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We calculate the next-to-next-to-leading-orderOð�4
sÞ one-loop squared corrections to the production of

heavy-quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the

q �q production channel, the results of this paper complete the calculation of the one-loop squared

contributions of the next-to-next-to-leading-order Oð�4
sÞ radiative QCD corrections to the hadroproduc-

tion of heavy flavors. Our results, with the full mass dependence retained, are presented in a closed and

very compact form, in dimensional regularization.
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I. INTRODUCTION

It has been already 20 years since the next-to-leading-
order (NLO) corrections to the hadroproduction of heavy
flavors were first presented in the seminal work [1]. These
results were confirmed yet in another seminal work [2].

In the past few years there was much progress in de-
scribing the experimental results on heavy-flavor produc-
tion. For instance, in a recent work [3] it was shown that a
NLO analysis of the transverse-momentum distributions
does in fact properly describe the latest bottom quark
production data [4] in a surprisingly large kinematical
range. The improvement in the theoretical prediction is
mainly due to advances in the analysis of parton distribu-
tion functions and the QCD coupling constant. We also
point out the progress in dealing with numerically large
mass logarithms that spoil the convergence of the pertur-
bative expansion in the high energy (or small mass) asymp-
totic domain. In this respect we mention the work [5]
where also charm pair production is reconciled with ex-
perimental data. Data on top-quark pair production also
agrees with the NLO prediction within theoretical and
experimental errors (see e.g. Ref. [6]). However, in all of
these NLO calculations there remains, among others, the
problem that the renormalization and factorization scale
dependences render the theoretical predictions to have
much larger uncertainties than today’s standards require.
This calls for a next-to-next-to-leading-order (NNLO) cal-
culation of heavy-quark production in hadronic collisions.
In fact, the scale dependence of the theoretical prediction is

expected to be considerably reduced when NNLO partonic
amplitudes are folded with the available NNLO parton
distributions. For example, by approximating the NNLO
corrections with the fixed-order expansion of the next-to-
leading-log prediction, one finds a projected NNLO scale
uncertainty of about 3% [7], which is below the parton
distribution uncertainty, and in line with the anticipated
experimental error.
Recently there was much activity in the phenomenology

of hadronic heavy-quark pair production in connection
with the Tevatron and the CERN Large Hadron Collider
(LHC), which had its start-up this year. There will be much
experimental effort dedicated to the discovery of the Higgs
boson. There will also be studies of the copious production
of top quarks and other heavy particles, which serve as a
background to Higgs boson searches as well as to possible
new physics beyond the standard model. Therefore, it is
mandatory to reduce the theoretical uncertainty in phe-
nomenological calculations of heavy-quark production
processes as much as possible.
Several years ago the NNLO contributions to hadron

production were calculated by several groups in massless
QCD (see e.g. Ref. [8] and references therein). The com-
pletion of a similar program for processes that involve
massive quarks requires much more dedication, since the
inclusion of an additional mass scale dramatically compli-
cates the whole calculation.
At the lower energies of Tevatron II, top-quark pair

production is dominated by q �q annihilation (85%). The
remaining 15% comes from gluon fusion. At the higher
energies of the LHC, gluon fusion dominates the produc-
tion process (90%) leaving 10% for q �q annihilation (per-
centage figures from Ref. [6]). This shows that both q �q
annihilation and gluon fusion have to be accounted for in
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the calculation of top-quark pair production. Since gluon
fusion makes up the largest part of the heavy-quark pair
production cross section at the LHC, it is important to
reduce renormalization and factorization scale uncertain-
ties in the gluon fusion process as much as possible in view
of the fact that the large uncertainties in the gluonic parton
distribution functions translate to large cross section un-
certainties at the LHC.

There are four classes of contributions that need to be
calculated for the NNLO corrections to the hadronic pro-
duction of heavy-quark pairs. In Fig. 1 we show one
generic diagram each for the four classes of contributions
that need to be calculated for the NNLO corrections to the
gluon-initiated hadroproduction of heavy flavors. The first
class involves the pure two-loop contribution [1(a)], which
has to be folded with the leading-order (LO) Born term.
The second class of diagrams [1(b)] consists of the so-
called one-loop squared contributions (also called loop-by-
loop contributions) arising from the product of one-loop
virtual matrix elements. This is the topic of the present
paper. Further, there are the one-loop gluon emission con-
tributions [1(c)] that are folded with the one-gluon emis-
sion graphs. Finally, there are the squared two-gluon
emission contributions [1(d)] that are purely of tree type.
The corresponding graphs for the quark-initiated processes
are not displayed.

Bits and pieces of the NNLO calculation for hadropro-
duction of heavy flavors are now being assembled. In this
context we would like to mention the recent two-loop
calculation of the heavy-quark vertex form factor [9] that
can be used as one of the many building blocks in the first
class of processes. There is also a very promising numeri-
cal approach applied to the calculation of the pure two-
loop diagrams [10]. Recently, an analytic calculation of a
subclass of the two-loop contributions to q �q ! Q �Q was
published [11]. The authors of Ref. [12] have calculated
the NLO corrections to t�tþ jet production with contribu-
tions from the third class of diagrams. However, this result
needs further subtraction terms in order to allow for an
integration over the full phase space. We would also like to
mention the recent work on the two-loop virtual ampli-
tudes that are valid in the domain of high energy asymp-

totics, where the heavy-quark mass is small compared to
the other large scales. In this calculation [13], mass power
corrections are left out, and only large mass logarithms and
finite terms associated with them are retained. Much work
was also done in relation to the resummation of soft con-
tributions. In this respect we refer the reader to recent
publications where some different approaches to the re-
summation are advocated [7,14].
The authors of the present paper have been involved in a

systematic effort to calculate all the contributions from the
second class of processes, i.e. the one-loop squared con-
tributions. The NNLO one-loop squared amplitudes for the
quark-initiated process were recently presented in
Ref. [15]. In this paper, we report on a calculation of the
NNLO one-loop squared matrix elements for the process
gg ! Q �Q. The calculation is carried out in dimensional
regularization [16] with space-time dimension n ¼
4� 2". We mention that we have presented closed-form,
one-loop squared results for heavy-quark production in the
fusion of real photons in Ref. [17]. With the present paper
the program of calculating the one-loop squared contribu-
tions to heavy-quark pair hadroproduction has now been
completed.
Let us briefly describe some of the main features of the

calculation of the one-loop squared contributions. The
highest singularity in the one-loop amplitudes arises from
infrared (IR) and mass singularities (M) and is thus, in
general, proportional to (1="2). This in turn implies that the
Laurent series expansion of the one-loop amplitudes has to
be taken up to Oð"2Þ when calculating the one-loop
squared contributions. In fact, it is the Oð"2Þ terms in the
Laurent series expansion that really complicate things [18],
since the Oð"2Þ contributions in the one-loop amplitudes
involve a multitude of multiple polylogarithms of maximal
weight and depth 4 [19]. All scalar master integrals needed
in this calculation have been assembled in Refs. [18,19].
Reference [18] gives the results in terms of so-called L
functions, which can be written as one-dimensional inte-
gral representations involving products of log and dilog
functions, while Ref. [19] gives the results in terms of
multiple polylogarithms. The divergent and finite terms
of the one-loop amplitude for gg ! Q �Q were given in

c)

a) b)

d)

FIG. 1. Exemplary gluon fusion diagrams for the NNLO calculation of heavy-hadron production.
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Ref. [20]. The remaining Oð"Þ and Oð"2Þ amplitudes have
been written down in Ref. [21]. We shall rewrite these
matrix elements in a representation more suitable for the
purposes of the present application.

In our presentation, we shall make use of our notation
for the coefficient functions of the relevant scalar one-loop
master integrals calculated up to Oð"2Þ in Refs. [18,19].
For the case of gluon-gluon and quark-antiquark collisions,
one needs all the scalar integrals derived in Refs. [18,19],
e.g. the one scalar one-point function A, the five scalar two-
point functions B1, B2, B3, B4, and B5, the six scalar three-
point functions C1, C2, C3, C4, C5, and C6, and three scalar
four-point functions D1, D2, and D3. Taking the complex
scalar four-point function D2 as an example, we define

successive coefficient functions DðjÞ
2 for the Laurent series

expansion of D2. One has

D2 ¼ iC"ðm2Þ
�
1

"2
Dð�2Þ

2 þ 1

"
Dð�1Þ

2 þDð0Þ
2 þ "Dð1Þ

2

þ "2Dð2Þ
2 þOð"3Þ

�
; (1.1)

where C"ðm2Þ is defined by

C"ðm2Þ � �ð1þ "Þ
ð4�Þ2

�
4��2

m2

�
"
: (1.2)

We use this notation for both the real and imaginary parts
ofD2, i.e. for ReD2 and ImD2. Similar expansions hold for
the scalar one-point function A, the scalar two-point func-
tions Bi, the scalar three-point functions Ci, and the re-
maining four-point functions Di. The coefficient functions
of the various Laurent series expansions were given in
Ref. [18] in the form of so-called L functions, and in
Ref. [19] in terms of multiple polylogarithms of maximal
weight and depth 4. It is then a matter of choice which of
the two representations are used for the numerical evalu-
ation. The numerical evaluation of the L functions in terms
of their one-dimensional integral representations is quite
straightforward using conventional integration routines,
while there exists a very efficient algorithm to numerically
evaluate multiple polylogarithms [22].

Let us briefly summarize the main features of the scalar
master integrals. The master integrals A, B1, B3, B4, C2,
C3, and D3 are real, whereas B2, B5, C1, C4, C5, C6, D1,
and D2 are complex. From the form ðAB� þ BA�Þ ¼
2ðReAReBþ ImA ImBÞ it is clear that the imaginary parts
of the master integrals must be taken into account in the
one-loop squared contribution. The master integrals B2,
B5, C1, C4, C5, and C6 are (t $ u) symmetric, where the
kinematic variables t and u are defined in Sec. II.

This paper is organized as follows. Section II contains an
outline of our general approach and discusses renormal-
ization procedures. Section III presents LO and NLO re-
sults for the gluon fusion subprocess. In Sec. IV, one finds a
discussion of the singularity structure of the NNLO
squared matrix element for the gluon fusion subprocess.

In Sec. V we discuss the structure of the finite part of our
result. Our results are summarized in Sec. VI. In the
Appendices, we present expressions for various coeffi-
cients that are used in Sec. III to write down the NLO
result.

II NOTATION AND RENORMALIZATION

Heavy-flavor hadroproduction proceeds through two
partonic subprocesses: gluon fusion and light-quark-
antiquark annihilation. The first subprocess is the most
challenging one in QCD from a technical point of view.
It has three production topologies already at the Born level
(see Fig. 2). The second subprocess, where there is only
one topology at the Born level, was considered in Ref. [15].
Irrespective of the partons involved, the general kinematics
is, of course, the same in both processes. In particular, for
gluon fusion, Fig. 2, we have

gðp1Þ þ gðp2Þ ! Qðp3Þ þ �Qðp4Þ: (2.1)

The momentum flow directions correspond to the physi-
cal configuration, e.g. p1 and p2 are ingoing whereas p3

and p4 are outgoing. With m being the heavy-quark mass,
we define

s � ðp1 þ p2Þ2; t � T �m2 � ðp1 � p3Þ2 �m2;

u � U�m2 � ðp2 � p3Þ2 �m2; (2.2)

so that one has the energy-momentum conservation rela-
tion sþ tþ u ¼ 0.
We also introduce the overall factor

C ¼ ðg4sC"ðm2ÞÞ2; (2.3)

where gs is the renormalized strong-coupling constant and
C"ðm2Þ is defined in Eq. (1.2).
As was shown e.g. in Refs. [20,21], the self-energy and

vertex diagrams contain ultraviolet (UV), infrared, and
collinear (IR/M) poles after heavy-mass renormalization.
The UV poles need to be regularized.
Our renormalization procedure is carried out in a mixed

renormalization scheme. When dealing with massless
quarks, we work in the modified minimal-subtraction

(MS) scheme, while heavy quarks are renormalized in
the on-shell scheme defined by the following conditions
for the renormalized external heavy-quark self-energy
graphs:

p1 µ

b

p2 ν

a

p3

p4

Q

Q

p1

p2

p1

p2

FIG. 2. The t-, u-, and s-channel LO graphs contributing to the
gluon (curly lines) fusion amplitude. The thick solid lines
correspond to the heavy quarks.
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�rðp6 Þjp6 ¼m ¼ 0;
@

@p6 �rðpÞjp6 ¼m ¼ 0: (2.4)

In the on-shell scheme, the first condition in Eq. (2.4)
ensures that the heavy-quark mass is the pole mass.

For completeness, we list the set of one-loop renormal-
ization constants used in this paper. One has

Z1 ¼ 1þ g2s
"

2

3
fðNC � nlÞC"ð�2Þ � C"ðm2Þg;

Zm ¼ 1� g2sCFC"ðm2Þ 3� 2"

"ð1� 2"Þ ;
Z2 ¼ Zm;

Z1F ¼ Z2 � g2s
"
NCC"ð�2Þ;

Z1f ¼ 1� g2s
"
NCC"ð�2Þ;

Z3 ¼ 1þ g2s
"

��
5

3
NC � 2

3
nl

�
C"ð�2Þ � 2

3
C"ðm2Þ

�

¼ 1þ g2s
"

�
ð�0 � 2NCÞC"ð�2Þ � 2

3
C"ðm2Þ

�
;

Zg ¼ 1� g2s
"

�
�0

2
C"ð�2Þ � 1

3
C"ðm2Þ

�
;

(2.5)

with �0 ¼ ð11NC � 2nlÞ=3 being the first coefficient of
the QCD beta function, nl the number of light quarks,
CF ¼ 4=3, andNC ¼ 3 the number of colors. The arbitrary
mass scale � is the scale at which the renormalization is
carried out. The above renormalization constants renor-
malize the following quantities: Z1 for the three-gluon
vertex, Zm for the heavy-quark mass, Z2 for the heavy-
quark wave function, Z1F for the (Q �Qg) vertex, Z1f for the

(q �qg) vertex, Z3 for the gluon wave function, and Zg for

the strong-coupling constant �s. For the massless quarks,
there is no mass and wave function renormalization.

Let us sketch the two alternative ways of getting the
final one-loop-renormalized amplitude from the mass-
renormalized amplitude:

(i) Take the given mass-renormalized matrix element or
the square of that matrix element and multiply all the
self-energy graphs by a factor 1=2. Then renormalize
the coupling constant in the LO Born amplitude.

(ii) Take the given mass-renormalized matrix element
and apply the corresponding counterterms obtained
from the LO matrix element by inserting the rele-
vant Z� 1 factors into the internal propagators and
vertices. All the renormalization constants we need
are presented in Eq. (2.5). We will get the renormal-

ized vertex function �ðNÞ
R , where ðNÞ denotes the set

of N external particles. The renormalized matrix
element is obtained from

MR ¼ �ðNÞ
R

YN
i¼1

ðZðiÞ
R Þ1=2; (2.6)

where ZðiÞ
R are the residues of the renormalized

propagators at the poles for all the particles under
consideration. They are related to the residues of the
unrenormalized propagators via

ZðiÞ
R ¼ ZðiÞ

U Z�1
i ; (2.7)

where the Zi are the respective external wave func-
tion renormalization constants.

Working at the one-loop order, we note that in the on-

shell scheme ZðiÞ
R ¼ 1. This is a direct consequence of the

second condition in Eq. (2.4), which effectively cuts off the
external massive lines. For the case of external massless

partons ZðiÞ
U ¼ 1. It is important to note that the gluon wave

function renormalization constant Z3 is a mixture of two
parts: the part which multiplies C"ð�2Þ is derived in the

MS scheme, while the last term due to the heavy-quark
loop is derived in the on-shell scheme. For this reason, this
last term has to be omitted in Z3 when using it as an
external field renormalization constant in Eq. (2.7). Since
in our case we have two gluon and two heavy-quark fields,
we therefore obtain

MR ¼ �ðNÞ
R Z�1

3 : (2.8)

The final result should not depend on which of the two
ways has been chosen to do the renormalization. We have
checked that, in both ways, one arrives at the same renor-
malized matrix element.
In order to fix our normalization, we write down the

differential cross section for gg ! Q �Q in terms of the
squared amplitudes jMj2. One has

d�gg!Q �Q ¼ 1

2s

dðPSÞ2
4ð1� "Þ2

1

d2A
jMj2

gg!Q �Q
; (2.9)

where the n-dimensional two-body phase space is given by

dðPSÞ2 ¼ m�2"

8�s

ð4�Þ"
�ð1� "Þ

�
tu� sm2

sm2

��"
�ðsþ tþ uÞdtdu:

(2.10)

We explicitly exhibit the flux factor ð4p1p2Þ�1 ¼ ð2sÞ�1,
and the spin ðn� 2Þ�2 ¼ ð2� 2"Þ�2 and color d�2

A aver-
aging factors for the initial gluons. Here dA ¼ N2

C � 1 ¼ 8
is the dimension of the adjoint representation of the color
group SUðNCÞ.

III. LEADING AND NEXT-TO-LEADING ORDER
RESULTS

At LO for gg ! Q �Q, we shall use a representation
which differs from the one given in Refs. [20,21]. First
note that there are only two independent color structures
for this subprocess. The s-channel matrix element is a sum
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of two parts, each of which is proportional to one of the two
independent color structures. We combine terms with the
same color structures of the three (e.g. s, t, and u) produc-
tion channels. Finally, we remove the heavy-antiquark
momentum p4 using energy-momentum conservation and
use on-shell conditions for the gluons (p1 � �1 ¼ 0 and p2 �
�2 ¼ 0Þ and the heavy quark ( �u3p6 3 ¼ �u3m). We then
obtain the two color-linked LO matrix elements

MLO;t ¼ iTbTaM̂=t; MLO;u ¼ iTaTbM̂=u; (3.1)

with

sM̂ ¼ ��p6 1�
	sþ 2��p	

1 t� 2�	p�
2 t� 2�	p�

3 s

� 2p6 1g
�	t: (3.2)

It can be verified that the function M̂ is t $ u symmetric,
and consequently the color-linked Born amplitudes MLO;t

and MLO;u turn into one another under t $ u.
We then square the full Born matrix element MLO;t þ

MLO;u and do the spin and color sums to obtain the LO

amplitude,

jMj2LO ¼ dA
2

�
CF

s2

tu
� NC

�
jM̂j2 � B; (3.3)

where we have factored out a color-reduced Born term

jM̂j2, which reads

jM̂j2 ¼ 8

�
t2 þ u2

s2
þ 4

m2

s
� 4

m4

tu
�"2

�
1� tu

s2

�
þ"2

�
� B̂:

(3.4)

The expression in Eq. (3.3) for the LO amplitude agrees
with the well-known result in n dimensions (see e.g.
Ref. [2]). Note that, by using the prescription of
Ref. [23], we were able to avoid the introduction of ghost
contributions which would otherwise arise from the square
of the rightmost three-gluon coupling amplitude in Fig. 2.
In our case the prescription of Ref. [23] consists in the use
of on-shell conditions for external gluons, i.e. p1 � �1 ¼ 0
and p2 � �2 ¼ 0, and the exclusion of the heavy-antiquark
momentum via p4 ¼ p1 þ p2 � p3. When squaring am-
plitudes, we sum over the two helicities of the gluons using
the Feynman gauge, i.e. we use

X

¼�1

��ð
Þ�	ð
Þ ¼ �g�	: (3.5)

The use of the framework set up in Ref. [23] has the
advantage in the non-Abelian case that one can omit ghost
contributions when squaring the amplitudes. Using the
above on-shell conditions already at the amplitude level
means that one takes full advantage of the gauge invariance
of the problem when squaring the amplitudes. Thus, in
general, the results for the different channels will not be
identical to the ones which would be obtained using
’t Hooft-Feynman gauge throughout.

Folding the one-loop matrix elements (see Figs. 3 and 4)
with the LO Born term (see Fig. 2), one obtains the virtual
part of the NLO result.
As concerns the one-loop matrix elements, we shall use

the one-loop matrix elements of Refs. [20,21] to compute
the virtual NLO contribution up to Oð"2Þ in terms of the
coefficient functions (1.1) of the scalar master integrals.
However, in Ref. [20], where expressions for the NLO
matrix elements up to Oð"0Þ are given, the values for the
scalar coefficient functions in terms of logarithms and
dilogarithms are substituted directly. Therefore, we had
to recalculate the corresponding expressions from
Ref. [20] for the matrix elements in order to have a uniform
result in terms of scalar coefficient functions. This has
allowed us to retrieve and use relations between coeffi-
cients of the scalar coefficient functions in the result for
different orders of the Laurent series expansion in ". We
will comment on these relations later on.
We also mention that we had to regroup and rearrange

various terms in the one-loop amplitudes from
Refs. [20,21] according to the three independent color
structures in order to bring the pole terms into agreement
with the form suggested in Ref. [24]. In the gluon fusion
case treated here, there are three independent color struc-
tures in the one-loop amplitudes, e.g. TbTa, TaTb, and �ab.
As in the LO case, one also has to exclude the heavy-
antiquark momentum p4 from the one-loop amplitude
expressions. As a result of the above two steps, the pole
terms of our new matrix elements became proportional to
the LO color-linked amplitudes (3.1). In all our subsequent
calculations, we shall use only these matrix elements.
The NLO virtual corrections to heavy-flavor hadropro-

duction have been calculated before for the gg ! Q �Q
case. Nevertheless, one cannot find explicit separate results
for the virtual corrections in the literature although Ref. [2]
provides analytic results for the combined ‘‘virtualþ soft’’
contributions. We have therefore recalculated the virtual
NLO contribution to gg fusion. In fact, we have calculated
the virtual NLO results up to Oð"2Þ. As it turns out, use of
the expressions for the NLO virtual Oð"1Þ and Oð"2Þ
contributions considerably simplify the presentation of
the corresponding NNLO results in as much as they appear
as important building blocks in the NNLO results.
Next we fold the pole, finite, Oð"1Þ and Oð"2Þ terms of

our NLO matrix element with the LO matrix element. In
dimensional regularization, the trace evaluation in n ¼
4� 2" dimensions will lead to terms of order Oð"1Þ and
Oð"2Þ when multiplied with the pole and finite terms, as
well as to the terms of Oð"3Þ and Oð"4Þ when multiplied
with the Oð"1Þ and Oð"2Þ terms of the squared amplitude,
respectively. In the following we will disregard terms of
Oð"3Þ andOð"4Þ as they do not contribute to the finite part
of the NNLO result.
Before presenting our result for the NLO matrix ele-

ment, we would like to comment on its color structure. We
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have decomposed our matrix elements according to the
following three independent color structures:

�ab TrðTaTbÞ ¼ dA
2
; TrðTbTaÞTrðTbTaÞ ¼ dA

2
CF;

TrðTbTaÞTrðTaTbÞ ¼ dA
2

�
CF � NC

2

�
: (3.6)

At NLO, the final spin and color summedmatrix element
can be written as a sum of five terms:

jMj2Loop�Born ¼ g2s
ffiffiffi
C

p
Re

�
1

"2
Wð�2Þð"Þ þ 1

"
Wð�1Þð"Þ

þWð0Þð"Þ þ "Wð1Þð"Þ þ "2Wð2Þð"Þ
�
;

(3.7)

where C has been defined in Eq. (2.3). The notation
jMj2Loop�Born means that one is retaining only the Oð�3

sÞ
part of jMj2.

f1 f2 g1

g2 h i1

i2 j1 j2

FIG. 4. The s-channel one-loop graphs contributing to the
gluon fusion amplitude. Loops with the dotted lines as in g1,
h, j1, and j2 represent the gluon, ghost, and light and heavy
quarks. The four-gluon coupling contribution appears in g2.

a1 a2 a3

a4 b c1

c2 c3 c4

d1 d2 d3

e1 e2

FIG. 3. The t-channel one-loop graphs contributing to the gluon fusion amplitude. Loops with dotted lines represent the gluon, ghost,
and light and heavy quarks.
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The first two coefficient functions in Eq. (3.7) have a
rather simple structure:

Wð�2Þð"Þ ¼ �4NCB;

Wð�1Þð"Þ ¼ dAB̂

�
s2

tu
f� þ

�
CF � NC

2

�
ðft þ fuÞ þ CF

u

t
ft

þ CF

t

u
fu

�
; (3.8)

where B and B̂ are the LO terms defined in Eqs. (3.3) and
(3.4). We have also introduced new functions,

f� ¼ 1

2
ln

s

m2
þ t

s
ln
�t

m2
þ u

s
ln
�u

m2
þ 2m2 � s

2s�
lnx;

ft ¼ NC ln
s

m2
þ 2NC ln

�t

m2
� 2CF � �0

þ ð2CF � NCÞ 2m
2 � s

s�
lnx;

fu ¼ ftjt$u;

(3.9)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

p
is the heavy-quark velocity and

�0 is defined after Eq. (2.5).
One should keep in mind that the overall Born term

factors B and B̂ contain terms multiplied by " and "2.

Therefore, if the expressions for B and B̂, given in

Eqs. (3.3) and (3.4), are substituted in Wð�2Þ and Wð�1Þ,
we will obtain additional Oð"�1Þ and finite terms from the
first two terms of Eq. (3.7).
The third term in Eq. (3.7) reads

Wð0Þð"Þ � Fð0Þ
NLO; (3.10)

where we have constructed the following generic func-
tions:

FðjÞ
NLO ¼ W ðjÞ

1 þW ðjÞ
2 ; (3.11)

with

W ðjÞ
1 ¼ � dA

2

�
s

tu
FðjÞ
1 þ

�
1

u

�
s

t
CF þ NC

2

�
ðFðjÞ

2 þ FðjÞ
3 Þ

þ ðt $ uÞ
��
;

W ðjÞ
2 ¼ � 2B�0

ð1þ jÞ! ln
1þj m

2

�2
:

(3.12)

The three functions F1, F2, and F3 are defined as follows:

FðjÞ
1 ¼ X

I

ðaI þ "að"ÞI þ "2að"
2Þ

I ÞIðjÞ; with IðjÞ ¼ fB2; B5; C1; C2; C2u; C3; C3u; C4; C5; C6; D1; D1u; D2; D2u;D3gðjÞ;

FðjÞ
2 ¼ X

I

ðbI þ "bð"ÞI ÞIðjÞ; with IðjÞ ¼ f1; B2; B5; C1; C4; C5; C6gðjÞ;

FðjÞ
3 ¼ X

I

ðcI þ "cð"ÞI þ "2cð"
2Þ

I ÞIðjÞ; with IðjÞ ¼ f1; B1; B2; B5; C1; C2; C3; C4; C5; C6; D1; D2gðjÞ:

(3.13)

For I ¼ 1 one has IðjÞ � 1, otherwise IðjÞ � BðjÞ
1 , CðjÞ

2

etc. In other words, the summation index I runs over the
scalar integral coefficient functions, while the coefficient
functions aI, a

ð"Þ
I , að"

2Þ
I etc. denote the explicit dependence

on s, t, andm2. These coefficient functions are presented in
Appendix A. Note that index j takes the same value for all
the coefficient functions in Eq. (3.13) as well as in similar
equations that will follow.

The additional subscript ‘‘u’’ in some of the scalar

coefficient functions in the expression for FðjÞ
1 (such as

CðjÞ
2u) is to be understood as an operational definition pre-

scribing a (t $ u) interchange in the argument of that

function, i.e. Cð0Þ
2u ¼ Cð0Þ

2 jt$u etc.

Note that W ðjÞ
2 is only contributed to by the renormal-

ization procedure. Of course, all the remaining Oð"Þ terms

[e.g. Wð1Þð"Þ and Wð2Þð"Þ, as well as those coming from

Wð�1Þð"Þ=" andWð0Þð"Þ] should be disregarded in the NLO
final result in Eq. (3.7). It is important to note that Fð0Þ

NLOj"¼0

is not formally the full finite part of the NLO result in
dimensional regularization, but it results from folding the

finite part of our original NLO matrix element with the LO
one. Another part of the finite result comes from the first
two terms in Eq. (3.7), as mentioned before Eq. (3.10).
However, one should realize that the first two terms in
Eq. (3.7) would be canceled with the corresponding parts
from the real bremsstrahlung diagrams. Given the overall

factor, Eq. (1.2), the term Fð0Þ
NLO evaluated for " ¼ 0 rep-

resents the finite part of the virtual one-loop NLO result.
OurOð"�2Þ,Oð"�1Þ, andOð"0ÞNLO results in Eq. (3.7)

were analytically compared with the corresponding results
obtained in Ref. [1], which were kindly provided to us in a
Schoonschip format by the authors [25]. We obtained
complete agreement.
The fourth term in Eq. (3.7) is a result of folding the

Oð"Þ term of the matrix element with the Born term.
Because of the n-dimensional traces, one also obtains
terms of Oð"2Þ and Oð"3Þ. As mentioned before, we will
only retain terms of Oð"Þ and Oð"2Þ. We have

Wð1Þð"Þ ¼ Fð1Þ
NLO þ Fð0Þ

NLO;"; (3.14)
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where

FðjÞ
NLO;" ¼ dA

�
FðjÞ
4 �

��
CF þNC

2

t

s

�
ðFðjÞ

5 þCFF
ðjÞ
6 þNCF

ðjÞ
7 Þþ ðt$ uÞ

��
: (3.15)

Here

FðjÞ
4 ¼ X

I

ðdð"ÞI þ "dð"
2Þ

I ÞIðjÞ; with IðjÞ ¼ fB2; B5; C1; C2; C2u; C3; C3u; C4; C5; C6; D1; D1u; D2; D2u; D3gðjÞ;

FðjÞ
5 ¼ X

I

ðeð"ÞI þ "eð"
2Þ

I ÞIðjÞ; with IðjÞ ¼ f1; B2; B5; C5gðjÞ;

FðjÞ
6 ¼ X

I

ðgð"ÞI þ "gð"
2Þ

I ÞIðjÞ; with IðjÞ ¼ f1; B1; B2; C2; C5; C6; D1gðjÞ;

FðjÞ
7 ¼ X

I

ðhð"ÞI þ "hð"
2Þ

I ÞIðjÞ; with IðjÞ ¼ f1; B1; B2; B5; C1; C2; C3; C4; C5; C6; D1; D2gðjÞ:

(3.16)

The coefficients dI, eI, gI, hI are presented in Appendix B. Note that the first term in Eq. (3.14) in nothing but the NLO
term of Eq. (3.10) with indices of the coefficient functions of the scalar master integrals and the power of the logarithm that
multiplies �0 shifted upwards by one.

The last term in Eq. (3.7) is a result of folding the Oð"2Þ term of the matrix element with the Born term. Because of the
n-dimensional traces, one also obtains terms of Oð"3Þ and Oð"4Þ, which are omitted as before. For the Oð"2Þ terms we
obtain

Wð2Þð"Þ ¼ Fð2Þ
NLO þ Fð1Þ

NLO;" þ Fð0Þ
NLO;"2

; (3.17)

where

FðjÞ
NLO;"2

¼ dA

�
FðjÞ
8 �

��
CF þ NC

2

t

s

�
ðFðjÞ

9 þ CFF
ðjÞ
10 þ NCF

ðjÞ
11 Þ þ ðt $ uÞ

��
: (3.18)

Here

FðjÞ
8 ¼ X

I

kð"
2Þ

I IðjÞ; with IðjÞ ¼ fC1; C2; C2u; C3; C3u; C4; C5; C6; D1; D1u;D2; D2u; D3gðjÞ;

FðjÞ
9 ¼ X

I

lð"
2Þ

I IðjÞ; with IðjÞ ¼ f1; B2; B5; C5gðjÞ;

FðjÞ
10 ¼ X

I

mð"2Þ
I IðjÞ; with IðjÞ ¼ f1; C2; C5; C6; D1gðjÞ;

FðjÞ
11 ¼ X

I

nð"
2Þ

I IðjÞ; with IðjÞ ¼ f1; B5; C1; C2; C3; C4; C5; C6; D1; D2gðjÞ:

(3.19)

The coefficients kI, lI, mI, nI are presented in Appendix C.
We mention that the functions F1, F4, and F8 are ðt $ uÞ
symmetric.

IV. SINGULARITY STRUCTURE OF THE NNLO
SQUARED AMPLITUDE

The NNLO final spin and color summed squared matrix
element can be written down as a sum of five terms:

1

C
jMj2Loop�Loop ¼ Re

�
1

"4
Vð�4Þð"Þ þ 1

"3
Vð�3Þð"Þ

þ 1

"2
Vð�2Þð"Þ þ 1

"
Vð�1Þð"Þ þ Vð0Þð"Þ

�
;

(4.1)

where C has been defined in Eq. (2.3). Note that Eq. (4.1) is
not a Laurent series expansion in " since the coefficient

functions VðmÞð"Þ are functions of " as explicitly annotated
in Eq. (4.1). It is nevertheless useful to write the NNLO
one-loop squared result in the form of Eq. (4.1) in order to
exhibit the explicit " structures. All five coefficient func-

tions VðmÞð"Þ are bilinear forms in the coefficient functions
that define the Laurent series expansion of the scalar
master integrals (1.1). Some of these coefficient functions
are zero and some of them are just numbers or simple
logarithms. In the latter case, we have substituted these

numbers or logarithms for the coefficient functions VðmÞ in
the five terms above. This has been done for all the scalar
coefficient functions that multiply poles, i.e. for scalar

functions with negative subscripts Ið�2Þ and Ið�1Þ, as well
as for the whole scalar functions AðiÞ, BðiÞ

3 , and BðiÞ
4 .

We found that a significant part of the NNLO results can
be expressed in terms of the " expansion of the NLO
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contribution. In particular, we will need the NLO expan-
sion up to "2. Therefore, in this section, we will make full
use of the results derived in Sec. III.

Before proceeding further, we note that there are no
additional color structures appearing in the NNLO calcu-
lation for gg fusion in addition to the ones already pre-
sented in Eq. (3.6): they are just linear combinations of the
ones in the NLO case. This is in contrast to the q �q sub-
process, where the NNLO color structures exhibit much
higher complexity and richness [15] relative to the NLO
ones.

The two most singular terms in Eq. (4.1) are proportional

to the Born B and color-reduced Born B̂ terms defined in
Eqs. (3.3) and (3.4), respectively. One has

Vð�4Þð"Þ ¼ 4N2
CB; Vð�3Þð"Þ ¼ �2NCW

ð�1Þð"Þ;
(4.2)

where Wð�1Þð"Þ is given in Eq. (3.8) and is nothing but the
full coefficient of the single-pole NLO result.

For the 1="2 term we obtain

Vð�2Þð"Þ ¼ dAB̂

�
s2

tu
jf�j2 þ 1

2
CF

�
u

t
jftj2 þ t

u
jfuj2

�

� sf��
�
1

t
ft þ 1

u
fu

�
þ

�
CF � NC

2

�
f�t fu

�

� 2NCF
ð0Þ
NLO; (4.3)

where the functions f�, ft, and fu above are the same as
those in Eq. (3.9), but now with the imaginary parts re-
tained, i.e. one has the following replacements:

ln
s

m2
! ln

s

m2
� i�; lnx ! lnxþ i�: (4.4)

This reflects the fact that, contrary to the NLO calculation,
one has to keep the imaginary parts in the NNLO calcu-
lation as emphasized in the Introduction. It should be clear
that the completion (4.4) has to be done everywhere in the
NNLO calculation whenever the logarithms (4.4) appear in
bilinear forms multiplying complex functions.

The last term �2NCF
ð0Þ
NLO in Eq. (4.3) is obtained from

folding the Oð"�2Þ singular term of the matrix element
with its finite part, while the remaining parts result from
folding the single poles. Note that when one substitutes the

Laurent expansions for B̂ and Fð0Þ
NLO, one gets additional

1=" poles and finite terms in Eq. (4.3).
The structure of the fourth term in Eq. (4.1) is somewhat

more complicated. One has

Vð�1Þð"Þ ¼ �0

2NC

ln

�
m2

�2

�
Vð�3Þð"Þ þ Sð0Þ

1 � 2NCW
ð1Þð"Þ;

(4.5)

where we have introduced new functions

S ðjÞ
1 ¼ �dA

4

s

tu
ðL�

1F
ðjÞ
1 þ L�

2F
ðjÞ
2 þ L�

2F
ðjÞ
3 þ ðt $ uÞÞ;

(4.6)

with

L1 ¼ 2f� � u

s
ft � t

s
fu;

L2 ¼ 2f� � 2CF

u

s
ft � ð2CF � NCÞ ts fu:

(4.7)

The first two terms in Eq. (4.5) arise from folding the
single-pole terms in the original matrix element with its
finiteOð"0Þ part. The last term is due to the interference of
Oð"�2Þ �Oð"Þ terms in the original matrix element. This
pole term is due to the Laurent series expansion of the
original matrix element and cannot be deduced from the

knowledge of the NLO terms alone. The function Wð1Þð"Þ
is defined in Eq. (3.14), while the functions FðjÞ

1 , FðjÞ
2 , and

FðjÞ
3 are given by Eq. (3.13).

When one substitutes the Laurent expansions for Fð0Þ
1 ,

Fð0Þ
2 , Fð0Þ

3 , and Wð1Þð"Þ, one gets finite and Oð"Þ terms in

Eq. (4.5). However, since we are only interested in the
Laurent series expansion up to the finite term, these Oð"Þ
contributions can be omitted as before.

V. STRUCTURE OF THE FINITE PART

In this section, we present the finite part of our result. In
the course of our calculation, we have made full use of the
results presented in Sec. III, e.g. of our detailed study of the
NLO structure of the Laurent series expansion up toOð"2Þ.
As a consequence, we can present a large part of our results
for the finite part in a surprisingly concise and closed form.
We decompose the finite part into several pieces, as

Vð0Þð"Þ ¼ Re½Vð0Þ
11 þ Vð0Þ

22 þ Vð0Þ
00 �: (5.1)

The first two terms originate from the interference of the
Oð"�1Þ �Oð"Þ and Oð"�2Þ �Oð"2Þ pieces of the initial
matrix element, respectively. Each of them can be conven-
iently presented in a very compact form:

Vð0Þ
11 ¼ dA

2
B̂�0ln

2

�
m2

�2

��
� s2

tu
f� þ

�
s

t
CF þ NC

2

�
ft

þ
�
s

u
CF þ NC

2

�
fu

�
þ Sð1Þ

1 þ Sð0Þ
2 ; (5.2)

where we have introduced one more function,

SðjÞ
2 ¼ dA

�
L�
1F

ðjÞ
4 �

�
L�
2

2
ðFðjÞ

5 þ CFF
ðjÞ
6 þ NCF

ðjÞ
7 Þ

þ ðt $ uÞ
��
; (5.3)

Similarly, for the second term in Eq. (5.1), we write

Vð0Þ
22 ¼ �2NCW

ð2Þð"Þ; (5.4)

withWð2Þð"Þ defined in Eq. (3.17). Note again that theOð"Þ
and Oð"2Þ terms in the above expressions for Vð0Þ

11 and Vð0Þ
22

can be disregarded. We mention that the scalar coefficient
functions with the superscript ‘‘2’’ above involve multiple
polylogarithms of weight and depth 4.
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We emphasize that the quasifactorized forms of all the
expressions given in this paper hold only when one retains
the full " dependence in the Born and NLO terms.

The last term in Eq. (5.1) comes from the square of the
Oð"0Þ term of the matrix element, which can be written as

Vð0Þ
00 ¼ ��0 ln

�
m2

�2

��
Fð0Þ
NLO � 1

2
W ð0Þ

2

�
þ Y; (5.5)

where Fð0Þ
NLO and W ð0Þ

2 are given in Eqs. (3.11) and (3.12).

We found that the last term Y in Eq. (5.5) also possesses the
quasifactorization properties discovered in a recent paper
[15]. For instance, the result can also be written down as a
sum of bilinear products, where each of the factors are
linear combinations of scalar integral coefficient functions
multiplied by some combinations of kinematic variables.
However, because of the great number of Laurent struc-
tures appearing in the original matrix element for the gg
fusion subprocess, the length of the final expressions does
not allow us to present the results in this paper. Also, we
were not able to find the optimal way to organize the
different contributions in Y as in Ref. [15], as not all the
powers of common numerators and denominators cancel
out. Therefore, we have opted to supply the results on the
finite term Y in a separate electronic file.

In the finite contribution of Eq. (5.1), one notices the
interplay of the product of powers of " resulting from the
Laurent series expansion of the scalar integrals [cf. Eq.
(1.1)] on the one hand and powers of " resulting from
doing the spin algebra in dimensional regularization on the
other hand. For example, for the finite part one has a

contribution from Cð�1Þ
6 Bð0Þ�

1 as well as a contribution

from Cð�1Þ
6 Bð1Þ�

1 . Terms of the type Cð�1Þ
6 Bð0Þ�

1 , where the

superscripts corresponding to " powers do not compensate,
would be absent in regularization schemes where traces are
effectively taken in four dimensions, i.e. in the so-called
four-dimensional schemes or in dimensional reduction
(DRED).

We emphasize that all our factorized results given in this
paper [except for the expression for Y in Eq. (5.5)] take up
about 22 Kb of hard disk space. This has to be compared
with the length of the original, untreated FORM output. The
original computer output for the corresponding one-loop
squared cross section of the gg ! Q �Q subprocess turned
out to be very long and took up about 85 MB of hard disk
space. Therefore, the reduction is of the order of 103–104 in
the present case.

As a final remark we want to emphasize that we have
done two independent calculations using REDUCE [26] and
FORM [27] when squaring the one-loop amplitudes. The

results of both calculations agree. Casting the results into
the compact forms presented in this paper was done with
the help of the REDUCE Computer Algebra System.

VI. CONCLUSIONS

We have presented analytical Oð�4
sÞ NNLO results for

the one-loop squared contributions to heavy-quark pair

production in the gluon-gluon fusion reaction. The corre-
sponding result for photon-photon fusion has already been
presented in Ref. [17], while results for the photon-gluon
fusion process can be obtained from Ref. [21] after some
color factor adjustments. As concerns hadroproduction of
heavy quarks, the results of the present paper, together with
a recent publication on q �q production [15], complete the
derivation of the one-loop squared contributions to the
hadroproduction of heavy quarks at NNLO with the
heavy-quark mass dependence fully retained. Our results
form part of the NNLO description of heavy-quark pair
production relevant for the NNLO analysis of ongoing
experiments at the TEVATRON and the LHC.
A large part of our analytical results are presented in a

very compact form. The singular contributions propor-
tional to "�4, "�3, and "�2 are entirely given in terms of
LO and NLO contributions, whereas the "�1 contributions
contain some true NNLO structure in addition to LO and
NLO structures. Since the LO and NLO terms are them-
selves expanded in Laurent series, this implies that our
singular contributions are not true (in a mathematical
sense) Laurent series in ". We believe that our representa-
tion of the singular contributions has structural advantages
in as much as it will be simpler to match our singular
structures onto the singular structures of the other classes
of contributions. Also, our representation is convenient if
one wants to convert our expressions to different regulari-
zation schemes such as DRED (see e.g. Ref. [28]). If needed,
our singular contributions can easily be converted into true
Laurent series expansions since our expressions are very
compact.
Because of our representation of the singular parts, we

obtained quasifactorized expressions for a large part of the
finite contributions. Writing our analytical results in fac-
torized forms led to a reduction of the length of the original
output by a factor of 103–104, which will lead to a dramatic
reduction of the CPU time needed in numerical
evaluations.
The present paper deals with unpolarized gluons in the

initial state and unpolarized heavy quarks in the final state.
Since our results for the original matrix elements contain
the full spin information of the process, an extension to the
polarized case with polarization in the initial state and/or in
the final state including spin correlations would be
possible.
Analytical results in electronic format for the coeffi-

cients given in the Appendices as well as for the term Y
in Eq. (5.5) are readily available [29].
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APPENDIX A

First, we write down a few abbreviations that we use
throughout the paper:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

q
; D ¼ m2s� tu; z2 ¼ sþ 2t;

z2u ¼ sþ 2u; zt ¼ 2m2 þ t; zu ¼ 2m2 þ u:

(A1)

Note that D in Eq. (A1) is not the space-time dimension.
Here we present the expressions for all the coefficients

aI, bI, cI appearing in Eq. (3.13):

aB2
¼ 16D=ðs�2Þ;

aB5
¼ �aB2

;

aC1
¼ 4ð8m4 � z22=sð2m2 � sþ 2m2=�2ÞÞ;

aC2
¼ 8t=sð4m2zt þ 2stþ t2Þ;

aC2u
¼ aC2

ðt $ uÞ;
aC3

¼ 8t=sð4m2zt þ tz2Þ;
aC3u

¼ aC3
ðt $ uÞ;

aC4
¼ 4ð4m2sþ 3s2 � 8tuÞ;

aC5
¼ 4ð8m4 � 3s2 þ 2tuÞ;

aC6
¼ �4�2ð2m2sþ s2 þ 2tuÞ;

aD1
¼ 4ð2m2ð2Dþ szt�

2 � t2�2Þ þ s2t�2 þ t3Þ;
aD1u

¼ aD1
ðt $ uÞ;

aD2
¼ 4ð8m2D� stu�2 þ 2t2=sðt2 þ u2ÞÞ;

aD2u
¼ aD2

ðt $ uÞ;
aD3

¼ 8ð8m2D� 8m4tu=s� stu�2 þ 2t2u2=sÞ; (A2)

að"ÞB2
¼ 4ð2s� z22=ðs�2ÞÞ;

að"ÞB5
¼ �að"ÞB2

;

að"ÞC1
¼ 2ð�2ðs3ð8m2 þ sÞ � 8t2u2Þ=D

þ 16m2=sðs2 þ tuþD=�2Þ;
að"ÞC2

¼ �4t2ð10� t=sð2tu�2 þ 2s2 � 3t2Þ=DÞ;
að"ÞC2u

¼ að"ÞC2
ðt $ uÞ;

að"ÞC3
¼ �4t2ð6� t=sð2tu�2 þ 2s2 � 4st� 5t2Þ=DÞ;

að"ÞC3u
¼ að"ÞC3

ðt $ uÞ;
að"ÞC4

¼ �2ðs3ð2m2 � sÞ � 8tuðm2sþ t2 þ u2ÞÞ=D;

að"ÞC5
¼ 2ð�2ðs3ð6m2 � sÞ þ 4t2u2Þ=Dþ 8s2 � 12m4z22=DÞ;

að"ÞC6
¼ 2ð�2ðs3ð8m2 � sÞ � 4t2u2Þ=D

þ 8m2s� 4m4z22=DÞ;
að"ÞD1

¼ �2tð2s2�2 � s2t�2ð2m2z22=s
2 þ 4m2 þ tÞ=D

þ 2tzt þ 2s2Þ;
að"ÞD1u

¼ að"ÞD1
ðt $ uÞ;

að"ÞD2
¼ �2tð2sðs� uÞ þ t2ðs2 þ 8tu� 8u3=sÞ=DÞ;

að"ÞD2u
¼ að"ÞD2

ðt $ uÞ;
að"ÞD3

¼ 4tuð4s� t2u2=s2ð8m2 � 7sÞ=DÞ; (A3)

að"
2Þ

B2
¼ 0;

að"
2Þ

B5
¼ 0;

að"
2Þ

C1
¼ 8sðs� 2m2z22=DÞ;

að"
2Þ

C2
¼ �8t2ð3u=sþ tðm2 � uÞ=DÞ;

að"
2Þ

C2u
¼ að"

2Þ
C2

ðt $ uÞ;
að"

2Þ
C3

¼ 8t2ð2þ tuð1� 3t=sÞ=DÞ;
að"

2Þ
C3u

¼ að"
2Þ

C3
ðt $ uÞ;

að"
2Þ

C4
¼ �16s2tu=D;

að"
2Þ

C5
¼ �4sðsþ 2m2z22=DÞ;

að"
2Þ

C6
¼ 4sðs� 2m2z22=DÞ;

að"
2Þ

D1
¼ �4stð2m2 � sþ tð�2tuþm2z22=sÞ=DÞ;

að"
2Þ

D1u
¼ að"

2Þ
D1

ðt $ uÞ;
að"

2Þ
D2

¼ 4stðs� 4t2u=DÞ;
að"

2Þ
D2u

¼ að"
2Þ

D2
ðt $ uÞ;

að"
2Þ

D3
¼ �8tuðsþ 3t2u2=ðsDÞÞ; (A4)
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b1 ¼ �16=3z2=sðm2ðnl þ 1Þ þ ð2CF � NCÞ3D=ðs�2Þ
� NCðm2 þD6ð10m2 � sÞ=ðs2�4ÞÞÞ;

bB2
¼ �8z2=s

2ð8m4 � ð2CF � NCÞDð2þ 1=�2ÞÞ;
bB5

¼ �NC8z2ðDð16m2 � sÞ=ðs�4Þ þ tuÞ=s2;
bC1

¼ �NC16m
2Dz2ð8m2 þ sÞ=ðs3�4Þ;

bC4
¼ NC4z2ðD� 2tuÞ=s;

bC5
¼ �32m4z2=s;

bC6
¼ �ð2CF � NCÞ16Dz2ð2m2 � sÞ=s2; (A5)

bð"Þ1 ¼ 16=3z2ðtuðnl þ 1Þ þ ð2CF � NCÞ3D=�2

� NCð36m2D=ðs�4Þ � tuð4m2 � 7sÞ=ðs�2ÞÞÞ=s2;
bð"ÞB2

¼ 8z2ð8m2tu=sþ ð2CF � NCÞð2tu�D=�2ÞÞ=s2;
bð"ÞB5

¼ NC8z2ð3m2z22=ðs�4Þ � 2ðDþ 2m2tu=sÞ=�2Þ=s2;
bð"ÞC1

¼ NC16m
2z2ð3D=�4 þ 2tu=�2Þ=s2;

bð"ÞC4
¼ NC12tuz2=s;

bð"ÞC5
¼ 32m2tuz2=s

2;

bð"ÞC6
¼ �ð2CF � NCÞ16tuz2ð2m2 � sÞ=s2; (A6)

c1 ¼ 16ðCFðD�2ð8m2T=t2 þ 2Þ�Dð6zt=t� 2� t=sÞ
þ 2m2ð4ztðm2=s� 1Þ�m2Þ�Dð1þ 4t=sÞ=�2Þ
�NCðD2m2ð2Dþ tuÞ=ðst2Þ� 2m2tu=s

�D4m2ðsþ 4tÞ=ðs2�2ÞÞÞ=T;
cB1

¼ 16ðCFð2m2�2ðT� 2s�Dð2Tþ tÞ=t2Þ
þDð3zt=tþ t=sÞ� 2m2uð2þ 5t=sÞÞ=T
þNC2DðD=s� tÞ=t2Þ;

cB2
¼ ð2CF �NCÞ16D=ðs�2Þ;

cB5
¼NC8ð�8m2D=ðs2�2Þ� t�2 þ t2z2=s

2Þ;
cC1

¼NC8ðt3 þu3 � 4t2T� sD=�2 � s2�2ðm2 � tÞÞ=s;
cC2

¼�ð2CF �NCÞ16ð2m2z2ðm2s=t� ztÞþ tðs2 þ t2ÞÞ=s;
cC3

¼NC16tð4D=s� t�2 þ sÞ;
cC4

¼NC4ð�s2�2 þ 3z2ðm2s� t2Þ=s� 3suþ 2t2Þ;
cC5

¼ ð2CF �NCÞ8ð2Tð2m2 þ sÞ� u2Þ;
cC6

¼�ð2CF �NCÞ8ð4m2D=s� 4m2t�2 þ 3tzt � z22Þ;
cD1

¼�ð2CF �NCÞ8ðm2s2�4 � 2m2t�2ðs� tÞ
þ st2�2 � t3 � sDÞ;

cD2
¼NC8ð8m2D� stu�2 þ 2t2ðt2 þu2Þ=sÞ; (A7)

cð"Þ1 ¼ 16ðCFðDð16m2D=ðst2Þ � 24m4=t2 þ 4� t=sþ 2t=ðs�2ÞÞ þ 2m2ð4m2 � 6t� 9t2=sÞ
þ 4m2t2z2=ðs2�2ÞÞ=T þ NC2ð2m4s=t2 þ tþDz2=ðstÞ �Dð4m2 þ 3sÞ=ðs2�2Þ þ tz2=ðs�2ÞÞÞ;

cð"ÞB1
¼ 16ðCFð4m4D=t2 � 6TD=t� 2m2D=s� tD=s� 5m2zt þ t2Þ � NCð2m2D2=ðst2Þ þ 2tD=s�m4 þ t2ÞÞ=T;

cð"ÞB2
¼ �ð2CF � NCÞ8tð2þ z2=ðs�2ÞÞ;

cð"ÞB5
¼ NC8ð2D=�2 þ 6m2z2=�

2 � 3t2 � 2t3=sÞ=s;
cð"ÞC1

¼ �NC4ð2m2z22=s� 4s2 � 4t2 � 4m2ð4zt þ tz2=sÞ=�2 þ 2tuztð4sþ 3t2=sþ u2=sÞ=Dþ st2ð2t�2 � z2Þ=DÞ;
cð"ÞC2

¼ ð2CF � NCÞ8ð�2tð6sD� 4m2tu� st2Þ þ 2Dð2m4s=t� szt þDt=s� t2Þ � 4m2t3z2=sÞ=D;

cð"ÞC3
¼ �NC8t

2ð4s=tþ 14� stð4�2 � 8tT=s2 þ 5Þ=DÞ;
cð"ÞC4

¼ �NC4ð2s2 þ 2t3=s� 2suþm2stð9sþ 7tÞ=D� t4ð9þ 8t=sÞ=DÞ;
cð"ÞC5

¼ �ð2CF � NCÞ4ð2m2z22=s� 2t2 � 4s�2ðs�m2tu=DÞ þ t2ð8m2tþ s2Þ=DÞ;
cð"ÞC6

¼ �ð2CF � NCÞ4stð7�2 þ 2u2�2=ðstÞ þ 2s=tþ 5þ �2ð2m2z22=s� 3st� 4t2Þ=DÞ;
cð"ÞD1

¼ �ð2CF � NCÞ4st2ð2s�2=tþ 2s=tþ 2t=sþ 4m4z22=ðs2DÞ � �2ð6m2s� 4m2tu=sþ stÞ=DÞ;
cð"ÞD2

¼ �NC4tð4s2 þ 2stþ t2ðz22 þ 12tu� 8u3=sÞ=DÞ; (A8)
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cð"
2Þ

1 ¼ �16ðCFð2m2ð6D=tþ 4m2 þ tÞ � 4m2ð3Dþ tz2Þ=ðs�2Þ þD=�2Þ=T � NC2ðu� 4m2zu=ðs�2ÞÞÞ;
cð"

2Þ
B1

¼ 16ðCFztð3D=tþ 2m2Þ=T � NC2m
2Þ;

cð"
2Þ

B2
¼ �ð2CF � NCÞ32m2z2=ðs�2Þ;

cð"
2Þ

B5
¼ �NC64m

2z2=ðs�2Þ;
cð"

2Þ
C1

¼ �NC8sð4tþ 2m2tðsþ 4tþ z22=ðs�2ÞÞ=Dþ s=�2Þ;
cð"

2Þ
C2

¼ ð2CF � NCÞ16ð2m2sþ tuþ 2m2tðm2s� t2Þ=DÞ;
cð"

2Þ
C3

¼ NC16tðsþ 2tðm2sþ tuÞ=DÞ;
cð"

2Þ
C4

¼ NC8sðsþ 2tðm2sþ tuÞ=DÞ;
cð"

2Þ
C5

¼ ð2CF � NCÞ8sðu� 2m2tz2=DÞ;
cð"

2Þ
C6

¼ �ð2CF � NCÞ8ð2m2z2ðm2s� t2Þ=Dþ suÞ;
cð"

2Þ
D1

¼ �ð2CF � NCÞ8tðszu þ 2m2tz22=DÞ;
cð"

2Þ
D2

¼ NC8stðs� 4t2u=DÞ: (A9)

APPENDIX B

In this Appendix, we present the expressions for all the
coefficients dI, eI, gI, hI appearing in Eq. (3.16):

dð"ÞB2
¼ 2sð4m2 þ z22=ðs�2ÞÞ=ðtuÞ;

dð"ÞB5
¼ �dð"ÞB2

;

dð"ÞC1
¼ sðs2�2ð8m2sþ s2 þ 2DÞ þ 4s2D

� 16m2D2=ðs�2Þ � 8m4z22Þ=ðtuDÞ;
dð"ÞC2

¼ 2tð2uðDþm2sÞ þ st2 þ �dt=sÞ=ðuDÞ;
dð"ÞC2u

¼ dð"ÞC2
ðt $ uÞ;

dð"ÞC3
¼ �2tð2m2s2 þ st2 � �dt=sÞ=ðuDÞ;

dð"ÞC3u
¼ dð"ÞC3

ðt $ uÞ;
dð"ÞC4

¼ s2ð�d þ 3sD� s2ðm2 � sÞÞ=ðtuDÞ;
dð"ÞC5

¼ �sð�c þ 2m2sz22Þ=ðtuDÞ;
dð"ÞC6

¼ �s�c=ðtuDÞ;
dð"ÞD1

¼ stðz2 þ �2ð�d � s2ðm2 � tÞÞ=DÞ=u;
dð"ÞD1u

¼ dð"ÞD1
ðt $ uÞ;

dð"ÞD2
¼ stð�d þ sDþ s2ðm2 � tÞÞ=ðuDÞ;

dð"ÞD2u
¼ dð"ÞD2

ðt $ uÞ;
dð"ÞD3

¼ 2tu�d=ðsDÞ;
with �c ¼ 4D2 � s�2ð8m2s2 � 8m2tu� s3Þ;

�d ¼ 10m2s2 � 8m2tu� 3stu; (B1)

dð"
2Þ

B2
¼ �8m2z22=ðstu�2Þ;

dð"
2Þ

B5
¼ �dð"

2Þ
B2

;

dð"
2Þ

C1
¼ �sðð22m2s2 � 16m2tuþ s3Þs�2 þ 4m2sD

� 16m2D2=ðs�2ÞÞ=ðtuDÞ;
dð"

2Þ
C2

¼ 2tð6sDþ 4m2sz2 þ t2z2 � �dt=sÞ=ðuDÞ;
dð"

2Þ
C2u

¼ dð"
2Þ

C2
ðt $ uÞ;

dð"
2Þ

C3
¼ �2tð�dt=s� sð2m2s� 2st� t2ÞÞ=ðuDÞ;

dð"
2Þ

C3u
¼ dð"

2Þ
C3

ðt $ uÞ;
dð"

2Þ
C4

¼ �s2ð�d þ sDþ s2ðm2 þ sÞÞ=ðtuDÞ;
dð"

2Þ
C5

¼ �sð�c � 2m2sð4Dþ z22ÞÞ=ðtuDÞ;
dð"

2Þ
C6

¼ �s�c=ðtuDÞ;
dð"

2Þ
D1

¼ stð2uD� �2ð�d � 4stu� st2ÞÞ=ðuDÞ;
dð"

2Þ
D1u

¼ dð"
2Þ

D1
ðt $ uÞ;

dð"
2Þ

D2
¼ �stð�d þ sð2m2s� 2st� t2ÞÞ=ðuDÞ;

dð"
2Þ

D2u
¼ dð"

2Þ
D2

ðt $ uÞ;
dð"

2Þ
D3

¼ �2tu�d=ðsDÞ;
with �c ¼ 4tuDþ s�2ð18m2s2 � 16m2tu� s3Þ;

�d ¼ 18m2s2 � 16m2tuþ stu; (B2)
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eð"Þ1 ¼ 2sðnl þ 1Þ�1�2;

eð"ÞB2
¼ 3ð8m2 þ sÞ�1�2;

eð"ÞB5
¼ 3snl�1�2;

eð"ÞC5
¼ 18m2s�1�2;

eð"
2Þ

1 ¼ eð"Þ1 =�2;

eð"
2Þ

B2
¼ eð"ÞB2

=�2;

eð"
2Þ

B5
¼ eð"ÞB5

=�2;

eð"
2Þ

C5
¼ eð"ÞC5

=�2;

with �1 ¼ 8z2=ð9s2Þ;
�2 ¼ �m2s=ðtuÞ: (B3)

Next, we introduce common factors that appear in the
various coefficients gI and hI. They are multiplied by
one power of " and read

sb2 ¼ 2m2s� tz22=ðs�2Þ;
sc2 ¼ tsc5 � 4m2suD;

sc5 ¼ 2DðDþ sð8m2 þ tÞÞ þ 2st�2ð2m2u� t2Þ þ st2z2;

sc6 ¼ Dð3s�2 þ z2Þ þ �2ð6m2s2 � 8m2tuþ s2tÞ: (B4)

For the coefficients gð"ÞI , we have

gð"Þ1 ¼ 8ð2m2s�2ð4sT2=tþ tzt � 2tuÞ
þDð10m2u� 5szt � 2t2Þ � 2m2tðs2 þ u2Þ
�D26t=ðs�2Þ � 3Dt2z2=ðs�2ÞÞ=ðt2uTÞ;

gð"ÞB1
¼ �8ðDð4m2u� stÞ � t3ð2s�2 þ 3ztÞÞ=ðt2uTÞ;

gð"ÞB2
¼ �8sb2=ðtuÞ;

gð"ÞC2
¼ 8sc2=ðDtuÞ;

gð"ÞC5
¼ 4ssc5=ðDtuÞ;

gð"ÞC6
¼ 4ssc6=ðDuÞ;

gð"ÞD1
¼ �tgð"ÞC6

: (B5)

Finally, we introduce factors that are common to various
coefficients gI and hI that are multiplied by two powers of
":

cb2 ¼ 2m2uþD;

cc2 ¼ 2Dð4m2su� tD� stð17m2 þ 3tÞÞ
� 4st2�2ð2m2u� t2Þ þ st2ð3szt þ 4m2z2Þ;

cc5 ¼ 2Dð20m2s� stþ t2Þ þ 2st�2ð4m2uþ st� 2t2Þ
þ 5st2z2;

cc6 ¼ 2Dðs�2 � uÞ þ �2ð16m2ðs2 � tuÞ þ s2tÞ: (B6)

For the coefficients gð"
2Þ

I , we have

gð"
2Þ

1 ¼ 8ðD212t=ðs�2Þ þD216m2=tþD4ð2szt � tuÞ �Dtð14m2 þ 3tÞ=�2 � 2m2ð12m2s2T=tþ 5t3Þ
� 4m2t2z2=�

2Þ=ðt2uTÞ;
gð"

2Þ
B1

¼ 8ðDð4zt=t2 þ 1=uÞ þ 2m2ðt=u� 2ÞÞ=T;
gð"

2Þ
B2

¼ �16z2cb2=ðstu�2Þ;
gð"

2Þ
C2

¼ 8cc2=ðDtuÞ;
gð"

2Þ
C5

¼ �4scc5=ðDtuÞ;
gð"

2Þ
C6

¼ �4scc6=ðDuÞ;
gð"

2Þ
D1

¼ �tgð"
2Þ

C6
: (B7)

For the remaining coefficients hI, we get
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hð"Þ1 ¼ 8ðtz2ð2m2 þD=ðs�2ÞÞ=�2 �m2ð4sD=t� 2s2 þ tz2=9ÞÞ=ðt2uÞ;
hð"ÞB1

¼ �8ð3m2sþ tz2Þ=ðtuÞ;
hð"ÞB2

¼ 4sb2=ðtuÞ;
hð"ÞB5

¼ 4ð2Dð8m2tþ s2Þ=ðs2�4Þ þ 4=3m2ðs� uÞ � szt=�
2Þ=ðtuÞ;

hð"ÞC1
¼ �2sðs2�4t=Dþ 2s�2ð2m2z2 � tuÞ=D� 8m2s2zt=ðtDÞ �D6=tþ 8tþ 2tz2=ðs�2Þ �D4zt=ðst�4ÞÞ=u;

hð"ÞC2
¼ �4sc2=ðDtuÞ;

hð"ÞC3
¼ 2t=shð"ÞC4

;

hð"ÞC4
¼ 2sð8m2u2=Dþ 4s� stð8m2 þ sÞ=DÞ=u;

hð"ÞC5
¼ �2ssc5=ðDtuÞ;

hð"ÞC6
¼ �2ssc6=ðDuÞ;

hð"ÞD1
¼ �thð"ÞC6

;

hð"ÞD2
¼ �thð"ÞC4

; (B8)

hð"
2Þ

1 ¼ 8ð4m4s2=t� s2zt � 10=9st2 � t3=3� 2=9t4=s

�Dtz2=ðs�4Þ þ tðuz2 þ 8m2=sDÞ=�2Þ=ðt2uÞ;
hð"

2Þ
B1

¼ 16ðDz2 þ t2uÞ=ðt2uÞ;
hð"

2Þ
B2

¼ 8z2cb2=ðstu�2Þ;
hð"

2Þ
B5

¼ �8z2ð4m2D=ðs2�4Þ þ tu=ð3sÞ
� 2m2u=ðs�2ÞÞ=ðtuÞ;

hð"
2Þ

C1
¼ �2sð40m2s=tþ ð8m2su�2 þ 20m2suþ 16m2t2

� s2tÞ=Dþ 2ð2m2s2=tþ 4m2t� s2Þ=ðs�2Þ
þ 8m2D=ðst�4Þ þ 4m2ð1=s2 þ �2=DÞz22=�4Þ=u;

hð"
2Þ

C2
¼ �4cc2=ðDtuÞ;

hð"
2Þ

C3
¼ 2t=shð"

2Þ
C4

;

hð"
2Þ

C4
¼ �2sð20m2s2 þ 4stu�2 þ stz2Þ=ðDuÞ;

hð"
2Þ

C5
¼ 2scc5=ðDtuÞ;

hð"
2Þ

C6
¼ 2scc6=ðDuÞ;

hð"
2Þ

D1
¼ �thð"

2Þ
C6

;

hð"
2Þ

D2
¼ �thð"

2Þ
C4

: (B9)

APPENDIX C

In this Appendix, we present the expressions for all the
coefficients kI, lI, mI, nI appearing in Eq. (3.19) using the
following abbreviations:

�c1 ¼ �s�2ð18m2s2 � s3 þ 2ð2m2 þ sÞz22Þ � 8m2sD;

�c6 ¼ �s�2z22 þ 16sDþ 6stu: (C1)

We have

kð"
2Þ

C1
¼ �s�c1=ðtuDÞ;

kð"
2Þ

C2
¼ 2tð�c6t=sþ 2m2su� s2zt þ t3Þ=ðuDÞ;

kð"
2Þ

C2u
¼ kð"

2Þ
C2

ðt $ uÞ;
kð"

2Þ
C3

¼ 2t2ð�c6=sþ 2s2 þ u2Þ=ðuDÞ;
kð"

2Þ
C3u

¼ kð"
2Þ

C3
ðt $ uÞ;

kð"
2Þ

C4
¼ s2ð�c6 þ 2sðu2 � stÞÞ=ðtuDÞ;

kð"
2Þ

C5
¼ �sð�c1 � 2s2ð2D� tu�2 � z22ÞÞ=ðtuDÞ;

kð"
2Þ

C6
¼ s2�2�c6=ðtuDÞ;

kð"
2Þ

D1
¼ st�2ð�c6 � suz2Þ=ðuDÞ;

kð"
2Þ

D1u
¼ kð"

2Þ
D1

ðt $ uÞ;
kð"

2Þ
D2

¼ stð�c6 þ s3 � s2tÞ=ðuDÞ;
kð"

2Þ
D2u

¼ kð"
2Þ

D2
ðt $ uÞ;

kð"
2Þ

D3
¼ 2tuð�c6=s� stþ u2Þ=D; (C2)

lð"
2Þ

1 ¼ 4=3sðnl þ 1Þ�1�2;

lð"
2Þ

B2
¼ ð16m2 þ 5sÞ�1�2;

lð"
2Þ

B5
¼ 5snl�1�2;

lð"
2Þ

C5
¼ 18m2s�1�2; (C3)
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mð"2Þ
1 ¼ 32ð2m2ð2m2u2=t2 � s2=tþ 2t� 8DT=t2Þ

� s�2ð2D=tþm2Þ þD4U=ðs�2ÞÞ=ðtuÞ;
mð"2Þ

C2
¼ 2zt=ðs�2Þmð"2Þ

C6
;

mð"2Þ
C5

¼ zt=ðt�2Þmð"2Þ
C6

;

mð"2Þ
C6

¼ 4s�2ð�c6=u� sz2Þ=D;

mð"2Þ
D1

¼ �tmð"2Þ
C6

; (C4)

nð"
2Þ

1 ¼ �16m2ð18s2zt=t2 þ 82=3sþ 2=3t� 9sz2=ðs�2Þ
þ 144zuD=ðs2�4ÞÞ=ð9tuÞ;

nð"
2Þ

B5
¼ 16m2z2=ð9tuÞ;

nð"
2Þ

C1
¼ zt=tn

ð"2Þ
C4

;

nð"
2Þ

C2
¼ 2zt=ðs�2Þnð"2ÞC6

;

nð"
2Þ

C3
¼ 2t=snð"

2Þ
C4

;

nð"
2Þ

C4
¼ 2sð�c6 þ s3 � s2tÞ=ðDuÞ;

nð"
2Þ

C5
¼ zt=ðt�2Þnð"2ÞC6

;

nð"
2Þ

C6
¼ �2s�2ð�c6 � suz2Þ=ðDuÞ;

nð"
2Þ

D1
¼ �tnð"

2Þ
C6

;

nð"
2Þ

D2
¼ �tnð"

2Þ
C4

: (C5)
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