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Heavy-quark axial charges to nonleading order
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We combine Witten’s renormalization group with the matching conditions of Bernreuther and Wetzel to
calculate at next-to-leading order the complete heavy-quark contribution to the neutral-current axial-charge
measurable in neutrino-proton elastic scattering. Our results are manifestly renormalization group invariant.
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This paper announces results for the next-to-leading-ordeCallan-Symanzik equationsl3] can be exploited. In such
(NLO) heavy-quark corrections to the axial cha@%) for  schemes, the decoupling of heavy particles required by the

protons to couple to the weak neutral current Appelquist-Carrazone theorepi4] is not manifest. How-
ever, correct decoupling is ensured by applying the matching

5z _1 S -3 g 1 conditions of Bernreuther and Wet4dl5]; these relate cou-
K521 g=Tet  q=Top a47.7s9- (1) pling constant, mass and operator normalizations before and

after the decoupling of a heavy quark. The advantages of this
The calculation is performed by decoupling heavy qudrks approach are its rigor and the fact that the final results are
=t,b,c sequentially, i.e. one at a time. An extension to si-expressed in terms of renormalization grd&®6) invariants.
multaneous decoupling dfb,c quarks is foreshadowed in These invariants are Witten-style running couplings one

our concluding remarks. for each heavy quark=t,b,c, and axial charges for nucle-
The chargeg!® receives contributions from both light ons in the residual theory with three light flavors.
u,d,s and heavyc,b,t quarks, We find that, when first, thenb, and finallyc are decou-

pled from Eq.(2), the full NLO result is
299 =(Au—Ad—As)+(Ac—Ab+At) 2
- 298 = (Au—Ad—AS)jp,+ P(Au+Ad+AS);,+O(m 1)
where Aq refers to expectation valuép,s|qy,ysalp.s) (4)
=2mgs,Aq for a proton of spirs, and massn,,. It governs _
parity-violating effects due t@° exchange at low energies in whereP is a polynomial in the running couplings;, ,

elasticyp and vp scattering1,2] or in light atoms[3,4]. A 125663, 6167
definitive measurement ofp elastic scattering may be pos- P=—(ap—a {1+ an+ o

) ; - : b~ b t
sible using the MiniBooNE setup at Fermilgh). 23m 82800 3312

Once heavy-quark correctior]2,6,7] have been taken
into accountg(z) is related(modulo the issue ob-function _ 22 - _ 6 ~ _ 181 -, ~3
A - > ! . Qg agt+O0(a;,) (5
terms atx=0 [8]) to the flavor-singlet axial charge, defined 75 27T " 64872 "
scale invariantly and extracted from polarized deep inelastic
scattering: and (Aq);,, denotes the scale-invariant version &f de-
fined in the following way.
9% liny=0.2-0.35. ©) Let ay=gf/4m and B¢(ar) be the gluon coupling and

beta function forMS renormalized quantum chromodynam-
ics (QCD) with f flavors and\.= 3 colors, and lety;(a+) be
he gamma function for the singlet current

The small value of this quantity has inspired vast experimen
tal and theoretical activity to understand the spin structure o
the proton[9]. As a result, new experiments are being
planned to map out the spin-flavor structure of the proton. f

Thesg jnc_:lude polarized proton-proton coIIision.s. at tht_—? BNL (U%n'su +E)’M7’5d+ )= (a(n“ysqwf- (6)
Relativistic Heavy lon CollidefRHIC) [10], semi-inclusive k=1

polarized deep inelastic scattering, and polariepdollider _ ) ) ) )

studieg 11]. Full NLO analyses are essential for a consistent® Scale-invariant current§,s); is obtained when Eq(6) is

interpretation of these experiments. multiplied by

Many techniques for decoupling a single heavy quark are
available. We rely on Witten’s methdd 2], where the renor- _ o vi(X)

Lo | ; : Ei(a;)=exp | dx . (7)
malization scheme is mass independent and improved 0 Bi(X)
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Up to O(m;, ) corrections, the invariant singlet charg® is F—f flavors, mp—o.
given by

Also held fixed in this limit are the coupling; and light-
09, v=Es(az)(Au+Ad+As), quark massem; of the residual fflavor theory, and all mo-
mentap. Feynman diagrams for amplitudes
=(Au+Ad+As),,. (8)

Ar= Ae(p, s, ag Mg, my) (12)
Flavor-dependent, scale-invariant axial chargeg;,, such T For

as give rise to power series inng1 modified by polynomials in
In(m, /). We consider just the leading powel :

Aslin=3 (98 liv =9 9
can then be obtained from linear combinations of @Byand Ap=Ap{1+0(Limp);. (13
g¥=Au—Ad=(Au—Ad)n, As m,, tends to infinity, logarithms ipde can be produced

by any 1PI(one-particle irreduciblesubgraph which con-
0®=Au+Ad—2As=(Au+Ad—2As),,. (10 tains at least one hea_vy—quark propagator arrd whose diver—
gence by power counting is at least logarithmic. The effect is
Here g(3)—1 267+0.004 is the isotriplet axial charge mea- €quivalent to shrinking all contributing 1Pl parts of each
sured in neutron beta-decay, agid’=0.58+0.03 is the oc-  diagram to a point. This meaf$4] that theF-flavor ampli-
tet charge measured independently in hyperon beta decaijades Ar are the same as amplitude$; in the residual
Taking at—O 1, ab 0.2 andac 0.35 in Eq.(5), we find a f-flavor theory apart frorrnnh dependent renormellzatlons of
small heavy-quark correction factdP=—0.02, with LO the coupling constant, light masses, and amplitudes:
terms dominant.
Our results extend and make more precise the well knowrfe (P, 4, e Mg M)
work of Collins, Wilczek and Zeg6] and Kaplan and Mano-
har[2], where heavy-quark effective theory was used to es- _ N Arim
timate g(AZ) in leading order(LO) for sequential decoupling 2 Zan (e Mo/ ) Ay (Pt g Mye) 14
of t,b andt,b,c respectively. Our analysis is also influenced
by a.discussion of6] by Chetyrkin and Khn [16], who ai=ai(ag,my/pw), mMy=mgeD(ag,my/p). (15
considered some aspects of NLO decoupling ofttlg@ark
from the neutral current and in particular, the requiremenEventually, we will have to invert Eq15), i.e. usea; and
that the result be scale invariant. Related work has been domg;; as dependent variables insteadagf and m;=, because
on heavy-quark production in polarized deep inelastic scatwe hold a; andm; fixed asmy— <.
tering using the QCD parton modgl7] and in high-energy For any number of flavors(including F), let
polarizedyp andpp at NLO[18].
The plan of this paper is as follows. First is a brief review
of Witten’s application of improved Callan-Symanzik equa- Dy= - —+ Bf(af) + 5f(af)2 mkfﬁm (16)
tions [13] to the decoupling of a heavy quark in mass-

independerrt feno”‘?*'?‘”zat“’” schemes'. Next, we CO”?b‘”e Be the corresponding Callan-Symanzik operator. Then the
with matching condition$15] to deal with next-to-leading-

order (NLO) calculations involving axial-vector currents. amplitudeAr and hence its leading powst both satisfy an

Following is then a direct derivation of E¢f) from Eq.(1)  ©-flavor improved Callan-Symanzik equation:

for the neutral current. Our concluding remarks indicate the ~

result of extending Eq(5) to simultaneous decoupling of {De+ ve(ap)}Ag=0. (17
t,b,c—done not only for numerical reasons, but also to
check that the,b contributions cancel fom;=m,.

We begin by considering mass-independent schemes, such
as the modified minimal subtraction scheifidS), where 9 P f P
renormalized masses behave like coupling constants. This DF:M——+(DF6¥f)—+E (Demy)—— (18
key property is exploited in Witten's method. I day k=1 om

Let w be the scale used to define dimensional regulariza-
tion and renormalization. Then theS scale is the result is an improved Callan-Symanzik equation for each

residual amplitude,

f

In general, bothyr and Z=(Z 4,/) are matrices.
If we substitute Eq(14) in Eq. (17) and change variables,

- —yl2 —
u=pdme "2 y=0572.... (11) {Ds+ yi(a)} A =0 (19

We choose the same scalelrrespectlve of the number of \yhere the function§12,15

flavorsf being considered, and so hqddflxed as the heavy
quarks(massesn,,) decouple: Bi(at)=Dray (20
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Si(as)=Delnm, (21 Bernreuther and Wetze]15] applied the Appelquist-
Carrazone decoupling theorefi4] to the gluon coupling
yilas)=Z Y ve(ap)+DelZ (22 constantozgO renormalized at space-like momentupn
depend onw¢ alone The lack ofm; dependence of the renor- ago|with W= ago|noh+ o(m, b (29
malization factors in Eqgs(14) and (15 ensures mass-
independent renormalization for the residual theory. and compared calculations afgo in the F=f+1 and

Although these equations hold for afix F, their practi- ~ f-flavor MS theories. This reduces to a determination of the

cal application is straightforward only when heavy quarksieading power of the onk-loop MSg gluon self-energy. The

are decoupled one at a time. So weBetf+1, where just  resuylt is a matching condition

one quarkh is heavy. Then it is convenient to introduce a o

running coupling'12] art—a;t=CoIn(my/ )+ Cnio+O(as,my 1)

-~ ~ — (30)
an= ap(eg,In(my/w)) (23

_ with a-independent LO and NLO coefficients given by
associated with th#1Sg renormalized massy, :

1
— (o Clo=3- Cno=0. (32)
In(mp /)= [ "dX[1=6x(X)]/ Be(X). (24
i As a result, we find
It satisfies the constraints 5 5 5 B
- - ar(an0)=ap+0(ay) = ap. (32
ap(ap,0) = ap,ap(ag,»)=0 (295 NLO

the latter being a consequence of the asymptotic freedom of Bernreuther and Wetzel showed that it is possible to de-
the F-flavor theory F<16). Also, Eqs.(16), (20) and(24)  duceall LO and NLO terms in Eq(30) from Eq.(31) and3;

imply that @, is renormalization grougRG) invariant: and &; in Eqg. (28). We have done the calculation explicitly:
= 1 m a; M
Dran=0. 26 aity =t oo doyin| 14 2 In=
Witten's solution of Eq.(22) for the matrix Z is NLO K K
Ve~ rdyin| 14253 _g] T
Z(ag ,m,/u)=ex j dx Z(ap,1) f 37| 2 "
ap BF(X) ord M
~ 142— 19f 57+ 16f
ag(and) | Vi(X) _ _
XeXFFU dx g (X)] (27) C= omai=2) YT 2m(33-20)(31=2f)"
of R ora (33
where “ord” indicatesx-ordering of matrix integrands in the ~ .
exponentials. Note that it is thelative scaling between the From Eq.(24), we have also foundy, in NLO,
initial and residual theories which matters. —
For our NLO calculation, we need the formulas wl= oty L 3_3_f)|n&+ 15819t
h f
NLO 3w\ 2 u  2m(33-2f)
Bi(x) < (38 ) < (153-19f)+O(x%
(X)=—2_ |51~ — X a; (33 m
3w\ 2 12m° XIn| 14 0| = —f|In— (34)
37\ 2 w“
X2 x3 _
yi(x)=—f+ 36773(177—2f)f+0(x4) wherem;, is Witten’s RG invariant mass:
a
2x my,= Myex fahdxé (X)/ Be(X). (35)
8i(x)= == +0() 28) I

wherey; refers to thd-flavor singlet current6) and includes If desired, Inm/x) can be eliminated by substituting

the three-loop term found by Larirl9] and Chetyrkin and
Kiihn [16]. n o T

as (31 m
. . ——" 1n +—f(——f)ln:h. (36)
Our matching procedure amounts to evaluating to NLO 4 0 u 31— 2f 3w\ 2 i
accuracy the quantities;,, a;(ap,1) and Z(ap,,1) in Eq. ~
(27), such that the answers depend ®nand notar . Therefore the asymptotic formula fa, asm,,— is
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- 33 m m ~ @, vs(X)
ah~317/ ( —f)ln_h+ ke InIn—+0(1) (t=b)e = Zeﬂs(at-l)EXp{ - J th,B (x)] S
2 " “ NLO 0 5

. 3(153-19) 6(33-2f) - + & (ut+d+s+c—4b)s (46)

= — - _ ~

2(33-2f) s1-2f and expanding inx;, keeping all quadratic terms:

To find the matrle(ah,l) in NLO, we need a matching 1 6 o 6167 x
condition for theMS amplitudel” 5 for h,, ysh to couple to (t=b)e=1—57 53— 33127 +0(a}) | Ss
a light quarkl. We have calculated the leading power due to
the two-loop diagrame{Z + L(ut+d+s+c—4b)s+0O(1m).  (47)

Next we decouple thb quark. Here, it is natural to define

3 -1 = -
+0O(ag.m, ). (39 five-flavor quantitie3>zb5 andmb5 analogous to the six-flavor

ap 2 mh 1
F’u5= ? YuVs In7+§
running couplinga, and massﬂ for the top quark:

Consequently, there is a NLO ternﬁ/Sw in Z(ay,1) for

hy,ysh to producel y,, ysl asmy—c. iy s _ f;‘bs 1-65(x)
Now we consider the special case where heavy quarks are “ Bs(x) ’
decoupled from the weak neutral axial current. Let us adopt
the shorthand notatiog; for MS currents @y, vsd)¢ in the my 55(X)
f-flavor theory, e.g. the neutral curredfy and the scale- Inm—5 d X (48)
invariant singlet current§,,s)¢ : bs Bs(x
J2=1(t—b+c—s+u—d)g (39) Equations(20) and (21) imply that?a‘ub5 and Ebs are both

RG;-5 and RG_g¢ invariant

—Ef(af)(u—l—d-i—s—i----)f. (40) ~ . _ _
D5ab5=O=D6ab5, D5mb5:0:D6mb5 (49)

We begin by decoupling thequark. Because of
and hence physically sigﬂficant in the griginal six-flavor
(c=stu—d)g=(c—s+u—d)s+O(Lm) (4D  theory. So we writax, andmy, for a,_andmy,_.
Consider decoupling thie quark from Eq.(47). The NLO

we see that Eq(27) is nontrivial only for matching conditior(38) becomes

(t—b)e=Zg_s(U+d+s+c+b)s+z (U+d+s+c—4b)s

+0(1/my). (42) bs=

ag by 1
In —+ 5
M

(u+d+s+c),+0(ad,mysY (50
’7T

Since ¢—b)s is scale invariant, we have:=0 in Eq.(27): so the nonsinglet current in EG7) can be written

J— _ @ X ~ o~
Ze_s(ag,m/p) = Zg_5(ay,1)exp— tdxys( )- (43 (u+d+s+c—4b)s={1— (af/2m)}E, (ar)S,
NLO ag Bs(X) ~
+0(ad,myh). (51)
The operator matching conditid838) corresponds to

For the singlet curren®s in Eq. (47), we find
2

agl My 1 -1
tg= In_vL (u+d+s+c+b)s+0(ad,m ) (44 ~2
2 ~ ay _q,~ ~ _
# 85=E5<ab>{ 1+ F] Eq () Syt O(ap,mps )
and so we conclude: 7 (52)
Zo_s(a,)=— £+ (87%) *a?+0(ad). (45 taking into account the definition&) and (40). Then we
_ expand Eqs(51) and(52) in a;,, keeping quadratic terms:
Equation(43) is to be expanded about~0 with a5 held
fixed. In that limit, the exponential tends to the constant fac- t—b _ 6 - - 1+ 125663
tor E5(as) of Eq. (7). This factor combines with the singlet (t=b)g=53 (ap—a) 828007 "
current in Eq(42) to form the scale-invariant operatSg, as 6167
required by RG_5 invariance. The full NLO result is then
obtained by writing T 3312 Su+O(aly Myp)- (53)

031901-4



RAPID COMMUNICATIONS

HEAVY-QUARK AXIAL CHARGES TO NONLEADING ORDER PHYSICAL REVIEW D66, 031901R) (2002

The same technique can be applied to decouplecthe dependence on more than one heavy-quark niassin the

quark fromS, in Eq. (53) and (c—s+u—d), [the result of  special case of sequential decoupling, they agree aithw,,

decouplingb from Eq. (41)]. That yields the final resultg}) anda, to NLO: and(iv) for the case of equal masses, they
and(5) given in the introduction. coinciije eg. ’ ’

Notice that our results depend on two key features:

(i) Like previous workers in this area, we decouple heavy a=ap for m=m,. (54)
guarks sequentially, i.e. one at a time.

(i) Our running couplingsy,, @, anda., which corre- Then we find that the result for the simultaneous decou-
spond to Witten’s prescriptiofil2], are all renormalization pling of thet,b,c quarks from the neutral current is of the
group invariant. same form(4) as the sequential answer, but with the sequen-

The restriction to sequential decoupling is numericallytial running couplings in Eq(5) replaced by our simulta-
reasonable for the quark, but dubious for théd and ¢ neous couplingsy;, o, andea.:

guarks, because it amounts to an assumption thaglm_() is 5
negligible compared with Im,/x). This inhibits detailed P=_——(a,—a)
comparison of NLO results with data, which ought to be 23m

carried out with NLO accuracf20].

., 125663 6167 22
828007 “* " 33127 ¥t 757 %¢

There is also a theoretical issue here: one would like to  _ i — ﬂ 2 3
. .. . . ac zac+o(atbc)- (55)
check that, in the limitm;=m,, thet and b contributions 27 648 "
cancel. However, that is outside the region of validity
|n(m¢//7)>|n(mo/;) for sequential decoupling. Notice the factorization of the terms depending @nand

For these reasons, we have extended our analysis to tift»- Given Eq.(54), the factora,— a; ensures that all con-
case of simultaneous decoupling, where the mass logarithnigbutions fromb andt quarks cancelas they shouldfor

are allowed to grow large together: in{/m)~In(m,/w) Mt~ Mo

~In(m,/w)—large. This requires a considerable theoretical This work was supported by the Australian Research
development of matching conditions and the renormalizatiorCouncil and the Austrian FWF. F.M.S. is supported by con-
group, which we will present separately. It involves the con-tract number PV-IFT/005. R.J.C. thanks Professor Woijtek
struction of running couplinga;, «,, «. with the following  Zakrzewski for his hospitality at Durham. S.D.B. thanks Pro-
properties(i) They are renormalization group invariafii;  fessor Dietmar Kuhn and the HEP group for their hospitality
they are defined fom;=m,=m,, and can have a nontrivial at Innsbruck.
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