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Abstract: Future measurements of primordial non-Gaussianity can reveal cosmologically

produced particles with masses of order the inflationary Hubble scale and their interactions

with the inflaton, giving us crucial insights into the structure of fundamental physics at

extremely high energies. We study gauge-Higgs theories that may be accessible in this

regime, carefully imposing the constraints of gauge symmetry and its (partial) Higgsing.

We distinguish two types of Higgs mechanisms: (i) a standard one in which the Higgs scale

is constant before and after inflation, where the particles observable in non-Gaussianities

are far heavier than can be accessed by laboratory experiments, perhaps associated with

gauge unification, and (ii) a “heavy-lifting” mechanism in which couplings to curvature can

result in Higgs scales of order the Hubble scale during inflation while reducing to far lower

scales in the current era, where they may now be accessible to collider and other laboratory

experiments. In the heavy-lifting option, renormalization-group running of terrestrial mea-

surements yield predictions for cosmological non-Gaussianities. If the heavy-lifted gauge

theory suffers a hierarchy problem, such as does the Standard Model, confirming such

predictions would demonstrate a striking violation of the Naturalness Principle. While ob-

serving gauge-Higgs sectors in non-Gaussianities will be challenging given the constraints of

cosmic variance, we show that it may be possible with reasonable precision given favorable

couplings to the inflationary dynamics.
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1 Introduction

Cosmic Inflation (see [1] for a review), originally invoked to help explain the homogeneity

and flatness of the universe on large scales, provides an attractive framework for under-

standing inhomogeneities on smaller scales, such as the spectrum of temperature fluctu-

ations in the Cosmic Microwave Background (CMB) radiation. These fluctuations are

consistent with an almost scale-invariant, adiabatic and Gaussian spectrum of primordial

curvature perturbations R [2]. The approximate scale invariance of these fluctuations can

be naturally modeled as quantum oscillations of the inflaton field in a quasi-de Sitter (dS)

spacetime. The adiabaticity property implies that among the fields driving inflation, there

is a single “clock”, the inflaton, which governs the duration of inflation and the subsequent

reheating process. Finally, Gaussianity of the present data [3] reflects very weak couplings

among inflationary and gravitational fields. While these features point to successes of the

inflationary paradigm, few details of the fundamental physics at play during inflation have

emerged. Observing small non-Gaussianity (NG) of the fluctuations could change this sit-

uation radically, giving critical insights not only into the inflationary dynamics itself but

also into the particle physics structure of that era.

Interactions of the inflaton with itself or other fields during or immediately after infla-

tion can lead to a non-Gaussian spectrum of R. However, NG can also be developed after

fluctuation modes re-enter the horizon at the end of inflation. This can happen for various

reasons, including, nonlinear growth of perturbations under gravity during structure for-

mation (see [4, 5] for reviews in the context of CMB and Large-Scale Structure). Therefore
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it is crucial to understand and distinguish this latter type of NG which can “contaminate”

the invaluable primordial NG. In this paper we will assume that this separation can be

achieved in future experiments involving Large-Scale Structure (LSS) surveys [6] and 21-

cm cosmology [7, 8], to reach close to a cosmic-variance-only limited precision. With this

qualifier, a future measurement of NG can reveal important clues as to the underlying

inflationary dynamics. For example, for the case single-field slow-roll inflation, there is a

minimal amount of NG mediated by gravitational interactions [9, 10], while lying several

orders of magnitude below the current limit on NG, can be achievable in the future.

There also exist a variety of models which predict a larger than minimal NG (see [11, 12]

for reviews and references to original papers). A common feature among some of these

models is the presence of additional fields beyond the inflaton itself. Such non-minimal

structure can be motivated by the need to capture inflationary dynamics within a fully

theoretically controlled and natural framework. If those additional fields are light with

mass, m ≪ H (where H denotes the Hubble scale during inflation), they can oscillate and

co-evolve along with the inflaton during inflation. These fields can generate significant NG

after inflation, with a functional form approximated by the “local” shape [3, 13, 14].

On the other hand, the additional fields can be heavy with masses m & H. Such fields

can be part of “quasi-single-field inflation” which was introduced in [15] and further devel-

oped in [16–22]. In the presence of these massive fields, the three-point correlation function

of the curvature perturbation R has a distinctive non-analytic dependence on momenta,

〈R(~k1)R(~k2)R(~k3)〉 ∝
1

k33

1

k31

(

k3
k1

)∆(m)

+ · · · , for k3 ≪ k1, (1.1)

in the “squeezed” limit where one of 3-momenta becomes smaller than the other two. In

the above,

∆(m) =
3

2
+ i

√

m2

H2
− 9

4
, (1.2)

where m is the mass of the new particle. The non-analyticity reflects the fact that the

massive particles are not merely virtual within these correlators, but rather are physically

present “on-shell” due to cosmological particle production, driven by the inflationary back-

ground time-dependence. Such production is naturally suppressed for m ≫ H, which is

reflected by a “Boltzmann-like suppression” factor in the proportionality constant in (1.1).

The only effect of m ≫ H particles is then virtual-mediation of interactions among the

remaining light fields [23]. At the other extreme, for m ≪ H the distinctive non-analyticity

is lost. Hence, we are led to a window of opportunity around H, where the non-analytic de-

pendence of the three-point function is both non-trivial and observable, and can be used to

do spectroscopy of masses. Furthermore, if a massive particle has nontrivial spin [21, 24],

there will be an angle-dependent prefactor in (1.1), which can enable us to determine

the spin as well [25]. These observations point to a program of “Cosmological Collider

Physics” [21], which has an unprecedented reach into the structure of fundamental physics

at much higher energy scales than we can expect to probe at colliders. The sensitivity of the
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Figure 1. From left to right: (a) Tree level exchange of neutral massive scalar (in red) between

inflatons (in black); (b) Loop level exchange of charged massive fields (in blue) between inflatons

(in black). The external lines are taken to end at the end of inflation, conformal time, η ≈ 0.

measurements is ultimately constrained by cosmic variance, very roughly in the ball park of

〈RRR〉
〈RR〉 3

2

∼ 1√
N21-cm

∼ 10−8, (1.3)

where we have assumed the number of modes accessible by a cosmic variance limited 21-cm

experiment is N21-cm ∼ 1016 [7]. Achieving such a precision is very important for realizing

the full potential of the program.

In this paper, we couple gauge-Higgs theories with m ∼ H to inflationary dynam-

ics and ask to what extent the associated states can be seen via the cosmological col-

lider physics approach. The contributions of massive particle to the three point function

〈R(~k1)R(~k2)R(~k3)〉 can be represented via “in-in” diagrams in (quasi-)dS space such as in

figure 1. From figure 1(a), we see that since the inflaton has to have the internal quantum

numbers of the vacuum,1 the same has to be true for the massive particles. The particles

must therefore be gauge singlets. Keeping this fact in mind, let us analyze the two scenarios

that can arise during inflation.

The gauge theory may be unbroken during inflation. Gauge singlet 1-particle states

then can mediate NG via tree diagrams as shown in figure 1(a). This is also the case

that has been analyzed extensively in the literature. On the other hand, gauge charged

states can contribute via loops, as shown in figure 1(b), but are expected to be small.

Alternatively, the gauge theory may be (partially) Higgsed during inflation. Then the

massive particle in figure 1(a) need only be a gauge singlet of a residual gauge symmetry,

but may be charged under the full gauge group. This possibility, which has received less

attention in the literature (however, see [27, 28] for a related scenario), will be our primary

focus. There are two ways in which such a Higgsing can happen, as we discuss now.

First, such a breaking can be due to a fixed tachyonic mass term for the Higgs H,

µ2
HH†H with µH ∼ H. In this case, the gauge-Higgs theory remains Higgsed after inflation

ends and its massive states can annihilate away as universe cools giving rise to standard

cosmology. Grand unified theories are examples of gauge extensions of Standard Model

(SM) containing very massive new particles and which are strongly motivated by existing

lower energy experimental data. For example, non-supersymmetric unification is suggested

1In the context of Higgs inflation [26] however, inflaton is the physical charge neutral Higgs field.
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by the near renormalization-group convergence of SM gauge couplings in the 1013–1014GeV

range, right in the high-scale inflation window [2] of opportunity for cosmological collider

physics!2 NG detection of some subset of these massive states could give invaluable clues

to the structure and reality of our most ambitious theories. It is also possible that H-mass

states revealed in NG are not connected to specific preconceived theories, but even this

might provide us with valuable clues about the far UV.

Another very interesting and testable option is a tachyonic “mass” term of the form

L ⊃ cRH†H, where R is the Ricci scalar and c > 0 parametrizes the non-minimal coupling

of Higgs to gravity. The effects of non-tachyonic terms for this form with c < 0 have been

considered before (see e.g. [31, 32]). Note, spontaneous breaking triggered by c > 0 is

completely negligible at low temperatures, say below 100 GeV. Whereas in the scenario

above we needed the gauge-Higgs theory to fortuitously have states with m ∼ H, here

we naturally get the Higgs particle at H for c ∼ O(1). Furthermore, if (gauge coupling ×
Higgs VEV) ∼ H, we also get massive gauge bosons at H. In this way such a nonminimal

coupling can lift up a gauge theory with a relatively low Higgs scale today, which we can

access via collider or other probes, to the window of opportunity of cosmological collider

physics during the inflationary era. We will call this the “heavy-lifting” mechanism. To

make this idea concrete, we consider the example of heavy lifting the SM.

During the inflationary era the SM weak scale v can be lifted to be very high, but we

do not know where precisely because of the unknown parameter c (even if we knew H).

However, this uncertainty drops out in mass ratios,

mh

mZ
=

2
√
2λh

√

g2 + g′2

mh

mW
=

2
√
2λh

g

mh

mt
=

2
√
λh

yt

(1.4)

where, λh, g
′, g, yt are Higgs quartic, U(1)Y , SU(2)L and top Yukawa couplings of SM.

While the top t and W boson can only appear in loops figure 1(b), the physical Higgs h

and the Z can appear in figure 1(a) giving us one prediction in this case. However, an

important subtlety of the couplings on the r.h.s. of the ratios above is that they are not

those measured at the weak scale but rather are the results of running to ∼ H. But it is

well known that the SM effective potential develops an instability around 1010–1012GeV

because of the Higgs quartic coupling running negative (see [33] and references therein

for older works). Since the inflationary H can be higher, the Higgs field can sample

values in its potential beyond the instability scale. Whether this is potentially dangerous

for our universe has been considered before (see e.g. [31–37]). But it is possible that this

instability is straightforwardly cured once dark matter (DM) is coupled to the SM. A simple

example [38–41] would be if future experiments determine that DM is a SM gauge singlet

2Unification at such scales is disfavored in minimal unification schemes by proton decay constraints, but

viable in non-minimal schemes such as that of refs. [29, 30].
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scalar S stabilized by a Z2 symmetry, S → −S. Then the most general renormalizable new

couplings are given by the Higgs portal coupling and scalar self-interaction,

k

2
S2|H|2 + λS

24
S4. (1.5)

Since the coupling k contributes positively to the Higgs quartic running, for appropriate

choice of k (and less sensitively to λS) the Higgs quartic never becomes negative. This

solves the vacuum instability problem of the SM and we can reliably trust our effective

theory up to even high scale inflation energies.

Imagine a discovery of such a DM (S) is made in the coming years, along with a

measurement of k and its mass mS (and possibly a measurement of or at least a bound

on, λS). Also, imagine a measurement of H is obtained via detecting the primordial

tensor power spectrum. Then we can use the Renormalization Group (RG) to run all the

measured couplings to the high scale H. These would then allow us to compute the run-up

couplings needed to make a cosmological verification of (1.4). Such a verification of this

Next-to-Minimal SM (NMSM) would give strong evidence that no new physics intervenes

between TeV and H. Since this NMSM clearly suffers from a hierarchy problem (worse

than the SM), the precision NG measurements would therefore provide us with a test of

“un-naturalness” in Nature, perhaps explained by the anthropic principle [42, 43]. Whether

the naturalness principle is undercut by the anthropic principle or by other considerations

is one of the most burning questions in fundamental physics.

Of course, the heavy-lifting mechanism may also apply to non-SM “dark” gauge-Higgs

sectors, which we may uncover by lower energy experiments and observations in the coming

years, or to gauge-Higgs extensions of the SM which may emerge from collider experiments.

In this way, there may be more than one mass ratio of spin-0 and spin-1 particles that

might appear in NG which we will be able to predict. As we will show, such new gauge

structure may be more easily detectable in NG than the (NM)SM, depending on details of

its couplings. It is important to note that different gauge theory sectors in the current era,

with perhaps very different Higgsing scales, can be heavy-lifted to the same rough scale H

during inflation, with their contributions to NG being superposed.

The heavy-lifting mechanism may not be confined to unnatural gauge-Higgs theories.

For example, if low energy supersymmetry (SUSY) plays a role in stabilizing the electro-

weak hierarchy, a suitable structure of SUSY breaking may permit the heavy-lifting mech-

anism to work. Heavy-lifting can then provide us with a new test of naturalness! Possibly

non-tachyonic squarks and sleptons in the current era were tachyonic during inflation,

higgsing QCD or electro-magnetism back then. We leave a study of the requisite SUSY-

breaking structure for future work. Cosmological collider physics studies incorporating

SUSY but restricted to gauge singlet fields have appeared in [17, 44].

NG potentially provide us with the boon of an ultra-high energy “cosmological col-

lider”, but cosmic variance implies it operates at frustratingly low “luminosity”! We will

see that this constrains how much we can hope to measure, even under the best exper-

imental/observational circumstances. For example, a pair of spin-1 particles appearing

in the NG will be more difficult to decipher than only one of them appearing, due to
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the more complicated functional form of the pair that must be captured in the limited

squeezed regime under cosmic variance. And yet, we would ideally like to see a rich spec-

trum of particles at H. The key to visibility of new physics under these harsh conditions is

then determined by the strength of couplings to the inflaton. This is the central technical

consideration of this paper, taking into account the significant suppressions imposed by

(spontaneously broken) gauge invariance. We study this within two effective field theory

frameworks, one more conservative but less optimistic than the other. Single-field slow-roll

inflation gives the most explicit known construction of inflationary dynamics, but we will

see that minimal models under effective field theory control give relatively weak NG sig-

nals, although still potentially observable. We also consider the more agnostic approach in

which the dynamics of inflation itself is parametrized as a given background process [45],

but in which the interactions of the gauge-Higgs sector and inflaton fluctuations are explic-

itly described. This will allow for larger NG signals, capable in principle of allowing even

multiple particles to be discerned.

This paper is organized as follows. We start in section 2 by reviewing the in-in formal-

ism and its use in calculation of the relevant non-Gaussian observables. We also include a

discussion of different gauges and conventions used for characterizing NG. Then in section 3

we review the significance of the squeezed limit of cosmological correlators, both in the ab-

sence and presence of new fields beyond the inflaton. In particular, we review the derivation

of (1.1). In section 4 we discuss some general aspects of gauge-Higgs theory dynamics dur-

ing inflation and elaborate upon the two alternatives for Higgs mechanism discussed above.

We then specialize in section 5 to slow-roll inflation where we study the couplings of Higgs-

type and Z-type bosons to the inflaton in an effective field theory (EFT) framework. In

section 6 we describe parallel considerations in the more agnostic EFT approach mentioned

above. The two levels of effective descriptions are then used in sections 7 and 8 (supple-

mented by technical appendices A–D) to derive some of the detailed forms of NG due to

Higgs-type and Z-type exchanges respectively. We conclude in section 9.

Hubble units. In this paper, the Hubble scale during inflation is denoted by H. To

reduce clutter, from now on we will set H ≡ 1 in most of the numbered equations, with

a few exceptions where we explicitly write it for the sake of clarity. Factors of H can

be restored via dimensional analysis. However, we will refer explicitly to H in the text

throughout, again for ease of reading, and in the unnumbered equations within the text.

2 Preliminaries

2.1 The in-in formalism for cosmological correlators

Primordial NG induced by inflaton fluctuations are calculated as “in-in” expectation val-

ues [46] of certain gauge-invariant (products of) operators at a fixed instant of time towards

the end of inflation, denoted by tf . The expectation needs a specification of the quantum

state. The notion of “vacuum” is ill-defined because spacetime expansion gives a time-

dependent Hamiltonian, H(t). However, for very short distance modes/physics at some

very early time ti, the expansion is negligible and we can consider the state to be the

– 6 –
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Minkowski vacuum, |Ω〉. As such modes redshift to larger wavelengths at tf , the state at

tf can then be taken to be given by U(tf , ti)|Ω〉, where

U(tf , ti) = Te
−i

tf∫

ti

dtH(t)

. (2.1)

In order to capture arbitrarily large wavelengths at tf in this manner, we formally take

ti → −∞. (For free fields, the state defined in this way at finite times, is the Bunch-Davies

“vacuum”.) Then the desired late-time expectation value of a gauge invariant operator Q

is given in the Schroedinger picture by, 〈Ω|U(tf , ti = −∞)†QU(tf , ti = −∞)|Ω〉.
Now the calculation of the expectation value becomes standard. First, we go over to

the interaction picture, and second we employ the standard trick of continuing the early

evolution slightly into complex time to project the free vacuum |0〉 onto the interacting

vacuum |Ω〉. Thus we arrive at the in-in master formula,

〈Ω|U(tf , ti)
†QU(tf , ti)|Ω〉= 〈0|T̄ e

+i

tf∫

−∞(1+iǫ)

dt2Hint
I (t2)

QI(tf )Te
−i

tf∫

−∞(1−iǫ)

dt1Hint
I (t1)

|0〉. (2.2)

In the above, the subscript I denotes that the corresponding operator is to be evaluated

in the interaction picture. Finally, H
int(t) is the interaction part of the Hamiltonian of

the fluctuations, i.e. H = H0 + H
int with H0 being quadratic in fluctuations. We note

that the anti-time ordered product also appears in (2.2). The perturbative expansion of

cosmological correlators of the above general type is facilitated as usual by expanding in

products of Wick contractions, given by in-in propagators. This leads to a diagrammatic

form, illustrated in figure 2.

2.2 Useful gauges for general coordinate invariance

Metric and inflaton fluctuations are not gauge invariant under diffeomorphisms. Hence

we now review two useful gauges and a gauge invariant quantity characterizing the scalar

perturbations during inflation. Our discussion will be brief and for more details the reader

is referred to [9, 47]. For simplicity, we will specialize here to single-field slow-roll inflation,

but the considerations are more general.

The metric of dS space is given by,

ds2 = −dt2 + a2(t)d~x2, (2.3)

with a(t) = eHt being the scale factor in terms of Hubble scale H. To discuss the gauge

choices, it is useful to decompose the spatial metric hijdx
idxj in presence of inflationary

backreaction as follows [47],

hij = a2(t)

(

(1 +A)δij +
∂2B

∂xi∂xj
+ ∂jCi + ∂iCj + γij

)

, (2.4)

where, A,B,Ci, γij are two scalars, a divergenceless vector, and a transverse traceless tensor

perturbation respectively. The inflaton field can also be decomposed into a classical part

φ0(t) and a quantum fluctuation ξ(t, ~x),

φ(t, ~x) = φ0(t) + ξ(t, ~x). (2.5)
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Using the transformation rules of the metric and scalar field, it can be shown that the

quantity [48],

R ≡ A

2
− 1

φ̇0

ξ, (2.6)

is gauge invariant. This is the quantity that is conserved on superhorizon scales for single

field inflation [13, 49–52]. AlthoughR seems to depend on more than one scalar fluctuation,

there is only one physical scalar fluctuation which is captured by it. This is because

among the five scalar fluctuations in the metric plus inflaton system, two are non-dynamical

constraints and two more can be gauged away by appropriate diffeomorphisms, leaving only

one fluctuation. To make this manifest, we can do gauge transformations which set either

A or ξ to zero in (2.6) to go to spatially flat and comoving gauge respectively. The first of

these will be most useful for simplifying in-in calculations involving Hubble-scale massive

particles external to the inflation dynamics, while the second one is useful for constraining

the squeezed limit of the NG due to inflationary dynamics itself.

Spatially flat gauge [9]. In this gauge the spatial metric (2.4) becomes

hij = a2(t) (δij + γij) . (2.7)

Gauge invariant answers can be obtained by writing ξ in terms of R using (2.6), which

becomes in this gauge,

R = − 1

φ̇0

ξ. (2.8)

Comoving gauge [9]. In this gauge the spatial metric (2.4) looks like

hij = a2(t) ((1 + A)δij + γij) , (2.9)

with quantum inflaton field ξ = 0. This means the gauge invariant quantity R evaluated

in the new gauge becomes,

R =
A

2
, (2.10)

which lets us rewrite the spatial metric (2.4) as

hij = a2(t) ((1 + 2R)δij + γij) , (2.11)

with R being conserved after horizon exit (in single-field inflation).

2.3 Observables

Having discussed the gauge choices, we now move on to discussing the observables. The

power spectrum for the density perturbations is given by,

Pk ≡ 〈R(~k)R(−~k)〉′, (2.12)

where the ′ denotes the notation that momentum conserving delta functions are taken

away i.e.

〈R(~k1) · · ·R(~kn)〉 = (2π)3δ3(~k1 + · · ·+ ~kn)〈R(~k1) · · ·R(~kn)〉′ . (2.13)

– 8 –
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The power spectrum can be evaluated to be

Pk =
1

φ̇2
0

1

2k3
, (2.14)

where the r.h.s. is to be evaluated at the moment of horizon exit k = aH for a given

k-mode. Since different k-modes exit the horizon at different times and H4

φ̇2
0

has a slow time

dependence, the combination k3Pk is not exactly k-independent, and we can write

k3Pk ∝
(

k

k∗

)ns−1

, (2.15)

where 1 − ns is the tilt of the power spectrum and k∗ is a “pivot” scale. From Planck

data [2] we get, ns ≈ 0.96 and H4

φ̇2
0

= 8.7× 10−8 at k∗ = 0.05 Mpc−1. In position space, the

power spectrum takes the form,

〈R(~x1)R(~x2)〉 ∼
1

|x1 − x2|ns−1
. (2.16)

To calculate the bispectrum we will be interested in evaluating 〈R(~k1)R(~k3)R(~k3)〉. By
translational invariance the three momenta form a triangle, and by rotational invariance

we are only interested in the shape and size of the triangle, not in the orientation of

the triangle. Furthermore since we also have approximate scale invariance, we do not

care about the overall size of the triangle, so effectively the momentum dependence of

bispectrum is governed only by the ratios k3
k1

and k2
k1
. We denote the bispectrum by the

function B(k1, k2, k3),

B(k1, k2, k3) = 〈R(~k1)R(~k3)R(~k3)〉′. (2.17)

It is convenient to define a dimensionless version of this,

F (k1, k2, k3) =
B(k1, k2, k3)

Pk1Pk3

. (2.18)

The crude estimate of cosmic variance (1.3) translates to δF ∼ 10−4–10−3. It is often

conventional in the literature to typify the size of NG by the value of F at the equilateral

point,

fNL ≡ 5

18
F (k, k, k). (2.19)

Since we are mostly interested here in the squeezed limit for future signals, k3 ≪ k1, k2,

we will explicitly compute F in that limit, referring to fNL only in the context of current

NG limits (see subsection 6.1). In terms of the quantum inflaton field ξ, the function F

can be rewritten as,

F (k1, k2, k3) = −φ̇0
〈ξ(~k1)ξ(~k2)ξ(~k3)〉′

〈ξ(~k1)ξ(−~k1)〉′〈ξ(~k3)ξ(−~k3)〉′
|k3≪k1,k2 , (2.20)

and where the r.h.s. is evaluated at the point of horizon exit for each mode.
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Figure 2. NG in single-field inflation.

3 Squeezed limit of cosmological correlators

3.1 NG from single field inflation in the squeezed limit

In single field inflation, NG in the squeezed limit is proportional to the tilt of the inflaton

power spectrum [9, 53, 54], i.e.

F Single Field(k1, k2, k3)|k3≪k1,k2 = (1− ns) +O
(

k3
k1

)2

. (3.1)

Let us go to comoving gauge (2.11) to demonstrate this. We are interested in comput-

ing 〈Rh(~k1)Rh(~k2)Rs(~k3)〉′, where the subscript h(s) means the associated momentum is

hard(soft). We define position space coordinates ~xi to be conjugate to momentum ~ki. In

the limit k3 ≪ k1, k2 we are interested in an “Operator Product Expansion (OPE)” regime,

|~x1−~x2| ≪ |~x1−~x3|. Consider just the leading tree-level structure of the associated diagram

in figure 2, and first focus on just the boxed subdiagram. We see that for this subdiagram

the soft line is just a slowly-varying background field in which we are computing a hard

2-point correlator. Thus,

〈Rh(x1)Rh(x2)Rs(x3)〉 ≈ 〈〈Rh(x1)Rh(x2)〉Rs(
x1+x2

2
)
Rs(x3)〉. (3.2)

The effect of the soft mode Rs is just to do the transform ~x → (1 +Rs)~x of (2.11) within

the leading 2-point function of (2.16):

〈Rh(x1)Rh(x2)〉Rs ∼
1

(|x1 − x2|(1 +Rs))
ns−1 ≈ 1

(|x1 − x2|)ns−1 (1− ns)Rs

(

x1 + x2
2

)

.

(3.3)

To get the middle expression, we have taken Rs to be approximately constant over distances

of order |~x1 − ~x2|, a good approximation since k3 → 0. The last expression follows by

expanding in (small) Rs, evaluated at the midpoint ( ~x1 + ~x2)/2. We have also dropped a

Rs-independent piece since that goes away when we consider the three point function.

Thus the three point function becomes,

〈Rh(x1)Rh(x2)Rs(x3)〉 ≈ 〈〈Rh(x1)Rh(x2)〉Rs(
x1+x2

2
)
Rs(x3)〉

≈ (1− ns)
1

(|x1 − x2|)ns−1

1

(|x1 − x3|)ns−1 . (3.4)
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Fourier transforming to momentum space,

〈Rh(~k1)Rh(~k2)Rs(~k3)〉′ ∼ (1− ns)
1

k4−ns

1

1

k4−ns

3

∼ (1− ns)〈Rh(~k1)Rh(−~k1)〉′〈Rs(~k3)Rs(−~k3)〉′, (3.5)

leading to (3.1). Subleading corrections proportional to
(

k3
k1

)

are absent by rotational

invariance, so the leading corrections are order
(

k3
k1

)2
.

The importance of the above expression lies in the fact that in the squeezed limit any

value of F Single Field bigger than O(1− ns) will signal the presence of new physics beyond

single-field inflationary dynamics. In particular, next we comment on what can happen

to the squeezed limit if we have multiple light (m ≪ H) fields (“multifield inflation”) or

m ∼ H fields (“quasi single field inflation” [16]) during inflation.

3.2 NG from multifield inflation in the squeezed limit

If we have light fields with m ≪ H, other than the inflaton, then during inflation those

fields can lead to larger NG in the squeezed limit than (3.1), see [55] and references therein.

This can be understood again via similar in-in diagrammatics to figure 2. In this case it is

again true that we have to evaluate the hard two point function in the background of some

soft mode, and correlate the result with a R soft mode. However, since Rs is no longer the

only soft mode in the theory,

〈Rh(x1)Rh(x2)〉soft mode 6= 〈Rh(x1)Rh(x2)〉Rs . (3.6)

Thus the derivation in the previous subsection does not go through. Consequently

FMulti Field in the squeezed limit is no longer constrained to be order (1 − ns), but rather

it becomes model dependent.

3.3 NG from Hubble-scale masses in the squeezed limit

The situation changes quite a lot if we have particles with m ∼ H. Such particles can

modify the bispectrum in a way that in the squeezed limit F contains a non-analytic part,

F nonanalytic ∝ f(µ)

(

k3
k1

)
3
2
+iµ

+ f(−µ)

(

k3
k1

)
3
2
−iµ

, (3.7)

where, µ =
√

m2

H2 − 9
4 and f(µ) is a calculable function of the mass of the particle, which is

of the order 1 when µ ∼ 1 but is “Boltzmann suppressed” ∼ e−πµ for large µ. We have a

proportionality sign in (3.7) because there are model dependent prefactors which can take

either large or small values, thus from (3.7) itself we can not get a complete estimate of

NG. We will spell out the model dependent prefactors later.

The crucial aspect of (3.7) is that F now contains a non-analytic dependence on
(

k3
k1

)

along with other analytic terms. Importantly this non-analytic behavior can not be

captured by any single or multifield inflation models where all the masses are much smaller

than H.
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Figure 3. From left to right: (a) Single Exchange Diagram, (b) Double Exchange Diagram,

(c) Triple Exchange Diagram. Note that all these diagrams rely on mixing between the inflaton

fluctuation and massive scalar in the (implicit) non-trivial background of rolling φ0(t).

Figure 4. From left to right: (a) “OPE” approximation of three point function in squeezed limit

as a two point function. The φ0 background causing mixing is not explicitly shown, as in figure 3.

(b) The same “OPE” approximation expressed an inflaton-h three point function with one inflaton

leg set to zero momentum to now explicitly represent the background φ0.

This dependence also encodes the information about the mass of the Hubble scale

particle, via the exponent µ, [16–21]. If the massive particle has a nonzero spin(s), then

F non-analytic has an additional factor dependent on Legendre polynomials, Ps(cos θ), where

k̂1 · k̂3 = cos θ. If we can measure this angular dependence precisely enough then we can

get the information about spin as well [21, 24]. Furthermore, such angular dependence

is absent in purely single-field and some of the multifield inflation models. This can in

principle help us in distinguishing the “signal” of m ∼ H particles from the “background”

of m ≪ H particles.

We see as we go to the region, m ≪ H, the leading behavior reverts to being analytic

≈
(

k3
k1

)3/2−3/2
, and indistinguishable from purely single-field or multi-field inflation. This

means it is observationally challenging to reach the region m ≪ H and still distinguish and

measure m accurately. Also, at the other extreme, for m ≫ H cosmological production is

strongly Boltzmann suppressed, so observation will again be difficult. Therefore we are led

to a window around H for doing spectroscopy of masses and spins.

Let us briefly explain the form of (3.7), first concentrating on just the soft k3-

dependence. In presence of new particles with m ∼ H there are additional contributions

to the bispectrum beyond those in figure 2. At tree level we can have three diagrammatic

forms, as shown in figure 3. These are called single, double and triple exchange diagram

based on the number of massive propagators [24]. In the squeezed limit, we are once again

interested in calculating 〈Rh(~k1)Rh(~k2)Rs(~k3)〉′ i.e. correlation of two hard modes with a

soft mode. In position space, this again corresponds to an “OPE” limit, |x12| ≪ |x13|, where
the hard subdiagram is given by an effective local vertex, depicted in figure 4 by the round

black blob. The strength of this effective vertex is then given by the hard two-point function

in the background of the massive but k3-soft field, which is predominantly k3-independent.

Tracking only the k3-dependence is then given by the two-point correlator shown in figure 4.
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The leading k3 dependence can be worked out by the scaling properties of the fields

involved, which can be read off from their classical late time asymptotics. For a general

scalar field,

χ(η, ~x)|η→0 = (−η)∆1O1(~x) + (−η)∆2O2(~x), (3.8)

where, ∆1,2 =
3
2 ± i

√

m2

H2 − 9
4 . This means, O1(2)(~x) can be thought of as an operator with

scale dimension ∆1(2). So we will denote O1(2) ≡ O∆1(2)
.

As η → 0, dS isometry generators in 4D acts as generators of the conformal group in 3D

space. However, the leading effect of the inflationary background is to break this conformal

invariance of late-time correlators, but only weakly for slow roll. Using the simple scaling

symmetry subgroup of the 3D conformal invariance, we find3,4

〈O∆(~x2)Rs(~x3)〉inf ∝ |x23|−∆. (3.9)

However, it is well known that 2-point correlators of differing scale dimension vanish if con-

formal invariance is exact, therefore the implicit proportionality “constant” is suppressed

by slow-roll parameters here. Fourier transforming and writing ∆ = 3
2 ± iµ, we see F

should have the factor k
3
2
±iµ

3 . We can now put back the k1 dependence, which again by

the above scale invariance can only enter into the expression for F as shown in (3.7).

4 Gauge-Higgs theory and cosmological collider physics

4.1 The central plot and its connections to the literature

Having commented on NG and the squeezed limit in general, we focus on what kind of

signature a gauge theory coupled to the inflaton will have on NG. In particular we study

signatures of Higgs scalars and gauge bosons. Non-trivial spin of heavy particles in the

context of slow-roll inflation was first considered in ref. [21], primarily for even spin. In

ref. [24] both even and odd spin were considered. In both [21] and [24] no assumptions were

made on the origins of the heavy masses. Here, we will impose the stringent constraints

following from assuming that the heavy masses arise via the Higgs mechanism of weakly-

coupled gauge field theory, in particular for spins 0 and 1. In particular, the relevant

non-linear terms coupling the gauge-Higgs sector and the inflaton will be more suppressed

by requiring gauge invariance than would be the case for massive fields unconnected to a

Higgs mechanism.

For example, consider the interaction of a pair of massive spin-1 particles, Zµ, with a

pair of inflaton fields. Without considering a gauge theoretic origin for Z, a low dimension

interaction respecting (approximate) inflaton shift symmetry has the form,

1

Λ2
(∂φ)2ZµZµ, (4.1)

3There can be subleading slow-roll ∼ (1− ns) corrections to the exponent which are neglected here.
4Note that 4D dimensionful parameters, such as the Planck scale, do not break this 3D conformal or

scale invariance.
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where Λ is of order the cutoff of EFT. However, if Zµ is a Higgsed gauge boson, the

analogous interaction must arise from

1

Λ4
(∂φ)2|DH|2. (4.2)

Crucially the interaction between Zµ and inflaton has to happen in the presence of the Higgs

field H since we are assuming inflaton to be a gauge singlet. Assuming the gauge theory

is spontaneously broken, we see that the gauge theory interaction has a suppression of the

order m2
Z/Λ

2 compared to the non-gauge theoretic case.5 This argument can be generalized

to all the gauge boson interaction terms that we consider below. This also makes a general

point that it can be harder to see NG due to gauge sector particles compared to non-gauge

theoretic states. This is especially true for spin-1 particles as we saw above.

In [27, 28] the signature of gauge theory was considered, focusing on unbroken elec-

troweak symmetry during the inflationary phase as well as the scenario of Higgs inflation

(in which the inflaton is identified with the physical Higgs field). In a general gauge theory

with unbroken gauge symmetry, the gauge bosons will be massless up to (small) loop correc-

tions [56, 57]. Non-trivial spectroscopy must then proceed via gauge-charged matter, which

can only appear in loops by charge conservation and the singlet nature of the inflaton. Such

loops are difficult (but depending on specific models, may not be impossible6) to observe

for several reasons. First, at one loop [21], F loop ∼ f̃(µ)
(

k3
k1

)3+2iµ
+ g̃(µ)

(

k3
k1

)3−2iµ
+ · · · ,

so the fall-off is faster compared to (3.7) as one goes to smaller k3. Second, for heavier

masses the Boltzmann suppression goes as e−2πµ because there is now a pair of massive

particles involved. Thirdly, we will obviously have the loop factor (∼ 1
16π2 ) suppression.

This gives us motivation to look for bigger tree level effects which will be present if

gauge symmetry is broken spontaneously during inflation. In [27, 28] such a scenario was

mentioned although the primary focus was on Higgs-inflation-like scenarios in which the

Higgs VEV is very large compared to H and consequently the massive gauge bosons are too

heavy to be seen via NG due to Boltzmann suppression. The situation is much better if one

keeps the gauge theory and inflaton sectors distinct, with gauge symmetry spontaneously

broken and Higgs VEV not too much larger thanH. This is the case we focus on, and we will

see that such scenarios can give rise to observable NG for both spin-0 and spin-1 particles.

Since the Hubble scale during inflation can be very high (H . 5× 1013GeV), inflation

and the study of NG provides an exciting arena to hunt for new particles. In this regard

two distinct possibilities arise. We discuss them next.

5The non-gauge theoretic case can be viewed as the limit of the gauge case where mZ ∼ Λ. For example,

a QCD ρ meson or a spin-one superstring excitation cannot be housed in point-particle EFT, except in the

marginal sense where the effective cutoff is Λ ∼ mZ , where the constraints of gauge invariance disappear.
6For example one can imagine working in an effective theory of inflation with its cutoff Λ & H, however

if we have a cutoff very close to Hubble then the gauge theory spectrum is no longer separated from the

states coming from some UV completion of the field theory, and measurements of NG cannot be translated

robustly into information about the gauge theory alone. Such a scenario, of course, is still interesting, but

we do not focus on that in this paper.
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4.2 High energy physics at the Hubble scale

We could imagine a scenario in which there exists some new spontaneously broken gauge

theory at H. Then some of the gauge-charged matter and gauge-fields may become singlets

under the residual unbroken gauge symmetry. Bosons of this type, spin-0 and spin-1, can

therefore have Hubble scale masses, couple to the inflaton, and leave their signatures on

NG at tree-level. For simplicity here, we focus on spontaneously broken U(1) gauge theory

with no residual gauge symmetry, but is straightforward to generalize to the nonabelian

case. For example, we can imagine a scalar in the fundamental representation of SU(N)

breaking the symmetry to SU(N − 1). Then the gauge boson associated with the broken

diagonal generator plays the role of the massive U(1) gauge boson that we consider now.

Let us focus on the case of single-field slow-roll inflation. We write an effective theory

with cutoff Λ. Since we are interested in effects of gauge theory on NG, we will write down

higher derivative interaction terms between the gauge sector and inflaton. But we will not

be explicit about higher derivative terms containing gauge sector fields alone or the inflaton

alone, although we will ensure that such terms are within EFT control.

The lagrangian containing the inflaton φ (with an assumed shift symmetry), the Higgs

(H) and gauge bosons (not necessarily the SM Higgs and gauge bosons) has the form

L =
1

2
M2

plR+ LGauge Theory −
1

2
(∂φ)2 − V (φ) + Linf

int + Linf-gauge
int , (4.3)

where LGauge Theory contains all the terms (including higher derivative terms) containing

gauge theory fields alone. V (φ) is a generic slow roll potential. Linf
int contains higher

derivative terms containing inflaton alone. For our purpose the interesting interaction

terms between gauge theory and the inflaton are contained in Linf-gauge
int , which we write

below assuming an UV cutoff ∼ Λ and a set of dimensionless EFT coefficients ci,

Linf-gauge
int =

c1
Λ
∂µφ(H†DµH) +

c2
Λ2

(∂φ)2H†H+
c3
Λ4

(∂φ)2|DH|2 + c4
Λ4

(∂φ)2Z2
µν

+
c5
Λ5

(∂φ)2∂µφ(H†DµH) + · · · . (4.4)

In Linf
int, the first term gives a quadratic mixing between Higgs and Z0. It also couples Higgs,

Z and the inflaton. But it does not contain any quadratic mixing between the inflaton and

Z; and also none between the inflaton and Higgs. But we do see, from figure 3, that we need

one or more quadratic mixings between the inflaton and the massive particle of interest.

Such quadratic mixing does arise from the second and the fifth term, which give quadratic

mixing of the inflaton with Higgs and Z respectively. The third term gives, among other

interactions, the interaction between an inflaton and a pair of Zs. We have not written

operators coming from the expansion in
(

H†H
Λ2

)

since these will be subdominant to the

terms we have already considered.
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To unpack (4.4) we can go to the unitary gauge for U(1) gauge theory and write down

some of the relevant terms,

Linf-gauge
int = ρ1,ZZ

0h+ ρ1,hhḣ+
ρ1,Z
2v

Z0h2 +
ρ1,Z

φ̇0

∂µξZ
µh

+ αH†H− ρ2ξ̇h+
ρ2v

4φ̇0

(∂ξ)2 − ρ2
2v

ξ̇h2 +
ρ2

2φ̇0

(∂ξ)2h

− c3φ̇0

Λ4
ξ̇
(

(∂h)2 +m2ZµZµ

)

− 2c4φ̇0

Λ4
ξ̇Z2

µν

+ ρ5,Z ξ̇Z
0

(

1 +
2h

v

)

+
ρ5,Z

φ̇0

ξ̇∂µξZ
µ − ρ5,Z

2φ̇0

(∂ξ)2Z0

+ ρ5,hξ̇ḣ

(

h

v
+ 1

)

− ρ5,h

φ̇0

ξ̇∂µξ∂µh− ρ5,h

2φ̇0

(∂ξ)2ḣ , (4.5)

where we have expanded the Higgs field in unitary gauge H =
(

0 (h+v)√
2

)T
and the inflaton

field φ = φ0 + ξ. The inflationary background gives a correction to the Higgs quadratic

term via the parameter α = − c2φ̇2
0

Λ2 . We also have several quadratic mixing parameters, ρi,

ρ1,Z = − Im(c1)φ̇0mZ

Λ
; ρ1,h = −Re(c1)φ̇0

2Λ
; ρ2 =

2c2φ̇0v

Λ2
;

ρ5,Z =
Im(c5)φ̇

2
0mZv

Λ5
; ρ5,h =

Re(c5)φ̇
2
0v

Λ5
. (4.6)

4.3 Heavy-lifting of gauge-Higgs theory

Until now, we have been discussing theories with Higgs physics intrinsically of order H.

Now although a future detection of m ∼ H particles via NG will be very interesting in its

own right, given that H may well be orders of magnitude beyond the energies of foreseeable

particle colliders, we would not have valuable complementary access to this physics in the

lab. But as discussed in the introduction, the alternative is the “heavy-lifted” scenario,

in which m ∼ H during inflation and again yields observable NG, and yet m ≪ H in the

current post-inflationary era and therefore conceivably is accessible to collider and other

“low-energy” probes.

Given a gauge theory at low energy, we can consider adding a non-minimal coupling

of the Higgs to gravity, cRH†H to the lagrangian (4.3), where we will consider c of order

one. This gives a Higgs effective potential of the form,

Veff(H) = λh|H|4 − µ2
h|H|2 − cRH†H, (4.7)

While the curvature is negligible in the current era, during inflation we have R ≈ 12H2,

so that for c > 0, the symmetry breaking scale setting gauge-Higgs physical masses is

naturally of order H. We can also see how this “heavy-lifting” mechanism appears in

Einstein frame in which the inflaton and Higgs potential get modified to

(V (φ) + V (H)) → (V (φ) + V (H))/Ω4 ≈ V (φ)

(

1− 4cH†H
M2

pl

)

+ V (H), (4.8)
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where Ω2 = 1 + 2cH†H
M2

pl
is the Weyl scaling factor used to get to Einstein frame and we

have kept the leading correction in cH†H/M2
pl.

7 For NG, the discussion in the previous

subsection then carries over from this point.

As we elaborated in the introduction, one interesting fact about the heavy-lifting mech-

anism is that it is testable. This requires a knowledge of the couplings of the gauge theory

sector in the current era, where they may be accessible at collider energies, and a mea-

surement of H during inflation, as for example via the primordial tensor power spectrum.

We can then use the renormalization group to run those couplings up to H, and thereby

predict the mass ratios of spin-0 and spin-1 h and Z type particles (bosons charged under

the full gauge symmetry which are singlets of the unbroken gauge symmetry) as they were

in the inflationary epoch when they contributed to NG. Here the richer the set of h and Z

type particles, and hence the larger the set of mass ratios, the less precision we would need

to measure each ratio in NG in order to be convinced that we are seeing the same gauge

theory in both regimes.

5 NG in single field slow roll inflation

We saw in the previous section that the leading interaction between inflaton and gauge

theory is captured by (4.4) and (4.5). These can be used to estimate the magnitudes

of NG induced by h and Z. However, the parameters appearing in those two lagrangians

have to satisfy several consistency requirements. We first discuss such restrictions and then

proceed with the estimation of NG. Our discussion in this section will be in the context of

slow roll inflation.

5.1 Cutoff and coupling strengths of effective theory

We start with the restriction on Λ, which we saw in the previous section sets the most

optimistic suppression scale for higher-dimensional interactions relevant to NG. We imagine

that Λ roughly represents the mass scale of heavy particles that have been integrated out

to give the effective non-renormalizable couplings we need between the gauge sector and

inflaton. We can therefore think of them as Λ-mass “mediators” of the requisite effective

interactions. But in general, if such mediators couple substantively to both the inflaton and

to the gauge sector, they will also mediate inflaton (non-renormalizable) self-interactions,

roughly powers of
(

(∂φ)2

Λ4

)

. In order for the effective expansion in these powers to be

controlled, we should require Λ to exceed the inflationary kinetic energy [23],

Λ >

√

φ̇0. (5.1)

7There may in addition be direct Higgs-inflaton couplings even before the Weyl-rescaling to Einstein

frame, in which case the Einstein frame couplings may be modified from that above. However, even this

modification would have to share similar features, namely that during inflation the Higgs mass parameter

is effectively raised to the H2-scale and in the current post-inflationary era the Higgs mass parameter is

much smaller in order to fit the current electroweak data. Therefore, we will not pursue this more general

modified lagrangian, for simplicity.
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In our ensuing discussion of single-field inflation, we will take this bound to hold. We will

assume an approximate inflaton shift symmetry during inflation, allowing the Λ4 to be only

as big as the slowly-rolling kinetic energy rather than a larger scale.

The potential energy of the inflaton field V (φ) gives rise to an even higher energy scale

V
1
4 , which is bigger than

√

φ̇0. Approximate shift symmetry during inflation keeps this

scale from spoiling the EFT expansion in higher-dimension operators, but after inflation

this symmetry may be significantly broken and the higher scale can then affect dynamics

significantly. In particular, EFT with Λ < V
1
4 can break down at reheating, signaling that

the Λ-scale mediators can be reheated and subsequently decay. However, the NG produced

and described by the controlled effective theory during inflation are already locked in on

superhorizon scales and are insensitive to the subsequent post-inflationary breakdown of

the EFT.

Furthermore, in theories involving large “vacuum” expectation values,

non-renormalizable operators in the UV theory can become super-renormalizable

(or marginal) in the IR, once some fields are set to their expectation values. There is

then the danger of such effective super-renormalizable couplings becoming strong in the

IR, and outside perturbative control, or becoming effective mass terms which are too

large phenomenologically and have to be fine-tuned to be smaller. This general concern

is realized in the present context, because of the large classical expectation given by

φ̇0(t) ≫ H2, as well as large 〈H〉 > H within some of the interesting parameter space. We

find that these issues are avoided for sufficiently small ci in (4.4) with,

ci ∼ O
(

H/

√

φ̇0

)

, (5.2)

which we take to hold from now on. We go into more detail on such restrictions in the

next subsection.

To concretely illustrate the above considerations, consider the following set up. We

imagine a theory, with a cutoff Λ′ & V
1
4 >

√

φ̇0, in which the inflaton and Higgs do not

interact directly. Thus a term like 1
Λ′2 (∂φ)

2H†H is absent in the lagrangian. However, we

assume the presence of a “mediator” gauge-singlet particle σ with mass mσ ∼
√

φ̇0, which

talks to both the inflaton and Higgs separately via the terms,

1

Λ′ (∂φ)
2σ + µσσH†H. (5.3)

Then below mσ, we can integrate σ out to write an effective coupling between the inflaton

and Higgs,
µσ

Λ′m2
σ

(∂φ)2H†H ≡ c2
Λ2

(∂φ)2H†H. (5.4)

Now in the previous paragraphs we have stated that the choice of Λ &

√

φ̇0 and

ci ∼ O
(

H/

√

φ̇0

)

will lead to a controlled effective theory expansion. These parame-

ters are reproduced naturally if we take, µσ ∼ H; Λ′ ∼ V
1
4 ∼ ǫ−1/4

√

φ̇0;mσ ∼
√

φ̇0 in
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the theory containing the mediator. In the above we have take ǫ . 10−2 consistent with

current bounds [2]. Note that we also induce the (∂φ)4 operator, but with strength ǫ1/2/φ̇2
0,

so that the inflaton derivative expansion is controlled within the effective theory with σ

integrated out.

This shows as a proof-of-principle how Λ can represent the mass scale of heavy particles

which are integrated out in the inflation-era effective theory, consistent with the even

higher mass scale V 1/4 driving the accelerated expansion. It is possible that reheating

later accesses this higher mass scale and produces σ particles, but these rapidly decay and

do not affect the NG signals derived in the effective theory with σ integrated out.

5.2 Visibility of a Higgs scalar

Let us start with (4.4) to discuss in detail the coupling between the inflaton and a Higgs

scalar, h. As we briefly mentioned in the previous section, the first term of (4.4) does not

give rise to any quadratic mixing between the inflaton and h. This can seen by going to

the unitary gauge for Higgs and using the equation of motion for the inflaton. So we move

on to the second term of (4.4),
c2
Λ2

(∂φ)2H†H. (5.5)

To be more precise, we have separated the strength of the interaction into a dimensionless

coupling c2, and the physical cutoff Λ. One can think of c2 as being typical of the di-

mensionless strength of couplings between the gauge-Higgs sector and the inflaton sector.

Quantum loops are taken to be cutoff at Λ.

The coupling (5.5) gives rise to several terms,

αH†H− ρ2v

2
ξ̇ − ρ22

8α
(∂ξ)2 − ρ2ξ̇h

+
α

φ̇0

ξ̇h2 +
ρ2

2φ̇0

(∂ξ)2h

− α

2φ̇2
0

(∂ξ)2h2, (5.6)

where,

ρ2 =
2c2vφ̇0

Λ2
; α = −c2φ̇

2
0

Λ2
. (5.7)

In (5.6) we have put in several terms that we dropped previously in (4.5) for brevity. Also

looking at (4.5) we see that we have dropped terms involving ρ5 which are subleading

compared to terms involving ρ2. Coming back to the first line of (5.6), we see that we

have a quadratic mixing (denoted by ρ2) between the inflaton and h. We also have a term

contributing to classical Higgs potential given by the parameter α. Writing the scalar

potential as

V (H) = −µ2
hH†H+ λh(H†,H)4 (5.8)

we see ∆µ2
h = −α, so α should be thought of as a tuning parameter, which we ideally

do not want to be much bigger than H2 in order to avoid fine-tuning. Now we are in a

position to summarize the different restrictions on the parameters.
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Classical restrictions. We have several restrictions on the parameters ρ2 and α,

• We have a tadpole for ξ̇, but as long as we have ρ2v ≪ φ̇0 it does not give dangerously

large kinetic energy into the effective theory.

• To have perturbative control, we should require ρ2 < H.

• To not have large modification to inflaton kinetic term we should have
ρ22
4α ≪ 1.

• Also to have a controlled effective theory we should have v . Λ.

Quantum corrections.

• From the quartic interaction between Higgs and inflaton we have,

∆m2
h ∼ 1

16π2
c2Λ

2 < m2
h. (5.9)

• From the same quartic interaction we have,

∆λh ∼ 1

16π2
c22 < λh. (5.10)

The inequalities above just impose the constraint of quantum stability, or absence of loop-

level fine tuning.

Estimates for NG. A scalar particle can give rise to a nontrivial squeezed limit via

three possible diagrams at tree level, as shown in figure 3. We can estimate the parametric

strength of the associated NG quickly for each of the three diagrams using (5.6):

F single
h ∼ ρ22; F double

h ∼ ρ22α; F triple
h ∼ ρ32λhvφ̇0 ∼ ρ22α, (5.11)

where the right-hand sides are further modulated by functions of kinematic shape as

sketched in (3.7), and detailed later in section 7. We have used the subscript h to de-

note that we are estimating NG due to h. Importantly, when we do not have any classical

tuning of the Higgs mass i.e. α . H2, all the diagrams give a similar contribution.

Specific parameter choice. To have a feeling for all the above constraints and estimates

we now focus on a benchmark parameter choice: c2 = H√
φ̇0

, λh = H2

2φ̇0
,Λ = 3

√

φ̇0, that we

use later in section 7. Such a choice gives depending on mh, F ∼ O(0.1), which should be

observable. One can also check with this choice that all the above constraints are satisfied

with no fine-tuning of parameters.

5.3 Visibility of a massive gauge boson

Let us start with lagrangian (4.4) again to get a coupling between the inflaton and a massive

gauge boson Z. To organize the couplings, it is useful to look for the essential quadratic

mixing between the inflaton and the timelike/longitudinal component of Z first.
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Quadratic mixing. There is no such mixing when we consider terms up to dimension

four. At dimension five, we get the term c1
Λ ∂µφH†DµH from (4.4). This term gives a

coupling between h, the inflaton and Z. But after using the equation of motion for Z, we

do not get the desired quadratic mixing. However, this term does give a mixing between

h and Z0, where the superscript 0 refers to the time component, not the charge of the Z

(which is always taken to be neutral for our purposes, as discussed earlier),

c1
Λ
∂µφH†DµH ⊃ ρ1,ZhZ

0, (5.12)

with, ρ1,Z = − Im(c1)φ̇0mZ

Λ . To look for quadratic mixing between the inflaton and Z we

have to go to yet higher order terms. The leading operators come at dimension nine due

to shift symmetry of the inflaton couplings,

c5
Λ5

(∂φ)2∂µφH†DµH. (5.13)

This term gives a quadratic mixing both between h and Z0 and also between the inflaton

and Z0. The former is subleading compared to what we already have from the dimension

five operator. So focusing on the latter, we have

ρ5,Z ξ̇Z
0, (5.14)

where, ρ5,Z =
c5,I φ̇

2
0mZv
Λ5 ∼ ρ1,Z

vφ̇0

Λ4 . In the last relation we have taken the EFT coefficients

to be ∼ H√
φ̇0

.

Cubic interactions. For brevity we will not write down all possible terms after expand-

ing the lagrangian in unitary gauge. Rather we will focus on the terms that contribute

to diagrams in figure 3. Focusing on cubic interactions between just the inflaton and Z

we do not get any contribution from the dimension five term, c1
Λ ∂µφH†DµH. The leading

operators then comes in at dimension eight,

c3
Λ4

(∂φ)2|DH|2 ⊃ −c3m
2
Z φ̇0

Λ4
ξ̇Z2

µ + · · · , (5.15)

and
c4
Λ4

(∂φ)2Z2
µν ⊃ −2c4φ̇0

Λ4
ξ̇Z2

µν + · · · . (5.16)

We also have another possible cubic interaction coming from the same dimension nine

operator we considered above,

c5
Λ5

(∂φ)2∂µφH†DµH ⊃ −ρ5,Z

2φ̇0

(∂ξ)2Z0 +
ρ5,Z

φ̇0

ξ̇∂µξZ
µ + · · · . (5.17)

Lastly we also have another dimension nine operator,

c6
Λ5

∂µφH†DµH|DH|2 ⊃ ρ5,Zm
2
Z

4φ̇0

Z0ZµZµ + · · · , (5.18)

where, in the last relation we have taken c6 ∼ c5 just for simplicity.
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To summarize we collect the essential terms in the Lagrangian,

ρ1,ZhZ
0 + ρ5,Z ξ̇Z

0 − c3m
2
Z φ̇0

Λ4
ξ̇Z2

µ − 2c4φ̇0

Λ4
ξ̇Z2

µν −
ρ5,Z

2φ̇0

(∂ξ)2Z0 +
ρ5,Z

φ̇0

ξ̇∂µξZ
µ

+
ρ5,Zm

2
Z

4φ̇0

Z0ZµZµ + · · · , (5.19)

with, ρ5,Z =
c5,I φ̇

2
0mZv
Λ5 ∼ ρ1,Z

vφ̇0

Λ4 .

Estimates of NG. Just like the case of scalars, we give the estimates for the three

diagrams in figure 3 (assuming ci ∼ H√
φ̇0

):

F single
Z ∼

(

ρ1,Zvφ̇0

Λ4

)2

; F double
Z ∼ F single

Z × ρ1,Z φ̇0

Λ3
; F triple

Z ∼
(

F single
Z

)3/2
× ρ1,Z

vφ̇0

Λ4
.

(5.20)

We note for perturbativity, ρ1,Z < H2. Since Λ >

√

φ̇0 and v < Λ, the single exchange

diagram is expected to dominate over the other two. But even the single exchange diagram

itself is too small to be observable. This is because it involves two suppressions, firstly due

to the factor of ρ21,Z . Secondly, there is a suppression,
(

vφ̇0H
Λ4

)2
where v,

√

φ̇0<Λ. Even

assuming ρ1,Z . H2 and v,

√

φ̇0 . Λ we have, F single
Z . H2

φ̇0
. 10−3, likely unobserv-

ably small. However, we will see in the next subsection that there is a loop-hole in this

pessimistic conclusion.

5.4 Gauge theory with a heavy Higgs scalar

In the above analysis we have seen that the couplings between just the inflaton and Z are

too small to give any observable NG. However there can be bigger effects for the Z if the

Higgs scalar h becomes somewhat heavier than the Hubble scale, so that we can integrate

it out. As an example, the inflaton can mix with the Z via a virtual h exchange to have a

quadratic mixing of the form,
ρ1,Zρ2
m2

h

ξ̇Z0. Similarly there can be a cubic interaction between

the inflaton and Z of the form,
ρ2m2

Z

vm2
h

ξ̇Z2
µ, and a similar term involving Z field strength,

which we do not write down for brevity. To summarize, we have the following interactions

below the mass of h,

ρ1,Zρ2
m2

h

ξ̇Z0 +
ρ1,Zρ2

m2
hφ̇0

ξ̇∂µξZ
µ +

ρ2m
2
Z

vm2
h

ξ̇Z2
µ + · · · . (5.21)

Estimates of NG. Taking ρ1,Z , ρ2 . 1 in Hubble units, we get the following estimates

for NG,

F single
Z .

1

m4
h

; F double
Z .

φ̇0

vm6
h

. (5.22)

The triple exchange diagram, however, comes out to be smaller than the single exchange

diagram. In this case it can be estimated as, F triple
Z ∼ φ̇0H4

m6
h

× H3

vm2
h

.
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Coming to the single and double exchange, as a benchmark choice of parameters which

we use in section 8, we take mh = 3H; v =

√

φ̇0; Λ = 3

√

φ̇0; Imc1 = 6H/

√

φ̇0; and

c2 = 9
2H/

√

φ̇0. Then we have, F single
Z ∼ O(0.01) and F double

Z ∼ O(0.1) depending on mh.

This scenario can thus lead to a very weak but probably observable NG due to Z. The

“price” we pay is that the Higgs scalar h which mediates the Z-inflaton interaction, with

mh = 3H, will itself be too Boltzmann suppressed to observe in NG. Of course this does

not preclude having observable h-like NG from other lighter Higgs scalars in multi-scalar

Higgs theories. For the above parameter choice there is no classical or quantum tuning.

In conclusion, we see that in single-field slow-roll inflation, we can get small but ob-

servable NG.

6 NG in the Effective Goldstone description of inflationary dynamics

The suppression of NG in single-field slow-roll inflation is due to the fact that the effective

cutoff Λ is constrained to be at least as large as the inflaton kinetic energy scale,

√

φ̇0 ≫ H,

in order to perturbatively control the derivative expansion of the inflaton. However, it

is possible that the dynamics takes some other form than standard single-field slow-roll

inflation, and the cutoff of effective field theory, Λ, may then be lower, yielding stronger NG.

We now turn to a more “agnostic” approach to the inflationary dynamics so as to explore

this possibility. An elegant and powerful approach at this level is provided by the Effective

Goldstone description [45]. It is based on the central requirement that the hot big bang has

to emerge from the inflationary phase. In a relativistic theory this means that there must

be a physical local “clock” field during inflation which dictates when inflation ends at each

point in space. Such a clock field chooses a physical time coordinate during inflation and

breaks the time diffeomorphism of dS spontaneously. The inflaton can then be thought of

as the Goldstone boson associated with this spontaneous breaking. In this way, successful

classical inflation is treated as a “black-box” input, providing a background process in

which the gauge-Higgs dynamics coupled to quantum inflaton fluctuations play out.

We first review the construction of the EFT of this Goldstone field in the absence of

the Gauge-Higgs sector. Then we extend this construction to couple the Goldstone field

to a Gauge-Higgs sector and estimate the magnitude of NG due to h and Z particles.

6.1 Minimal Goldstone inflationary dynamics

6.1.1 Leading terms in the effective theory and power spectrum

We start by writing in the effective lagrangian all the terms that are consistent with the

unbroken 3D spatial diffeomorphisms on a fixed time slice. Such terms include 4D scalars

and also any 3D diffeomorphism invariants made out of the following variables:

t, g00, g0µVµ,Kµν ,

where, Vµ is any vector and Kµν is the extrinsic curvature of the time slice. The above set of

terms are allowed because they behave as scalars under spatial diffeomorphisms. This time
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slicing can be thought of as analogous to the unitary gauge of a spontaneously broken gauge

theory in which the Goldstone boson is absent because it is “eaten up” by the gauge field

i.e. the metric on the time slice. To restore the Goldstone boson, we do a transformation

along the broken generator, which in the present context is a time translation,

t → t+ π(x), (6.1)

and promote π(x) to the quantum field denoting the Goldstone boson i.e the inflaton.

Under such a time translation we record the transformation rules of the various terms

mentioned above,

b(t) → b(t+ π(x)) = b(t) + ˙b(t)π(x) + · · ·

g00 → ∂(t+ π)

∂xµ
∂(t+ π)

∂xν
gµν

g0µVµ → ∂(t+ π)

∂xν
gνµVµ.

(6.2)

The appearance of π(x) in the specific combination t+π(x) implies that we can restore

4D diffeomorphism by letting, π(x) → π(x)−ξ(t, ~x) under a time translation t → t+ξ(t, ~x)

so that the combination t + π(x) behaves as a scalar. In the above we have not written

the transformation of the extrinsic curvature terms, because as we will show below, we will

be interested in a regime where one can ignore terms involving extrinsic curvature. Let us

now use the above strategy for restoring 4D diffeomorphism invariance to get the effective

lagrangian for π(x).

We will expand around a background quasi-dS metric,

ds2 = −dt2 + e2H(t)d~x2. (6.3)

The leading effective lagrangian for small fluctuations around this metric and up to two-

derivative order (neglecting extrinsic curvature as noted above) is then given by

S =

∫

d4x
√−g

(

1

2
M2

plR− b(t)(g00 + 1)− Λ(t)

)

. (6.4)

The associated Einstein equations then look like

H2 =
1

3M2
pl

(Λ(t) + 2b(t)) ,

Ḣ +H2 =
1

3M2
pl

(Λ(t)− b(t)) .

(6.5)

The above two equations fix the time-dependent couplings, Λ(t) and b(t), which when

substituted back gives,

S =

∫

d4x
√−g

(

1

2
M2

plR+M2
plḢg00 − (3M2

plH
2 +M2

plḢ)

)

. (6.6)

We can restore the Goldstone field in the above action by doing the time translation

t → t+ π under which,

g00 → ∂(t+ π)

∂xµ
∂(t+ π)

∂xν
gµν = (1 + π̇)2g00 + 2(1 + π̇)∂iπg

0i + (∂iπ)(∂jπ)g
ij . (6.7)
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The above transformation contains mixing of metric perturbations with the inflaton π(x),

but as we will justify soon, we can neglect such mixings. In that approximation, the

transformation of δg00 ≡ g00 + 1 and g0µVµ simplifies,

δg00 → −2π̇ + (∂π)2 ,

g0µVµ → −(1 + π̇)V0 + a−2∂iπVi .
(6.8)

Using this, and working to leading order in ǫ ≪ 1, the action (6.6) reduces to8

S =

∫

d4x
√−g

(

1

2
M2

plR+M2
plḢ(∂π)2 − 3M2

plH
2

)

. (6.9)

This yields a quadratic action for the Goldstone boson.

To canonically normalize the Goldstone boson, we can define the field πc(x),

πc(x) =
√
2Mpl(−Ḣ)

1
2π ≡ f2

ππ, (6.10)

where fπ itself is approximately constant in time as ǫ, η ≪ 1. This definition of fπ general-

izes the “decay constant” of chiral lagrangians for Goldstone bosons of internal symmetries.

In single-field inflation it is simply given by f4
π = φ̇2

0 = 2ǫH2M2
pl = −2ḢM2

pl, but here we

are not assuming single-field inflationary dynamics, and indeed our effective lagrangian

makes no explicit reference to φ. The last term in the Goldstone action (6.9) act as the

dominant energy density during inflation,

ρ = 3M2
plH

2, (6.11)

which is the familiar relation.

Before calculating physical quantities we have to relate π(x) to the gauge invariant

quantity R. This can be done by first noticing that in the absence of π(x), i.e. in the

unitary gauge, the spatial metric is the same as (2.11),

hij = a2(t) ((1 + 2R)δij + γij) . (6.12)

To introduce π(x) we again do the transformation t → t+ π. To relate π to R we demand

that in presence of π the spatial metric should not contain any 3D-scalar metric fluctuations,

so that it should be given by

hij = a2(t) (δij + γij) . (6.13)

This gives the leading order relation,

R = −π. (6.14)

Using (6.9), (6.10) and (6.14) we can calculate the inflaton power spectrum,

〈πc(~k)πc(−~k)〉′ =
1

2k3
⇒ 〈R(~k)R(−~k)〉′ = 1

2f4
πk

3
, (6.15)

8The term linear in π̇ cancels with a similar term coming from the expansion H(t+π) after an integration

by parts. We have also dropped a few subleading terms coming from the expansion M2
plḢ(t + π) and

M2
plH

2(t+ π).
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which matches the single-field slow-roll calculation (2.14),9 but now more agnostically with

regard to the inflationary dynamics.

Before moving on to inflaton interaction terms, we pause to justify why we have ignored

terms involving extrinsic curvature and mixing of the inflaton with metric perturbations.

The transformation of Kµν can be obtained by writing it down in terms of the induced

metric hµν on the time slice, and the normal vector nµ to the surface [58],

Kµν =
1

2

(

nσ∇σhµν + hµσ∇νn
σ + hσν∇µn

σ
)

. (6.16)

We note that being a type of curvature, Kµν always has an extra derivative acting on the

metric component. This means compared to terms like δg00, scalars like (δKµν)
2 or (δKµ

µ )2

will have an extra E2

Λ2 suppression10 where Λ is the cutoff of the effective theory presumed to

suppress these higher-derivative terms. Since E ∼ H and we will be considering situations

with Λ & 10H, we can ignore contributions coming from extrinsic curvature.

We now turn to the mixing of the inflaton with metric fluctuations. From the trans-

formation of g00 we get a term of the form, h00π̇ along with π̇2. However from Einstein

eqs. [9], h00 ∼ √
ǫ H
Mpl

, which means the mixing term is suppressed compared to π̇2 by a

factor of ǫ. Since we are interested in the regime, E ∼ H and ǫ ≪ 1, we can drop such

mixing terms, which simplifies the transformation laws as advertised earlier,

δg00 → −2π̇ + (∂π)2 ,

g0µVµ → +(1 + π̇)V 0 + ∂iπV
i .

(6.17)

6.1.2 Higher order terms

Let us now move on to discuss higher order corrections to the quadratic-in-π lagrangian

discussed above. Ignoring terms involving extrinsic curvature, we have terms of the form

M4
n(δg

00)n where Mn’s are some mass scales. In particular we have for n = 2,

M4
2 (δg

00)2 ⊃ 4M4
2 π̇

2 + · · · . (6.18)

This term modifies the kinetic term for the inflaton. However such modifications are small

whenM4
2 . f4

π which we will take to be the case.11 Then we can simplify the transformation

of δg00 even further by noting that (∂π)2 ∼
(

∂πc

f2
π

)2
∼ H4

f4
π
≪ π̇ ∼ π̇c

f2
π
∼ H2

f2
π
, where we have

used (6.10) and the fact that πc ∼ H. Thus we can write,

δg00 → −2π̇c
f2
π

. (6.19)

9This is assuming that subsequent terms in the EFT do not contribute significantly to the quadratic

lagrangian for the inflaton. If that is not the case, then the power spectrum depends on a combination of

the scales fπ and cs, the speed of propagation for the inflaton fluctuation.
10Kµ

µ is suppressed only by E
Λ
, however a term involving Kµ

µ can be reduced to a term containing g00,

and thus gives no new information [45].
11It can happen that M4

2 ≫ f4
π in which limit the inflaton fluctuations propagate with a speed cs ≪ 1.

While we will restrict to cases with cs ≈ 1, our analysis can be easily extended to include cs ≪ 1.
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Since δg00 is dimensionless, a power counting rule in the EFT is not manifest. However

this can be fixed by defining the dimension 2 operator δg00c which transforms as,

δg00c ≡ −1

2
f2
πδg

00 → π̇c. (6.20)

We will take a power-counting rule that higher-dimensional operators in terms of πc are

suppressed by powers of Λ, with order one coefficients. Let us illustrate this power counting

rule by the example of the dimension six operator arising from M4
3 (δg

00)3. By our power

counting rule we expect this term to go as

M4
3 (δg

00)3 ∼ d̄1
Λ2

(δg00c )3 → d̄1
Λ2

π̇3
c , (6.21)

where d̄1 is an O(1) EFT coefficient. At higher orders we have an expansion like

d̄2
(δg00c )4

Λ4
+ d̄3

(δg00c )5

Λ6
+ · · · . (6.22)

Importantly, non-observation of NG in Planck data puts a bound on the cutoff Λ of

the EFT. For example, the dimension-6 operator d̄1
Λ2 π̇

3
c that we discussed above induces an

inflaton three-point function of the form,

F π̇3
(k1, k2, k3) = −2d̄1

f2
π

Λ2

(

k31k
3
3

k1k2k3(k1 + k2 + k3)3

)

, (6.23)

from which we can calculate f π̇3

NL = −5d̄1
243

f2
π

Λ2 (as defined in (2.19)). From the Planck

bound [3] f equil
NL = −4 ± 43 we get the mild constraint Λ > H, where we have assumed

d̄1 ∼ 1.12

6.2 Incorporating gauge-Higgs theory into the Goldstone Effective description

We now couple the EFT to a gauge-Higgs theory and focus on inflaton-h and inflaton-Z

couplings in turns, and discuss the estimates of NG.

6.2.1 Visibility of a Higgs scalar

When we include the Gauge-Higgs theory in the EFT we encounter a new dimension-3

operator that we can write down on the fixed time slice,

λ1H†D0H. (6.24)

After introducing π(x) this gives rise to

H†D0H → H†D0H+
1

f2
π

∂µπcH†DµH. (6.25)

The first term on the r.h.s. gives, apart from some tadpoles which are safe in the sense

discussed in subsection 5.2, a modification to the Higgs quadratic term h2, a quadratic

12Of course the Planck analysis did not use exactly the shape of NG in (6.23). However, the equilateral

template [59] they did use is “close” enough to (6.23), as measured by the standard “cosine” parameter [60].
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mixing between h and Z0 and a cubic interaction between h and Z0. The second term also

gives a cubic interaction between inflaton, h and Z0. However, it does not couple inflaton

to h alone, as can be seen by using the equation of motion for the inflaton.

Thus we consider next the marginal (in terms of the canonical inflaton field as in (6.20))

operator λ2δg
00
c H†H, which upon introducing π(x) gives

λ2δg
00
c H†H → 1

2
λ2π̇c(v

2 + 2hv + h2). (6.26)

For v ∼ H and λ2 < 1, the inflaton tadpole above is safe again in the same sense as

discussed in subsection 5.2.

At subsequent orders we have,

d1
Λ
δg00c H†D0H → −Re(d1)v

2Λ
π̇cḣ− Re(d1)

2Λ
π̇chḣ+

Re(d1)v

2Λf2
π

π̇c∂µπc∂
µh+ · · · ,

d2
Λ2

(δg00c )2H†H → d2v
2

2Λ2
π̇2
c +

d2v

Λ2
π̇2
ch+ · · · ,

d3
Λ2

δg00c |DH|2 → d3
2Λ2

π̇c(∂h)
2 + · · · .

(6.27)

In the following, just for technical simplicity, we will use a set of benchmark values

such that the inflaton-h quadratic mixing is predominantly given by λ2 instead of Re(d1).

Then, the leading operators for Higgs-inflaton interactions have the form,

λ2vπ̇ch+
1

2
λ2π̇ch

2 +
d2v

Λ2
π̇2
ch+ · · · . (6.28)

Estimates of NG. As before we can get quick estimates for NG given by the three

diagrams shown in figure 3 (assuming d2 ∼ 1):

F single
h ∼ λ2v

2f2
π

Λ2
; F double

h ∼ λ3
2v

2f2
π ; F triple

h ∼ λhvλ
3
2v

3f2
π ∼ λ3

2v
2f2

π . (6.29)

We see for a sample choice of parameters, λ2 . 1, Λ . 10H and v ∼ H, we can easily achieve

a promising Fh ∼ O(1). Furthermore, with the above choices loop corrections are small.

6.2.2 Visibility of a massive gauge boson

For Z we do not have any relevant or marginal pure inflaton-Z interaction. Inflaton-Z

interactions coming from the term H†D0H after restoring π(x) vanish by equations of

motion. So the leading inflaton-Z coupling is given by

d1
Λ
δg00c H†D0H → − Im(d1)mZv

2Λ
π̇cZ

0 − Im(d1)mZv

2Λf2
π

π̇c∂µπcZ
µ · · · , (6.30)

which gives a quadratic mixing between inflaton and Z. At dimension 6 we have the

operators,
d3
Λ2

δg00c |DH|2 → d3m
2
Z

2Λ2
π̇cZ

2
µ + · · · ,

d4
Λ2

δg00c Z2
µν → d4

Λ2
π̇cZ

2
µν + · · · ,

(6.31)

where Zµν is the Z field strength.
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We can summarize the inflaton-Z interaction as

− Im(d1)mZv

2Λ
π̇cZ

0 − Im(d1)mZv

2Λf2
π

π̇c∂µπcZ
µ +

d3m
2
Z

2Λ2
π̇cZ

2
µ +

d4
Λ2

π̇cZ
2
µν + · · · . (6.32)

Estimates of NG. The estimates for the single and the double exchange diagram in

figure 3 are

F single
Z ∼ v2

Λ2
; F double

Z ∼ v2f2
π

Λ4
. (6.33)

We see for the choice Λ ∼ 10H, v ∼ H, the double exchange contribution dominates over

the single exchange and can give FZ ∼ O(0.1). For Λ ∼ 5H, v ∼ H, FZ ∼ O(1). As with

the case of single field slow roll, the triple exchange diagram comes out to be smaller than

the single exchange diagram. It can be estimated as, F triple
Z ∼ v3

Λ3
f2
π

Λ3 .

To summarize, we have demonstrated a controlled EFT with Λ ∼ 5–10H can give

rise to observable NG due to h and Z particles. Also, this scenario does not suffer from

large destabilizing quantum corrections. In the context of slow roll inflation we saw that

to see NG due to Z we had to consider a considerably heavier associated physical Higgs h,

which is itself too Boltzmann-suppressed to see in NG. However in the context of the more

general Goldstone description this is not necessary. That is, in the Goldstone description

it is possible to see NG for both a Z and its associated h, while in single-field inflation the

associated h would be too Boltzmann-suppressed to be visible. This therefore allows us to

more thoroughly verify the heavy-lifting mechanism for a greater part of the gauge-Higgs

spectrum.

7 Detailed form of NG mediated by h

In the previous sections we have given only crude estimates for NG due to h and Z. In

this section, we derive the detailed expressions for F (k1, k2, k3) (2.18). We will consider

the case of single-field slow-roll inflation as well as the more general effective Goldstone

description of inflation.

We begin by first considering the general Goldstone description of inflation. Then, the

Higgs-inflaton couplings from the previous section are (taking EFT coefficient d2 = 1)

λ2vπ̇ch+
1

2
λ2π̇ch

2 +
vπ̇2

ch

Λ2
, (7.1)

which gives rise to single, double and triple exchange diagrams as shown in figure 3. A

similar single exchange diagram and an identical triple exchange diagram have been calcu-

lated in [21] and [16] respectively. Thus here we focus on calculating the double exchange

diagram using the mixed propagator formalism developed in [61]. We also modify the

existing calculation of the single exchange diagram for our particular case.

In the squeezed limit, F (k1, k2, k3) is only a function of k3
k1

and has the form

F = f(µ)

(

k3
k1

)
3
2
+iµ

+ f(µ)∗
(

k3
k1

)
3
2
−iµ

. (7.2)

Now we give the detailed expressions for f(µ) for different diagrams, leaving the details of

the calculation for appendix B.
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mass |f single
h |

1.6 H 1.453

1.9 H 0.420

2.2 H 0.183

Table 1. NG mediated by h via single exchange diagram in effective Goldstone description.

m=1.6H

m=1.9H

m=2.2H
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Figure 5. Dimensionless three-point function F single
h (2.18) for different masses in Goldstone

Effective description (B.18) with λ2 = 0.2;λh = 0.5; Λ = 8H.

7.1 Single exchange diagram

As derived in appendix B in (B.18),

F single
h =−1

8
×λ2

(

vfπ
Λ

)2

(7.3)

×
(

Γ

(

1

2
+iµ

)2

Γ(−2iµ)

(

1

2
+iµ

)(

3

2
+iµ

)

(1+isinh(πµ))

(

k3
k1

)
3
2
+iµ

+(µ→−µ)

)

.

The strength of the NG can be characterized by recasting the above equation as (7.2)

and evaluating the quantity 5
18 |f(µ)| to conform with (2.19). We denote the resulting

strength by |f single
h | and it is sampled in table 1 for various masses for the benchmark

values, λ2 = 0.2;λh = 0.5; Λ = 8H.

Of course, for m ≫ H, the NG become Boltzmann suppressed and unobservable.

We see that we can generically have |f single
h | ∼ 0.1−1, which can be accessible. Coming

to the shape of NG, as we have mentioned before, k3
k1

dependence of Fh encodes the mass

information of h, and to verify the heavy-lifting mechanism it is crucial to determine the

mass with reasonable precision. In [62] such an analysis was done in the context of 21-cm

cosmology. From their estimates, we see for |f single
h | > 0.1 we should be able to determine

the mass at 10 percent level or better. We illustrate our results in figures 5 and 6.
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m=1.6H

m=1.9H

m=2.2H
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Figure 6. Shape sensitivity of F single
h to mh. We have chosen three plausible sets of parameters for

which F single
h agree at the fiducial ratio k1

k3

= 5. This illustrates our ability to discriminate among

different masses.

mass |f single
h |

1.6 H 0.047

1.9 H 0.008

2.2 H 0.003

Table 2. NG mediated by h via single exchange diagram in single-field slow-roll inflation.

In the special case of single-field slow-roll inflation, the lagrangian reads from la-

grangian (5.6),

− ρ2ξ̇h+
α

φ̇0

ξ̇h2 +
ρ2

2φ̇0

(∂ξ)2h . (7.4)

From the above by similar methods we find from (B.17),

F single
h =−1

4
×ρ22 (7.5)

(

Γ

(

1

2
+iµ

)2

Γ(−2iµ)

(

3

2
+iµ

)(

5

2
+iµ

)

(1+isinh(πµ))

(

k3
k1

)
3
2
+iµ

+(µ→−µ)

)

.

where, ρ2 = 2c2vφ̇0

Λ2 . Now, we can again evaluate |f single
h | for some benchmark values,

c2 =
H√
φ̇0

, λh = H2

2φ̇0
,Λ = 3

√

φ̇0 and the results are shown in table 2.

The above parameter choice implies classical Higgs mass tuning at the 25 percent

level, and there are no large quantum corrections. For the function F single
h we illustrate our

results in figures 7 and 8.
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m=1.6H
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Figure 7. Dimensionless three-point function F single
h (2.18) for different masses in Single-field

Slow-roll description (B.17) with c2 = H√
φ̇0

, λh = H2

2φ̇0

,Λ = 3

√

φ̇0.
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Figure 8. Shape sensitivity of F single
h to mh. We have chosen three plausible sets of parameters for

which F single
h agree at the fiducial ratio k1

k3

= 5. This illustrates our ability to discriminate among

different masses.

7.2 Double exchange diagram

As derived in appendix B in (B.31),

F double
h =λ2(λ2vfπ)

2 iπ
2

32
(A(µ)s(µ)−A∗(−µ)s∗(−µ))

(

k3
k1

)3/2( k3
2k1

)iµ

+(µ→−µ) (7.6)

where, A(µ) and s(µ) are mass dependent coefficients: A(µ) = −2
√

2/πsech(πµ)Γ(−iµ)

sin(π4 + iπµ
2 ); and s(µ) can be represented by the integral, s(µ) =

∫∞
0

dx
x2 e

−ixJ+(x)x
3/2+iµ

where, J+(x) is a somewhat complicated function given in (B.23). We exemplify the

strength of NG in table 3 for the benchmark values, λ2 = 0.2;λh = 0.5. We illustrate the

momentum dependence of F double
h in figure 9 and 10. In the special case of single-field
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mass |fdouble
h |

1.6 H 4.972

1.9 H 0.647

2.2 H 0.171

Table 3. NG mediated by h via double exchange diagram in effective Goldstone description.

m=1.6H

m=1.9H

m=2.2H
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Figure 9. Dimensionless three-point function F double
h (2.18) for different masses in Goldstone

Effective description (B.31) with λ2 = 0.2;λh = 0.5.
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Figure 10. Shape sensitivity of F double
h to mh. We have chosen three plausible sets of parameters

for which F double
h agree at the fiducial ratio k1

k3

= 5. This illustrates our ability to discriminate

among different masses.
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mass |fdouble
h |

1.6 H 0.117

1.9 H 0.015

2.2 H 0.003

Table 4. NG mediated by h via double exchange diagram in single-field slow-roll inflation.

mass |f triple
h |

1.6 H 10.1

1.9 H 0.772

2.2 H 0.148

Table 5. NG mediated by h via triple exchange diagram in effective Goldstone description.

slow-roll inflation, using lagrangian (5.6), F double
h takes an identical form to (B.31) except

the coupling constants are now different (B.29),

F double
h = αρ22

iπ2

16
(A(µ)s(µ)−A∗(−µ)s∗(−µ))

(

k3
k1

)3/2( k3
2k1

)iµ

+ (µ → −µ) . (7.7)

The strength of the NG then, for the same set of benchmark values, c2 =
H√
φ̇0

, λh =
H2

2φ̇0
,

Λ = 3

√

φ̇0, is shown in table 4. The shape dependence is identical to figures 9 and 10, so

not shown explicitly.

7.3 Triple exchange diagram

The triple exchange diagram has been calculated in [61], but we include it here for com-

pleteness and comparison to the other diagrams. As derived in appendix B in (B.35),

F triple
h =

π3λ3
2v

3f2
πλhv

128
(+i) (A(µ)t(µ)−A∗(−µ)t∗(−µ))

(

k3
k1

)
3
2
(

k3
2k1

)iµ

+ (µ → −µ)

(7.8)

where, A(µ) is the same coefficient as introduced above and t(µ) =
∫∞
0

dx
x4J+(x)

2x
3
2
+iµ.

We exemplify the strength of NG below for the benchmark values, λ2 = 0.2 and λh = 0.5

in table 5. We illustrate the momentum dependence of F triple
h in figure 11 and 12. In

the special case of single-field slow-roll inflation, using lagrangian (5.6), F triple
h takes an

identical form except the coupling constants are now different (B.34),

F triple
h =

π3ρ32φ̇0λhv

128
(+i) (A(µ)t(µ)−A∗(−µ)t∗(−µ))

(

k3
k1

)
3
2
(

k3
2k1

)iµ

+ (µ → −µ) . (7.9)

The strength of the NG then, for the same set of benchmark values, c2 = H√
φ̇0

, λh = H2

2φ̇0
,

Λ = 3

√

φ̇0, is shown in table 6. The shape dependence is identical to figures 11 and 12, so

not shown explicitly.
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Figure 11. Dimensionless three-point function F triple
h (2.18) for different masses in Goldstone

Effective description (B.35) with λ2 = 0.2;λh = 0.5.
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Figure 12. Shape sensitivity of F triple
h to mh. We have chosen three plausible sets of parameters

for which F triple
h agree at the fiducial ratio k1

k3

= 5. This illustrates our ability to discriminate among

different masses.

mass |f triple
h |

1.6 H 0.239

1.9 H 0.018

2.2 H 0.003

Table 6. NG mediated by h via triple exchange diagram in single-field slow-roll inflation.
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mass |f single
Z |

0.4 H 0.003

0.8 H 0.001

Table 7. NG mediated by Z via single exchange diagram in effective Goldstone description.

8 Detailed form of NG mediated by Z

To discuss the form of F for NG mediated by Z, we again first focus on the Goldstone ef-

fective description as before, and specialize to the single-field slow-roll description following

that. Since the triple exchange diagram is too small to make any observable contribution

we will restrict ourselves to single and double exchange diagrams.

The Goldstone effective lagrangian needed for this case is given by (6.32) which we

rewrite,

− Im(d1)mZv

2Λ
π̇cZ

0 − Im(d1)mZv

2Λf2
π

π̇c∂µπcZ
µ +

d3m
2
Z

2Λ2
π̇cZ

2
µ +

d4
Λ2

π̇cZ
2
µν + · · · . (8.1)

In this case in the squeezed limit, F (k1, k2, k3) is a function of k3
k1

and also the angle between

k̂3 and k̂1,

F =

(

f(µ)

(

k3
k1

)
5
2
+iµ

+ f(µ)∗
(

k3
k1

)
5
2
−iµ
)

sin2 θ (8.2)

where, θ = k̂3 · k̂1. We also see that F falls faster with k3
k1
. The angle dependence, in

principle, gives an important handle to determine the spin-1 nature of Z. Recently in [25]

it was analyzed to what extent future galaxy surveys can constrain mass and spin. A

forecast using 21-cm cosmology would also be important and possibly more constraining.

Now we give the expressions for f(µ) for the single exchange diagram, leaving the

details for the appendix D. The computation of double exchange diagram will not be

performed in this paper, however using the mixed propagator formalism [61] it can be

done. Here, we will only give some reasonable estimates.

8.1 Single exchange diagram

As derived in appendix D in (D.6),

F single
Z =

( v

2Λ

)2 1

16π
sin2 θΓ

(

3

2
+iµ

)

Γ

(

3

2
−iµ

)

cosh(πµ) (8.3)

×
(

(7−5iµ+16µ2+4iµ3)Γ

(

3

2
+iµ

)2

Γ(−2−2iµ)(1−isinh(πµ))

(

k3
k1

)
5
2
+iµ

+(µ→−µ)

)

,

where, θ = k̂3 · k̂1. We illustrate the strength of NG, for the parameter choices,

v = 3H; Λ = 8H in table 7. We see the strengths are quite weak, hence 21-cm cosmol-

ogy is critical if we are to see NG due to the single exchange diagram. Note that even

an imprecise measurement should be readily distinguishable from scalar-mediated NG and
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NG purely due to the inflationary dynamics (analytic in k3
k1
), due to the non-trivial angular

dependence.

We now discuss single-field slow-roll inflation. The relevant lagrangian for a non-

negligible Z-mediated signal arises when the associated Higgs scalar h is heavy enough

that its on-shell propagation is Boltzmann suppressed, but can be integrated out to yield

new Z vertices, as in (5.21). It has an identical structure to the Goldstone lagrangian (8.1)

above, as shown in D. Hence F can be obtained just by the replacement,

vmZ

2Λ
→ ρ1,Zρ2

m2
h

. (8.4)

We see for ρ1,Z = 1, ρ2 = 1,mh = 3H we have roughly the same strength of NG as the

effective Goldstone theory. However, we get parametrically bigger NG in both effective

theories from the double exchange diagram in figure 3, which we now discuss.

8.2 Double exchange diagram

As we mentioned above, in this paper we will give only an estimate of the double exchange

diagram. As we have explained in section 3, in the squeezed limit diagrams factorize into

contributions from hard and soft processes. This means in figure 3(b), the Z propagator

having hard momenta k2 is expected to be a function of O(1) (in Hubble units). In that

approximation the diagram then has the same topology as the single exchange diagram.

However, as can be seen from the lagrangian (8.1), the parametric strength of the diagram

goes like
( v

2Λ

)2
× f2

π

Λ2
, (8.5)

which has the enhancement by f2
π

Λ2 . Thus, while we saw that the single-exchange contri-

bution was at best marginally detectable in the future, the double-exchange contribution

should be much more promising in magnitude for Λ ∼ 5–10H, v ∼ 2−3H, with fZ ∼ 0.1–1.

We leave a precise calculation of this for later work, to hopefully confirm this expectation.

Moving to the case of single-field slow-roll inflation, from (5.21) arising from integrating

out the associated heavy h, we see that the double-exchange diagram is parametrically

enhanced over single-exchange by a factor of Hφ̇0

vm2
h

, so that fZ ∼ 0.01 for v ∼
√

φ̇0;mh ∼ 3H.

This should yield a weak but detectable signal.

9 Concluding remarks and future directions

Cosmological Collider Physics builds on the distinctive non-analytic momentum depen-

dence of primordial NG mediated by particles with masses m ∼ H, in contrast to the

analytic dependence of NG due purely to the inflationary dynamics, driven by fields with

m ≪ H. In this paper, we focused on the question of whether gauge-theories with such

ultra-high ∼ H mass scales could be detected by this means, since such theories are obvi-

ously very highly motivated. If the gauge symmetry is unbroken during inflation, gauge-

charged states can only affect primordial NG via very small loop-level effects, difficult to

observe. However, we showed that when the gauge-symmetry is (partially) Higgsed, the
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Goldstone EFT Goldstone EFT Slow-roll Models

F with Λ ∼ 5H with Λ ∼ 10H with Λ ∼ 60H

h 1–10 0.1–1 0.01–0.1

Z 0.1–1 0.01–0.1 0.001–0.01

Table 8. Summary of strength of NG mediated by h and Z.

Higgs-type spin-0 and Z-type spin-1 bosons can contribute at tree level to potentially ob-

servable NG. The simplest effective vertices one can write connecting the gauge-Higgs states

to the inflaton so as to mediate NG are non-renormalizable, suppressed at least by powers

of the cutoff of the inflationary EFT, Λ, representing the threshold of even heavier physics

that has been integrated out. The largest NG will then come by considering the lowest

consistent Λ. We studied these NG within two effective descriptions of the inflationary

dynamics: a) generic slow-roll inflation models, and b) the effective Goldstone description

of inflaton quantum fluctuations. In slow-roll, the minimal cutoff Λ is given by the scale of

kinetic energy of the rolling inflaton field,

√

φ̇0 ∼ 60H. The effective Goldstone description

is more agnostic about inflationary dynamics, treating this as a given classical background

process, in which case Λ can be as low as a few H. Of course, the detailed strengths of

NG, F , that we get in the two cases are model-parameter dependent, but we can briefly

summarize the results in sections 7 and 8 in table 8. The dimensionless bispectrum F

(see (2.17), (2.18)) given above is the maximum value taken in the squeezed regime. Based

on the above table, several remarks are in order. While the above choices for EFT cutoffs

lead to an observable strength of NG, we cannot make the cutoffs much bigger, since the

NG falls rapidly as a function of squeezing and the observable precision is limited by cosmic

variance, δF ∼ 10−4–10−3, (1.3). The scale of Higgsing, v, is also relevant to our theoreti-

cal control. Higgsing obviously relaxes the tight constraints of gauge invariance, allowing

tree-level NG. But there are non-trivial constraints of the gauge structure following from

having to expand observables in powers of v/Λ. In the UV limit v ∼ Λ, the constraints of

gauge-invariance disappear altogether. To stay in theoretic control, we have chosen v
Λ . 1

3

in our studies.

We have used effective non-renormalizable vertices for this paper, but it is obviously of

great interest and importance to seek a more UV-complete level of theoretical description

to have greater confidence in the opportunity to detect gauge theory states in NG. We

see that the strength of NG is bigger when it is mediated by h’s compared to mediation

by Z’s. Furthermore, if cosmological collider physics turns out to be in a purely gauge-

theoretic domain, then we would not see any states with spin > 1, and their associated

angular dependences. Spin > 2 mediated NG would signal a breakdown of point-particle

field theories, perhaps signaling the onset of string theoretic structure. On the other hand,

observing spins 0, 1 only, with stronger spin-0 signals, would give strong evidence for the

structure studied above. While the (NM)SM gives only one h and one Z, extensions of it

(for example, even just some colored scalars) or whole new gauge sectors are capable of

giving multiple h/Z-type states to observe.
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We have argued that a strong possibility for mgauge−theory ∼ H is that they arise

via a “heavy-lifting” mechanism from much lower-scale gauge theories in the current era.

If these gauge theories are already seen at lower-scale terrestrial experiments, then the

renormalization group allows us to predict expected mass ratios in NG. In principle, such

corroboration would provide spectacular evidence for the large range of validity of such

gauge theories, and the absence of intervening (coupled) states. However, we cannot hope

to get a very precise measurement of such mass ratios, given cosmic variance. But if we are

ever in the position to predict even a few such ratios, modestly precise measurements in

NG would still be compelling. Alternatively, of course, we may discover wholly unexpected

gauge-structure within the NG, at least dimly seen.

There are multiple future directions which remain to pursue. There is obviously the

need for an explicit calculation of the double-exchange diagram involving Z-type particles

which would provide a check for our estimates. Cosmological correlations derived from

inflationary expansion are famously nearly spatially scale-invariant. But in large regimes

of slow-roll inflation or in the Goldstone description, the correlators are actually nearly

spatially conformally invariant, that is they are close to the isometries of dS spacetime.

In this paper, we have assumed this regime of inflationary dynamics. But it is possible

to relax this assumption of approximate conformal invariance, and just keep approximate

scale invariance, for example allowing a small speed of inflaton fluctuations, cs ≪ 1, which

can give rise to larger NG [45, 63, 64], even allowing us to probe loop effects of charged

states. This remains to be explored. There is also the generic question of how efficiently

we can use NG templates to look for simultaneous presence of spin-0 and spin-1 particles,

with a “background” of inflationary NG as well as late-time effects. Recent preliminary

studies in these directions appear in [25, 62] which suggest that some of the stronger signals

we describe above would be visible with reasonable precision.

We can view the heavy-lifting mechanism as leveraging un-naturalness, by noting

that the low-dimension Higgs mass term of elementary Higgs fields is very “unstable”

to curvature-related corrections. In that sense, confirming heavy-lifting of an unnatural

gauge-Higgs theory, such as the (NM)SM, would be a strong sign that naturalness is mas-

sively violated in Nature. Of course, the validity of naturalness is one of the burning

debates and concerns within fundamental physics. But it is also possible that terrestrial

experiments show us a natural theory, such as a supersymmetric gauge theory. One can

then consider the possibility of heavy-lifting of such a natural theory. Depending on the

nature of supersymmetry-breaking it is possible that the lifted gauge theory exhibits a dif-

ferent pattern of supersymmetry soft breaking and associated Higgsing than the unlifted

theory in the current era. We leave an investigation of supersymmetric gauge-Higgs theory

for the future.

We have seen that invaluable information on the gauge-theoretic structure of the laws

of nature can be imprinted on cosmological NG, but we have also seen that these signals

are extremely weak given cosmic variance. To have any chance of seeing and deciphering

such exciting physics will require pushing experimental precision and understanding of

systematic uncertainties to the their limits. Heavy-lifting indeed!
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A Scalar fields in dS space

The metric for the Poincare patch of dS spacetime in Hubble units can be written as

ds2 =
−dη2 + d~x2

η2
. (A.1)

A.1 Massive fields

We want to get the mode functions for a quantum field in dS. This can be obtained by first

solving the classical equation of motion and then by canonically quantizing the theory. Let

us start by writing the equation of motion,

∂µ(
√−ggµν∂νφ) =

√−gm2φ (A.2)

⇒ ∂2
ηφ− 2

η
∂ηφ− ∂2

i φ+
m2

η2
φ = 0. (A.3)

This can be solved in terms of Hankel (or equivalently, Bessel) functions. After Fourier

transforming to ~k-space, we can write a general classical solution as,

φ(η,~k) = c1(−η)
3
2H

(1)
iµ (−kη) + c2(−η)

3
2H

(2)
iµ (−kη), (A.4)

where, µ =
√

m2

H2 − 9
4 .

As usual, to canonically quantize the theory, we elevate the coefficients c1, c2 to linear

combinations of creation and destruction operators, a†~k
, a~k, on the Bunch-Davies vacuum.

The quantum field thereby has the form,

φ(η,~k) = fk(η)a
†
~k
+ f̄k(η)a−~k

, (A.5)

where the mode functions, fk(η) and f̄k(η) (or equivalently, the linear combinations referred

to above), are determined as follows. We first find the conjugate momentum π = ∂L
∂ηφ

and

demand, [π(η, ~x), φ(η, ~y)] = iδ3(~x − ~y) and [a~k, a
†
~k′
] = (2π)3δ3(~k − ~k′). This gives the

Wronskian condition on the mode functions at η → −∞,

f̄k(η)f
′
k(η)− f̄ ′

k(η)fk(η) = iη2. (A.6)

To impose the Bunch Davies vacuum we demand fk(η) ∝ eikη, and using the Wronskian

condition (A.6) we can also fix the normalization of fk(η) up to a phase. In summary,

we demand

lim
η→−∞

fk(η) = (−η)

√

1

2k
eikη. (A.7)
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This can be satisfied by choosing

fk(η) = (+ie−iπ/4)

√
π

2
eπµ/2(−η)

3
2H

(2)
iµ (−kη), (A.8)

and

f̄k(η) = (−ieiπ/4)

√
π

2
e−πµ/2(−η)

3
2H

(1)
iµ (−kη). (A.9)

Here, we have introduced some phase factors which are just conventions, which drop out

when we calculate propagators.

We note that in (2.2) we have both time and anti-time ordered expressions appearing.

Since a propagator involves two mode functions, we can have a total of four types of prop-

agators depending on the mode functions coming from either the time or anti-time ordered

part. We denote time(anti-time) ordering by a +(−) sign. As an example, a propagator

G+−(k, η, η′) means the mode function with argument η(η′) is coming from time(anti-time)

ordering. Similarly, G++(k, η, η
′) means both the mode functions are coming from time

ordering. Thus we can write

G++(k, η, η
′) = f̄k(η

′)fk(η)θ(η
′ − η) + f̄k(η)fk(η

′)θ(η − η′) ,

G+−(k, η, η
′) = f̄k(η

′)fk(η) ,

G−+(k, η, η
′) = f̄k(η)fk(η

′) ,

G−−(k, η, η
′) = f̄k(η

′)fk(η)θ(η − η′) + f̄k(η)fk(η
′)θ(η′ − η) .

(A.10)

Among these four, G+−, G++ are conjugates of G−+, G−− respectively, and so we only

have two independent propagators.

A.2 Inflaton mode functions

Mode functions for massless fields, in particular the inflaton, follow by using µ = 3i/2

in (A.8) and (A.9), which gives

fk(η) =
(1− ikη)eikη√

2k3
,

f̄k(η) =
(1 + ikη)e−ikη

√
2k3

.

(A.11)

A.3 Some useful relations for diagrammatic calculations

For later use we also note a few relations involving Hankel and hypergeometric functions

that arise upon evaluating the Feynman diagrams for the NG correlators of interest. We

can write the following integral involving Hankel functions in terms of a hypergeometric
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function (valid for real µ and ν ≡ iµ < 1
2),

eπµ/2
∫ ∞

0
dxxne−ipxH

(2)
iµ (x) (A.12)

=
(−i/2)n√
2Γ(n+3/2)

√

2/πΓ(n+1+iµ)Γ(n+1−iµ)2F1(n+1+iµ,n+1−iµ,n+3/2,(1−p)/2),

e−πµ/2

∫ ∞

0
dxxne+ipxH

(1)
iµ (x) (A.13)

=
(+i/2)n√
2Γ(n+3/2)

√

2/πΓ(n+1−iµ)Γ(n+1+iµ)2F1(n+1−iµ,n+1+iµ,n+3/2,(1−p)/2).

It is useful later to approximate these expressions for large p by using limiting forms of

Hankel and hypergeometric functions,

eπµ/2H
(2)
iµ (z) =

i

π

(

Γ(iµ)(z/2)−iµeπµ/2 + Γ(−iµ)(z/2)+iµe−πµ/2
)

, (A.14)

e−πµ/2H
(1)
iµ (z) = − i

π

(

Γ(−iµ)(z/2)+iµeπµ/2 + Γ(+iµ)(z/2)−iµe−πµ/2
)

. (A.15)

We also need large negative argument expansion of hypergeometric function,

2F1(a, b, c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a +

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b. (A.16)

B NG due to h exchange

B.1 Calculation of single exchange diagram

We will use the in-in formula (2.2) to calculate NG due to the single exchange diagram

which is depicted in figure 3(a). We begin by reviewing this calculation in the context of

single-field slow-roll inflation, as originally performed in [21]. The relevant terms in the

lagrangian (5.6) for such a diagram are

L ⊃ −ρ2ξ̇h+
ρ2

2φ̇0

(∂ξ)2h+ · · · . (B.1)

Note in (2.2) we have both time and anti-time ordering. Thus each vertex can contribute

either from time or anti-time ordering. So an in-in diagram with n vertices gives rise to

2n subdiagrams. These subdiagrams differ in the type of propagators used for the massive

particle and inflatons. For example if both the vertices are coming from time ordering, we

should use G++ for the massive propagator as defined in (A.10). We call the subdiagram

containing G++ to be I++. Thus for the single exchange diagram we have four subdiagrams

which we denote by I++, I+−, I−+, I−− depending on which kind of massive propagator has

been used. However, to compute the entire three point function due to single exchange

diagram, we have to consider only two subdiagrams, since the other two are related by

complex conjugation. For example, we will calculate only I−− and I+− which are related

to I++ and I−+ respectively by complex conjugation. We sum all four contributions to
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get the final answer. To clarify the above comments, we write the expressions for four

subdiagrams schematically,

I±± ∝ (±i)(±i)

∫

dη

η4

∫

dη′

η′4
g±(k3; η

′)g̃±(k1, k2; η)G±±(k3; η, η
′). (B.2)

The prefactors ∓i arise depending on whether we use e−i
∫
Hdt for time ordering or e+i

∫
Hdt

for anti-time ordering. g±, g̃± are inflaton bulk-boundary propagators (which we define

below); and G±± are bulk-bulk propagators (A.10) for h.

B.1.1 Calculation of I+−

Let us start with I+− diagram. This diagram factorizes into a product of two integrals

with one coming from time ordering and another from anti time ordering.

Anti-time ordered contribution. We first calculate inflaton contribution using infla-

ton mode function (A.11),

g−(k; η) ≡ 〈ξ̇(η,~k)ξ(η0 → 0,−~k)〉 = −η2k2

2k3
e−ikη, (B.3)

to write the anti time ordered contribution as

Anti-time Ordered Contribution = (+i)

∫ 0

−∞

dη′

η′4

(

−η′2k23
2k33

e−ik3η′
)

f̄k3(η
′). (B.4)

Using the mode functions (A.9) and relation (A.13) we get

Anti-time Ordered Contribution = − 1

2
√
2

1

k
3
2
3

Γ

(

1

2
+ iµ

)

Γ

(

1

2
− iµ

)

. (B.5)

Time ordered contribution. Let us first calculate the inflaton contribution again.

Now we have to do a little more work since based on (B.1) we see that we have to find the

contraction which can be schematically written as 〈ξξ|(∂ξ)2〉. Writing g̃+(k1, k2, η) as,

g̃+(k1, k2, η) ≡ 〈ξ(η0, ~k1)ξ(η0,~k2)(∂µξ(η,−~k1)∂µξ(η,−~k2))〉, (B.6)

we get, using inflaton mode function (A.11),

g̃+(k1, k2, η) = −
(

− 1

2k31

)(

− 1

2k32

)

eik12ηk21k
2
2η

4

+ η2(−ik1i)(−ik2i)
(1− ik1η)(1− ik2η)

2k312k
3
2

eik12η, (B.7)

where we have defined, k12 = k1+k2. We can simplify this by removing some η-dependent

factors by writing the above as an operator D acting on eik12η, where

D ≡ k21k
2
2∂

2
k12 + (−~k1 · ~k2)(1− k12∂k12 + k1k2∂

2
k12). (B.8)

Then,

g̃+(k1, k2, η) =
η2

4k31k
3
2

Deik12η. (B.9)
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Thus the time ordered contribution looks like

Time Ordered Contribution = (−i)
1

4k31k
3
2

D
∫ 0

−∞

dη

η2
eik12ηfk3(η). (B.10)

The integral can be evaluated using (A.12) and (A.8) to get a hypergeometric function.

Since we will be interested in squeezed limit, k3 ≪ k1, k2, we can expand the answer

using (A.16). We then get

Time Ordered Contribution (B.11)

=
1

4
√
2k31k

3
2

√
k3

D
(

Γ(−2iµ)Γ(1/2+iµ)

Γ(1/2−iµ)

(p

2

)−1/2−iµ
+
Γ(2iµ)Γ(1/2−iµ)

Γ(1/2+iµ)

(p

2

)−1/2+iµ
)

.

The action of D simplifies in the squeezed limit,

Dkα12 =
1

8
(α− 1)(α− 2)k2+α

12 , (B.12)

using which,

Time Ordered Contribution=
1

4
√
2k31k

3
2

√
k3

× 1

8
(3/2+iµ)(5/2+iµ)×Γ(−2iµ)Γ(1/2+iµ)

Γ(1/2−iµ)
k212

(

k12
2k3

)−1/2−iµ

+(µ→−µ). (B.13)

Now we are ready to put together both the contributions:

I+− =
ρ22
φ̇0

1

64k21k
2
2k

2
3

Γ(1/2 + iµ)2Γ(−2iµ)(3/2 + iµ)(5/2 + iµ)

(

k1
k3

)−1/2−iµ

+ (µ → −µ).

(B.14)

B.1.2 Calculation of I
−−

I−− diagram is in general complicated since it does not factorize into η and η′ integrals. But

we can still calculate the nonanalytic terms in k3 in the squeezed limit. This is because in

the squeezed limit, η′ integral contributes when −η′ ∼ O( 1
k3
), whereas the contribution of

η integral is dominant when −η ∼ O( 1
k12

). Thus when k3 ≪ k12, one of the step functions

in G−− (A.10) drops out and the integral approximately factorizes. The η′ integral then is

identical to what we had for I+−; whereas the only change for η integral is that k12 → −k12.

Thus we have

I−− + I+−

=
ρ22
φ̇0

1

64k21k
2
2k

2
3

Γ

(

1

2
+ iµ

)2

Γ(−2iµ)

(

3

2
+ iµ

)(

5

2
+ iµ

)(

k1
k3

)− 1
2
−iµ
(

1− eiπ(−
1
2
−iµ)

)

+ (µ → −µ). (B.15)
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B.1.3 Three-point function

The full three point function can be written as a sum of I++, I+−, I−+, I−−. This gives

〈ξ(~k1)ξ(~k2)ξ(~k3)〉=
ρ22
φ̇0

1

16k21k
2
2k

2
3

(B.16)

×
(

Γ

(

1

2
+iµ

)2

Γ(−2iµ)

(

3

2
+iµ

)(

5

2
+iµ

)

(1+isinh(πµ))

(

k3
k1

)
1
2
+iµ

+(µ→−µ)

)

.

This gives F as a function of
(

k3
k1

)

as defined in (2.18) to be

F single
h =−1

4
×ρ22 (B.17)

(

Γ

(

1

2
+iµ

)2

Γ(−2iµ)

(

3

2
+iµ

)(

5

2
+iµ

)

(1+isinh(πµ))

(

k3
k1

)
3
2
+iµ

+(µ→−µ)

)

.

where, ρ2 =
2c2vφ̇0

Λ2 ; α = − c2φ̇2
0

Λ2 .

For the case of the Goldstone effective description of inflation, with Λ ≪ fπ, the

relevant terms in the lagrangian are given by (6.28). The calculation of F single
h follows

identical steps as above with the difference that the operator D = k21k
2
2∂

2
k12

. This results

into, the replacement
(

3
2 + iµ

) (

5
2 + iµ

)

→ 1
2

(

1
2 + iµ

) (

3
2 + iµ

)

. Hence the final answer

reads (taking d2 = 1),

F single
h =−1

8
×λ2

(

vfπ
Λ

)2

(B.18)

×
(

Γ

(

1

2
+iµ

)2

Γ(−2iµ)

(

1

2
+iµ

)(

3

2
+iµ

)

(1+isinh(πµ))

(

k3
k1

)
3
2
+iµ

+(µ→−µ)

)

.

B.2 Calculation of double exchange diagram

We see from the figure 3(a) that there is a quadratic mixing between inflaton and Higgs

field h. For numerical simplification one can define a mixed propagator which captures

this mixing [61]. Using this mixed propagator, we then calculate double exchange diagram

numerically. We first focus on single field slow roll inflation.

B.2.1 Mixed propagators

A mixed propagator is characterized by the 3−momentum (say k) flowing through the line

and bulk time coordinate η. We have to sum over all time instants η′ where the mixing

occurs. The bulk time coordinate η can be part of either time or anti-time ordering. Let us

first consider the case where η comes from time ordering, and denote that mixed propagator

by, D+(η, k). Then we have two possibilities, (a) η′ comes also from time ordering, in which

case the we can write the contribution of the mixing part of the entire diagram as,

I+ = −
∫ 0

−∞

dη′

η′4
g+(k, η

′)
(

θ(η − η′)f̄(η)f(η′) + θ(η′ − η)f̄(η′)f(η)
)

, (B.19)
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and, (b) η′ comes from anti-time ordering, for which we get,

I− = +

∫ 0

−∞

dη′

η′4
g−(k, η

′)f̄(η′)f(η). (B.20)

The overall signs are due to again e±i
∫
dtH and we have omitted a factor of +i for simplicity

which we will restore in the final expression for the mixed propagator. We can then rewrite

I+ as

I+ = −(I−)∗ + f̄(η)

∫ 0

η

dη′

η′4
g+(k, η

′)f(η′)− f(η)

∫ 0

η

dη′

η′4
g+(k, η

′)f̄(η′). (B.21)

So the whole contribution of the mixed propagator when η comes from time ordering is

D+(η,k)= (+i)(−ρ2)(I++I−) (B.22)

= (+i)(−ρ2)

(

2iIm(I−)+f̄(η)

∫ 0

η

dη′

η′4
g+(k,η

′)f(η′)−f(η)

∫ 0

η

dη′

η′4
g+(k,η

′)f̄(η′)

)

.

We have restored the factor of +i and also put the mixing vertex −ρ2 from (5.6).

Using the mode functions for inflatons (A.11) and massive scalars (A.8) and (A.9), and

also the relations, (A.13), (A.12), we can evaluate the mixed propagator analytically. For

convenience, we define the function J+(−ηk) = 8k3

πρ D+(η, k):

J+(x) = x
3
2

[√
2πsech(πµ)eπµ/2

(

H
(2)
iµ (x)eiπ/4 +H

(1)
−iµ(x)e

−iπ/4
)

−2
√
xH

(1)
iµ (x) (csch(πµ)F(µ, x) + (1− coth(πµ))F(−µ, x))

−2
√
xH

(2)
iµ (x) (csch(πµ)F(µ, x)− (1 + coth(πµ))F(−µ, x))

]

, (B.23)

where x = −kη, and F(µ, x) is given in terms of hypergeometric function 2F2,

F(µ, x) =
1

Γ(1− iµ)

1

2µ+ i

(x

2

)−iµ

2F2

(

1

2
− iµ,

1

2
− iµ;

3

2
− iµ, 1− 2iµ;−2ix

)

. (B.24)

We will be using the small argument limit of J+(x),

J+(x) = A(µ)x
3
2 (x/2)iµ +A(−µ)x

3
2 (x/2)−iµ, (B.25)

where A(µ) = −2
√

2/πsech(πµ)Γ(−iµ) sin(π4 + iπµ
2 ).

B.2.2 Three-point function

After we incorporate appropriate internal lines into mixed propagators, the double exchange

diagram effectively contains a single vertex. Thus we only have two diagrams to calculate,

with one of them being the conjugate of the other. Let us start with the time ordered

contribution. Since the lagrangian (5.6) contains a term of the form α
φ̇0
ξ̇h2 then we get

+ i
α

φ̇0

∫

dη

η4

(

−k21η
2

2k31

)

eik1ηD+(η, k2)D+(η, k3). (B.26)
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Once again we will be interested in the limit k3 ≪ k1, so using the small argument

expansion of J+,

+i
α

φ̇0

(

− 1

2k1

)
∫

dη

η2
eik1ηD+(η,k1)D+(η,k3)

=− i

2

α

φ̇0

π2ρ22
64k31k

3
3

(

A(µ)s(µ)

(

k3
k1

)3/2( k3
2k1

)iµ

+A(−µ)s(−µ)

(

k3
k1

)3/2( k3
2k1

)−iµ
)

, (B.27)

where we have defined s(µ) =
∫∞
0

dx
x2 e

−ixJ+(x)x
3/2+iµ. The full three point function then

becomes, after adding the anti-time ordered contribution,

π2ρ22
64k31k

3
3

(

− i

2

α

φ̇0

)

(A(µ)s(µ)−A∗(−µ)s∗(−µ))

(

k3
k1

)3/2( k3
2k1

)iµ

+ (µ → −µ). (B.28)

This gives F as a function of
(

k3
k1

)

after summing over permutation k1 ↔ k2,

F double
h = αρ22

iπ2

16
(A(µ)s(µ)−A∗(−µ)s∗(−µ))

(

k3
k1

)3/2( k3
2k1

)iµ

+ (µ → −µ). (B.29)

For m < 3H
2 we get an appropriately modified version of the above expression. In

terms of the function, s̄(ν) =
∫∞
0

dx
x2 e

−ixI+(x)x
3/2−ν we have,

F double
h = −αρ22

π2

8
B(ν)Im(s̄(ν))

(

k3
k1

)
3
2
−ν

, (B.30)

where B(ν) ≡ −2ν+1Γ(ν)
√

2/π sec(πν) sin(π/4−πν/2). In deriving the above we have not

kept a contribution of the form
(

k3
k1

)3/2+ν
.

For the Goldstone description we see from (6.28) that the functional form for F double
h

is identical to above. For the overall coefficient we change, ρ22α → 1
2λ2(λ2v)

2f2
π , and hence,

F double
h = λ2(λ2vfπ)

2 iπ
2

32
(A(µ)s(µ)−A∗(−µ)s∗(−µ))

(

k3
k1

)3/2( k3
2k1

)iµ

+ (µ → −µ).

(B.31)

B.3 Calculation of triple exchange diagram

Using the mixed propagator, the triple exchange diagram can also be calculated in an

identical manner [61]. Using the cubic Higgs vertex, λhv
2 h3 we can write the time ordered

diagram as,

(−i)
λhv

2

∫

dη

η4
D+(η, k1)D+(η, k2)D+(η, k3). (B.32)

Again in the limit k3 ≫ k1 we can use the small argument expansion of J+(x),

(−i)
λhv

2

∫

dη

η4
D+(η,k1)D+(η,k2)D+(η,k3)

= (−i)
λhv

2
× π3ρ32
83k31k

3
3

(

A(µ)t(µ)

(

k3
k1

)
3
2
(

k3
2k1

)iµ

+A(−µ)t(−µ)

(

k3
k1

)
3
2
(

k3
2k1

)−iµ
)

, (B.33)
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where A(µ) = −2
√

2/πsech(πµ)Γ(−iµ) sin(π4 + iπµ
2 ) and t(µ) =

∫∞
0

dx
x4J+(x)

2x
3
2
+iµ. After

adding the anti-time ordered contribution and permutation k1 ↔ k2 we get

F triple
h =

π3ρ32φ̇0λhv

128
(+i) (A(µ)t(µ)−A∗(−µ)t∗(−µ))

(

k3
k1

)
3
2
(

k3
2k1

)iµ

+ (µ → −µ).

(B.34)

For the Goldstone description we see from (6.28) that the functional form for F triple
h is

identical to above. For the overall coefficient we change, ρ32 → (λ2v)
3, and hence,

F triple
h =

π3λ3
2v

3f2
πλhv

128
(+i) (A(µ)t(µ)−A∗(−µ)t∗(−µ))

(

k3
k1

)
3
2
(

k3
2k1

)iµ

+ (µ → −µ).

(B.35)

C Massive vector fields in dS space

Here we will derive mode functions for massive spin-1 fields [24], which will be useful in

the next appendix in computing NG mediated by Z-type particles.

C.1 Mode functions in momentum space

We start with the lagrangian,

∫

d4x
√−g

(

−1

4
F 2
µν −

1

2
m2Z2

µ

)

, (C.1)

where Fµν = ∇µZν −∇νZµ. Variation of the action yields the equation of motion,

∇µF
µν = m2Zν . (C.2)

Taking the divergence of both sides and also using the fact that ∇µ∇νF
µν ∝ RµνF

µν = 0,

we get

∇µZ
µ = 0. (C.3)

Mode functions for Zµ are then obtained by solving (C.2) and (C.3). The NG correlators

involve mixing the inflaton with the Z, which is constrained by the spatial rotation and

translation invariance. Therefore only the longitudinal Z polarization, which is a spatial

scalar, can appear since the inflaton is obviously scalar. We are interested in the mode

functions for this degree of freedom. It is shared between the timelike component Zη and

the longitudinal spatial component Zlong = ~Z · k̂ with k̂ being a unit vector pointing in the

direction of propagation.

Fourier transforming from (η, ~x) to (η,~k) coordinates, the constraint equation reads,

η2∂ηZη − 2ηZη = iη2kZlong. (C.4)

From (C.2) and (C.4) we get the equation of motion for the component Zη,

∂2
ηZη −

2

η
∂ηZη − ∂2

i Zη +
(m2 + 2)

η2
Zη = 0. (C.5)
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This is almost identical to the equation of motion for the scalar (A.3). The solutions

are again given in terms of Hankel functions, but with µ2 = m2 + 2 − 9
4 = m2 − 1

4 .

After we obtain the mode function for Zη, that for Zlong is simply obtained from the

constraint equation (C.4). In parallel with the case of scalars, the quantum field is obtained

by elevating the free superposition coefficients in the general classical solution to linear

combinations of creation and destruction operators on the Bunch-Davies vacuum,

Zη(η,~k) = hk,0(η)b
†
~k
+ h̄k,0(η)b−~k

,

Zlong(η,~k) = hk,l(η)b
†
~k
+ h̄k,l(η)b−~k

,
(C.6)

where the mode functions are

h̄k,0(η)=Ne−
πµ
2 (−η)

3
2H

(1)
iµ (−kη) (C.7)

h̄k,l(η)=Ne−
πµ
2

(

+
i

2k

)

(−η)
1
2

(

−H
(1)
iµ (−kη)+kηH

(1)
iµ+1(−kη)−kηH

(1)
iµ−1(−kη)

)

, (C.8)

with N = e
iπ
4

√
π
2

k
m . In the above b and b† are annihilation and creation operators for the

longitudinal degree of freedom for spin-1.

D NG due to Z exchange

For single-field slow-roll inflation, the lagrangian involving the inflaton and spin-1 Z rele-

vant for single-exchange (diagram (a) in figure 3) is given by (5.21) to be

L = ρηξ̇Zη +
ρ

φ̇0

η2ξ̇∂iξZi, (D.1)

where ρ =
ρ1,Zρ2
m2

h

. As discussed earlier, we defer the computation of the double-exchange

contribution to future work, although we have estimated its strength and it seems readily

detectable in future measurements. We have also shown earlier that the triple-exchange

contribution is suppressed and can be neglected.

We now parallel the steps taken in the calculation of NG for the case of single-exchange

of a scalar h. We start with I−+ diagram. In this case the time ordered and anti-time

ordered contribution factorize, and we can evaluate them separately.

Time ordered contribution.

(+iρ)

∫ 0

−∞

dη′

η′4
η′
(

−k23η
′2

2k33

)

eik3η
′

hk,0(η) = ρ
1

4
√
2

1

mZk
3
2
3

Γ

(

3

2
+ iµ

)

Γ

(

3

2
− iµ

)

. (D.2)

Anti-time ordered contribution. Defining p = k1
k3
,

(

−i
ρ

φ̇0

)
∫ 0

−∞

dη

η4
η2
(−k22η

2

2k32

)

e−ik2η

(−ik1i
2k31

)

e−ik1η(1+ik1η)k̂3ih̄k,l(η) (D.3)

=
iρ

φ̇0

1

16k2k21k
3
2
3

√
π

mZ
e

iπ
4 (k̂1 ·k̂3)

×
(

−f1

(

1

2
,2p

)

+ipf1

(

3

2
,2p

)

+f2

(

3

2
,2p

)

−ipf2

(

5

2
,2p

)

−f3

(

3

2
,2p

)

+ipf3

(

5

2
,2p

))

,
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where different integrals involving Hankel functions have been evaluated using (A.13),

f1(n, p) =
(+i/2)n

Γ(n+ 3/2)

1√
π
Γ(n+ 1− iµ)Γ(n+ 1 + iµ)

× 2F1(n+ 1 + iµ, n+ 1− iµ, n+ 3/2, (1− p)/2) ,

f2(n, p) = (+i)
(+i/2)n

Γ(n+ 3/2)

1√
π
Γ(n+ 2− iµ)Γ(n+ iµ)

× 2F1(n+ iµ, n+ 2− iµ, n+ 3/2, (1− p)/2) ,

f3(n, p) = (−i)
(+i/2)n

Γ(n+ 3/2)

1√
π
Γ(n+ 2 + iµ)Γ(n− iµ)

× 2F1(n+ 2 + iµ, n− iµ, n+ 3/2, (1− p)/2) .

(D.4)

We multiply the above two contributions and also sum over I++, I−−, I+− diagrams.

Finally we sum over permutations ~k1 ↔ ~k2 to get,

F single
Z =

ρ2

16πm2
Z

sin2 θΓ

(

3

2
+iµ

)

Γ

(

3

2
−iµ

)

cosh(πµ) (D.5)

×
(

(7−5iµ+16µ2+4iµ3)Γ

(

3

2
+iµ

)2

Γ(−2−2iµ)(1−isinh(πµ))

(

k3
k1

)
5
2
+iµ

+(µ→−µ)

)

,

where θ = k̂1 · k̂3 and we have used large negative argument expansion of hypergeometric

function.

For the Goldstone description, we see from (6.32) that the functional form of F single
Z is

identical to the above. The overall coefficient is changed to ρ → vmZ

2Λ (taking Im(d1) = 1).

Hence we get

F single
Z =

( v

2Λ

)2 1

16π
sin2 θΓ

(

3

2
+iµ

)

Γ

(

3

2
−iµ

)

cosh(πµ) (D.6)

×
(

(7−5iµ+16µ2+4iµ3)Γ

(

3

2
+iµ

)2

Γ(−2−2iµ)(1−isinh(πµ))

(

k3
k1

)
5
2
+iµ

+(µ→−µ)

)

.
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