Springer Series on Environmental Management

Robert S. DeSanto, Series Editor

Heavy Metals in Natural Waters

Applied Monitoring and Impact Assessment

With a Contribution by E.E. Ballantyne

With 48 Figures

Springer-Verlag New York Berlin Heidelberg Tokyo

James W. Moore

Alberta Environmental Centre Vegreville, Alberta T0B 4L0 Canada

S. Ramamoorthy Alberta Environmental Centre

Vegreville, Alberta TOB 4L0 Canada

Library of Congress Cataloging in Publication Data Moore, James W., 1947-Heavy metals in natural waters. Includes bibliographical references and index. 1. Water chemistry. 2. Heavy metals. I. Ramamoorthy, S. II. Ballantyne, E. E. III. Title. GB855.M65 1983 551.46'01 83-14842

© 1984 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1984

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Typeset by Progressive Typographers, Emigsville, Pennsylvania.

9 8 7 6 5 4 3 2 1 ISBN-13: 978-1-4612-9739-0 e-ISBN-13: 978-1-4612-5210-8 DOI: 10.1007/978-1-4612-5210-8

Series Preface

This series is dedicated to serving the growing community of scholars and practitioners concerned with the principles and applications of environmental management. Each volume is a thorough treatment of a specific topic of importance for proper management practices. A fundamental objective of these books is to help the reader discern and implement man's stewardship of our environment and the world's renewable resources. For we must strive to understand the relationship between man and nature, act to bring harmony to it, and nurture an environment that is both stable and productive.

These objectives have often eluded us because the pursuit of other individual and societal goals has diverted us from a course of living in balance with the environment. At times, therefore, the environmental manager may have to exert restrictive control, which is usually best applied to man, not nature. Attempts to alter or harness nature have often failed or backfired, as exemplified by the results of imprudent use of herbicides, fertilizers, water, and other agents.

Each book in this series will shed light on the fundamental and applied aspects of environmental management. It is hoped that each will help solve a practical and serious environmental problem.

> Robert S. DeSanto East Lyme, Connecticut

Preface

A biological monitoring system, which had the potential to save lives, was developed over one hundred years ago. The capital investment in this program amounted to a few pounds (in 1880 pounds) and operating costs were negligible, even by 19th century standards. The early coal mines of Great Britain became a safer place to work because canaries could be used to detect dangerous levels of carbon monoxide. Although biological monitoring in this form had a number of drawbacks, such as poor detection limits at low CO concentrations, it did produce reproducible results at toxic levels. Consequently, the bird-CO system survived with minimal modifications well into the 20th century. Parakeets for example saw action in World War II submarines. It therefore comes as a shock to realize that this cost-effective program has no aquatic counterpart. Today, capital and operating costs of biological monitoring programs may be very high. Yet, economic and political factors together with intrinsic weaknesses in study design and methods may significantly reduce the effectiveness of the recommendations generated by such investigations. Hence the simplicity and cost-effectiveness of the bird-CO system is perhaps a utopian example which aquatic toxicologists cannot duplicate.

Biological monitoring and impact assessments have been carried out in lakes, rivers, and estuaries since the early part of this century and are now common features of most environmental programs. In most instances, the methods involved in both types of study are similar. In general terms, biological monitoring should occur before, during, and after environmental disturbances in order to avoid significant environmental impacts. Biological assessments on the other hand measure the extent of potentially major impacts which have already occurred. Those knowledgeable in the field might well wonder why we need another review on monitoring and impact assessment. The literature on chemical and physical disturbances is already bulging with site specific studies and several major review articles have been published in recent years. Our response to the question is that we have emphasized an interdisciplinary approach to monitoring and impact assessments in this book. There are lengthy reviews on environmental chemistry, the pollution-ecology of algae, invertebrates and fish, and on aquatic toxicology, genetic toxicology, and the pathology of fishes and invertebrates in relation to heavy metals. Such an approach has the potential of overcoming intrinsic weaknesses in conventional programs which emphasize species diversity and community structure analysis. In the final chapters, we review biological, chemical, and political criteria which should be considered in the development of monitoring and impact assessment programs.

Because the book is written for managers and scientists with broad environmental interests, some topics such as pharmaco-kinetics and toxic mechanisms are not covered in great depth. Such information falls within the domain of the specialist and cannot be put to immediate use by agencies involved in monitoring and impact assessment. In addition, although every effort has been made to give a balanced review of the literature, we have possibly omitted relevant papers from our citations. This was done to improve the flow of the text and shorten the reference lists.

We would like to acknowledge the assistance of staff from the Alberta Environmental Centre in the preparation of this volume. We relied heavily on Sita Ramamoorthy and Joan O'Brien for the compilation and indexing of the literature. Sita Ramamoorthy and Jim Bradley also proofread the various drafts. The library staff, Mrs. Diana Lee and Harriet Judge, handled all of our literature requests, Mrs. Arhlene Hrynyk coordinated typing of the drafts, and Mr. Terry Zenith was responsible for figure preparation. Ann Wheatley collated data on the genetic toxicology of metals. Finally we would like to acknowledge Dr. R.S. Weaver, Executive Director, Alberta Environmental Centre, and Dr. L.E. Lillie, Head, Animal Sciences Wing, for their support and encouragement during this project.

James W. Moore S. Ramamoorthy Vegreville, Alberta

Contents

Series Preface Preface		v vii
1.	Introduction	1
	Interdisciplinary Environmental Studies References	1 3
2.	Arsenic	4
	Chemistry Production, Uses, and Discharges Arsenic in Aquatic Systems Transformations Residues Toxicity References	4 5 8 10 11 18 22
3.	Cadmium	28
	Chemistry Production, Uses, and Discharges Cadmium in Aquatic Systems Residues	28 29 31 39

Contents

	Toxicity References	46 51
4.	Chromium	58
	Chemistry	58
	Production, Uses, and Discharges	59
	Chromium in Aquatic Systems	62
	Residues	65
	Toxicity	69
	References	73
5.	Copper	77
	Chemistry	77
	Production, Uses, and Discharges	78
	Copper in Aquatic Systems	82
	Residues	85
	Toxicity	88
	References	95
6.	Lead	100
	Chemistry	100
	Production, Uses, and Discharges	101
	Lead in Aquatic Systems	105
	Transformations	107
	Residues	109
	Toxicity	115
	References	120
7.	Mercury	125
	Chemistry	125
	Production, Uses, and Discharges	125
	Mercury in Aquatic Systems	130
	Transformations	134
	Residues	135
	Toxicity	143
	References	154
8.	Nickel	161
	Chemistry	161
	Production, Uses, and Discharges	162
	Nickel in Aquatic Systems	167
	Residues	170

Contents		xi
	Toxicity	174
	References	177
9.	Zinc	182
	Chemistry	182
	Production, Uses, and Discharges	183
	Zinc in Aquatic Systems	187
	Residues	190
	Toxicity	195
	References	200
10.	Impact of Heavy Metals in Natural Waters	205
	Physico-Chemical Impact	205
	Biological Impact	221
	References	232
11.	Monitoring and Impact Assessment Approaches	234
	Chemical Criteria	235
	Biological Criteria	242
	References	244
12.	Politics and the Environmental Manager	247
	Principles	247
	Methods	249
	Summary	253
Арр	pendices	
	A. Summary of Current Production and Uses of Metals	254
	B. Physical and Chemical Terms Cited in This Book	257
	C. Common and Scientific Names of Fish Cited in This Book	260

Index