 2 log 2) η2/(ǫ+ P) into Eq. (79).
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flow also offers a venue for studying non-equilibrium phenomena outside of hydrody-
namics, for example the behavior of a quark condensate near a holographic chiral phase
transition [109].

3.2.2 Transverse and longitudinal collision dynamics at strong coupling

The non-equilibrium dynamics described in the previous section has been extended in
several ways. Both the longitudinal [74] and transverse dynamics [82] of the collision
have been studied and simulated in gauge-gravity duality using the null coordinate
method described in Section 3.1.2.

The longitudinal dynamics was studied by colliding two shock waves which are
infinite and flat in the transverse direction, and of finite width in the longitudinal di-
rection [74]. Notable results included a finite speed β = 0.86 of the outgoing maxima,
and the behaviors of the longitudinal and transverse pressures which become quantita-
tively similar to hydrodynamics after time that is a finite multiple of the width of the
original colliding shocks. Boldly extrapolating these results to conditions appropriate
to collisions at top RHIC energies, one expects hydrodynamical behavior to set in at
τ ∼ 0.35 fm/c. However, the strong attenuation of stress energy outside a rapidity win-
dow |y| . 1 is unlike real heavy ion collisions, and may be unfortunately characteristic
of the strong coupling limit.

At later times τ ∼ R/c, the finite transverse size also influences the evolution of the
system. An important practical question is how large is the transverse flow generated
by the early time non-equilibrium dynamics, and how this “pre-flow” influences the
subsequent hydrodynamic expansion. A reasonable estimate of pre-flow due to Vrede-
voogd and Pratt finds that the initial momentum density after a time ∆τ ≡ τ − τo is
determined by local gradients of the energy density [110]. Specifically, for an initial
energy density profile ǫ0(x⊥, τo) the transverse momentum density S i ≡ T 0i relative to
energy density E increases in time as

S i

E ≃ −∂
iǫ0
2ǫ0

∆τ . (81)

This estimate is supported by gauge gravity simulations. To simulate a boost invariant
expansion for a finite sized nucleus, Wilke van der Schee initialized a finite nucleus
geometry using the AdS/CFT correspondence [82], i.e the non-trivial coordinates are
τ, ρ, and z, where ρ is the transverse radius, and z is the holographic coordinate.
Solving the 2+1 dimensional Einstein equations using the null coordinate method (see
Section 3.1.2) he determined the stress energy tensor in boundary theory at late times.
In Fig. 7 the resulting pre-flow is compared to Eq. (81), which reasonably describes the
transverse flow velocity generated during the earliest moments. Since this amount of
“pre-flow” is modest compared to later evolution [110], the non-equilibrium evolution is
not expected to dramatically change the results of hydrodynamic simulations. However,
such “pre-flow” contributions can constitute an important correction when quantifying
the uncertainties in current hydrodynamic simulations [22, 27].

3.3 Equilibration of two-point functions

The previous section described the thermalization of the average stress tensor, and the
approach to the hydrodynamic limit. This only partially characterizes the equilibrium
state. In this section we will discuss other measures of equilibration focusing on two
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Figure 7: The transverse momentum density relative to the energy density, S/E , for a
non-equilibrium cylindrically symmetric Bjorken expansion simulated in gauge gravity
duality in Ref. [82]. The blue curves result from a Wood-Saxon profile, while the red
curves are for a small perturbation which is not discussed in this review. The thick
curves show S/E at τ = 0.75 fm while the thin curves show the result at τ = 0.4 fm.
The dash curves (labeled [20]) show the Vredevoogd and Pratt estimate (Eq. (81)) for
“pre-flow” [110].

point functions. So far the equilibration of two point functions has been studied in par-
ticularly simple geometries such as Vaidya metric [111, 105, 112, 107], and a numerical
background initially realized by Chesler and Yaffe [81, 113, 106].

3.3.1 The Fluctuation-Dissipation Theorem

Equilibrated two-point functions obey detailed balance; the emission rate of weakly
coupled quanta with energy q0 is related to the absorption rate by the Fluctuation-
Dissipation relation

emission rate

absorption rate
= e−q0/T . (82)

More formally, the emission and absorption rates of a (bosonic) field weakly coupled
to an operator O are given by the Wightman correlation functions G<(Q) and G>(Q)
respectively

G<(q0, q) =

∫

d4X e−iQ·X 〈O(0)O(X)〉 , (83)

G>(q0, q) =

∫

d4X e−iQ·X 〈O(X)O(0)〉 . (84)

In equilibrium these twoWightman functions are related by the Fluctuation-Dissipation
Theorem (FDT)

G<(q0, q) = e−q0/TG>(q0, q) , (85)

where here and below capital letters denote four momenta Q = (q0, q), and space-time
coordinates X = (x0,x) in flat spacetime. Out of equilibrium, these two correlation
functions are unrelated to each other. The emission of quanta from an equilibrating
system is dual to the emission of quanta from an equilibrating black hole. Thus,
the study of thermalization in strongly coupled systems is directly connected to the
equilibration of Hawking radiation in non-equilibrium gravitational backgrounds.
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Often, in semi-classical contexts (such as gauge-gravity duality) it is more con-
venient to express the FDT in terms of the spectral density and the symmetrized
correlation function

ρ(Q) =

∫

d4X e−iQ·X 〈[O(X),O(0)]〉 = G>(Q)−G<(Q) , (86)

Gsym(Q) =

∫

d4X e−iQ·X 1
2
〈{O(X),O(0)}〉 = 1

2
(G>(Q) +G<(Q)) . (87)

For instance, the evolution of the occupation numbers nk of a quantum electromag-
netic field weakly interacting with strongly coupled plasma satisfies a Boltzmann type
equation

[

∂t + k̂ · ∂x
]

nk(t,x) =
G<(K)

2ωk

(1 + nk(t,x))− nk(t,x)
G>(K)

2ωk

, (88)

whereG<(K) andG>(K) are the lightlike current-current correlators, andK = ωk(1, k̂)
is a Fourier mode of the electromagnetic field. For a classical field with nk(t,x) ≫ 1,
we see that

[

∂t + k̂ · ∂x
]

nk(t,x) = −nk(t,x)
ρ(K)

2ωk

, (89)

and thus the spectral density describes the absorption rate of a classical field by plasma.
A very worthwhile (and very short) exercise starting with Eq. (88) shows that if the
FDT is satisfied and the spectral density is positive, then the interactions between
the electromagnetic field and the strongly coupled plasma will drive the occupation
numbers to equilibrium, nk = 1/(eωk/T − 1).

While the spectral density (which describes classical absorption) is easily computed
using the classical methods of the correspondence, the symmetrized correlation function
(which describes the quantum-statistical fluctuations) can only be computed through
an analysis of the Hawking flux [114, 115, 113].

3.3.2 Non-equilibrium two-point functions

First, we will analyze the non-equilibrium evolution and equilibration of the spectral
density, ρ(Q), which has been studied in non-equilibrium contexts by several groups
[111, 116, 105, 117, 118]. The spectral density records the absorption rate external
classical field by the non-equilibrium plasma. For definiteness, we will consider the
“falling-shell” geometry first considered by Shu and Shuryak [111], as a prototype
non-equilibrium geometry. In this case the radial coordinate of the shell follows the
trajectory rs(v), and the metric takes a specific form

ds2 = −A(r, rs(v))dv2 + 2dvdr + r2dx2 , (90)

where

A(r, rs(v)) =

{

r2 r < rs(v)

r2
(

1−
(

4πTf

d r

)d
)

r > rs(v)
, (91)

i.e. inside of a shell (r < rs(v)) the metric is vacuum AdS, while outside the shell
(r > rs(v)) the metric is thermal black hole AdS. Here d = 4 is the number of space
time dimensions. As an extreme limit, one can profitably consider an infinitely thin
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shell falling at the speed of light in 1+1 dimensions [112], yielding the Vaidya space
time metric

ds2 = −r2
(

1− θ(v)

(

2πTf
r

)2
)

dv2 + 2dvdr + r2dx2 . (92)

In the original prototype shell geometry given in Eq. (90), the shell falls at a specified
rate, which is determined by solving the Israel junction conditions [111]. The spec-
tral density can be found from the retarded and advanced Green’s functions in this
time dependent geometry. In general, once the geometry is time dependent, Fourier
transforms are of limited use, and the equations to be solved are partial differential
equations rather than ordinary equations. However, when the frequency of the spec-
tral density ω is large compared to all other time scales in the problem, the position
of the probe brane may be considered constant over a time scale of 1/ω. In this case,
Fourier transforms can be introduced, and the solution to the wave equation in the
static, but discontinuous, metric can be found by solving the attendant differential
equations above and below the falling shell, and matching the solution across the dis-
continuity at r = rs. Then, the infalling and outgoing solutions for r → 0 can be
selected, and these solutions determine the retarded and advanced Green’s functions
in the non-equilibrium metric. The spectral density is a function of the shell height
rs and the frequency ω. A particularly interesting spectral density to study is the
light-like R-charge current-current correlator,

ρ(Q) =

∫

X

e−iQ·(X−Y ) 〈[Jµ(X)Jµ(Y )]〉 , with Qµ = ω (1, q̂) , (93)

which provides a gravitational dual for the absorption of a classical electromagnetic
wave by plasma. Fig. 8(a) shows relative deviation of the spectral density from equi-
librium

R =
ρ(rs, ω)− ρthermal(ω)

ρthermal(ω)
, (94)

for the lightlike R-charge current current correlator. The results show a characteristic
feature of non-equilibrium AdS [112], i.e. the spectral density first attains its equi-
librium form at high frequencies [112, 117]. The analysis has been pushed to next to
leading order in λ (Fig. 8(b)) with the satisfying result that finite λ corrections increase
the deviation from equilibrium as ω → ∞ [118].

Two calculations have gone beyond the quasi-static approximation, and computed
the spectral density in a time dependent background for dilaton correlators [107, 106].
A general approach is to recognize that the bulk spectral density satisfies homogeneous
equations of motion, together with initial conditions specified by the canonical commu-
tation relations. Once the bulk spectral density is determined by solving the equations,
the correlator can be brought to the boundary, determining the spectral density in the
field theory [113, 119]. Specifically, for a bulk scalar field, S = −K

∫

1
2
(∂φ)2, with

spatial momentum k in a homogeneous, but time dependent background, the spectral
density of the bulk gravitational theory,

ρ(v1r1|v2r2) = 〈[φk(v1, r1), φk(v2, r2)]〉 , (95)

satisfies the causal equations of motion

[

∂µK
√
ggµν∂ν −K

√
ggijkikj

]

ρ(v1r1|v2r2) = 0 , (96)
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Figure 8: (a) The relative deviation of the photon spectral function from its thermal
limit, R (seeEq. (94)), for various values of the shell height and the frequency from
Ref. [117]. The black, blue, and red curves are for rs/πTf = 1.001, 1.01, 1.1. (b)
The relative deviation R for rs/πTf = 1.01 and λ = ∞, 500, 350 with the amplitudes
decreasing with coupling from Ref. [118]. While in the λ = ∞ case the amplitude of
the oscillations gets damped at large ω, for all finite values of λ it first decreases but
ultimately starts growing linearly with ω.

where µ, ν run over the space-time indices v1, r1, and i, j run over the spatial directions
x1, x2, x3. With the canonical commutation relations,

lim
v1→v2

K
√
ggvν∂νρ(v1r1|v2r2) = δ(r1 − r2) , (97)

the PDE system can be solved in v1r1 ⊗ v2r2 to determine the spectral density at all
times. This technically challenging procedure has been followed [106, 107], and the
resulting spectral densities show a top down pattern of thermalization that is similar
to the quasi-static example discussed above.

The calculation of the emission rate, G<(Q), and the statistical fluctuations, Gsym(Q),
amounts to computing the Hawking radiation in a time dependent geometry. The
physics probed by these fluctuations is markedly different from the spectral density.
To illustrate the essential differences, we will sketch a somewhat unusual derivation of
Hawking radiation for the equilibrium black brane geometry

ds2 = −r2
(

1−
(

πT

r

)4
)

dv2 + 2 drdv + r2dx2 , (98)

and then we will generalize these ideas to non-equilibrium backgrounds [113, 120].

For the symmetrized function arbitrary initial conditions are specified in the dis-
tant past, and evolved to the future with the homogeneous equations of motion. This
should be contrasted with the spectral density, where the initial conditions are com-
pletely fixed by the canonical commutation relations (Eq. (97)). However, even in the
symmetrized case, the initial conditions are not completely arbitrary. In particular,
the Hadamard conditions require that at vanishing coordinate separation, v1r1 → v2r2,
the symmetrized correlator should be asymptotic with the flat space results for a free
scalar field in 1+1 dimensions:

lim
X1→X2

1
2
〈{φ(X1)φ(X2)}〉 = − 1

4πK
log |µηµν∆Xµ∆Xν | , (99)
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Figure 9: A schematic figure illustrating the physics of Hawking radiation from an
equilibrium black hole in Eddington-Finkelstein coordinates [113]. Red lines show
outgoing null geodesics. The stretched horizon is at r∗ (the dashed line), while the
true event horizon is at rh = πT (the thick solid line). The blue markers indicate
two space-time points v1r1 and v2r2 where dilaton fluctuations are correlated through
quantum fluctuations close to the horizon.

where ∆ = X1 − X2. Such coincident point singularities describe ultraviolet vacuum
fluctuations in the five dimensional geometry. Hawking radiation is emitted when
stochastic UV fluctuations close to the horizon are inflated by the diverging geodesics
of the near horizon geometry. The symmetrized two-point function in the bulk records
the statistics of these redshifted fluctuations emerging from the black hole.

A schematic of the Hawking emission process is illustrated in Fig. 9. In the dis-
tant past initial conditions for the symmetrized two point functions are specified that
satisfy Hadamard constraints (Eq. (99)). Examining the near-horizon geodesics in equi-
librium, one concludes that the bulk statistical correlation function in the far future is
determined by initial data exponentially close to the horizon, which is completely fixed
by these UV constraints. This UV-singular initial data is propagated along outgoing
null geodesics from the event horizon at rh = πT to the stretched horizon at r∗ = rh+ǫ,
using a WKB or geodesic approximation. Such geodesics are diverging exponentially
near the horizon as

r(v)− rh = (ro − rh)e
2πT (v−vo) , (100)

and this divergence is responsible for the gravitational redshift. Finally, the solution
above the stretched horizon (where the eikonal approximation is no longer valid due
to the red shift), can be written as a convolution of retarded propagators from the
stretched horizon to the bulk, and an effective stretched source that describes the
quantum fluctuations below r∗

Gsym(v1r1|v2r2) =
∫

dv′1dv
′
2GR(v1r1|v′1r∗)GR(v2r2|v′2r∗)

[

Gh
sym(v

′
1|v′2)

]

. (101)

The horizon source is

Gh
sym(v1|v2) = −K

π

√
g ∂v1∂v2 log

∣

∣e2πTv1 − e2πTv2
∣

∣ , (102)
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which clearly reflects the logarithmic initial conditions, Eq. (99), together with the
transport of this initial data along the geodesics given in Eq. (100). Additional analysis
shows that this horizon symmetrized correlator and the corresponding horizon spectral
density satisfy the FDT. In the context of heavy quarks, the near-horizon statistical
fluctuations codified by Eq. (102) ultimately determine the spectrum of random forces
experienced by a heavy quark in strongly coupled plasma [114, 115, 113]. The validity
of the FDT on the horizon then guarantees the Einstein relation between the drag and
momentum diffusion coefficients in the boundary theory.

Given this dynamical picture of the Hawking emission process, which is based on
solving equations of motion rather than a Fourier decomposition, it is conceptually
straightforward (if technically challenging) to compute the emission two point function
in an out of equilibrium geometry, such as the Chesler-Yaffe background [81]. In
this background a non-equilibrium state is created by turning on a time-dependent
gravitational source in the boundary theory. The resulting numerical 5d metric in the
bulk bears some structural similarity to the Vaidya space time metric, and can be
parametrized as

ds2 = −Adv2 + 2dvdr + Σ2
[

eBdx2
⊥ + e−2Bdx2‖

]

, (103)

where A, B, and Σ are functions of r and v. Fig. 10 (a) shows the stress tensor T µν for
this numerical background, which indicates that the stress tensor isotropizes shortly
after the source is turned off.

The equilibration of the system is quantified by monitoring the emission and ab-
sorption rates in a given frequency band ∆ω as a function of time [106]. Clearly, the
frequency and time resolutions of this analysis are limited by the uncertainty principle,
∆ω∆t ≥ 1

2
. To achieve the best possible resolution in both frequency and time we will

compute a windowed Fourier transform of G(t|t′) known as the Gabor Transform8

Ḡ<(t̄, ω) ≡ 1√
πσ2

∫

dt dt′ e−
(t−t̄)2

2σ2 e−
(t′−t̄)2

2σ2 eiω(t−t′)G<(t|t′) , (104)

Ḡ>(t̄, ω) ≡ 1√
πσ2

∫

dt dt′ e−
(t−t̄)2

2σ2 e−
(t′−t̄)2

2σ2 eiω(t−t′)G>(t|t′) , (105)

where in practice the smearing width is tied to the final temperature, σ = 1/πTf .
The Gabor transform equals the Wigner transform G(t, ω) averaged over time and
frequency with a minimal uncertainty wave packet of temporal width ∆t = σ/

√
2, and

frequency width ∆ω = 1/
√
2σ. If the FDT is satisfied, then the Gabor transforms of

G> and G< satisfy

Ḡ<(t̄, ω) = e−ωβeff(t̄)+β2
eff(t̄)/4σ

2

Ḡ>(t̄, ω − βeff(t̄)/2σ
2) , (106)

where βeff = 1/Teff with Teff ∝ ǫ1/4. Fig. 10(b) shows the Gabor transform of G< for
the time dependent geometry together with FDT expectation. Clearly the emission
two point function, G<, equilibrates after the corresponding one point function and
the absorption rate, G>. Heuristically, this is because the horizon geometry must
equilibrate before it emits an equilibrium flux, which can traverse the bulk and reach
the boundary.

8We will suppress the three momentum q of the correlation function, G(t, t′) = G(t, t′; q).
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Figure 10: (a) The SYM stress tensor T µν relative to the final energy density Ef
as a function of time in the boundary theory. The shaded band indicates when the
energy density is changing due to the work done by the external source in the boundary
gauge theory [81]. (b) A non-equilibrium emission rate, Ḡ<(t̄, ω; q)/Ḡ<

final(ω; q). The
emission rate is exhibited for time-like momenta, with q0 = 8πTf and q = 0, and for
light-like momenta, with q⊥ = q‖ = q0/

√
2 and q0 = 8πTf . The dashed lines show the

FDT-expectation for the emission rate, i.e. the rate derived using the absorption rate
Ḡ>(t̄, ω; q) and the FDT result [106].

4 Black brane geometries: static and linear response

properties

We have thus far discussed non-equilibrium processes, associated to non-stationary
gravity backgrounds. We turn now to the study of equilibrium and linear response
properties of strongly-coupled, large-Nc gauge theories at nonzero temperature and
density, which can be probed via static black brane geometries. These spacetimes
may be thought of as generalizations of the AdS-Schwarzschild geometry (3); four-
dimensional Lorentz invariance is broken only by the selection of a time coordinate by
the black hole horizon function, leaving three-dimensional rotations and translations
preserved. They thus describe a homogeneous medium at nonzero temperature. The
models we consider will all break conformal invariance by some additional feature, such
as a nontrivial radial profile for a scalar field. Thermodynamic properties come imme-
diately from properties of the geometry, and transport coefficients may be calculated
from the response to perturbations. Here we will largely consider “bottom-up” models
that do not come from any known string theory construction, and as a consequence the
precise duality map is not known; nonetheless the models may be engineered to incor-
porate various desired properties, such as the beta function and the thermodynamics
of QCD.

4.1 Black branes and thermodynamics

While generalizations can be considered, here we will content ourselves with a gravity
theory containing the metric gµν , a scalar field φ and a gauge field Aµ, with Einstein-
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Maxwell-scalar Lagrangian,

L =
1

2κ2

[

R− 1

2
(∂φ)2 − V (φ)− f(φ)

4
F 2
µν

]

. (107)

We take the scalar potential term to include the cosmological constant,

V (φ = 0) ≡ −12

L2
, (108)

and then the AdS and AdS-Schwarzschild geometries (2), (3) reviewed in the introduc-
tion are solutions with φ = Aµ = 0. We will generalize these solutions to a class of
asymptotically AdS black brane geometries of the form,

ds2 = e2A(r)
[

−h(r)dt2 + d~x2
]

+
e2B(r)

h(r)
dr2 , (109)

where h(r), A(r) and B(r) are functions of the radial coordinate that approach the AdS
solution at large r. The function B(r) can be adjusted arbitrarily by transformations
of the radial coordinate, and thus may be set to a convenient form.

Geometries with h(r) = constant lack a horizon, while those with a zero h(rH) = 0
have a horizon at the radius r = rH . The former class may still be associated with a
state in thermodynamic equilibrium if the Euclidean continuation is given a periodicity
β = 1/T in imaginary time, where T is identified with the temperature of the dual
gauge theory; such a geometry may be considered a “thermal gas”. For the latter class
with a horizon, the temperature T and entropy density s associated to the black brane
geometries are given by

T =
1

4π
h′(rH)e

A(rH)−B(rH) , s =
2π

κ2
e3A(rH) , (110)

corresponding as usual in black hole thermodynamics to the surface gravity and area
of the horizon, respectively. To translate the five-dimensional gravitational constant κ
appearing in the expression for the entropy density into field theory terms, we note first
that in the case of AdS5 × S5 dual to SU(Nc) N = 4 super-Yang-Mills, one can relate
the gravitational constant and the AdS radius to the string coupling gs = g2YM/2π and
the Regge slope α′:

1

κ2
=

L5

64π4g2sα
′2 , L4 = 4πgsNcα

′2 . (111)

Field theory quantities should not involve the string theory parameter α′, which drops
out of the combination

L3

κ2
=
N2

c

4π2
, (112)

and indeed the entropy (110) must be proportional to this on dimensional grounds.
For AdS/CFT models not based on a known string theory construction, the precise
coefficient in (112) is not determined; however, the N2

c dependence is expected to
remain the same for any gravity dual of a four-dimensional gauge theory. As a result
the black brane solutions have an entropy that is O(N2

c ). The thermal gas solutions,
on the other hand, have no horizons and hence any entropy is subleading in 1/Nc; one
expects it to be of O(1).
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Figure 11: The potential between two test quarks in the boundary theory is holograph-
ically related to the behavior of the string world sheet connecting them. Confining
geometries (left) allow the string to dip arbitrarily low in the bulk geometries radial
direction. Deconfinement (right) is realized when the world sheet encounters a black
hole horizon, effectively severing the string.

We may interpret the difference between the thermal gas solution and the black
brane background as being that the former is dual to a confining gauge theory, while
the latter is deconfined [12]. This can be ascertained by studying, for example, the
potential between two test quarks in the boundary theory [121]. This potential can be
computed gravitationally by minimizing the area of the string worldsheet that connects
one quark to the other. Heuristically, the existence of the black brane horizon provides
a hole the world sheet can fall in to, leaving its “quark” endpoints agnostic of one
another. These ideas are summarized in figure 11.

These geometries may be accompanied by a radial profile for the scalar,

φ = φ(r) . (113)

The scalar field is holographically dual to an operator Oφ whose conformal dimension
∆φ is determined by the mass term in the potential:

V (φ) = −12

L2
+

1

2
m2

φφ
2 + . . . , m2L2 ≡ ∆φ(∆φ − 4) . (114)

Near the boundary the equations of motion constrain the profile of φ to have the form,

φ(r) = φ(4−∆)r
∆−4 + . . .+ φ(∆)r

−∆ + . . . , (115)

where the value of φ(4−∆) encodes adding a source for Oφ to the dual Lagrangian,

∆S =

∫

d4xφ(4−∆) Oφ , (116)

and φ(∆) controls the one-point function,

〈Oφ〉 ∼ φ(∆) . (117)

Thus, a generic asymptotically AdS black brane geometry has the interpretation of
N = 4 super-Yang-Mills deformed by the addition of Oφ to the Lagrangian.

If the scalar is massless, the dual operator has ∆φ = 4 and is exactly marginal. The
archetype of this case is the type IIB dilaton, which in the case of compactification on
AdS5 × S5 is holographically dual to the exactly marginal gauge coupling of N = 4
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Super-Yang-Mills. Even in bottom-up models, the term “dilaton” may be understood
to refer to such a scalar, whose nontrivial profile corresponds to the running of the
gauge coupling of the dual theory.

For a massive scalar, we have ∆φ 6= 4 and the existence of a source φ(4−∆) introduces
a mass scale,

Λ ≡
(

φ(4−∆)

)
1

4−∆ , (118)

which explicitly breaks conformal invariance to the dual quantum field theory. As we
shall see, it can be useful to model the running of the physical QCD coupling, which is
not conformal, by replacing the massless dilaton with a massive scalar with potential
suitably chosen to approximate aspects of the beta function. Irrelevant operators
correspond to fields with positive mass-squared, while relevant operators are dual to
fields with negative mass-squared. Unlike in flat space, negative mass-squared does not
lead to an instability as long as the Breitenlohner-Freedman bound is satisfied,

m2L2 ≥ −4 . (119)

The introduction of a U(1) gauge field is dual to the presence of a global conserved
current in the field theory dual. A profile for the gauge field of the form,

Aµdx
µ = Φ(r)dt , (120)

is consistent with the symmetries of the black brane ansatz. Near the boundary the
function Φ(r) has the expansion

Φ(r) = µL− ρ
L2κ2

r2
+ . . . , (121)

where µ and ρ are respectively the chemical potential and charge density of the con-
served U(1) current. In the case of lattice calculations, introducing a nonzero chemical
potential is difficult, as it generates a complex action vastly complicating the numer-
ical sampling of the path integral, the so-called “sign problem”. Adding a chemical
potential in a holographic dual, on the other hand, just involves adding a single field
without any introduction of problems of principle. This makes holographic techniques
valuable probes of finite density physics, as we shall see.

4.2 Transport coefficients

Transport coefficients encode dynamical processes in the medium, arising as coeffi-
cients parametrizing the derivative expansion of the long wavelength (hydrodynamic)
behavior of the system. The shear viscosity η and bulk viscosity ζ characterize energy-
momentum transport, with the shear viscosity describing the fluid’s response to shear-
ing stresses, and the bulk viscosity roughly characterizing the response of the system to
expansion or contraction; we also consider the conductivity λ of the conserved current.
These can be calculated in field theory via Kubo formulae of the form

lim
ω→0

1

ω
ImGR(ω,0) , (122)

where GR(ω,0) is the zero-momentum retarded Green’s function for appropriate po-
larizations of the energy-momentum tensor or conserved current. Because these are
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real-time quantities, they are not easily calculated in lattice gauge theory, which is
formulated in Euclidean time. The gravity dual has no corresponding difficulty.

In the holographic dual, such a Green’s function is calculated by solving the lin-
earized fluctuation equation for the corresponding gravity mode, with both infalling
boundary conditions imposed at the horizon of the black brane geometry, as well as
boundary conditions reflecting a canonically normalized source at the boundary. In
general, the precise calculation of the full Green’s function GR requires the machinery
of holographic renormalization [122, 123, 124]. Fortuitously however, the imaginary
part of the Green’s function is determined by a so-called “conserved flux” associated
to each linearized fluctuation equation, a combination of solutions guaranteed to be r-
independent by Abel’s identity (for more details of these calculations see [125]), which
does not require holographic renormalization to compute.

Taking time-dependent fluctuations of the form,

ds2 = ds20 + Re(e2A(r)e−iωthµν(r))dx
µdxν ,

Aµdx
µ = Φ(r) dt+ Re(e−iωtaµ(r))dx

µ , φ = φ(r) + Re(e−iωtφ̃(r)) ,
(123)

where ds20 is the background black brane metric (109), the relevant fluctuations are
then any of the five traceless hij with i, j = x, y, z for the shear viscosity η, any of the
three ai for the conductivity, and for the bulk viscosity the combination of the graviton
trace and the scalar fluctuation

H ≡ 1

3
(hxx + hyy + hzz)−

2A′

φ′ φ̃ . (124)

We note that in the case that φ(r) does not include a source term φ(4−∆), the conformal
invariance of the theory is not explicitly broken, and the bulk viscosity is identically
zero.

Infalling boundary conditions are imposed by taking the near-horizon behavior for
X = hij, ai,H:

X(r → rH) = (r − rH)
α(x0 + x1(r − rH) + . . .) , α ≡ −iωe

B(rH)−A(rH)

h′(rH)
, (125)

valid as long as h(r) has a simple zero at the horizon and the other background functions
are regular there. The near-boundary conditions are simply

hij(r → ∞), ai(r → ∞), H(r → ∞) → 1 . (126)

The formulae for the transport coefficients are then

η = − 1

2κ2
lim
ω→0

1

ω
Fhij

, λ = − L2

2κ2
lim
ω→0

1

ω
Fai , ζ = − 2

9κ2
lim
ω→0

1

ω
FH , (127)

where the conserved fluxes are

Fhij
= he4A−B Im (h∗ijh

′
ij) , Fai = hf(φ)e2A−B Im (a∗i a

′
i) , FH =

e4A−Bhφ′2

4A′2 Im (H∗H′) ,

(128)
with no sum over indices, given in terms of the solutions hij, ai or H with the boundary
conditions imposed to the appropriate fluctuation equations,

h′′ij +

(

4A′ − B′ +
h′

h

)

h′ij +
e2B−2A

h2
ω2hij = 0 . (129)
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a′′i +

(

2A′ − B′ +
h′

h
+
φ′f ′(φ)

f

)

a′i +
e−2A

h

(

e2B

h
ω2 − f(φ)Φ′2

)

ai = 0 , (130)

and

H′′ +

(

4A′ − B′ +
h′

h
+

2φ′′

φ′ − 2A′′

A′

)

H′ +

(

e2B−2A

h2
ω2 + ΣH(r)

)

H = 0 , (131)

with

ΣH =
h′

h

(

A′′

A′ −
φ′′

φ′

)

+
e−2A

hφ′ (3A′f ′ − fφ′) Φ′2 . (132)

Although the values of the fluxes are independent of r, in general one cannot deter-
mine the transport coefficients without solving over the entire space, since boundary
conditions must be imposed on both ends.

The shear viscosity equation, however, is simple enough that it can be solved pre-
cisely, giving the famous universal value of η/s for these geometries [15, 16]. We may
demonstrate this by using an ω → 0 expansion to analytically match the r → rH and
r → ∞ limits; we take our discussion from [126]. In the ω → 0 limit the term in (129)
with no derivatives vanishes, and we are left with

∂r(log h
′
ij) = −∂r(4A− B + log h) , (133)

which has the solution

hij = a0 + b0

∫ ∞

r

dr
e−4A+B

h
. (134)

The second term is not allowed strictly at ω = 0 due to a logarithmic divergence; it
may be kept for very small ω, but for us it is enough to note that matching to the
near-horizon expansion

hij(r) ≈ h0(r − rH)
α = h0(1 + α log(r − rH) + . . .) , (135)

we have h0 = a0; however as r → ∞ the boundary condition (126) requires a0 =
1. Thus in this case the near-boundary condition directly controls the near-horizon
condition. Evaluating the conserved flux (128) near the boundary, the shear viscosity
then becomes

η =
1

2κ2
e3A(rH) , (136)

implying the shear viscosity to entropy density ratio takes the universal form for this
class of theories,

η

s
=

1

4π
. (137)

In more generality, this result holds for any two-derivative gravity theory [15, 16].
The other transport coefficients are not universal in this way; from a practical

standpoint, imposing the boundary condition at infinity will not impose a universal
constraint on the near-horizon behavior. The modes may be determined by solving the
complete differential equation, in general numerically, and the values of the conductivity
λ and bulk viscosity ζ are different for different geometries, as we shall see in certain
examples.

The various Kubo formulae are all proportional to the five-dimensional gravitational
constant 1/κ2, which as discussed is proportional to N2

c . As a result, all three transport
coefficients go like N2

c in the large-Nc limit defined by the dual gauge theory, and the
ratios η/s and ζ/s are of order 1.
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4.3 Adding Flavor

While N = 4 Super-Yang-Mills shares a number of properties with QCD, it remains
a theory containing only adjoint matter. It is natural to extend the duality to cases
involving matter in fundamental representations. In the string theory constructions
that inspire AdS/CFT, the field theory arises from the dynamics of open strings on
a collection of D-branes, with N = 4 Super-Yang-Mills being the worldvolume theory
of a stack of D3-branes. Adding additional branes of other dimensionalities and con-
figurations introduces fundamental matter as the dynamics of open strings stretched
between the brane collections. In the AdS/CFT correspondence, this corresponds to
adding Nf “flavor branes” inside AdS5 × S5; this was first studied for D7-branes in
[127]. For Nf ≪ Nc, the backreaction of these branes may be neglected, and their
impact can be studied in the so-called probe, or quenched, limit. The world-volume
action of a single (p+1)-dimensional Dp-brane is

Sp = −Tp
∫

dp+1ξ e−φ
√

det(P [g]ab + 2πα′Fab) , (138)

where Tp ≡ µp = (2π)−pα′−(p+1)/2 is the brane tension, P denotes the pullback of the
spacetime metric to the brane worldvolume, and F is the gauge field localized to the
brane, holographically dual to the conserved global U(1) “baryon number” associated
to the fundamental matter. Alternatively, one can move beyond the quenched limit
and access dynamical quark processes by solving the fully back reacted system. One
approach to this end is to work in the so-called “Veneziano limit” [128], whereNc, Nf →
∞ but x is held finite.

To date, both avenues have been used to investigate the properties of chiral sym-
metry breaking in strongly coupled gauge theories. In the quenched approximation,
one approach (outlined in section 6.3) uses the details of the embedding of probe D7-
branes to study a broken “chiral symmetry” U(1) associated with the positions of the
branes in the bulk; this case preserves N = 2 supersymmetry and hence the “quarks”
include fundamental scalars as well as fermions. One may move beyond the quenched
approximation by including the backreaction of the D7-branes, which we will touch
on as well. In a different realization of the unquenched approach, parallel stacks of
D4 and D4-branes are are aligned in the bulk, breaking supersymmetry entirely. The
worldvolume theory of this set-up contains an open string tachyon stretching between
the branes and transforming under the U(Nf )×U(Nf ) gauge symmetry of the system,
reflecting the instability of the system, and is holographically identified with the chiral
condensate in the boundary theory. More details on this program, titled “VQCD”, can
be found in section 5.2.

4.4 Hard probes

An important class of observables in heavy ion collisions is related to the rapid energy
loss by high-momentum particles traveling through the quark-gluon plasma. Three
approaches to energy loss which have been pursued in an AdS/CFT context are: heavy
quark drag, reviewed in section 4.4.1; light quarks and gluons as falling strings, reviewed
in section 4.4.2; and the jet-quenching parameter as determined by lightlike Wilson
loops, also reviewed in section 4.4.2.
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From [134].

4.4.1 Heavy quarks

A framework for understanding the drag force and stochastic forces on heavy quarks
moving through a thermal plasma of N = 4 super-Yang-Mills theory was built up in a
series of articles [129, 130, 131, 132, 133].

The string theory construction is shown in cartoon form in figure 12. The key idea
is that the endpoint of the string acts as a source for the gauge-theoretic color fields
whose location can be prescribed. The shape of the string indicates how the theory
responds to the motion of the endpoint. The total energy of the string is infinite because
of a divergence near the boundary: this is dual to the infinite energy of a Coulombic
field around a perfectly pointlike charge. This divergence occurs no matter what the
motion of the endpoint is, but it can be cut off by introducing a brane into the bulk
as described in section 4.3. With such a cutoff, the string can be understood as dual
to a massive quark. As the cutoff is removed, the quark mass becomes infinite. This
is why trailing string calculations generally should be understood as corresponding to
the dynamics of quarks whose mass is substantially larger than the temperature of the
medium.

When the velocity v of the quark is constant, the shape of the string can be straight-
forwardly computed, and the drag force it exerts on the endpoint is easily seen to be

dp

dt
= −π

√
λ

2
T 2
SYM

v√
1− v2

. (139)

For a quark whose mass is large but finite, corrections to the formula p/m = v/
√
1− v2

are negligible, so we may re-express (139) as

dp

dt
= − p

τQ
where τQ =

2mQ

πT 2
SYM

√
λ
, (140)

where λ = g2YMN is the ’t Hooft coupling. It was argued in [135] that a good comparison
between N = 4 super-Yang-Mills theory and QCD can be made at fixed energy rather
than fixed temperature, and with λ ≈ 5.5 to match to lattice results on the static quark-
anti-quark potential. With approximately these parameters, a phenomenological study
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[136] of non-photonic electrons from top-energy RHIC collisions showed fairly good
agreement with the string theory predictions. Altogether, the AdS/CFT calculations
of η/s and heavy quark drag force yield fairly impressive agreement with data from
top-energy RHIC collisions [137].

In a related line of inquiry, the detailed spatial pattern of energy loss was calculated
[138, 134, 139, 140, 141, 103, 142, 102] across a wide range of length scales and was
argued in [143, 144] to exhibit stronger high-angle emission than in perturbative QCD.
This high-angle emission does not come from the hydrodynamic region; indeed, it
has been shown fairly generally in this regime that the diffusion wake is as strong as
the Mach cone [145]. Instead, the dominant high-angle emission comes from a region
near the quark, where the fields deviate from the Coulombic fields but are far from
local hydrodynamic equilibration. The form of the stress tensor in this “neck region,”
as it was called in [143], was found through a combination of asymptotic expansions
[139, 140, 141] and numerics [103].

Thus far, LHC results on hard probes seem to fit reasonably well to perturbative
QCD expectations [146]. However, variants of the trailing string construction remain
interesting theoretical tools, and we will close this section by summarizing two direc-
tions of further work. First, detailed calculations of stochastic forces can be carried
out [130, 132, 133], resulting in diffusion coefficients

κT =
√

λγπT 3
SYM , κL =

√
λγ5/2πT 3

SYM , (141)

for transverse and longitudinal momentum. The latter result indicates stochastic forces
which grow more quickly with velocity than the Einstein relation allows. The stochastic
forces emerge on the gravity side from Hawking radiation from a causal horizon on the
string worldsheet which is well above the event horizon of the ambient spacetime when
the motion of the endpoint is relativistic.

Another direction pursued recently is the study of how synchrotron radiation propa-
gates in a strongly coupled gauge theory, both without [147] and with [148] the presence
of a thermal medium. In addition to expected features such as the production of sound
waves and rapid attenuation of high-energy gluons, interesting findings are that the
angular spread of the radiation does not increase with attenuation, nor does the mo-
mentum distribution of gluons shift appreciably toward longer wavelengths during the
attenuation process.

4.4.2 Light quarks and gluons

One of the two main approaches in AdS/CFT to energy loss by light quarks and gluons
is to consider string falling in an AdS5-Schwarzschild background. This is motivated in
part by [149], in which it was argued that gluon scattering at zero temperature could
be described by a string worldsheet in AdS5 where the asymptotic gluon states have
both ends of the string stretching down into AdS5. At finite temperature, a sensible
adaptation of this picture is to represent an energetic off-shell gluon as a string doubled
over in AdS5-Schwarzschild with both its ends going through the black hole horizon
[149]. Energy loss is associated with the rest of the string falling into the horizon. It
was argued in [149] that the stopping distance of an energetic gluon takes the form
xstop ≤ C/T (E/

√
λT )1/3, where the dimensionless constant C is of order unity. It was

further remarked in [149] that light quarks could be treated by replacing the doubled
string by an open string. (The scaling xstop ∝ E1/3 was independently proposed in
[150, 151] based on somewhat different considerations.)
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A difficulty in the proposal of [149] is that the initial state of the string representing
the gluon (or light quark) is highly underdetermined, making it difficult to provide an
unambiguous evaluation of the constant of proportionality in the stopping distance
relation. Some bounds were provided in [149]. Significant refinements were developed
in subsequent numerical work [152, 153], which also considered a different initial state:
a color singlet state where an open string starts in a pointlike configuration in AdS5-
Schwarzschild and then expands lengthwise as it falls down toward the horizon. This
numerical work varied the undetermined initial conditions to achieve the maximum
stopping distance, determining the constant of proportionality for light quarks, xmax

stop =

0.526/T (E/
√
λT )1/3.

The physical meaning of the ambiguity in the initial conditions in these calculations
was clarified in subsequent work [154, 155], where a jet was formed by turning on
a localized source in the boundary theory. A jet is characterized by an energy E
and virtuality Q2 with E2 ≫ Q2. Thus, the four momentum of the jet is Qµ =
(E + σ, 0, 0, E − σ) and the virtuality is Q2 ∼ 4Eσ, where σ is related to the inverse
formation length of the jet, σ ∼ 1/L. In the setup of [154, 155], L is the duration the
source in the boundary theory, which is directly related to the initial “depth” in z of
the lightlike geodesic that is dual to the jet propagating in the boundary theory. Then
the stopping distance for jets having energy E and virtuality Q2 is of order xstop ∼
1/T (E2/Q2)1/4 ∼ 1/T (EL)1/4. The maximum stopping distance can be estimated by
setting the formation length of the jet equal to the stopping distance itself, L = xmax

stop,
in order to achieve the smallest possible virtuality. With this requirement, a short
instructive exercise shows that xmax

stop ∝ E1/3, as determined previously.
An orthogonal line of work on light quark energy loss [156, 157] seeks to determine

the jet-quenching parameter q̂ of the BDMPS formalism [158, 159] in terms of properties
of lightlike Wilson loops in AdS5-Schwarzschild. The particular Wilson loop considered
connects two points separated by a spatial distance L and continues down into the bulk
to just graze the horizon: see figure 13. The result of evaluating the Wilson loop is

q̂ =
π3/2Γ(3/4)

Γ(5/4)
≈ 3.6

GeV2

fm

(

TSYM

280MeV

)3

, (142)

where in the last approximate equality, we used λ = 6π as preferred by the authors
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of [156]. The worldsheet configuration has been called into question in [160] but was
later reexamined in [161]. The configuration that was chosen in the original calculation
approaches the light cone from below, i.e. for x = vt with v = 1+ ǫ. At weak coupling
this prescription can be justified, and has been used to determine the jet-quenching
parameter beyond leading order [162]. The result (142) is for N = 4 super-Yang-Mills
theory, and some reduction should be made when attempting a comparison with QCD.
In [157], based on a study of other holographic theories, it was suggested that the
reduction factor is about 0.63, corresponding to the ratio

√

sQCD/sSYM .

5 Improved Holographic QCD

5.1 Improving Holographic Models of QCD

Improved Holographic QCD is a program developed in [163, 164], taking a “bottom-
up” approach to modeling QCD across many energy scales. A gravity-scalar system is
constrained by requiring the radial profile of the scalar “dilaton” to mimic the develop-
ment of the QCD beta function and by matching lattice results for the thermodynamics
of the confinement/deconfinement phase transition.

The Lagrangian is taken to be

S = −M3
pN

2
c

∫

d5x
√
g

(

R− 4

3
(∂Φ)2 + V (Φ)

)

, (143)

fitting into the class of (107) with no gauge field and a rescaled scalar; the gravita-
tional constant is written to explicitly highlight the N2

c scaling of the action, with the
dimensions encoded in the five-dimensional Planck scale Mp.

The dilaton encodes the running ’t Hooft coupling via the relationship λ = eΦ. This
running is in turn governed by the potential V (Φ), which can be chosen judiciously to
reproduce the desired characteristics of the dual field theory. More explicitly, through
careful engineering of the potential, it is possible to produce a gravitational theory
whose dual is confining in the IR and has a coupling λ which runs towards zero in the
UV. This is because the potential appearing in (143) is in a one to one correspondence
with the β-function of the dual gauge theory. This matching is a critical aspect of the
IHQCD construction, and what distinguishes it most markedly from other Einstein-
dilaton models used in gauge/gravity duality. The functional form of the potential
is unspecified in this bottom-up approach, but a suitable choice can be inferred from
asymptotic considerations.

Roughly, the idea is to engineer a bulk relationship between the gauge theory cou-
pling λ and its energy scale µ. The latter can be accomplished by noting that a field
theory observer living at the boundary of the bulk theory will measure energies red-
shifted from the interior like

µ =
√
gtt µbulk , (144)

which is to say log µ ∼ 1
2
log gtt. From this, one makes the following identification

between bulk solutions and the gauge theory β-function:

β(λ) ≡ dλ

d log µ
↔ 2

gtt
gtt′

Φ′ eΦ , (145)

where it is assumed that the dilaton and metric functions depend only on the radial
variable r, and that a “prime” denotes a derivative with respect to this variable. In an
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asymptotically free theory, the UV has β ∼ −λ2 and so the coupling at large energies
runs like

λ ∼ 1

log µ
↔ eΦ ∼ 2

log gtt
. (146)

It turns out that this behavior can be ensured by requiring that the potential V (λ)
is asymptotically AdS near the boundary, corrected by a term linear in λ which is
responsible for the logarithmic running in (146).

At low energies, confinement, a linear glueball spectrum, and bulk fluctuations that
obey well-posed spectral problems require the potential to take the form

VIR ∼ λ4/3
√

log λ . (147)

This somewhat non-obvious limiting behavior can in part be motivated by the fact
that generic dilaton potentials in non-critical string theories behave like V ∼ λ4/3 in
five dimensions. The root of the log is somewhat more obscure, and is required by
confinement at low energies.

In [163] it was found that a potential like

V (λ) =
12

L2

[

1 + V0λ+ V1λ
4/3

√

log
(

1 + V2λ4/3 + V3λ2
)

]

, (148)

provides a holographic description of a large Nc Yang Mills theory which confines in
the IR, produces a phenomenologically favorable glueball spectrum, and forces λ → 0
in the UV. The various parameters that appear in (148) are not strictly independent.
For example, in the limit λ→ 0, matching to the Yang Mills β-function constrains V2
in terms of V0 and V1. In fact, one can show that the only phenomenologically tunable
parameters remaining in (148) are V1 and V3. Loosely, it turns out that V1 controls
the speed with which the thermodynamic densities (such as the entropy density s/T 3)
approach the free field limit as functions of T/Tc, while V3 governs the latent heat.
Once values for these constants are chosen, the gravity theory is fully specified, and
solutions to the system represent predictions of the model.

By studying the thermodynamics of these solutions, and in particular the free en-
ergy as a function of temperature, one can identify the thermodynamically favored
solutions and search for discontinuities in thermodynamic susceptibilities, signifying
phase transitions.

Broadly, in the bulk theory of (143), (148) above, the thermodynamics can be
summarized by the cartoon in figure 14. At low temperatures, the only solution to
the equations of motion is the thermal gas. As the temperature increases, the thermal
gas persists as the dominant solution (lowest free energy), but black brane solutions
begin to appear. Finally, at the critical temperature T = Tc there is a first order
phase transition from the thermal gas to the black brane geometry, which remains the
thermodynamically favored solution for all T > Tc.

Through careful choice of the potential parameters V1 and V3, one can arrange for
this transition to mimic that of pure Yang-Mills. This is accomplished by determining
the thermodynamics for each numerical solution, and studying the behavior of vari-
ous (dimensionless) thermodynamic densities: s/T 3, p/T 4, and ε/T 4 where p is the
pressure and ε is the energy density. These functions are constrained by the first law
of thermodynamics, as ε = p + sT . The tunable parameters V1 and V3 are varied
systematically, until quantitative agreement with lattice results is reached.
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Figure 14: The phase structure of Improved Holographic QCD. A first order phase
transition occurs at T = Tc, signaling the thermodynamic dominance of the black brane
solution.
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Figure 15: Comparison between IHQCD predictions (curves) for thermodynamic den-
sities and the corresponding lattice results (points) for Nc = 3. Figure from [165].
More recent lattice results for Yang-Mills theory at large Nc are reviewed in [166].

In [163] it was found that the best agreement with lattice data came from the
parameter choice

V1 = 14 and V3 = 170 , (149)

which produces the predictions displayed in figure 15. As is evident from the figure,
the predictions from the IHQCD model are in excellent agreement with the lattice in
the vicinity of the phase transition at T = Tc, and deviate primarily in their approach
to the free gas.

With the potential parameters fully fixed via phenomenological fits to lattice data,
it is interesting to explore the predictions this model makes for various observables of
the dual gauge theory. An important first step is the spectrum of fluctuations about
the zero temperature backgrounds. Specifically, under holography, the spectrum of
normalizable fluctuations of the T = 0 Einstein-dilaton system are dual to massive
spin-0 and spin-2 glueballs.
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Figure 16: Effective Schrodinger potential for scalar (solid) and tensor (dashed) glue
balls in IHQCD. Figure from [164].

As an illustrative example, it is useful to consider the lone gauge invariant spin-0
mode (124), whose fluctuation equation can be recast as a Schrödinger equation of the
form

−H′′ + V (r)H = m2H (150)

and m determines the glueball mass and V (r) is an effective potential which depends
on the various metric functions in a complicated way. An example of this potential
evaluated on a zero temperature background is shown in figure (16). Elementary
quantum mechanics considerations immediately show that the spectrum is discrete,
and suggest the presence of a mass gap.

Numerically solving the Schrödinger eigenvalue problem is equivalent to computing
the spin-0 glueball spectra in the dual gauge theory. Operationally, one simply scans
over m values until a normalizable mode develops in the bulk. The corresponding
mass m is dimensionful, but because the non-critical theory does not descend from
a known string theory, its precise numerical value is an ambiguous prediction. To
circumvent this, one instead computes mass ratios between different glueball states.
These ratios are of course dimensionless, and can be compared directly to the lattice.
This comparison is shown in figure 17.

As the glueball masses provide an extra dimensionful parameter of the theory, it is
possible to use them to measure quantities like the critical temperature in physical units
(MeV). One simply fixes the lowest lying glueball mass in the holographic theory to the
lattice result, and reworks the various dimensionless ratios computed via holography,
restoring units systematically. For the parameter choice of (149), one finds

Tc = 247 MeV . (151)

One can also compute transport coefficients; the shear viscosity takes the universal
value of η/s = 1/4π, but the bulk viscosity is nontrivial to calculate. Evaluating it in
a manner analogous to that described previously, one finds the results shown in figure
18. It is noteworthy that the bulk viscosity in this model is always smaller than the
shear viscosity, as well as the fact that there is a sudden rise in the bulk viscosity near
the first order transition at Tc. Similar behavior was also noted in [125], as will be
described in the next section.

As already mentioned, these viscosities characterize the response of the system to
perturbations of its stress-energy tensor. A related yet distinct quantity is the response
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of a system to an external “test quark” dragged through it, as described in section 4.4.
The basic idea is to affix a string to the boundary of the space-time, and pull it through
the plasma at constant velocity v. As the test quark is dragged through the medium,
the string will lose momentum by depositing it into the horizon on its world sheet. The
drag force, identified with the rate of momentum loss, is found to be

Fd = − 1

2πl2s
v e2(A+ 2

3
Φ) = − 1

2πl2s
v λ

4
3 e2A (152)

and is independent of the radial location at which it is evaluated (i.e. dFr/dr = 0).
The drag force is plotted as a function of temperature and normalized to the conformal
value for several speeds in figure 19.

5.2 Adding Flavor: VQCD

Moving beyond the one dimensional phase diagram described in the previous section
can be accomplished by adding flavor. In particular, one can extend the study of large-
Nc Yang-Mills theory to a theory with many colors and Nf flavors of “quarks”. This
approach was pioneered by Veneziano in the ’70’s [128], and accordingly is known as
the Veneziano Limit:

Nc, Nf → ∞ x ≡ Nf

Nc

→ finite λ = g2YMNc → finite . (153)

Because x is held fixed in this limit, one is no longer confined to the quenched approx-
imation characteristic of large-Nc gauge theories, in which quark loops are suppressed.
This in turn leaves open the possibility for the exploration of dynamical quark pro-
cesses. Of special interest is the (zero temperature) quantum phase transition from a
chirally broken phase at small x to a conformal phase at larger x.

In the gravitational theory, one can add flavor by throwing into the five dimensions
space filling stacks of D4- and D4-branes. These branes have among their excitations
an open string tachyon which transforms under the brane/anti-brane U(Nf )× U(Nf )
and can be identified holographically with the chiral condensate [170]. By combining
the tachyon DBI action with (143) and (148) above, one obtains a bulk theory that is
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dual to large-Nc, large-Nf Yang-Mills in the Veneziano limit, a theory which has been
dubbed VQCD [171].

The flavor sector of the theory is defined by the action

Sf = −xM3N2
c

∫

d5xVf (λ, τ)
√
− detA , (154)

where Vf is the tachyon potential, τ is the tachyon, and

Aab = gab + κ(λ, τ)∂aτ∂bτ , (155)

is the pull back of the metric and tachyon kinetic term to the world volume of the
flavor branes, with the U(Nf ) × U(Nf ) gauge fields set to zero. The kinetic function
κ(λ, τ) ensures that the string frame tachyon action has been properly transformed to
Einstein frame, where this action has been written.

Explicit choices for the tachyon potential and kinetic function are provided in [171].
As before, their functional form is constrained by asymptotic considerations. In this
case, the important points are that the tachyon potential does not interfere with the IR
fixed points controlled by (148), and that the β-function matches that of the Veneziano
limit field theory in the UV. A suitable choice is

Vf = Vf0(λ) e
−a(λ)τ2 where Vf0 = W0 +W1λ+W2λ

2, a(λ) =
3

22
(11− x) ,

(156)
with

W0 =
12

11
, W1 =

4(33− 2x)

99π2
, W2 =

23473− 2726x+ 92x2

42768π4
, (157)

and

κ(λ, τ) =
1

(

1− 3
4
κ1λ
)4/3

with κ1 = −115− 16x

216π2
. (158)

While not unique, these potentials have the desired asymptotic behaviors, and represent
one reasonable parametrization of the ignorance inherent to the bottom up approach
taken here. The properties of this model have been studied in both zero and finite
temperature backgrounds [171, 172]. In both cases, a novel phase structure develops,
generically inline with various field theory expectations.

At zero temperature, one numerically solves the equations of motion for a back-
ground (109) with constant horizon function. The tachyon, generically, can vanish or
vary as a function of r. Under duality, the near-boundary behavior of the tachyon
sources the dual quark mass operator, and determines the vacuum expectation value
of the chiral condensate. Thus, a trivial tachyon in the bulk can be interpreted as a
boundary state in which a massless quark enjoys chiral symmetry.

For small x < xc ∼ 4, it was found in [171] that two branches of tachyon solution
can arise. The chirally symmetric τ = 0 solution, and the τ = τ(r) solutions which
signal broken chiral symmetry. To determine which solution is thermodynamically
preferred, one requires that the free energy is minimized. It turns out that in this
regime, the solutions signaling broken chiral symmetry have the smallest free energy.

When x ≥ xc the trivial tachyon solution persists, and is in fact the only regular
solution dual to massless quark operators. This tachyon contributes to a background
solution that is asymptotically AdS in the IR as well as the UV, and corresponds to
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Figure 20: Zero temperature phase diagrams for a holographic model of QCD in the
Veneziano limit.

a dual gauge theory that flows towards an IR fixed point. This conformal window
persists for xc ≤ x < 11/2.

Interestingly, very near (but below) xc a “walking” region exists. These back-
grounds are identified by noting that the solution is almost, but not quite, conformal
in the IR. More specifically, the walking solutions are characterized by a dilaton that is
approximately constant over a large radial range, narrowly missing the IR fixed point
as a consequence of the growing tachyon profile.

At xc, there is a BKT-type transition, characterized by exponential (Miransky)
scaling near the critical point. For example, a given glueball mass mn will behave like

mn ∼ Λ e
− c√

xc−x , (159)

where Λ is a scale with dimensions of energy and c is some dimensionless constant.
This scaling behavior is realized in all dimensionful quantities in this regime, including
the meson spectrum as computed in [173]. The regions of interest are summarized in
figure 20.

By extending the analysis to black brane geometries of the type (109) with a non-
trivial horizon function, the VQCD model can be explored at finite temperature as well.
Such an investigation results in a phase diagram with two relevant directions related
to the temperature T and x ≡ Nf/Nc. The general expectation that there exists a low
temperature phase with broken chiral symmetry, and a high temperature phase with
chiral symmetry restored is indeed born out holographically.

Again, interesting features of these phase diagrams arise in the approach to xc. As
the critical ratio Nf/Nc ∼ 4 is met from below, the critical temperature signaling the
chiral (as well as the confinement/deconfinement) transition falls towards zero. At xc
the transition sharpens into the familiar BKT-type, with the characteristic Miransky
scaling noted previously appearing at zero temperature.

Importantly, the bottom-up nature of the holographic model does not fully constrain
the properties of the dual theory. As a consequence of this freedom, the phase structure
of hot VQCD can vary considerably as the potentials of the model are modified. Many
examples illustrating this diversity can be found in [172]. It is worth noting, however,
that for many of the models which are qualitatively similar to real world QCD, the
phase diagram resembles that of figure 21. This diagram is characterized by a tri-critical
point at the union of two first order lines and a second order line. Generically, there is a
phase with broken chiral symmetry at low temperatures, a first order “hadronization”
transition separating regions with broken chiral symmetry but O(1) and O(N2

c ) degrees
of freedom, and a second order transition to a region of restored chiral symmetry. In
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Figure 21: Cartoon of a “typical” phase diagram for hot VQCD matter. Regions I
and II are phases with broken chiral symmetry, whereas region III has restored chiral
symmetry. There is a first order phase transition separating region I from the phases
in regions II and III, but a second order transition from region II to region III. The
transition between region I and II can be thought of as a “hadronization” transition,
in that it separates a phase with O(1) degrees of freedom (region I) from a phase with
O(N2

c ) (region II). A tri-critical point (the large black dot) exists at the point where
the lines of transition meet.

this class of models, the location of the tri-critical point is not robust to changes in
the numerical values of the potential parameters, but the overall structure of the phase
diagram is.

6 Nonzero density and the phase diagram of QCD

Beyond the applications only to QCD matter at finite temperature, holography has
also been employed to study QCD at finite density of baryon number as well. In this
section, we review the expectations for the QCD phase diagram, and discuss several
programs attempting to model it using gauge/gravity duality.

6.1 Phase diagram of QCD

We briefly review the expectations for the phase diagram of QCD; for more discussion
see for example [174, 175, 176]. A prominent feature of the QCD phase diagram is
the transition from chirally broken to chirally unbroken phases. When all quarks are
taken massless, chiral symmetry is an exact symmetry of the QCD Lagrangian, and
the broken symmetry phase at low T and µ and the restored symmetry phase at high
T and/or µ are distinct and must be separated by a line of true phase transitions. This
line of phase transitions is expected to be first-order near the µ-axis, and can remain
first-order as it reaches the T -axis in the case of three massless quarks, or can turn
into a line of second-order transitions via a tricritical point for two massless quarks.
In the real world, quarks are massive and chiral symmetry is not an exact symmetry
of QCD, and the transition near the T -axis is known from lattice studies not to be a

58



Figure 22: A cartoon of the QCD phase diagram, showing the crossover and first-order line
between the hadron gas and quark matter phases, the critical point, the nuclear matter line
and various color superconducting phases. From [177]. (Color online.)

sharp transition but instead a crossover. It is widely expected that at sufficiently large
chemical potential µ the first-order line returns; the line then terminates at a critical
endpoint at some (Tc, µc). This is displayed in figure 22.

The critical endpoint is an object of substantial interest and speculation. It is ex-
pected to lie in the universality class of the 3D Ising model, like the standard liquid/gas
transition of fluids. It is anticipated that depending on its location on the phase di-
agram, future heavy ion experiments such as those at RHIC or FAIR may produce a
quark-gluon plasma lying close to the critical point at freeze-out, which could lead to
information about its properties (see for example [45, 46, 178].)

Other features of the QCD phase diagram are also visible in figure 22. The nuclear
matter transition rises from the µ-axis to end in another critical point. At high chemical
potential one encounters various color superconducting phases, some color-flavor locked
and some not; agreement on this region of the diagram is not universal and so it is
represented schematically.

Theoretical exploration of the phase diagram using lattice gauge theory techniques
is constrained by the sign problem, which makes computations at nonzero µ very dif-
ficult. Lattice methods to avoid the sign problem, such as Taylor expansions around
µ = 0, are possible [179, 180, 181], but nonetheless it is natural to pursue other theo-
retical techniques not affected by the sign problem. The gauge/gravity correspondence
is one such method.

As usual, the lack of an exact dual description for QCD means one must formulate
a model which hopefully captures the most salient features. Here we describe several
attempts to capture the dynamics of the QCD phase diagram.

6.2 Holographic QCD phase diagram

One approach to modeling the QCD phase diagram is to try to distill the theory down
to its most crucial features, match these to the gravity dual, and use whatever freedom
is available to constrain the dynamics. As has been mentioned in other contexts,
symmetries are in general the easiest features to match across a gauge/gravity duality.
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The “Holographic Phase Diagram” model of [177] goes about this as follows. The
essential features of QCD are chosen to be:

• It is a non-abelian gauge theory

• The running gauge coupling breaks conformal symmetry, though softly in the
ultraviolet

• The presence of quarks generates a conserved U(1) charge, baryon number.

These three features are modeled in the gravity dual with three fields: an asymptotically
anti-de Sitter metric with a black hole horizon, a scalar field φ with a nontrivial profile
in the radial direction, and a U(1) gauge field with an electric potential turned on
to generate a chemical potential, in the form of an Einstein-Maxwell-scalar theory as
previously discussed. Note the chiral condensate does not occur as an explicit degree
of freedom; however, it is expected [182] that only one combination of the condensate
and the baryon density survives as a hydrodynamic mode, and so it is reasonable to
expect that the baryon density can serve as an suitable variable.

Field redefinitions of the metric and scalar can be used to eliminate any functions of
the scalar multiplying the Einstein or scalar kinetic terms; once a Chern-Simons term is
taken to vanish, the only freedom in this minimal model is in the scalar potential V (φ)
and the gauge kinetic function f(φ). The philosophy then is to tune these functions to
generate as realistic a match to QCD as possible.

Again, one thinks of the running of the scalar as encoding the beta function of
the dual gauge theory. Since the QCD beta function runs slowly for high and moder-
ate energies, the dual operator is chosen to be almost, but not quite, marginal, with
0 < 4−∆φ ≪ 1. The remaining freedom in V (φ) and f(φ) can then be fixed by match-
ing to something well-known: QCD lattice data for thermodynamics at zero chemical
potential, where the sign problem does not apply. Note that although the gravity dual
presumably corresponds to a large-Nc gauge theory, the lattice data used as constrain-
ing input is that of ordinary 3-color QCD. Thus the model is attempting to generate a
large-Nc limit for QCD with the thermodynamics fixed at what one obtains from three
colors.

The equation of state s(T ) can be calculated at µ = 0 using lattice techniques; the
dimensionless quantity s/T 3 rises rapidly at the crossover before asymptoting at high
temperatures. In [183], it was shown that such behavior can be captured by a potential
of the form

V (φ) =
−12 cosh γφ+ bφ2

L2
with γ = 0.606 and b = 2.057 , (160)

which results in ∆φ ≈ 3.93. The equation of state is indifferent to the form of the
gauge kinetic function f(φ), but this can then be constrained by matching the lattice
results for quark susceptibility χ2 at µ = 0; an effective choice is [177]

f(φ) =
sech

[

6
5
(φ− 2)

]

sech12
5

. (161)

It should be emphasized that both functions are chosen with some broad input (the
generic presence of exponential functions of supergravity scalars) but are otherwise
rather arbitrary, and many other functional forms may possibly produce similar be-
havior. Thus this choice should be regarded as a proof of principle in generating a
holographic QCD phase diagram, with other possible functions still to be explored.
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Figure 23: Locations of numerically-generated black hole solutions in the T -µ plane, with
red dots being thermodynamically stable and green dots thermodynamically unstable. The
black circle is the location of the critical point. From [177]. (Color online.)

Once the Lagrangian is determined by matching µ = 0 data, black hole solutions
can be generated at nonzero values of µ by turning on the gauge field. In practice,
these solutions were generated by numerically solving the equations of motion out
from the horizon to the boundary. The two initial conditions are the value of the
scalar and the value of the electric field at the horizon; the near-boundary form of
each solution then determines the thermodynamics T , µ, s, ρ as previously described.
Generic solutions give rise to a source term φ(4−∆φ) (115) for the operator dual to the
scalar, introducing the scale Λ (118) that breaks conformal invariance. A coordinate
transformation to make the asymptotic behavior of the scalar field universal across all
solutions is equivalent to setting the scale Λ (118) to unity; thus the quantities T and
µ should properly be thought of as the dimensionless ratios T/Λ and µ/Λ.

Given that the existence of the crossover was built in by using the zero-density ther-
modynamics as input, one then wishes to see whether it is indeed the case that this
crossover sharpens at nonzero µ into a line of first-order phase transitions ending at a
critical point. By definition, the first-order line is the location in the T -µ plane where
multiple thermodynamically stable phases coexist with the same free energy; near the
first order line, both phases will continue to exist even though one becomes energeti-
cally favored. In addition, a thermodynamically unstable solution exists alongside the
stable ones, the three corresponding to the multivalued behavior of the entropy density
s and baryon density ρ near the line. In general one expects that all three phases will
correspond to distinct black hole configurations, with identical temperature and chem-
ical potential but other thermodynamic quantities distinct. It is easiest to uncover the
first-order line by searching for the thermodynamically unstable black holes first.

A scan of several thousand black hole solutions covering a region of the T -µ plane
indeed reveals a narrow strip where unstable and stable solutions coexist; see figure 23.
Looking at the baryon density ρ (the entropy shows the same behavior) at a fixed
temperature indeed shows the multivalued behavior characteristic of a first-order line,
shown in figure 24. Varying the fixed temperature, one can determine where the mul-
tivaluedness disappears, and thus determine the location of the critical point. Setting
the scales to match the input lattice data, the location of the critical point is found to
be [177]

Tc = 143 MeV µc = 783 MeV . (162)
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Figure 24: The baryon density ρ as a function of chemical potential µ for several values
of T near the critical point. For T > Tc, ρ(µ) is single-valued (left), while for T < Tc
it is multi-valued (right). At T = Tc the slope is infinite (middle). From [177].

The slopes of the baryon density and entropy density are the heat capacity C and
baryon susceptibility χ2, and these diverge at the critical point. Second-order phase
transitions are classified into universality classes based on the values of a number of
critical exponents characterizing these divergences. The primary exponents character-
izing the thermodynamics are α, β, γ and δ, defined by the power-law behavior of
various quantities approaching the critical point from various distinct directions:

Cρ ∼ |T − Tc|−α , along first order axis . (163)

∆ρ ∼ (Tc − T )β , along first order line . (164)

χ2 ∼ |T − Tc|−γ , along first order axis . (165)

ρ− ρc ∼ |µ− µc|1/δ , for T = Tc . (166)

A much larger data set of numerical black holes near the critical point is necessary to
estimate these exponents. A set on the order of 120,000 reveals exponents estimated
as [177]

α = 0 , β ≈ 0.482, γ ≈ 0.942 , δ ≈ 3.035 . (167)

These values are consistent with the scaling relations,

α + 2β + γ = 2 , α + β(1 + δ) = 2 , (168)

establishing nontrivial consistency with the hypothesis that the thermodynamics of the
set of black holes undergoes a genuine second-order phase transition. Moreover, the
values for the critical exponents are consistent with mean-field behavior,

α = 0 , β = 1/2 , γ = 1 , δ = 3. (169)

Since mean-field behavior results when fluctuations are neglected, a natural hypothesis
is that the large-Nc limit, corresponding to neglecting quantum corrections in the
gravity dual, has suppressed non-mean field behavior.

One can proceed to study the transport properties of the critical point by studying
linearized fluctuations around the nearby black hole solutions [125]. The shear viscos-
ity, of course, shows the universal behavior of two-derivative gravity theories already
discussed. One can additionally study the conductivity λ and bulk viscosity ζ from
fluctuations of the gauge field and coupled scalar/graviton system; the latter is plotted
normalized to s in figure 25, while the former displays similar behavior. Visible features
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Figure 25: The bulk viscosity over entropy density over the T -µ plane for the QCD-like
black hole solutions. From [125].

include a bump corresponding to the crossover that sharpens into a peak with singular
slope at the critical point, and a low-temperature divergence.

Interestingly, while the transport coefficients show divergent slopes at the critical
point, they themselves do not diverge, contrary to the expectations [182] that QCD fits
into the classification of dynamic critical phenomena [184] inside so-called model H,
which possesses both energy-momentum transport and transport of a conserved charge
(determined in [182] to be the hydrodynamic mode combining the baryon density and
the chiral condensate). Instead the models seem to fall inside model B, where energy-
momentum transport is suppressed. It had been previously hypothesized by Natsuume
and Okamura [185] that large-Nc effects could provide exactly such a suppression; these
results seem to confirm this hypothesis.

The holographic QCD phase diagram therefore captures a number of features of the
expected QCD phase diagram, including a first-order line ending in a critical point with
exponents near the values for the 3D Ising model. The differences from expectation —
namely the mean field exponents and the suppression of energy-momentum transport
— all may be explainable as a consequence of large-Nc effects. An open question is
then whether real-world QCD is close enough to “large” Nc to manifest these effects,
or whether they should be considered an unrealistic artifact of the large-Nc model.

6.3 Phase diagram with fundamental matter

Another approach to the phase diagram of QCD is to incorporate fundamental mat-
ter and chiral symmetry breaking explicitly. N = 4 Super-Yang-Mills theory can be
deformed by the addition of Nf N = 2 fundamental hypermultiplets; this is the world-
volume theory of Nc D3-branes near Nf D7-branes. The holographic dual consists
of adding a set of Nf probe D7-branes to the AdS5 × S5 geometry, and in the limit
Nf ≪ Nc, the backreaction of these branes may be neglected. This theory may be
referred to as “Quenched N = 2 quark matter”. One may then add a conformal-
symmetry breaking effect to emulate the effects of ΛQCD, and investigate the phase
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diagram of this theory for finite temperature and chemical potential.
In the presence of the probe D7-branes it is natural to split the AdS5 radial coordi-

nate, corresponding to the radius in the six directions perpendicular to the branes, into
a radial coordinate ρ for the R

4 spanned by the D7-branes, and a radial coordinate L
for the perpendicular R2. A general embedding of the D7-branes is then determined by
the function L(ρ), which for large ρ (near the boundary of AdS5) schematically takes
the form

L(ρ) ∼ mq +
〈q̄q〉
ρ2

, (170)

where the constant term is the quark mass (the minimum length of a stretched string
between the D3- and D7-branes), while the leading non-constant term indicates that the
brane must pick an angle in the R

2, and hence breaks the associated U(1) symmetry;
this U(1) is associated with chiral symmetry and the coefficient of its breaking gives
the chiral condensate 〈q̄q〉.

A temperature may be turned on by placing a black hole inside AdS5, as usual.
There is also a U(1) gauge field living on the D7-brane under which the quarks are
charged, which is naturally associated with baryon number. One may thus turn on
a chemical potential for baryon number by introducing an electric potential At(ρ) for
U(1)B. Furthermore, one wishes to emulate QCD by introducing a conformal-symmetry
breaking scale to play the role of ΛQCD; in the literature this has been addressed by
turning on a spatial magnetic field B for the baryon number gauge field [186]. (Note
that this breaks four-dimensional Lorentz invariance.) One then measures T and µ in
units of the scale B.

One may then solve for the embedding of the D7-brane given these choices; this
corresponds to extremizing the D7-brane action, given by (138) with p = 7. In general
multiple brane configurations may exist, and the thermodynamically preferred one
is found by minimizing the free energy. Note that since the D7-brane is treated as a
probe that does not backreact on the AdS-Schwarzschild geometry, the adjoint (“glue”)
dynamics remain those of N = 4 Super-Yang-Mills.

Two distinct kinds of phase transitions emerge, corresponding to distinct types
of brane embedding solutions [187]. The chiral symmetry breaking transition from
〈q̄q〉 = 0 to 〈q̄q〉 6= 0 corresponds to whether the “flat” brane embedding is or is not
preferred to one that curves as it moves down the throat. Furthermore, embeddings
may end on the black hole or may miss the horizon. When the embedded brane misses
the horizon (a “Minkowski embedding”) there is a stable mesonic spectrum associated
to D7-brane fluctuations, while if the brane goes into the horizon, mesonic excitations
couple to the black hole quasinormal modes and become unstable. The transition
between these two situations is referred to as the “meson melting” transition; for a
review of meson dynamics in AdS/CFT see [188].

The results for the phase diagram formq = 0 are shown in figure 26; the vertical axis
is proportional to T/B while the horizontal axis is µ/B. Three phases are apparent.
There is a chiral symmetry breaking transition stretching from one axis to the other;
unlike the usual expectation for QCD, this is second-order near the µ-axis, while it is
first-order near the T -axis, with a tricritical point in between. The region with broken
chiral symmetry is further divided by a second-order meson melting transition into a
region with χSB and stable mesons near the origin, and a region with χSB and melted
mesons at higher chemical potential.

One may also consider the phase diagram with mq 6= 0; in this case the second-
order transition near the µ-axis becomes a crossover. Thus quenched N = 2 quark
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Figure 26: The holographic phase diagram of N = 4 Super-Yang-Mills with N = 2
hypermultiplets and conformal symmetry broken by a worldvolume magnetic field.
From [187].

matter displays an interesting phase diagram including a chiral symmetry breaking
transition; however, the order of the transitions are contrary to QCD expectations,
with in particular the second-order/crossover region near the µ-axis while the first-
order transition is near the T -axis. Various refinements and generalizations have been
attempted, including adding an electric field and studying transport [189, 190] and
introducing a probe dilaton profile [191, 192].

To move beyond the quenched approximation, one must take the backreaction of
the D7-branes into account. This was studied for nonzero temperature by [193] and
at nonzero temperature and density by [194, 195], building on earlier work at zero
temperature and density in [196]. Here the D7-branes are homogeneously smeared and
their backreaction included in a perturbative expansion in λNf/Nc. This study was
able to see the leading effects of non-conformality in the thermodynamics, as well as
predicting an enhancement in the jet quenching parameter.

6.4 Color superconductivity

While most efforts to explore the phase diagram of QCD have focused on the chiral
symmetry phase transition and the associated critical point, another interesting region
is that of large µ, where color superconductivity is expected to occur; for a review see
[176]. An attempt to study this phenomenon from a bottom-up approach was pursued
in [197], similar in spirit to the study of the critical point discussed in section 6.2.
Again, the thermodynamics result from a black brane geometry with a horizon and a
gauge field providing the baryon number chemical potential. Again, some additional
scale must be introduced to play the role of ΛQCD; rather than using an explicit scalar
field, the authors formulated the gravity dual as a six-dimensional theory living on
AdS5 × S1, and allowed the radius of the extra dimension to introduce the scale.

Superconductivity is generally associated to the condensation of an operator trans-
forming non-trivially under the gauge group, analogous to the Cooper pair; in the
case of color superconductivity the quark bilinear Oqq ∼ 〈qq〉 typically plays this role.
However, on the gravity side of the AdS/CFT correspondence, only gauge-invariant
operators are visible, so this quark bilinear has no direct representation on the gravity
side. However, the relevant physics should be visible in gauge invariant composites
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made from the bilinear; consequently the authors of [197] introduce a scalar on the
gravity side ψ dual to the gauge-invariant combination OO†, taken in this elementary
model to have a mass term only.

This model was explored throughout the T -µ plane, and the gravitational action,
standing for the free energy, was minimized for various configurations throughout the
phase diagram. At small values of µ, a transition between confined and deconfined
phases was observed, with the scalar vanishing in the preferred configurations. Above
a certain critical value of µ, the scalar developed an instability and began to condense,
signaling the onset of the superconducting phase (see figure 27).

While an elementary model, it is interesting to see the basic desired phase structure
emerging. Like the phase diagram study described in section 6.2, but unlike the case in
described in section 6.3, the fermions are not introduced explicitly via brane dynamics;
this can be understood since color superconductivity is expected to arise in theNf ∼ Nc

regime, which is beyond the probe limit and branes would be expected to be replaced
by their backreacted geometry.

The study of color-flavor locking is also complicated by the fact that it requires
Nf ∼ Nc. In [198], Nf ≪ Nc explicit D7-branes are introduced, and then of order
Nf of the Nc color D3-branes are separated out and their interactions with the D7-
branes examined. Color-flavor locking is associated with the dynamical tendency for
the D7-branes to absorb the D3-branes and turn them into worldvolume instantons.
In the melted meson phase, this dynamical absorption is indeed observed. While these
steps have been taken, it is evident that much more could be known about holographic
realizations of this corner of the phase diagram.

7 Future directions

We close with some suggestions for future directions of research.

The generalizations of Bjorken flow discussed in section 2 have either transverse
structure, or longitudinal structure, but not both. An obvious next step, then, is to
try to combine the SO(3) conformal symmetry with complexified longitudinal boost
symmetry to obtain a conserved stress tensor which is hydrodynamical except for edge
regions. It is probably too ambitious to demand that the stress tensor should satisfy
positive energy conditions throughout the future wedge of the collision plane; how-
ever, it may be possible to impose positivity conditions in some smaller region which
nevertheless includes the future of most of the colliding matter.

Numerical studies in heavy ion applications of AdS/CFT have mostly focused on
2+1-dimensional problems in the bulk, corresponding to 1+1-dimensional problems in
the boundary theory. It is straightforward in principle to extend the numerical methods
described in section 3.1 to include more independent variables. The attraction of these
methods is that they can accommodate non-hydrodynamic regimes at early times, with
realistically rapid thermalization time scales. Once one goes beyond 1+ 1-dimensional
problems in the boundary theory, one can probe (for example) the development of
spatial inhomogeneities before, during, and after thermalization. This is particularly
important in light of recent results on very high multiplicity proton-nucleus collisions,
which exhibit azimuthal correlations reminiscent of flow [199, 200, 201, 202]. The
degree of thermalization in these small systems can be quantified using gauge-gravity
duality, which can gracefully interpolate between the initial state and hydrodynamic
paradigms that are used to understand the observed correlations [203, 204, 205].
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As reviewed in section 4.4.2, there are competing efforts to understand energy loss
from high-momentum light particles in AdS/CFT. Even the scaling of energy loss
with length comes out differently in the different approaches. It should be possible to
make clearer statements about the differential rate dE/dx of energy loss in the falling
string picture if one can compute the response 〈Tµν〉 in the field theory. Experience
with heavy quarks suggests that one must proceed to length scales well below where
hydrodynamics is applicable in order to fully understand the angular structure of the
emitted radiation. In addition, as the energy of the high-momentum light particles is
increased, the fluctuations become more important, and quantifying these fluctuations
is an essential part of a complete description of energy loss. However, as described in
Section 3.3, such stochastic phenomena can only be addressed by going beyond the
supergravity approximation [206].

Charged black holes provide a simple way to study holographic gauge theories at
finite density and temperature, as reviewed in section 6. But little work has gone into
understanding dynamical properties of the finite density states. Phenomenologically
interesting questions include how chemical potential varies with rapidity and how en-
ergy loss of hard probes varies jointly with chemical potential and temperature. There
are also a number of questions arising from the work on the phase diagram outlined in
section 6: first whether the mean field critical exponents and apparent suppression of
energy-momentum transport can be understood as large-Nc effects and whether 1/Nc

corrections can be understood; secondly how robust the results are to the precise form
of the Lagrangian chosen, and whether the holographic model can make an at least
approximately quantitative prediction for where in the phase diagram the critical point
might lie, or whether the results are too sensitive to assumptions; and thirdly whether
the color superconducting region can be further characterized in a more sophisticated
model.

Acknowledgments

The work of O.D. was supported by the Department of Energy under Grant No. DE-
FG02-91-ER-40672. The work of S.S.G. was supported in part by the Department of
Energy under Grant No. DE-FG02-91ER40671, and by a Simons Fellowship, award
number 230492. The work of C.R. was supported in part by EU grants PERG07-GA-
2010-268246 and the EU program “Thales” ESF/NSRF 2007-2013. It has also been
co-financed by the European Union (European Social Fund, ESF) and Greek national
funds through the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) under “Funding of proposals that
have received a positive evaluation in the 3rd and 4th Call of ERC Grant Schemes”.
D.T. was supported by the Department of Energy, DE-FG-02-08ER4154, and as a
RIKEN-BNL fellow.

68



References

[1] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl.Phys.

B72 (1974) 461.

[2] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Adv.Theor.Math.Phys. 2 (1998) 231–252, [hep-th/9711200].

[3] S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from
noncritical string theory,” Phys.Lett. B428 (1998) 105–114, [hep-th/9802109].

[4] E. Witten, “Anti-de Sitter space and holography,” Adv.Theor.Math.Phys. 2
(1998) 253–291, [hep-th/9802150].

[5] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N
field theories, string theory and gravity,” Phys.Rept. 323 (2000) 183–386,
[hep-th/9905111].

[6] I. R. Klebanov, “TASI lectures: Introduction to the AdS / CFT
correspondence,” hep-th/0009139.

[7] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS
/ CFT correspondence,” hep-th/0201253.

[8] J. M. Maldacena, “TASI 2003 lectures on AdS / CFT,” hep-th/0309246.

[9] G. ’t Hooft, “Dimensional reduction in quantum gravity,” gr-qc/9310026.

[10] L. Susskind, “The World as a hologram,” J.Math.Phys. 36 (1995) 6377–6396,
[hep-th/9409089].

[11] R. Bousso, “The Holographic principle,” Rev.Mod.Phys. 74 (2002) 825–874,
[hep-th/0203101].

[12] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in
gauge theories,” Adv.Theor.Math.Phys. 2 (1998) 505–532, [hep-th/9803131].

[13] G. Policastro, D. Son, and A. Starinets, “The Shear viscosity of strongly
coupled N=4 supersymmetric Yang-Mills plasma,” Phys.Rev.Lett. 87 (2001)
081601, [hep-th/0104066].

[14] D. T. Son and A. O. Starinets, “Minkowski space correlators in AdS / CFT
correspondence: Recipe and applications,” JHEP 0209 (2002) 042,
[hep-th/0205051].

[15] A. Buchel and J. T. Liu, “Universality of the shear viscosity in supergravity,”
Phys.Rev.Lett. 93 (2004) 090602, [hep-th/0311175].

[16] P. Kovtun, D. Son, and A. Starinets, “Viscosity in strongly interacting
quantum field theories from black hole physics,” Phys.Rev.Lett. 94 (2005)
111601, [hep-th/0405231].

[17] PHENIX Collaboration, K. Adcox et. al., “Formation of dense partonic
matter in relativistic nucleus nucleus collisions at RHIC: Experimental
evaluation by the PHENIX collaboration,” Nucl. Phys. A757 (2005) 184–283.

69

http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/9802150
http://xxx.lanl.gov/abs/hep-th/9905111
http://xxx.lanl.gov/abs/hep-th/0009139
http://xxx.lanl.gov/abs/hep-th/0201253
http://xxx.lanl.gov/abs/hep-th/0309246
http://xxx.lanl.gov/abs/gr-qc/9310026
http://xxx.lanl.gov/abs/hep-th/9409089
http://xxx.lanl.gov/abs/hep-th/0203101
http://xxx.lanl.gov/abs/hep-th/9803131
http://xxx.lanl.gov/abs/hep-th/0104066
http://xxx.lanl.gov/abs/hep-th/0205051
http://xxx.lanl.gov/abs/hep-th/0311175
http://xxx.lanl.gov/abs/hep-th/0405231


[18] STAR Collaboration, J. Adams et. al., “Experimental and theoretical
challenges in the search for the quark gluon plasma: The star collaboration’s
critical assessment of the evidence from rhic collisions,” Nucl. Phys. A757
(2005) 102–183, [nucl-ex/0501009].

[19] D. A. Teaney, “Viscous Hydrodynamics and the Quark Gluon Plasma,”
arXiv:0905.2433.

[20] A. Majumder and M. Van Leeuwen, “The Theory and Phenomenology of
Perturbative QCD Based Jet Quenching,” Prog.Part.Nucl.Phys. A66 (2011)
41–92, [arXiv:1002.2206].

[21] B. Muller, J. Schukraft, and B. Wyslouch, “First Results from Pb+Pb collisions
at the LHC,” Ann.Rev.Nucl.Part.Sci. 62 (2012) 361–386, [arXiv:1202.3233].

[22] U. W. Heinz and R. Snellings, “Collective flow and viscosity in relativistic
heavy-ion collisions,” arXiv:1301.2826.

[23] Y. Mehtar-Tani, J. G. Milhano, and K. Tywoniuk, “Jet physics in heavy-ion
collisions,” Int.J.Mod.Phys. A28 (2013) 1340013, [arXiv:1302.2579].

[24] J. Casalderrey-Solana and A. Milov, “High-pT and Jets. A Summary of Results
from Quark Matter 2012,” arXiv:1210.8271.

[25] J. Schukraft, “Hard Probes 2012: Experimental Summary,” arXiv:1210.3975.

[26] CMS Collaboration Collaboration, “Azimuthal anisotropy harmonics in
ultra-central PbPb collisions at

√
sNN = 2.76 TeV,” .

[27] M. Luzum and J.-Y. Ollitrault, “Extracting the shear viscosity of the
quark-gluon plasma from flow in ultra-central heavy-ion collisions,”
Nucl.Phys.A (2012) [arXiv:1210.6010].

[28] PHENIX Collaboration Collaboration, A. Adare et. al., “Measurements of
Higher-Order Flow Harmonics in Au+Au Collisions at

√
sNN = 200 GeV,”

Phys.Rev.Lett. 107 (2011) 252301, [arXiv:1105.3928].

[29] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Anisotropic flow in
event-by-event ideal hydrodynamic simulations of

√
sNN = 200 GeV Au+Au

collisions,” Phys.Rev.Lett. 109 (2012) 202302, [arXiv:1203.2882].

[30] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, “Determining initial-state
fluctuations from flow measurements in heavy-ion collisions,” Phys.Rev. C84
(2011) 034910, [arXiv:1104.4740].

[31] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan, “Initial state
fluctuations and higher harmonic flow in heavy-ion collisions,”
arXiv:1210.5144.

[32] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan, “Event-by-event
anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous
fluid dynamics,” Phys.Rev.Lett. 110 (2013) 012302, [arXiv:1209.6330].

70

http://xxx.lanl.gov/abs/nucl-ex/0501009
http://xxx.lanl.gov/abs/0905.2433
http://xxx.lanl.gov/abs/1002.2206
http://xxx.lanl.gov/abs/1202.3233
http://xxx.lanl.gov/abs/1301.2826
http://xxx.lanl.gov/abs/1302.2579
http://xxx.lanl.gov/abs/1210.8271
http://xxx.lanl.gov/abs/1210.3975
http://xxx.lanl.gov/abs/1210.6010
http://xxx.lanl.gov/abs/1105.3928
http://xxx.lanl.gov/abs/1203.2882
http://xxx.lanl.gov/abs/1104.4740
http://xxx.lanl.gov/abs/1210.5144
http://xxx.lanl.gov/abs/1209.6330


[33] Z. Qiu and U. Heinz, “Hydrodynamic event-plane correlations in Pb+Pb
collisions at

√
s = 2.76ATeV,” Phys.Lett. B717 (2012) 261–265,

[arXiv:1208.1200].

[34] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Mapping the
hydrodynamic response to the initial geometry in heavy-ion collisions,”
Phys.Rev. C85 (2012) 024908, [arXiv:1111.6538].

[35] D. Teaney and L. Yan, “Non linearities in the harmonic spectrum of heavy ion
collisions with ideal and viscous hydrodynamics,” Phys.Rev. C86 (2012)
044908, [arXiv:1206.1905].

[36] D. Teaney and L. Yan, “Non-linear flow response and reaction plane
correlations,” arXiv:1210.5026.

[37] C. Shen and U. Heinz, “Collision Energy Dependence of Viscous Hydrodynamic
Flow in Relativistic Heavy-Ion Collisions,” Phys.Rev. C85 (2012) 054902,
[arXiv:1202.6620].

[38] S. S. Gubser, “Symmetry constraints on generalizations of Bjorken flow,” Phys.

Rev. D82 (2010) 085027, [arXiv:1006.0006].

[39] PHENIX Collaboration Collaboration, A. Adare et. al.,
“Nuclear-Modification Factor for Open-Heavy-Flavor Production at Forward
Rapidity in Cu+Cu Collisions at

√
sNN = 200 GeV,” Phys.Rev. C86 (2012)

024909, [arXiv:1204.0754].

[40] ALICE Collaboration Collaboration, Z. C. del Valle, “Heavy-flavor
suppression and azimuthal anisotropy in Pb-Pb collisions at

√

(sNN) = 2.76
TeV with the ALICE detector,” arXiv:1212.0385.

[41] PHENIX Collaboration Collaboration, S. Afanasiev et. al., “Measurement
of Direct Photons in Au+Au Collisions at

√
sNN = 200 GeV,” Phys.Rev.Lett.

109 (2012) 152302, [arXiv:1205.5759].

[42] PHENIX Collaboration Collaboration, A. Adare et. al., “Observation of
direct-photon collective flow in

√
sNN = 200 GeV Au+Au collisions,”

Phys.Rev.Lett. 109 (2012) 122302, [arXiv:1105.4126].

[43] ALICE Collaboration Collaboration, B. Abelev et. al., “Centrality
dependence of π, K, p production in Pb-Pb collisions at

√
sNN = 2.76 TeV,”

arXiv:1303.0737.

[44] K. Rajagopal and F. Wilczek, “The Condensed matter physics of QCD,”
hep-ph/0011333.

[45] STAR Collaboration Collaboration, M. Aggarwal et. al., “An Experimental
Exploration of the QCD Phase Diagram: The Search for the Critical Point and
the Onset of De-confinement,” arXiv:1007.2613.

[46] CBM Collaboration Collaboration, P. Staszel, “CBM experiment at FAIR,”
Acta Phys.Polon. B41 (2010) 341–350.

71

http://xxx.lanl.gov/abs/1208.1200
http://xxx.lanl.gov/abs/1111.6538
http://xxx.lanl.gov/abs/1206.1905
http://xxx.lanl.gov/abs/1210.5026
http://xxx.lanl.gov/abs/1202.6620
http://xxx.lanl.gov/abs/1006.0006
http://xxx.lanl.gov/abs/1204.0754
http://xxx.lanl.gov/abs/1212.0385
http://xxx.lanl.gov/abs/1205.5759
http://xxx.lanl.gov/abs/1105.4126
http://xxx.lanl.gov/abs/1303.0737
http://xxx.lanl.gov/abs/hep-ph/0011333
http://xxx.lanl.gov/abs/1007.2613


[47] M. Stephanov, “QCD critical point and correlations,” J. Phys. Conf. Ser. 27
(2005) 144–153.

[48] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A.
Wiedemann, “Gauge/String Duality, Hot QCD and Heavy Ion Collisions,”
arXiv:1101.0618.
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