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ABSTRACT

-

We investigate in canonical field theory the possibility that quarks may

exist in isolation as very heavy particles, Mquark >> 1 GeV, yet form strongly

hadron

to scalar gluons we find that a mechanism exists for the formation of bound states

bound hadronic states, M ~ 1 GeV. In a model with Spin% quarks coupled
which are much lighter than the free constituents. Following Nambu, a color
interaction mediated by gauge vector mesons is introduced to guarantee that all
states with non-vanishing triality have masses much larger than 1 GeV. The
possibility of such a solution to a strongly coupled field theory is exhibited by a
calculation employing the variational principle in tree approximation. This pro-
cedure reduces the field theoretical problem to a set of coupled differential
equations for classical fields which are just the free parameters of the variational
state. A striking property of the solution is that the quark wave function is con-
fined to a thin shell at the surface of the hadronic bound state. Though the
quantum corrections to this procedure remain to be investigated systematically,
we explore some of the phenomenological implications of the trial wave functions
so obtained. In particular, we exhibit the low-lying meson and baryon multiplets
of SU(6); their magnetic moments, charge radii, and radiative dé(;ays; and the
axial charge of the baryons.

States of non-vanishing momenta are constructed and the softness of the
hadron shell to deformations in scattering processes is discussed qualitatively
along with the implications for deep inelastic electron scattering and dual resonance

models.



I. Introduction

'I_‘I_ie idea of quark constituents has been of very great impor;ta(nce in providing
a simple, concrete model for describing and predicting the low-lying quantum
states of hadrons and their observed proper’cies.,_1 Despite the successes of the
quark model, one is puzzled as to Why we do not see quarks. Are they non-existent
as is‘olated observable particles; or, once isolated from the extremely strong forces
that bind them as effectively light and non-relativistic constituents within hadronic
matter of zero triality, are they very heavy so that their production thresholds lie
beyond present accelerator energies?

Another puzzling feature of the quark model is the question of quark statistics.
For example, the successful SU(6) classification of the ground state and low-lying
spectrum for baryons is derived on the assumption that the three quarks bind in a
totally symmetric state in space, spin, and SU(3) coordinates. To account for
this apparent conflict with the requirement of antisymmetry for a state of three
spin 1/2 fermions, an additional quantum number, labelled "'color, " is introduced. 2
It is then assumed that physical hadron states are color singlets—i.e., totally anti-
symmetric in the color quantum number for the three quarks (one red, one white,
and one blue) forming the baryon.

The motivation of the present work is to construct a canoniéél field theoretic
model which accommodates these ideas and successes of the quark model in a con-
sistent, systematic, and calculable way. We introduce quarks as the quanta of the
fields and assume there are nine quarks—an SU(3) triplet for each of the three-
color states that form an SU(3)' of color. The non-appearance of quarks will be
interpreted in terms of a heavy mass for '"bare quarks" ( > 1 GeV). The large
quark "bare mass' results from the strong coupling of the quark field with a

neutral scalar field. This interaction provides the attraction binding quarks into
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bound states With masses corresponding to observed hadronic spéctra. Formation
of the bound state is traced in our approach to the "unconventional" dynamics of

t_ile sca?ar field which is specified so as to produce "spontaneous breakdown' of an
underlying symmetry of the Hamiltonian. A strong color interaction mediated by
gauge vector bosoﬁs pushes the non-singlet colorﬁ states up to very high energies

> 1 GeV while leaving the color singlet states alone. Hadrons are formed as low-
lying bound states of quarks in color singlet, or zero triality, states. Our color
singlet selection rule is thus an approximate one, as is the rule for non-appearance
of bare quarks since these unwanted states have high mass. In contrast to the stan-
dard parton model3 approach which conceives of the nucleon as built of effectively
free and light constituents in order to explain Bjorken scaling but rationalizes the
embarrassment of unobserved partons, we first tackle here, using canonical field
theory, the puzzle of unseen quarks. Whether our resolution of this problem can ex-
plain why scaling is observed remains to be studied.

Evidently the problem of constructing bound states in a canonical field theory
with strong couplings is a very difficult one. The progress we are reporting in this
paper is based on a variational approach—i.e., we guess a trial form for the ground
states and minimize the energy by a variational principle calculation. %

The coupled classical field equations for the quark wave functions and the interacting
fields so constructed are solved and the states so constructed have much lower ener-
gies than do the free bare quarks. In this way, we find unusual bound states in the
strong coupling case tlgat are inaccessible to a straightforward order-by-order per-
turbation approach. We view this approach as a first approximation to a solution of
the strong coupling problem. Its justification will ultimately rest on the systematic

analysis of corrections to our variational ""guess' for the form of the nucleon ground

state. Such an anlysis is not included in the present work. In this paper, we report
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on the construction of low-lying bound hadronic states and the api)lication of our
fqrmalism to calculating physical quantities such as magnetic dii)oIIe transition
amplitudes, the axial charge renormalization, and the charge radius of the hadron.

What emerges from our analysis is a picturei of composite hadrons whose lowest
mass configurations coincide with the L =0, 35 of mesons and L. = 0, 56 of baryons
predicted by the quark model. We reproduce the usual SU(6) results for the ratio
of proton to neutron magnetic moments up/ by =" 3/2 and for the ratio of rates for
baryonic electromagnetic (M1) transitions such as A+ —p + ¥ and mesonic M1
transitions such as w —> 1" + ¥ .

We are also led to a prediction for the proton magnetic moment that is in close
accord with its experimental value—i.e., we calculate p.p ~ 3(e/2M) where M is
the ground state mass of the baryon 56, there being no breaking of the basic SU(6)

or SU(3) symmetry in our model. The experimental proton moment is Fp =
_ expt
2.79 (e/2 Mp)o The ""radius" of a meson constructed of a qq pair is found to be

(2/3)1/3

of the radius of a baryon formed by a qqq color singlet state. This same

factor of (2/3) 1/3

corrects the ratio of their magnetic dipole transition moments
relative to the naive quark model. Although one cannot attach any real significance
to such a factor while at the same time ignoring major mass splittings, it is dif-

/3= .76 to

ficult to avoid commenting on the fact that a correction factor of (2/ 3)2
the naive quark model brings the calculated rate for w — ° + ¥ into close agree-
ment with experiment (F o = 890 keV).. The mean squared charge radii
W T +Y
for the proton and the neutron are 0.7 fm and 0, respectively.
We have also computed the value of the axial charge tobe g AT 5/9 which is
less than 1/2 the observed value, 1.25. However, we do not know whether this

unsatisfactory result is an argument against models of this type because the models

being studied do not incorporate PCAC. This is evident from the fact that the = and p
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mesons are degenerate although the 7 should be a Goldstone bos(;n associated with
chiralﬁsymmetry,. Whether or not proper inclusion of PCAC will ‘sufficiently modify
the axial current in this model is an open question. In Section X, we discuss this
and other sensitivities of our approach. In particular, the use of the variational
principle and of the trial. bound stafes for evaluating physical matrix elements as
well as the neglect of quantum corrections to the tree approximation have led to
considerable simplification of the quantum field theory. The accuracy of this ap-

proach in the strong coupling region remains to be systematically studied.

1I. Intuitive Picture and Survey of Results

This section of the paper is intended to present the basic idea of our approach
with emphasis on the intuitive ideas and away from the formal aspects. It will also
serve as a compendium of our results and as a guide to the remaining sections.

* (A) Intuitive picture of a quark bound state

Before introducing the gauge vector mesons and the "color" interaction along
the general lines first presented by Nambu, 6 we want to show how the strong inter-
action of an elementary quark (fermion) field with a self-coupled scalar field can
lead to a low mass bound-state.

The basic idea of our approach is illustrated by the following simple semi-

-classical model. This model was also discussed by Vinciarelli,7 Consider a quark

described by wave function ¥ interacting with a neutral scalar field ¢ with the

H

Hamiltonian
, 3
H' = fd X H (X)
it 1 2 2 2\2
s = o (2 +Gpop+ 1 6%+ 1 [T0]? i(o? - £2) (2.1)

where G, H > 1 are large dimensionless coupling constants, and f has the dimension
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of a Iﬁasso The form of the quartic self-interaction term exhibité;"the invariance
of the theory under the discrete transformation ¢ — -¢ . In a quantum field
theory description, Eq. (2.1) describes a spontaneously broken theory and ¢ has
a non-vimishing vacuum expectation value. In the vacuum the field, o, takes one
of. two values, +f. Small vibrations about one of these ground states are usually
studied by making the translation ¢ —» ¢' = ¢ + f. One readily finds that the

small. ¢-vibrations have the mass m2 = 8Hf2 and the small Y—vibrations have

(44
mass IVIQ = Gf. By assumption, the bare quark mass is
MQ=Gf > 1GeV . (2.2)

Qur choice of the specific Hamiltonian (2.1) is arbitrary. We consider it as
typical of a class of renormalizable field theories exhibiting spontaneous break-
down. A wider class without spontaneous breakdown is described in the Appendix.

Our key question is, "Do these theories also have quark states with much
lower energy than indicated by the bare quark mass?"

For the purpose of developing an intuitive picture of non-perturbative solu-
tions to the field equations, we approach this problem classically although this is
no longer a purely classical question when fermions are present. The point is that

in the one-fermion sector when the charge
), 3
Q= f WT vd x

has unit eigenvalue we are solving a Dirac equation for the quark in the presence

of a scalar potential ¢ . We are faced with the usual question of negative energy

states and must specify that all the negative energy states in the presence of this poten- |
tial are filled, and then focus:our attention on the lowest positive energy eigenvalue.
Since we are solving for the quark energy in a scalar potential, there is no Klein

paradox of the familiar type encountered in the presence of strong, sharp vector

potentials and therefore no ambiguity in identifying and interpreting the desired

positive energy "one-particle" solutions.



We proceed classically therefore with Q = 1. Classically, we expect that the
quark wave function and the field amplitude ¢ will avoid one another as indicated
in Fig? 1, so as to escape the high mass energy (Eq. 2.2).

The importance of this effect increases with the magnitude of MQ = Gf. At the
same time, working against the formation of suc-h a hole into‘ which the quark will
trap itself are the energies associated with the curvature of the localized quark
wave function, with the curvature of the o -field as it changes its value, and the
energy associated with the potential term H (02 - f2>2 extending over the volume
where 0 # £ f. As a simple illustrative example of how these contributions balance,
consider a potential as in Fig. 1 with ¢ — 0 within a volume of radius R. Denoting

by D the thickness of the shell in which the ¢ -field amplitude falls from +f to 0, we

have for the energies contributing to Eq. (2.1):

I!IJT (2. 3)

f—%— [Fol? a®x ~ 1 &/0)? 47”%D (2.4)
2 2\2

fH(a -f) &Px ~ HE [—R +47TkR D] (2.5)

where the estimate (Eq. 2.3) follows from the uncertainty principle and k ~ 1 is
a shape dependent number. The energy of this configuration is given by the sum

of (2.3), (2.4), and (2.5)

E(R,D) ~ = +27R2E2/D + HET [4“R3+41rk3 D] (2. 6)
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Minimizing with respect to D and R, we find a surface thickness éiven dimensionally
by

OE - 1/2
6D~0 2> D 1/HY “f

1/2

and f H' " f » 1/R, ioeo‘, if the volume energy dominates the surface energy, then

OE _ 1/4
_6-R— 0 =2 R ~ l/H f

Hence the lowest possible energy is given by

E = min E(R, D) =—3% ~ tgl/4 (2.7

In this case

-1/4

D/R ~ H <1 (2.8)

which is consistent with a thin transition shell region in the strqng coupling limit.
Comparing with (2.2), we see that a localized bound state is formed if
G >» H1/4° By Eq. (2.8), we see that we are in the strong coupling domain.
According to Fig. 1, the quark moves as a free massless quantum within the
sharp well boundaries, suggesting some of the popular quark-parton model ideas.
However, as we shall see in Section IV, the treatment as described above is much
too naive and crude, although it illustrates the basic idea. We shall learn from a
more systematic and careful treatment of Hamiltonian (2. 1) in the following sec-
tions that what actually emerges for the classical theory is a thin shell model of
the hadron with the fieid rapi@ly changing from ¢ = +{ outside to ¢ = -f in a region

of thickness D ~ « R, and with the quark confined to a thin shell within a

1
1/2

Hl/ «f

1/4

distance 1/Gf of R. The energy in this case is E ~ H1/6f rather than the H™ ~° f

found in Eq. (2.7). This solution is illustrated in Fig. 2.
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(B) Highlights of subsequent developments

In Section III, we show how one can reduce the quantum fiefd theory problem
;)f find‘ihng bound states to just the type of classical problem that we have considered
above. The method we discuss is to quantize the theory defined by Eq.(2.1)
at time t = 0 by canonical methods. We then conistruct a Fock space state, ls) ,

as a'trial state with the property

Qs> = [ (2.9)
and show that

(s|Hfs) < af . (2.10)

Our purpose in this discussion is to show (i) how, for a particular class of varia-
tional states, our problem reduces in "tree'" approximation to the classical problem,
and (ii) to demonstrate in a systematic development all the approximations involved
in reducing our problem to a classical one, pointing out what we feel are the im-
portant unanswered questions. These will involve questions of normal ordering
and corrections to the tree approximation.

Section IV is devoted to actually solving the classical problem in detail. Fol-
lowing the analogy to the polaron problem that was referred to earlier (2.4), the
trial state Is) for the variational calculation is formed as a product of a coherent
boson state and of a single quark state constructed in a basis whose coefficients
are the localized wave functions in the self-consistent scalar potential; i.e., we

write

(—ifg‘(x) c'r(x)dsx
sdD = e B(‘; [01.> (2.11)

where the quark field expansion in terms of particle annihilation and anti-particle

creation operators Boz and DL, respectively, is
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W) = 20; |8, U, (@ + D}, v, ) X (2.12)
:and the orthonormality relations
(1t 3.
) Ua(x) UB(X)d X = 6043
(2.13)
(o 9 V.9 d®x =0
JUg (0 Vg0 a”x

are required if the Bd and Da are to satisfy the usual anti-commutation rules:

1Ba> Bg{ = dap

and Da's, though not translationally invariant since the localized states are not

, etc. IOL) is a '"no particle" state annihilated by the Ba's

momentum eigenstates. The classical field g(x) in Eq. (2.11) is the local expecta-
tion value of o(x) in the state |s) ; viz., {s{o(x)|s) =g(x). .The coupled clas-
sical differential equations satisfied by the field g(x) and the quark ground state
function UO = X derived from (2.1) and (2.11) by requiring that {s lI=I|s)

be stationary with respect to variations of g and X are:

vig -4Hg@E? -2 = GXX , (2.14)

and

<°7'i€,+(;3g)x =eX (2.15)

& appears as a Lagrahge mgltiplier since our trial state is normalized to
fXTX d3x =1 by (2.13). The solution of these coupled classical equations gives
the lowest ground state energy consistent with the form of our trial state Is) in

Eq. (2,11). As usual in dealing with the Dirac equation, there is no "lowest
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energy' because of the negative energy spectrum as commented ﬁpon in the intro-
duction. Here, in referring to the lowest energy state, we make the usual assump-
‘_cion that the negative energy states are filled and X is the lowest positive energy
state. In Section IV, we implement this restriction and exhibit a solution (free of
Klein paradoxes since the potential g(x) is scalaf)o

Thé solutions of these equations exhibit the properties described in the intro-

duction. The solution of Eq. (2.14) leading to a bound state is a step-like spherical

potential
g = ftanh 2H f(r-R) {1+0 (HI/G/G>§ (2.16)
A lower bound on
G » gt/" (2.17)

is required to ensure this bound state to be of lower energy than that of a free

quark of mass M = Gf. This solution is illustrated in Fig. 2 with the quark con-

Q
fined to a thin shell of thickness D ~ 1/Gf about R. In order to show simply and
explicitly how these features of the solution emerge, we present the exact solution
(discovered by C. K. Lee) to our coupled field equations in 1-space, 1-time
dimension. 8 This simple example contains all essential features of the general

problem.

In this case, we have to solve the coupled equations

¥

2
dd = g(0 - 4Hg (g% - 1%) = G XX(x) | (2. 18)
X

and

[ll « %{ + Gﬁg(X)J X (x) = X (2.19)
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There being no spin in 1~space dimension, we have the two-component form for

X(x)

-

Xx) = (2.20)
Xy ()

and choose a convenient representation in terms of Pauli matrices

First observe that if we set GXX = 0 in Eq. (2.18), then the resulting equation

admits the exact solution
g(x) = ftanh V2H I (x - xp) ‘ (2.21)

If we now consider this as the input potential, we find that Eq. (2.19) then

admits the exact solution

-G/~2H (1)

X (x) = Njcosh~/2H f(x - x) i (2.22)

with & = 0. Now, using Eq. (2.22) to compute XX = XTﬁx, we find XX =0, and
so Eq. (2.21) and (2.22) provide exact solutions to the coupled equations. The
general form of this solution is shown in Fig. 2 and it is obvious that as

G/+/2H — o0, the quark is confined to a narrower and narrowéf regiong; never-
theless, one sees that the total energy corresponding to the quark part of the
Hamiltonian manages to be & = 0. To see why this is so, let us examine the two
contributions to the energy of the quark. Since XX =0, the integral for the mass

term vanishes:

G f)'(‘(x)x(x)g(x)dx =0 (2.29)
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Secondly, since the upper and lower components of X have the same slope in x,

the kinetic energy term also vanishes:

e

T

XNwed xm =0 (2.24)

2

e~ [ax[L(38)
=2Hf(z_ 212
g f) dx (2.25)

+H(g2 —f2>2+ XJr (—10—‘ —3—}-{- +G,8g>X:|

= 8/32H £

So long as

Gf » J2H £ (2. 26)

the lowest energy state in the one-quark sector, Q = fXT X dx =1, isnot a
free "bare' quark but a localized bound state.
Of primary interest to us here are which features of this 1-plus, 1-dimensional,

solution persist in the four-dimension case. Near r = R, Eq. (2.22) becomes for

e 2 Vi)

o) (2.27)

X(?)=N[cosh\/2H f(r—R)J_G/\/éﬁ /2, m

where ¢ (1+/)2 m is the standard two-component angular solution j = 1/2 and £ = 0,

t]
. (+) - <1> " (1) - (0) X X o1 s X
i.e., ¢1/2’ 1/2 0 and ¢1/2, ~1/2 1) X (r) is dropping with increasing
r - R at the same rate as for X(x) in Eq. (2.22). This behavior does not persist
all the way to r = 0 due to the correction terms indicated above but it does persist

until X (r) has become negligibly small, as will be shown in Section IV. The
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solution for g(r), Eq. (2.16), is similar to Eq. (2.21). This form is nearly exact
at r = 0 and r = o0 and is modified only slightly near r = R.
Int?oducing Eq. (2.27) into Eq. (2.3) to evaluate the quark kinetic energy,
we find readily 1/R. This difference from the vanishing result in Eq. (2.24) comes
from the correctioﬁ terms in Eq. (2.27), which glive the upper and lower components
of the Wave function slightly different radial dependences. Due to these terms, it is
no longer true that X x = 0 for all r and, therefore, we also find a correction to

Eq.(2.23), What is true, however, is that XX « XTX in the four-dimensional

case as readily deduced from Eq. (2.27) and, therefore,

G fX—X gd°x <<%{ (2.28)

Hence quark confinement in a thin shell leads only to an ~ 1/R contribution to the

energy. Finally, we note that the inequality (2. 26) becomes
H1/6f «< Gf (2.29)

for a tightly bound state.

So far, we have considered localized bound quark solutions at rest. In Section
V, we extend our solution by constructing variational states with arbitrary non-
vanishing average three-momentum. Formally we do this by guessing a form for
the trial state in our Fock space that allows the packet to move in time. Further

we include the constraint that

i —0 —
s, | P p|5v> = 7 (2.30)

in performing the variation to minimize the energy. The states so constructed

preserve the required relation between energy and momentum,
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E=M/\1-v and pP=MV/\Vy1-v" (2.31)
or -
2 = 0op 2 2 2 2
§<sv|1=1|sv>§ - {(svlp |sv> =E"-P" =M (2.32)

where v is the velocity of the bound state. The potential exhibits a Lorentz con-

traction along the direction of motion, viz.:

Sy (Xu ’ XL) -8 <7X|| ’ Xl) (2.33)

where g, denotes the potential for a moving state with velocity v, v = 1/ \/1 - v2 s

and g is the solution for a state at rest. The transformation for the quark state is
i@vvx"

Xy (Xn’ X.L> :S(A)X<7Xu’ Xl>e (2.34)
where S (A) is the familiar spinor transformation matrix and & is the quark energy
in the rest state given by Eq. (2.158). .

The further problem of constructing actual momentum eigenstates along with its
attendant complexities are discussed in Section IX,

Having come this far with a satisfactory single quark state, in Section VI
we extend our scheme to the construction of multi-quark states and study the
spectrum of hadrons seen in nature. The thrust of the argument presented in
this section is to answer the question, "If a single quark prefers to dig a hole in
the vacuum and trap itself, what happens if one has two or more quarks or quark-
antiquark pairs?'" Our approach is to construct trial states as in Eq. (2.12) with
several quarks present in the‘self—consistently produced potential g(x). Thus, as in
the Hartree-Fock approximation for atoms, the quarks don't interact directly with

one another but via their average binding field produced self-consistently. Formally
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this means that we must do a variational calculation of the sort just discussed,

except that now

-

2
E=n¢& +fd3x2%|6’g|2+ﬂ(g2-f2> } (2. 35)

where n stands for the number of (anti-) quarks in the ground state of the poten-
tial g. If we make the same substitutions as in the one quark case for the g of

Fig. 2, we obtain for the energy

E®,D)= 2 + 47R%D (21/D)% + HEY 47kR®D (2. 36)

a
R
where now n denotes the n-quark sector. Minimizing E(R, D) with respect to

R and D yields

Rn=n1/3R0 ~ nl/3 1/tH

1/6 (2.37)

and therefore

E=n2/3 E, ' (2.38)

where RO and E0 denote the results of doing the one-quark calculation. One im-
mediate consequence of Eq. (2.38) is that the ratio of the mean mass of the ground
state meson 0_§§_ to the baryon 0+@ is predicted to be (2/ 3)2/ 3. The experimental

1/3 and the ground state enefgy o nz/3

significance of the hadron size being « n
are discussed in Section VIII in detail.

In order to proceed beyond this construction of multi-quark st;sltes to the clas-
sification of physical hadron étates, we need to introduce "color.!" In particular, a
qqq ground state for baryons will be totally symmetric in space coordinates with

each quark in an £ = 0 symmetric s state. It must also be symmetric in spin if we

are to achieve an approximate SU(6) symmetry with an L = 0 56 baryon ground state.
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Therefore, antisymmetrization in a "color' quantum number is required. 2 Fur-
thermore, a color interaction must be introduced in order to raise the energies
of all non-color singlet bound states not yet observed among the low-lying ground
.states in nature. 6

Section VII is devoted to a discussion of the -Way in which the introduction of
gauge fields coupled to the ""color" of a quark can accomplish this purpose and
reproduce the desired classification. The basic idea follows the original observa-
tion of Naurnbu6 that if colored quarks interact via colored gauge fields, then the
interaction will be attractive for color singlet states and repulsive for color non-
singlets (in the case of states made of particles belonging to a color triplet). What
we do is adapt this argument to our self-consistent calculation in o‘rder to show how in
this scheme only color singlet states remain with hadronic masses while all non-
singlets are pushed up in energy. Leaving the discussion of true "color'" —which
corresponds to a non-Abelian theory—éside for the moment, we can here give a
good idea of what is going on by highlighting the main ideas for the simpler abelian
case. The detailed presentation both for Abelian and non-Abelian vector gauge inter-
actions is presented in Section VII.

The extension which we make of the theory we started with is to introduce a
gauge field X“ and a complex Higgs field ¢ so that our theory is described by a

Lagrangian of the form

7=} @5 - 9% |, r10m,)o] o 10x)e]
_H (q,*iqb g f'2>2 v 3 (aua)z _H(o? - fz)z (2.39)

v §ivh o, + ¥ty -ca)d

As before, at the classical level (tree approximation), this theory is one in which
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the vacuum state has (o) = #fand {(¢) ==f'. Hence, substituting ¢ — ¢ + f
and mod ¢ —» mod ¢ + f', we obtain a theory which describes the'following roster
of "bau;e particles': A o- meson of m?,: 8f2 H, a fermion of mass MQ =Gf, a
]23 = 252 f'z. Choosing

G, H, H', and { so that all bare quanta are very heavy, we can then, for the same

¢-meson of m?b = 4f‘2H', and a massive vector of mass m

reasons discussed in Section III, reduce our problem to that of finding stationary

points of the classical energy

1=

E= <S'|I=I|S'>= d3x[§ % (g +J—f| <§2+B§)

Nh—a
/-\

2
+2 Tt @ 202 LT () (2.40)

—_ =
[

*V +GRg +{d - B>X}

+XT<

where E is the classical electric -type field associated with the vector potential

X“, B is the associated vector potential, and B0 is defined as

B, = L 5 (V- E - extxy (2.41)

SECEINEES

We have in this manner reduced the problem to the classical form of the inter-
action of massive vector "electric' and "magnetic' fields of color in interaction

with a color charge density

: o0 = X'x (2. 42)
and current density
T = xTax (2.43)

In particular,quantum fluctuations are ignored in setting {s' l (WTIJI - /\/T X)z Is') =0

in writing Eq. (2.40). As in the classical theory, there is a short range (Coulomb)
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repulsion which causes any non-vanishing local charge density to expand. It is
this local repulsion which raises the energy of the state by an amount proportional
to the‘éoupling constant {. Only for color singlet states does the current density
vanish locally so that the energy is not raised by the color interaction. The strength
of the color coupling fixes the scale of energy bf which states that are not color
singlets are raised. Hence the color singlet, or zero triality selection rule, de-
rived in our theory is approximate and not absolute. 10

In Section VIII, we compute physical parameters for the hadronic ground states
including M1 transition moments, the axial charge, and approximate charge radii
using our trial solutions.

Section IX is devoted to constructing momentum eigenstates, a problem we
have solved only for charge 1/3 states at rest. Remaining difficulties and open
problems are discussed.

Section X is devoted to a discussion of what we see to be some of the important
questions left totally unanswered to date. One of the most important of these ques-
tions on which we can only speculate is whether or not one will ever be able to suc-
cessfully incorporate PCAC into a scheme of this type.

In Section XI, we speculate on the structure of excited hadron states. The key
observation has to do with the ""softness' of our shell solution to deformations of
shape —a point which will be discussed heuristically in this section. The basic idea
can be illustrated as follows: The potential g(x) is spherical with a contained quark
in an s-state becausegthis shape gives a surface of smallest area, and hence mini-
mum field energy, while maximizing the volume into which the quark wave function
is squeezed. However, when one excites the quark to a state of higher £ # 0, the

hole in the field potential can collapse around the quark wave function and thereby

reduce its surface area and hence its energy without further increasing the curvature



of the quark wave function. Simple models suggest that this mecﬂanism of a soft
shell leads to low-lying excitations of the hadron state. The poss‘ible connection
ofu this icheme to the dual-string model, scaling, final hadron spéétra, ete., are
djscussed. Our purpose is to show that the potential inherent in this approach,
which requires further dévelopment, is very broad indeed.

Finally, in Section XIi, we combare our approach to the MIT "bag model" and
recent Works by Lee and Wick; Chin and Waleckall; Creutz and Sohlzg and Dashen,
Hasslacher, and Neveu13 who have also studied quark containment mechanisms in
field theoretic models.

An appendix is devoted to a discussion of a modified version of the simple
model discussed in Section IV whose purpose is to try to explore how sensitive these
results are to the addition of a term which forces the existence of a volume energy

in addition to the surface energy in the o-field. In particular we sketch the argu-

ments of Creutz and Soh12 showing how the MIT bag model emerges for a

specific cholce of parameters.

III, The Variational Calculation

We have seen in the last section that a heuristic, semi-classical discussion of
the Hamiltonion (Eq. 2.1) suggests the possible existence of bound states with
masses much less than the bare masses of the constituents. In this section, we will
show how such a semi-classical picture may emerge from a canonical quantum field
theory. We have verified that this phenomenon occurs in a strong coupling theory,
where a non-perturbative approach is essential. Our analysis makes use of the
variational principle for the expectation value of the Hamiltonian in a trial state.

In carrying out the Variational calculation, in addition to making a suitable guess
for the trial state, we are forced to make one crucial approximation involving normal-
ordering; this is the '"tree" approximation. It remains to be shown how good our trial
function and use of the tree approximation are in establishing the qualitative charac-

ter of the strong coupling solution which we construct. A more complete treatment
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including renormalization remains for the future and unquestiona}ﬁly requires a
more systematic approach whose first step has hopefully been established by the
W';)I'k w; are reporting here. What we do accomplish in this section is the reduc-
tion of the quantum field theory problem to the classical theory described by solu-
tions of the field equations (2.14) and (2. 15). | |

F.o‘rvsimplicity, we will not discuss SU(3) hadrons. Instead, we imagine a
world with only a single quark species and demonstrate in Section IV the existence
of bound states of mass much less than the bare quark mass. We defer to Sec-
tion VII a discussion of SU(3) hadrons and of the color mechanism which ensures
that states of non-zero triality have much larger masses than the hadrons of zero
triality.
Fock Space

We consider the model Lagrangian
Lo 02 (2 2>z o '
£ = 5(6“0) -Hlo™ -£f7 + t//(lv au—Go>lP (3.1)

where 0 and ¥ are scalar and fermion fields, respectively, f is a constant param-
eter with dimensions of mass, and G, H > 0 are dimensionless coupling constants.
For our variational approach, we need only consider the system at a single time,
which we take to be t = 0 (and we usually suppress the time argument in our nota-
tion). Only the canonical equal time commutation relations are needed and at t = 0,
we may expand the field operators in a normal mode Fock space basis.

For the scalar field, we choose a plane wave expansion

—_

o(x) = —dk <akeik X alze"ik ’ X> (3.2
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where
SR 2 2 '
. @ = K™ +m s m, = 8Hf (3.3)

and the operators are quantized by imposing the usual canonical commutation re-
lations. In Eq. (3.3), we have used the mass, n&a =2\/§Hf, for the small g-
oscil}ations after making the translation ¢ — ¢ +f, as discussed in Section 11,
For the fermion field, we make an expansion in terms of the eigenfunctions of the
Dirac equation in an external potential to be specified later when we discuss the

variational procedure

¢09:=§:@%Unm>+nim¢§] (3.4)

n

The positive and negative energy eigenfunctions Un and Vn satisfy the ortho-

normality relations

fd3xU;;(x) U (%) =fd3xv;§(x) V(=8 (3.5)

3 ik _
fd xUn(x) Vm(x) =0
The non-vanishing equal-time anticommutators are

= §°(x - x)

{wmxwﬂw>

B,BT
n’ m

(3.6)

p,Dl t=5
n m

nm

i

The Hilbert space at t = 0 is constructed by applying the creation operators aL and

Bi, D; to the translationally noninvariant no-particle state |0L) characterized by

a [0,> =B [0,> =D_[0,> =0 (3.7)
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The relation of this expansion to the usual one in terms of plane waves and a trans-
lationally invariant trial vacuum will be clarified in terms of the Bogoliubov trans-
formation.

Normal Ordering and Definition of the Hamiltonian

Qur field theofy model with & given by Eq. -(3., )isa rénormalizable theory.
Because of the divergences inherent in any renormalizable quantum field theory,
the meaning of a product of field operators at the same space-time point is ambig-
uous and has to be properly defined. In the case of the Hamiltonian, these ambig-
uities are related to the necessity of a renormalization program designed to remove
the ultraviolet divergences in the theory. It is beyond the scope of the present paper
to tackle the problem of renormalization in a strong coupling theory; we define the
Hamiltonian by a naive normal ordering prescription. The prescription depends on
the particular expansion chosen for the field operators. Hamiltonians normal
ordered with respect to two different expansions such as Eq. (3.4) and a plane wave
expansion differ by a c-number contribution which is usually a difference of two
infinite constants. In order to give such a difference a precise meaning, it would
be necessary to regulate and properly renormalize the quantum field theory. 15

In this paper, a very fundamental approximation is to ignore these differences
in normal ordering prescriptions. In other words, the Hamiltonian we are working
with is correct only in the so-called "tree'" approximation. To the same approxima-
tion, the true vacuum state also coincides with the free field vacuum as defined for
small oscillations abo:ut o ={. Our hope is that when renormalization effects are
included, the conclusions will:be qualitatively similar although they may be quanti-
tatively different. Specifically, this means we are ignoring the difference in energy
between a theory with H normal-ordered in the basis (3.7) as constructed for the
one fermion sector and a theory normal ordered in a translationally invariant trial

16
vacuum,
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Boson Coherent States

The construction of the trial state is guided by our intuitive idea that the boson
field aevelops a localized expectation value in the neighborhood of the fermion
source. To describe such a situation, we employ the so-called boson coherent
states | 4

[g> = U@][o;> (3.8)

where U (g) is a unitary transformation

1 d xg ()5
U(g) =e (3.9)
which displaces the field operator ¢
_1 _
U g £ (0(x) Ule) = £[o(x) + (%]
-1, . .
U (gyol(g)=o0 (3.10)
Thus, if £(0) is any polynomial function of ¢ which is normal ordered term by
term, then
gt gy = (0, [f(o+g)|0. >
I { LI I L (3.11)

=f(g)

Equation (3.11) shows that the tree approximation rule for taking the expectation
value of a function of ¢ in a coherent state is to replace o by the c-number ampli-
tude g(x). This procedure gives a concrete realization of the intuitive picture
presented in the introdu¢tion. |

Fermion States and the Bogoliubov Transformation

We shall also want to replace the fermion field operator by an arbitrary c-

number Dirac spinor wave function when we take the expectation value of H in
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our trial state. For a trial state of fermion number one, we do this by constructing

|s> =8l 0,> . (3.12)

-

where le is the creation operator for a fermion in an arbitrary state n and
|0L> is the no-particle state in the basis formed as shown in Eq. (3.4), (3.5),
and (3.7). With this procedure, the expectation value of an operator bilinear in

the férmion field and normal ordered in this basis is
sl T rypw s> =l rv (3.13)

where the arbitrary wave function is to be determined self-consistently by the
variational calculation.

If we want to study the relation of the localized no-particle state |0L> toa
translationally invariant trial vacuum state | Op) or study the relation of the state
(Eq. 3.12) to an expansion in a plane wave basis, we require a unitary trans-
formation connecting the two representations. This change of basis is called a
Bogoliubov transformation. To appreciate the significance of this transformation,

let us first construct a trial state of fermion number one of the form

_ 3 + )
[n) = [d pZS:h(p’ by |0 . (3.14)

in terms of a plane wave basis

: 3 = — «— —
Y(x) = —-d—P——Z b u(p,s)e' P Xrd V(p,S)e—1p°X]
3 /| ps P, S
(21) 2E
P
(3. 15)
E =\F2+M , M=Gf
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Then the expectation value of an operator bilinear in the fermion field and normal

ordered in this basis is

-

(hJ: ll’T(x) Fll/(x):lh) = ST(X) I s (x) (3.16)

where

. o d

s(x) = S/———-——E—dz olP X h(p, 5) u(p, S) (3.17)
\/(27) 2E

However, s(x) is not an arbitrary spinor as required for performing a variational
calculation since the positive energy solutions u(p, s) do not alone form a complete
basis. Therefore, Eq. (3.14) is not a suitable trial state. It is apparent that a
Bogoliubov transformation must be applied to Eq. (3.14) to mix together the par-
ticle and anti-particle plane wave spinors in order to provide a complete basis for
expax;ding the trial function.

We illustrate how this is accomplished and exhibit the relation of |0L) to the
state lOp) in what follows. For convenience, we quantize the system in a large
but finite volume so that the momentum spectrum becomes discrete. This enables

us to treat all expansions on the same footing. The connection between the two

bases is
_ T
Bn - Zn: <anmbm+ﬁnmdm>
: | . (3.18)
Dn B Zm: (anm m+ﬂnmdm>
where
o = f Cxvru_0 ., g = [dkUr@y_(x
nm n m nm n m
(3.19)

R

Il

om / d3x,v;;(x)um(x) , Enm = fd?’xV;’;(x)vm(x)
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These numbers can be regarded as elements of matrices o, B, &, and E It fol-

lows from the orthonormality of these eigenfunctions that these inatrices satisfy

the relations

ozozT_+ﬁﬁT=1 , ozToz+'5£T~= 1
5&T+B’FT =1 , BTB+T§TB =1 (3. 20)
ad +88 =0 , aT,8+&TE = 0
In this matrix notation
B=ozb+ﬂdJr
(3.21)
D)f='62b+EdT
and the inverse is
b=(JzTB+'<SZTDT
(3.22)

T

It is obvious that the transformation (b,df)«»(B, D') is unitary. The connection

is completed by giving the relation between the two no-particle states (this is a

definition of |0L> ):

o> = 1B D |05 (3.23)

2 |-

It can be verified that , 0L > is not a null state. In particular, if the transforma-

tion conserves momentum, then o and B are simply numbers

Il

B

a b + 8 dT
P p P b -p
(3.24)

T

1.3b+ozd
PP P -p

p

D
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and the relation reduces to the familiar one

C e [Fal ety

If the potential is spherically symmetric, the positive and negative energy
eigenfunctions do not m1x under a spatial rotation; therefore, the B's and D's

associated with two coordinates connected by such a rotation are related by

B' = RB
(3.26)
D' = RD
where R is a unitary matrix. Since
|detr| =1 (3.27)
we have
Il B' D = (detR)2 IIB D (3.28)
n n n " n

M n

i.e., the no-particle state IOL) is rotationally invariant.
Equations (3.12), (3.18), (3.19), and (3.23) give the expansion of a trial
state with fermion number one in a momentum basis.

Derivation of Classical Field Equations from the Variational Principle

We now apply the variational principle fo the Hamiltonian defived from Eq.

(3.1), guessing as the trial state

s> = v B |oy>

. 'fdgxg(x)(r(x) ; (3.29)
e ; B0 OL)

where Bg is the creation operator associated with the ground state wave function

in Eq. (3.4) and U(g) creates the coherent boson state (3.9). This procedure re-

duces the quantum field theory problem to a classical form to which we can apply
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the heuristic discussion of Section III; it can also be solved by mathematical
analysis. Specifically, if we assume the Hamiltonian to be normal ordered term-
by-term with respect to IOL) as discussed earlier, it is straightforward to
évaluate the energy of the trial state. The result is

—_
a

E = (s|H[s) =fd3x {XT (.w-'v* +GBg)X

1
(3. 30)

+ 250+ (g - fz)z}

Zero-point energies associated with the normal ordering prescription are dropped
in writing Eq. (3.30).

Since we have not yet specified what the expansion basis (Up» Vn) is, except
that it forms a complete basis, X is obviously arbitrary. The idea behind the
variational principle is that the best choice of the trial state is such that the cor-
responding g and X will minimize the energy E. However, thié will be true only
if the energy operator is positive definite for all g and X . This is not the case
in general, however, since the Dirac part in Eq. (3.30) is not positive definite,
This is, of course, the original difficulty that led Dirac to formulate hole theory
which we also must apply here. We proceed as follows: Assume that for any

choice of g(x), we solve the Dirac equation exactly

(%-E? +GBg)X= &(@) X (3.31)

and take the lowest "pogitive” eigenvalue & (g). Since Eq. (3.31) describes the
motion of a Dirac particle in a scalar potential, there is no Klein paradox as
occurs for sharp localization of a Dirac particle in a strong vector (Coulomb)
potential‘,1 7The solutions for the positive and negative spectra are clearly

separated in this case, and so one does not lower the energy of the trial state by
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including particle-anti-particle pairs flowing into the region of localization as

occurs with the Klein paradox.

This is seen clearly in the solutions below in
Section IV.

To ensure that E is now always positive, we require that E be a minimum

with respect to arbitrary variation of g. Now

2
E - fd3x[§(€g>2+H(g2—fz)]+ 8@

(3.32)
and we have imposed the restriction from Eq. (3.5) that
3 T _
/d x X' (XXX =1 (3.33)
Since
06 - g xXx+ ﬁ3x’ XT(Q v+ apg) 92
dg(x) 1 g
+ JXT (—_&j +Gg )X | 3.34
58 TV g (3.34)
()] 3 1
= dx'X' X
G XX+ &(g) 3E® f X
=G XX
the condition % = 0:leads to the classical field equation
vig - 4Hg@E? -£2) =G XX (3. 35)

Equations (3.31), (3.33), and (3. 35) are the same as if we had applied the varia-

tional principle to k3¢ 30) with the restriction (3.33). &(g) then appears as the

Lagrangian multiplier enforcing the normalization condition.
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IV. Solution of the Coupled Equations

Unlike the one-dimensional case discussed in the introductory survey, we
‘have ot found an exact solution of the coupled differential equations in three
’dimensions, However, in the strong coupling limit, we have obtained the leading
terms of a solution and the order of magnitude of the small corrections. The
solution in this case is very similar to that of the one-dimensional problem.

‘Rather than simply displaying this solution, we show how it comes about by
following a more heuristic procedure. We do this in view of its surprising
nature of confining the fermion field to a thin shell or bubble surface. First,
then, we attempt to construct a solution of the type discussed in Section II(A),
in which the effective mass of the trapped fermion field is zero. Finding that the
coupled equations do not allow such a solution, we will be led to a solution in which
the effective mass of the trapped fermion field is large and negative. We will find
that only these bound states have positive energies that are small compared to the
bare masses in the theory.

Since we are seeking the lowest energy state, we expect the classical field g

and its source XX to be spherically symmetric. The equations we wish to solve

are then
(%- ad v+ G,Bg)X =&X (4.1)
_d_z_& 2 dg 2 Y
¥ — — 2 =
drz + e 4Hg(g% -4 =GXX (4.2)

Our strategy is to make a gueés for g, solve the Dirac equation for X, and then
check the Klein-Gordon equation for consistency. According to the heuristic

arguments originally presented, we first choose g so that the fermion field has
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zero effective mass inside a small region of space. That is, we take

g(r) = £0 (R -1) . (4.3)

e

as illustrated in Fig. 1, where R, the radius of the potential, is to be determined
by minimizing E, just as in Eq. (2.6). The solution of the Dirac equation in a

spherical square-well is well known; we have

", . +
; N 1j, (k1) ¢jm
X£=A£ , T< R (4.4)
. - +
Figs g (k7) O %qum
- +
; 1kﬁ()\r) (ij
=8} ,r >R (4.5)
——}\——-k (A1) O P +
" TE, O e ) O TP

Here the * sign corresponds fo j = £+ %, the j!l and kg are spherical Bessel func-

tions of half integral order,

(4.6)
A=\ [G2f2 - é“f

¢>:.t m 2re two component angular solutions with j =+ -21-, respectively, and A!Z’ Bﬂ
? H
are normalization constants. 1> For Gf > & and Gf > 1/R, we have k,AR) =

e B /AR and continuity at r = R implies the eigenvalue condition,
jﬁ(kR) =% jﬂi 1(kR) . (4.7)
Equation(4.7) has solutions with k ~ 0(1/R). For instance, for { =0, we find a

ground state energy at & = 2/R with higher energy states spaced at intervals

~ 0(1/R). However, this solution is not consistent with the Klein-Gordon
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equation (4.2). For r > R and far enough from the surface, both sides of Eq.
(4.2) are ~ 0, but for r < R and far enough from the surface, the left-hand side
is ~ 0 but the right-hand side of Eq. (4.2) is ~ G‘r/R?’o Thus we are not able to
construct such a ‘"heuristic" solution.

The one —dimeﬁsional ‘example suggests that v;/e look for a solution with the
fermiod field confined to the surface r ~ R so that the source term on the right-
hand side of Eq. (4.2) will also vanish for r < R. This means making the inside
potential very deep so that the fermion will have an effective mass IGg| > & and
thereby be restricted to a thin shell near r ~ R. In particular, we choose g = -f
for r < R and far enough from the surface so that each term in Eq. (4.2) vanishes.
Near the surface we expect also as guided by the one-space, one-~time dimensional

result that XX << X Tx and also in the strong coupling limit

2 SR SR S E.)
rdr 'D < 2 2 = RD <D

Following Lee and Wick, 11 we solve Eq. (4.2) first by neglecting the XX source

d
term and 28g

rdr’so

2
i—g— ~4Hg@E? -12) = 0 (4.8)
dr

This is identical to Eq. (2.18) and we obtain

g(x) =ftanh J2H f(r - R) (4.9)

where one of the two integration constants is chosen so that g approaches its
vacuum value g = f at large distances. The other constant, the radius R, is ad-
justed later to minimize the total energy. It is shown that the two neglected

terms then cancel on the "average."
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The details of the Dirac wave function X in the transition region depend on
the relative magnitudes of G and H. However, the total energy of the state and
tfle optimum choice of R are determined by Halone. To illustrate these points,

we consider two extreme cases: (i) ~H > G > 1, and (i) G > vVH > 1.

(i) VE>G>1

In this case, it is a good approximation to replace g(x) by a square well

potential. We are therefore invited to solve the Dirac equation in the potential

g(x) = +f r >R
(4. 10)
= -f r <R
Following the standard procedure for solving the Dirac equation in a central
potential, we make the decomposition
. G, (1) o
T jm
X = _ (4.11)
o AL
r r jm

where we have adopted the notations of ref. 19. It is immediately clear that for
a spherically symmetric potential g(x), the only solutions of Eq. (4.1) which are
consistent with Eq. (4.2) are those with j = 1/2 (or £ = 0). Otherwise, the right-
hand side of Eq.(4.2) has an angular variation while its left-hand side does not.
From now on we will restrict ourselves to the case £ = 0.

The radial wave functions satisfy the equations

HGO o
T2 =G, +(&+GY T,

(4.12)
dF

0_-_1p _(o -

r
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In the limit Gf > &, the solutions are (7\ = VG f - & )
- G, =A sinh (A1) r < R
_ __AA _ sinh(Ar)
FO' % -GI (cosh()xr) T )
(4.13)
G, =Be ™" r >R
~ BA 1 ~AT
Fo=-ZF+ar (1+ Ar) e
where the eigenvalue &
-1
& = R (4.14)
GrO
is determined by the continuity of T at r = R, The normalization condition
0
determines
-AR —_— .
- Be — _ (A AR
A= ShbAR \/21r e (4.15)

The wave function X is concentrated in the region r ~ R. We now compute and

f

compare X' X and XX
xx = 2 J2A|r-R|
4T R
=, 1 1 _3 -2 [r-R| (4.16)
XX =37 \:'1 R R] e |

S r 1 T
AR Ul" R| * ZAR} XX
which are appreciably different from zero only in the transition region r ~ R.

These features of the solution are illustrated in Fig. 3.

We can now take into account the effects of the source term. A condition for

R is supplied by requiring the two neglected terms to compensate each other on
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the average. This condition for R is obtained by multiplying Eq. (4.2) by dg and

dr
integrating over r across the transition region. We obtain
2 (dg)\? dg\ s %
d;«?(dr) = dr(dr>GXX (4.17)

These integrals are insensitive to the precise upper and lower limits since the

integrands decrease rapidly away from r = R. According to Eq. (4.9) and (4. 16),
G X X is a much more slowly varying function near r ~ R than %% . Thus we can
replace G XX by its value at r = R in Eq. (4.17). Making use of (4.9) and (4.16),

we find that (4.17) gives

< -2, 7o (4.18)
R

which is independent of G. The value of R as given by Eq. (4.18) also minimizes
the total energy. This can be verified explicitly or by the following formal
argument.

The total energy E is given by

2
E= [a°x [%(Vg)2+H<g2 —fz) ] + &

(4.19)

i

2
2[4 (42
47 R dr(dr) +£\

which follows from the fact that the two terms in the field energy are equal (4. 18)

dg
.amddr

g(r) =ftanh ~2H (r - R), wé find

is non-vanishing only when r ~ R. If we make the explicit substitution

LT 7 R+ L

E 3 R

Il

(4. 20)

which is a minimum at the value of R given in Eq. (4.18). We notice that 2/3 of
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the total energy is due to the fermion:

1

3 1
= 3(4—“> 2 £

-

=3
E“z

1
R 3

A more general way to see that the value of R determined from the integrated

meson equation (4.17) minimizes the total energy is to take the derivative of Eq.

(4.19) with respect to R. We obtain

9E _ gur dr(d—%) y 28 (4.21)

But using Eq. (4.1) we find

0¢ _ o fe e 5
or - Gfd xgg XX

(4.22)
- _47R% G drg—g XX
T
Consequently '2_1}:3{ = 0 implies
2 dg\? de =
2lar(28) = gfdr S XX (4.23)
dr dr

1/6

which coincides with Eq. (4.17). From the inequality (2.29), H « G, we see

that XX < XTX , since it follows from Eq. (4. 16) that
2
XX ~ ‘<H1/6/G> xTx « xTx |

(ii) G>H > 1

In this case the Dirac wave function X is still given by Eq. (4.13) when

Ir -R|>» B — . However, in the transition region r ~ R, a better

J2H f
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representation for X can be found as follows:

Introduce the notation

-

u, = G+F
u, = pu_
Then Eq. (4.12) becomes
du_ 1
g = -Ggu_+ ((g’ + ;)pu_

(4.24)

dp_ 1 g)- oL
= 2Ggp+(r & P(r+é")

For a solution where g is +f outside the well (r > R) and falls to ~f inside the
well (r < R), p=+1atr=0 and rapidly decreases away from the origin r=0.
At the same time u_(r) is exponentially increasing toward the surface (r ~ R)a

Hence we only have to solve the equations away from the origin where they reduce

to
du_
e -Ggu_
(4.25)
ap _ 1.
ar 2Ggp +(r 8)
We find immediately that
-G
u_=C¥cosh|;/2Hf(r —R)] V2] (4.26)

~o

The stability of the p equation implies that % -& 2= 0 when g(x) changes sign,

hence the eigenvalue for the qluark energy & is

=1
€=z | (4.27)

We notice that u varies more rapidly than the potential g(x). The half-width
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of u, is given by W in contrast with the half-width of 1/Gf in Eq. (4.13)

of the previous case. Thus we can make the approximation

-

Gg(x) 2 G +2H f2 (r - R) r ~R (4.28)
Then Eq. (4.25) gives

1
2G+2H szz

p=+ <1 (4.29)

The normalization condition (3.33) for X implies

2 1
dru” = S (4.30)
Now
XX = ..1_2 ,011% = 1 5 u% (4.31)
R 2G+/2H R

The solutions are illustrated in Fig. 4.

The condition (4.17) must also be satisfied in the present case. But now it
is %%— which is slowly varying in the transition region and so it can be replaced
by its value at r = R. The result gives the same value of R as in Eq. (4.18).

Hence we have shown as claimed that the size and energy of the bound states
are determined by H alone, independent of whether 1 « G « vH or
1 « vH « G. This conclusion is also valid in the intermediate range of param-

eters G ~ VH > 1, although the detailed shape of the wave function is sensitive

to G in the transition region as g changes from f to -f.
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V. States with Non-Vanishing Average Momentum

In the calculation of the expectation value of the Hamiltonian, 'we have neglected
@érmszssociated with normal ordering. Since these terms depend on the scalar
field g (x) and the wave function Xn of the fermion, they are different for different
states. The question arises whether this is a consistent prescription. In this
section we will show that at least this is a Lorentz covariant approximation. For
this purpose we will extend our variational principle to states with non-zero average
momentum. As can be verified, the states we constructed above have zero average
momentum.

We will be able to establish that the average momentum and energy of such a
state is related to the energy of the corresponding state with zero average momentum

by the mass shell condition.

E = M/ \/ 1- v2
. (5.1)
P o.MV
v
1- v2
where?=—15’v/ EV is the average velocity of the state and M is EV atv=20,
Again let's first illustrate our prdcedure in the one-dimensional example
without fermions. Then
2 2
= Jax|ie?+1(42 +H(0’2 —fz)
2 2\dx '
’ (5.2)
P = [dx (— o d_o_')
op odx

We are interested in minimizing the energy in a state |v)

E_ = (lelv) (5.3)



42

with the constraint
P = '(V|Pop‘v) o (5.4)
r;m‘he coherent states (3.8) automatically give ( Pop) = (0, To construct a state

with non-vanishing average momentum, let's consider

, ifdx g, (x)o(x) —ifdx gl(x)&(x)
' l V) =e e ‘ 0> (5.9)

where gO(x) and gl(x) are arbitrary real functions to be determined by the varia-

tional principle. Now

—'fdxgo(x)a(x) ifdxgo (X)o(x) |
e f(o)e = f(0'+g0) (5.6)

Again using the same normal-ordering prescription, we find

=1
i
g

g
1l

(ViH—W o -ﬁoplv)

1l

dg 2 2
1 2, 1(°°1 2 2 d
dx[é-go+§(dx> +H(g1—f) +gow-a—§gl] (9.7)

where w is a Lagrange multiplier to take care of the momentum constraint (5.4).

The variational principle leads to20

dg o
g0+w dx gl 0,
2
4a_ 4 2 _¢2)
-W 'dx go 3 dxz gl + 4Hg1(g1 -f ) =0 ’ (5.8)

and

2
_ 1.4 \2,1(d e, (2 2
E -Ww- PV— dx[— Z(Wodxgl) + Z(dxgl) +H(g1 -1 ) ] (5.9)
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Without solving Eq. (5.8) we would intuitively expect that g 1(x) is obtained from
g(x) for Lorentz contraction. This is borne out by explicit constriction. Let
g(x) be the solution for the problem with PV = 0, so that g(x) satisfies Eq. (2.18)

without the source term. We will show that the choice

w=v
_ _ 1
g, (x) =8(vx) ) e — (5.10)
-v
satisfies the differential equation (5.8). To see this we define
x' = yx (5.11)
Then
2 2
o 4 g0 dig () 2, (dx'\" d%g(x!)
w 5 - 5 = (1-w dx 5
dx dx dx!
2 dzg (x"
= (1 -w2)y 5 (5.12)
dx'
2 i
=_dgx)
dx'2
The energy also simplifies. Using the definition (5.10) in Eq. 5.7), we have
1 1 o/ d 2 2 2 2]4
—_ ° = — = - —_
E -v:P yfdx [2(1 w )(d—}zgl(x)) +H(g1(x) £ )
1. dggx'))z ( 2 2)2]
= dx E( ax + Hlgx" -f (5.13)
Y
where
1 (dg(x 2 2 2 2
M=jdx|:§(—gcé(—l) +H(g(x) -t ) (5.14)

is the energy in the rest frame.
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Another relation between E and P is supplied by the field equation (5.8):

de\? B
- M=fdx(£—) . (5.15)
Also
, y (dg1>2
| PV—— dxgoa;gl—v dx——-dX
d 2y dg (x)\2
=v dx(—gixm> =v 3 dx'(—g‘ﬁi—)) (5.16)

2
1
= V'y/:lx'(d—dg-é?—)) = Mvy

Thus EV and PV satisfy the mass shell conditions (5.1) and (5.2).

We now proceed to discuss the three-dimensional case. The momentum

operator is given by

= 3

— -1 .= ‘f‘ l—-» .
P[4 [ ovVao+ Y iVll/] (5.17)
The trial state in this case is
. 3 . 3 .
ifa*xg ot i faPxg o)
-l F
[v) =e e BO IOL) (5.18)
With our usual normal ordering prescription for H and Po , we find
Eu =<7 IH |7
v
2 —
_ 311 2 /= \2 2 2 t{a-¥ )
[d z[2g0+2(vg1) +H(g1"f) +X1( i RGE ) Xy
?Vs VA op 1) | (5.19)
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The fact that |V) is a single fermion state gives the constraint.
- Q sfdgxxi X, =1 (5. 20)

Introduce the Lagrange multipliers W and & 1 to take care of the constraints

(5.19) and (5.20). From the variational principle

—_ _
6(EV—W° B,- & Q)—o (5.21)
we find the equations
+—§ —> :0
g, +W - Ve,
~(W- Vg, - vig, +4Hg [6? -} +G XX =0 (5.22)
0 1 1181 1 ‘ .

1 1 1

——-»o—+ 1 o —
(9‘-—.—V— +ﬁGg)X =((£"+.—W°V>X
i 1 1
Again we expect that both gl(x) and X1 (x) are related to g(x) and X (x) for
I’}f. = 0 states by a Lorentz transformation. Let g(x,¥y,2), X(X,¥,2z) and &

be the solutions to these equations in the rest frame. Then if we assume the

average momentum is along the x-axis, we can verify that the boosted functions

g, (®) = grx,y,2) =g(x',y,7) X' = yx
& =&l
(X (5.23)
X0 = S(A)X (v, 5,20 VY W=7
v=1/{1 - v
satisfy the field equations. The matrix S( A ) transforms the Dirac spinor
properly under a Lorentz boost. The matrices 3/" transform according to
-1 0
878 = v v
(5.24)

0
STTYTS = vy vy
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Since
X X1 (x) = XX(x")
and

. 2 2. 2
2 d 2 d d
(W' -1) —5 = (w2 - 1)y 5 =~ —3
dx dx' dx'

g, obviously satisfies the Klein-Gordon equation (5,.22). To verify the Dirac

equation, let's rewrite Eq. (5.22) as

<

[ (7 ) -7 50| x, -

]
<l

)-l-“_.\

_ﬁ
p

and use

-1, [0 . 0 ‘
8 (A)[v (€1+VDX>-YXPX}S(A) =v[v é"l—'yxpx(l-vz)wxvél]

P [X(vx, y»2) ei‘”mwx] =[pXX(X' Y5 Zﬂei‘g)wX + vaeig".”’X
We find finally

[70é° = VePyr =% Py =V, D, - Ggl] X(x',¥,2) =0
By the same scaling as in Eq. (5.23), we get

E -w.P = M

\% \

< =

where )

2
M=/d3x[%(‘v*g)2+ u(g? - £2) L &

is the energy in the rest frame.

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5. 30)

(5.31)

In the one-dimensional case, a second relation is supplied by the field equa-

tion. To find another relation between EV and Pv in this case, we will make use
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of general properties of the stress energy tensor. To fully utilize the covariance

of a classical field theory, we introduce a set of time-dependent functions from

Eq. (5.23).
gl(X’Y»Z)t) = g[’Y(X—Vt): y, Z]
g (5, Z0) = -V Vg (5,28 = 2= g
O - 3 b 1 3 3 y at 1

X, (%5:2,8) = S(A) X [y(x-vD), ¥, Z]e—lé"v(t—VX)
We verify that

i .__a__ = .L = ° v o
i5t X1 ( vV +d ) X
Thus we can cast the equations for gy and )(1 in the covariant form
. M _ -
(17 a,u Gg1 ) Xl 0

2 2 92\ _
5 g1+4Hg1<g1—f )— -G X, X,

Furthermore

E =/d3xTOO
Vv
P%. =fd3xTOk

where TOO and TOk are components of a symmetric stress energy tensor

(5.32)

(5.33)

(5.34)

(5. 35)

. : 2
py _1 P eV Ve [k U v _pril 2 2 .2
™ =5 X1('Y o +v 0 >x1+a g,0 g, g“,[jz-(akgl) -H<g1-f )]

1t follows from the covariant field equation (5.34) that ™" is conserved.

a“T‘“’ = 9 THY — 9

(. 36)

(5.37)
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But from the explicit construction for g 1 and X 1 we have

00 0 ,.00

- 9T TV

Then, in terms of T“ V, we find the momentum components to be

P, =/d3XT01=—fd3g[§£ T01]4
ﬁ:sX[X(éa? T02+%T03+%T00)]
_ﬁsxl.;v%,roo]

V/ds,xToo

I

<
<

Finally we obtain

v
PT/’ = E‘_r,v
Equation (5.40) gives
M
EV’ =
\/1 - p?
= MV
PV -

and

(5. 38)

(5.39)

(5. 40)

(5.41)

(5.42)
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This is a non-linear relation between the energies at rest and with average mo-
mentum P. Establishment of Eq. (5.42) lends some credence to our seemingly

)

non-covariant normal ordering prescription.

VI. The Multiquark States

Multiquark bound states may be constructed using the variational method
discussed in Section III. The variational state consists of a coherent scalar field
plus quarks and antiquarks. As in the Hartree-Fock approximation, the quarks
and antiquarks are assumed to move in the self-consistent scalar field, the source
of which contains contributions from all of the quarks and antiquarks in the s’cate.21
As for the single quark, the multiquark states are those which minimize the ex-
pectation value of the energy. The potential g(x) is similar to the Hartree-Fock
field in atomic physics and the (anti-) quarks move in the ground states of this
self-consist ent potential,

To be more explicit, we consider multiquark states of the type

T

T
Lo O O (6.1)

[Sy>= U C

T

where CT creates quarks (BT) or antiquarks (D' ) in states corresponding to the

potential g(x), which defines the coherent state for the scalar field. The energy

functional becomes

EE(SN I H ISN>

2

N 2
2. +fd3x[§<€g>2+H(g2 - 12) ]
=1 :

where the quark energies are given by the solution to the Dirac equation

(6.2)

(%—E'»V +GBg)xi = & X (6.3)
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and g(x) is determined by

N
- Vzg—4Hg(g2—fz)=GZ)_(.. X,

The solution we obtain from this system is identical in structure to the solutions
found for the single quark system.,
Following our discussion of the single quark system, we find the energy of

a state with N quarks or antiquarks in the ground state to be

Ey =5 5 = 5 —5— (6.4)

where the radius of the system, RN, is given in terms of the radius for a single

quark, RO, by

COfpt

- N3 :[EE ,/_"] i1
RN N RO, RO 5 T 2H]

We would like to discuss the hadron spectrum based on this result. First of all,
one must bear in mind that any variational calculation can at best give a reason-
able approximation to the first few low-lying excited states. The above formula
should not be taken seriously for highly excited states. In particular, we have
solved the coupled equations (6. 3) only for the quarks in £ = 0 sté.fes in a spherical
potential g(x) as in Section IV.

So far, the binding mechanism produces not only the physical hadrons but also
non-zero triality particles of low masses. In Section VII, we propose a scheme
utilizing Nambu's idea of color to promote the physically unobserved states (color
nonsinglets) to very high masses. Our scheme, however, leaves the physical

hadrons (color singlets) unchanged with a spectrum still given by Eq. (6.3).
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We will now discuss the consequence of applying Eq. (6.3) to the color

singlets.

LA) q-q‘System

* Both q and @ are in the £ = 0 states. These states have odd parity since qq
has an odd intrinsié parity. They consist of the 0~ pseudoscalar and 1~ vector
mesons. These are the (35) in SU(6) classification, and are degenerate with the

energy

2/3

L (9 (6.5)

Ry

(B) qqg System

All the three quarks are in £ = 0 states. These are the positive parity (by
definition) states with J = 3/2 and 1/2, namely the (56) in SU(6) classification.

Their common energy is

_ 312 ‘
Ep=13 RO(3) (6.6)
3 2/3

Thus EB/EM is fixed at (5) .

(C) Exotic States

Among color singlet states there are states with more than one quark-
antiquark pair or three quarks. These are the exotic states. So far there is no
experimental evidence for the existence of the exotic states. According to Eq.
(6.5) and (6. 6), exotic states appear in our spectrum. For example, a non~

interacting two-nucleon system has a mass given by

2(3) (6.7)

. _ 3
Eea " 2R 6 (6.8)



The two masses are related by

, _ ,1/3 ~ L
Epp = 27 "Egy = 1.26Eg (6.9)

That is, a 6q system has a lower mass than twice the nucleon mass. However,
the 6q states are highly excited and, as we have emphasized, our variational
treatment is more prone tofail for highly excited states. Aslongasweconsider only
£=0 quark states, we may not formbound states withbaryon number greater than two.
From the basis (6.1), we can construct color singlet states of definite spin
and unitary spin. For later applications, we gave a few examples here. Let
(u,d) be the nonstrange quarks which form an isospin doublet. We will use arrows
to indicate j =+ 1/2 or i, =- 1/2. For baryon states, the first quarks are red,
the second blue, and the third white. For meson states, the quark and antiquark
are of the same color and a summation over color is understood. All the follow-

ing are states with zero average momentum:
3 iah i =2> = ldyusu,) + lugdougy + fu,u,d
'z 72 Tt 1 (1

VI8 1,3, =35> =2 Tupupd> - lupupded - lwupdp

(6.10)
+ 2 IquluT> - IquTul> - 'uldTuT>
+ 2 IdluTuT> - IdTuluT> - IdTuTul>
The neutron states are obtained from the proton states by interchange of u and
d quarks. For the w meson and the 7r0 we have
l '=0>;~1-lﬁu + | +1d,d +;Ed]
W1y (T 1Ty 141 1) (6.11)

1 . — — —
—ifd3x (%) & (%)
An overall exponential factor U(g) =e g(x)o , as in Eq. (6.1) is im-

plicit in the states constructed in Eq. (6.10) and (6.11).



VII. Color Symmetry

General Ideas

Asaziiscussed in the previous section, the usual quark model picture of the
ground state mesons and baryons is obtained so long as the color degree of free-
dom is added to thé quarks. 2 The observed hadr(;nic spectrum is consistent with
the existence of only color singlet bound states of qqq (baryons) and qq (mesons).
However, the binding mechanism provided by a singlet scalar field does not distin-
guish between color singlet and non-singlet states giving equivalent binding to all
such states including diquark states. It is clear that an additional mechanism must
be introduced to unbind the undesired states. Such a mechanism was suggested by
Na.mbu6 which utilizes a vector interaction coupled to the color degrees of freedom.

As an example, consider the effect of coupling of mucleons via an interaction
coupled to the vector isotopic spin current. This interaction leads to a non-
relativistic discription of the isospin coupling in terms of two-bedy potentials in
the form
Tt

V.=V t , V>0 (7.1)
i] i

where _1:’i is the isospin of the ith particle and V contains the dependence on the other

degrees of freedom., The potential energ}‘r of an n nucleon system may be estimated

as
1
V) = 5 E Vi
’ i#j
- 1 T .7
= 2V§ ko (7.2)
i#j

= —;-V[I(I+ 1) -nt(t+ 1)]

where I is the fotal isospin of the system and t is the nucleon isospin. This force
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is seen to be attractive for the deuteron (I = 0) and repulsive for the dineutron
system (I=1).

To?axtend these ideas to quark bound states, the quarks are endowed with
the additional internal quantum numbers of color so that there are three triplets
of quarks: red, blue, and white. The color interlaction is mediated by an octet
of non-Abelian gauge bosons coupled to the SU(3) vector currents of the color
symmetry.

In analogy with the isospin interaction, the effective potential energy for an
n quark system is

8
Vi) = 3V Z Z A2 ?\? | (7.3)
iZj a=1

where {?\?% are octet coupling matrices to the quarks. The potential energy may

be reduced to the form
V) = 2V(C - ne), V >0 (7.4)

where C is the eigenvalue of the Casimir operator for SU(3) of color for the n
particle system

C= Z(Z 7\'?3)2 (7.5)

a i

and ¢ = 4/3 is the equivalent eigenvalue for the quark. Since C is positive definite
and has zero eigenvalue only for color singlet states, the strongest attractive
interaction occurs for those states which are color singlets. |

In this section, we will eétimate the effects of the color interaction on the
quark binding mechanism. We will demonstrate that the color interaction has the
effect of increasing the energies of all color non-singlet states to an arbitrarily

10
high level so as to be consistent with the observed hadron spectrum. However,
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we should also emphasize that there is an important difference between the original
Nambu suggestion and our use of the color interaction. According to Nambu, the
color acts as the binding force for color singlets and an unbinding force for color
1.10n—singlets. In our approach, the binding of color singlets is provided by an ef-
fective scalar interaction with the quarks. The color interaction couples to the full
color current which has zero expectation value for singlet states. Hence, the color
interaction serves only to push the non-singlet states to higher mass leaving the
color singlet states unaffected.

In the following, we will first use an Abelian gauge model to set up the for-
malism and demonstrate the unbinding mechanism. Then we will discuss the non-
Abelian case. For clarity of presentation only the SU(Z2) case will be discussed in
detail. Aside from mathematical complications, the treatment of color SU(3) is
analogous to the SU(2) model.

The Abelian Example

Consider a "quark" field ¥ coupled to a scalar ¢ and a U(1) vector gauge
field X“. The latter is also coupled to a complex scalar ¢ (Higgs field) which
breaks the U(1) gauge symmetry so that the vector field 'XH attains a large

2
mass, 2 The Lagrangian of such a system is

@ - _%(au X! - 9, XL)Z + [(au + i :x;l)qb*][(a“ - ifX'“)“b]
2

+%(au,")2'H(°2‘f2) ‘H'(¢*¢-f'2)2 (7.6)

+ J/—'(i ai_*_ 4X‘.') l//' —GJ'(I/'O’

which is invariant under the local gauge transformation
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: L+ L
X500 — X0+ F 8, M)

v — e My (7.7)

¢ (x) — ei?\(x)

¢ (x)

However, the vacuum is unstable and both ¢ and ¢ acquire a non-vanishing ex-

pectation value

(o= 1T {o>,=1 (7.8)

To make explicit the nature of the spontaneous symmetry breaking, let's introduce

the Kibble transformation

( i GSX2
¢ (x) = \/% (\/E '+ p(x))e 2t

1

C(x) = - 9

X, 00 = X, (9 ~—— 5,0 ( (7.9)
)

s=e Y2y

Then Eq. (7.6) becomes
s —._..:!:. - 2+l 2( !)2 K
L ) (a XV aVX ) 25 p+ )X X

2
1 2 2 =
+§(a p) _i-H'p <p+2J2f'> (7.10)
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plus the additional term for Feynman rule calculations in the unitary gauge

- AZ = _is*(oym (1 + %) (7.11)

It will be further assumed that (my = N2 Cf is the mass of gauge boson)

|

6
(mB, m,, m, mQ) > H f (7.12)

so the field quanta in the theory are all very heavy and not presently observable.
This choice bounds the size of the color charge and, as will be shown below, is ‘
responsible for the large upward shift of the energy for a ""charged" state—i.e.,
the analogue of a color non-singlet in this example. The energy density of the

theory is given by

A = %(GOk)2+%(fo)2+léfz(P+ V2 f')2(§2+ X(2)>

.2 - 2 2 '
+1p2 1 @p)+ 2w o+ 2vEE)?

(7.13)
1.2 1, 2 2 2)2
+50 +E('€a) +H (0 —f)
+ 1/;1'(%54’-? +Ggo +./:'é7°-)?)c//
where the dependent variable X 0 is given by
1 [ 0k - 0
X = — 8, G - tyy w:l (7.14)
0 lz(p+ V2 f')z k
and
%= 8% k. ok (7.15)

0
The canonical variables are Xk and G ! which satisfy the commutation relation

[Xk (%), GO!Z(X')] =16 63(x - x") (7.16)
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According to the general idea of reducing the quantum proble‘m to a classical

field theory, we may consider the following trial state of quark number one:

—1_/.d ka(x)G fd x E(x) - X(x)

IS'> =e

-

| ‘ (7.17)
3 . 3 .
i fd’xg 6 i fdxg (%) (%)
Ae f e f BT 10>

The classical expression for the energy is

v = <Sl IH Isr>

3 1132 1, > =2 1.2 2 (=2 2
=/d x{gff +§-(VxW) -1-‘—2—4” (g'+ \/if') (W +W0>
(Vg) + T H' (g +\/_f') (7.18)
2
2 2 2
%(vg) +H(g -f)
1=
+ X : v +Gﬁg+¢aow X
where WO is defined by

1 —

W, = ; (V-E-tx'x) (7.19)
ti (g + V2 1)

To arrive at this expression for E', aside from the normal ordering problem

discussed before, one more approximation has to be introduced. This is asso-

ciated with how to evaluate the ({ X TX )2 term in H. Strictly speaking

sty isd = .
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This term appears as

. N2 w2 ray o e 1 ok, 1. \2 L
<sLig(or NE )G I$> ¢ l52(;o+ JVz)? <akG A '//> |8

- L o, 1B (v-E sz!/!)z Tho 7

) gz(g'+ \/'z—f')2 Op, 15 IR By 1912 (7.20)

_ 1
L+ N2

2 2
{(6’« 'E"-zXTX> + (0, IBO[{z/JTz// -zx*x] Bg 0, >

The approximation in deriving (7.18) is to ignore the fluctuation term
(vt tx]” Bt
A= (0 IB|E¥TY - IXIX| By 10> (7.21)

That is, we set

2 2 2
GO =<0 =50 (7.22)

In making the approximation (7. 22), we hope that the quantum fluctuation effects
are small when the theory is properly regulated.
As before, the requirement that the energy E' be a minimum leads to the

classical field equations

E=VW0

o, Ele  var) wyr exTx =0 (7.23)
VEF (T W+ (g Vi) War xlax =0

e lgavzn)fes vae) ooy +vEe)F2wd)-o
—V2g+4Hg(g2 —fz) +G XX =0

(-}3a€7’+c}ﬁg-zw0+ :a*o—’)x= & X
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It is difficult to solve these coupled differential equations self-consistently.
In particular because the vector potential i appears, the Dirac equation is not
é:centrqahl field problem so that the total angular momentum j is not a good quantum
number and the no-particle state IOL) is not rotationally invariant. Since we

are only interested in the qualitative differences between an eiectrically charged

system and an electrically neutral one, we simplify the problem by first setting
W =0 (7.24)

in the state [S') . Corrections for nonvanishing W will be treated perturbatively.
The variational principle now gives Eq. (7.23) with W =0.

To simplify further the Dirac equation, we require that WO be spherically
symmetric. This is the case for £ = 0 states, since the source for WO’ XTX is
then spherically symmetric.

As a first step in finding a self-consistent solution to Eq. (7.23) with W= 0,
we consider the Dirac equation with the magnitude of the color ﬁotential -¢ W0
much smaller than the confining scalar potential Ggg and with its range correspond-
ing to a length D' ~ 2—}71; by Eq. (7.12) and (7.23) of the order of or slightly larger

than D = 1/Gf. On this scale we can approximately represent G g - (WO as illus-

trated in Fig. 5 and solve the simplified Dirac equation.

(O‘i"V +BGg+V)X = &X (7.25)
with '
g(r)=—2f r <R
=+f r >R
DI
v(r) =0 r <R, =R -+ (7.26)
1 2
= = 1
=V >0 R1<r<R2 R+D2
=0 r > R
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Our assumption is that V < Gf and the thickness D' in which V(rj # 0 is of order
D' 2 l/mBo Since g rises to its asymptotic value within this width, we can ap-

pfoximate it as a step function of zero width on this scale. The solution for a

j= % state is given by

iG ¢
1
x=1 A (7.27)
o-T¢
GI = A)\rlo(?\r)
F. = -A—2_ Ari, (A1)
I Gf -& 1
= ' i ! !
Gy = A r[CZIO(}\ 1) + D,k (A r)]
}\‘ ] : 1 1
Fu = -groarv A0 [0211(7\ r) + Dok (A r)] (7.28)
— ! i ! '
Gy =2 I‘[C310(7\ r) + Dyk, (A r)]
F =__._.£_._..;\' C,i, (A'r) + D, k_(A'
m S GEr g-v M T|Cgly Wr)+ Dk, (AT
G.. =- 2Bark, (A
v 7 BArk, (A1)
= g —__}\__
Fry T BGrre Mk (A7)
. sinh z
10(z) = -
_coshz sinhz
i(2) = — 5
2 (7.29)
= -
k, (2) 55 ©

>
H
)
|
|~
—
Ay
+
=
e
(0]
i
N
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where

WGDZ- &2

>
il

(7.30)

I

v o= J6n% - - v

We are looking for solutions with | & | «< Gf. It will be verified later that it is

consistent to keep only the leading terms in the asymptotic expansion of iﬂ and kﬂz

. 1 =z
12(2)-—> 55 ¢ £=20,1)

(7.31)
+1 ® -z
o e

k(2) — (-1 o

Z— 0

Then the continuity conditions on the boundaries determine the coefficients

MR AR
1_ 1 A%
02 e =Ae (1 + 2Gf)
-A'R AR
1 _ 1 \
™ D2 e = Ae 5GT
A'R
2 AR V
C3e = Ae SGT (7.32)
-A'R
2__AR(_V\
s D3e = -Ae 1 5GT }
-AR
Be 2 s -;'—Ae)\R
and the eigenvalue
El _ f ‘
<§‘=V(1—e GD) (7.33)
The constant A is determined by the normalization condition of X
2 _ A -2AR
A" = i (7.34)
Now to be consistent with Eq. (7,32),' we must impose
%«g«Gf (7.35)
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We will now check the consistency of other equations in (7.23) for the case
H2 > G. To maintain the character of the solution for g as used in solving the

D‘irac equation for X, we must require that the source term G XX as well as

2dg i
2 de is small, 1.§.,
1 G
17 RZ

lG)?XIR= é°<<Hf3

and
%{ VH 2 « HE
The equation for g' can be approximately satisfied everywhere by

g+ V2 =21 + small corrections

H 2 > &2 Wi

We will choose the parameters so that Eq. (7.38) is satisfied.
We can now estimate the electrostatic field energy, E I the scalar field

energies, Eg and Eg" and the "Fermion energy", E_, and minimize the total

F’
energy to determine R for a hadron in a color non-singlet state. Finally we can
verify the above inequalities.

The results by straightforward calculation are

(7.36)

(7.37)

(7.38)

(7.39)

where mp = N2¢f'. Evaluating this in the approximation used in solving the
Dirac equation, i.e., setting —ZWO =V as defined in Eq. (7.26), we find

E;= %V(l - e'GfD')

(7.40)
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The energy associated with the g' field is very small so that

-

E +E

E =
g

Finally for the fermion energy

= 3 T = — ~
E, (S"+{/d xX'X W, =&-28 = 0

The total energy is the sum

The quantity WO(R) can be computed with the aid of Eq. (7.23) which gives

where D = 1/Gf.

and

T Jd

E.=E_+E +E _ +E
g g

—12” VIER? P

F

_ 1
=-§— | W (R) | (1-¢GID )+ 167”.\/21{ r? 3

W (R) = - 2=

2
Ep=~ 53
T 87rmBR D

4 3 G

Hence we find

-m_ |®-R |
4 d3 e B
47 X —_
Ix-R
1
1 (. 3 myD)
ir 2 2 e
m_ R D
1B
_ 1 -
1-e 2 Gf <1—e GfD)+lg—E\/ﬁsz3
OE

T

R = 5 21‘2 1-e
2567 ~/2H f°f

1

il TV

ET=§(G\/_ZI_I)2<1—e ZGf)

Its minimum, determined by BR = 0, gives

m

_B
2Gf ( —GfD')
1-e

(7.41)

(7.42)

(7.43)

(7.44)

(7. 45)

(7.46)

(7.47)
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which automatically assures Eq. (7.37). Now Eq. (7.35) is satisfied if

1 1 1
2 == \6 3
(—%—ﬁ) >>f—f, > (‘/éH) ( 1 ) (7.48)
G2H
Equation (7.36) follows simply from the choice G < HZ, Filially Eq. (7.38)
requires
\1/4
il T > f—f, (7. 49)
(G+/2H)
Both (7.48) and (7.49) can be satisfied without difficulty with proper choice of
H' and {'. Now it follows from Eq. (7.48) that
Gf » > HY%¢ (7.50)

T

as desired, i.e., the state of non-zero charge, analogous to color non-singlets
in thenon-Abelian case of SU(3) of color, is promoted to an energy much higher
than in the absence of color interactions, its magnitude depending on the specific
choices of the parameters ¢, f', and H'. This estimate can be further improved
by adding the magnetic interaction energy in a perturbation treatment. The added

terms in Eq. (7.18) are

E

2 — —
=-1-fd3x\7V"(—V +m?3)W+§' dngTaX - W

-1 ﬁgxxTa’Xux’fv (7.51)
which when added to Eq. (7.43) lowers the electrostatic energy by
_1 3 f P
EWOJ'W—_Z-{: dx(—X XW0+ XTEZA °W) (7.52)

-m_ |x-x']|

B
-3¢ /:13xd3x' : [3000 340 T+ T

ar [x ~-x'|
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where J¥ = )?')/“ X. In the local limit, m_, — o0, this energy is still positive

although reduced by a factor of 1/2 and Eq. (7.50) remains valid. To complete
this discussion, we next show that the electrically neutral system, the analogue
of the color singlet, is not shifted in energy by the strong color interaction. As
an example of an electricélly neutrél system, consider two types of fermion with

opposite charge called u+ and e , which have identical coupling to the scalar

fields. Then it is clear that if u+ and e occupy the same state, then
J“(X) =0 (7.53)

and, therefore, the energy of such a state is not affected by the electromagnetic

coupling and is given by the calculation of the last section without the vector

gauge field. Furthermore, if the u+ amd e  occupy different states, then one can

form the eigenstates of C-conjugation by symmetrization or antisymmetrization.

For both symmetrized and antisymmetrized states, it can be readily verified that
THx) =0

and their energies are again not affected by the coupling to the gauge field.

The Non-Abelian Case —SU(2)

We now turn to the non-Abelian case to show that the gauge coupling has no
effect on the color singlet states. Our only purpose is to give an order of magni-
tude estimate of the change in energy of the color non-singlet states. We will,
therefore, simplify the problem as much as possible. For simplicity and clarity

H

of presentation, we consider the group SU(2). The case of SU(3) will be mentioned

p
Y = ( ) (7.54)
n >

is coupled to an isotopic triplet of vector gauge fields. To completely break the

briefly below. A quark doublet
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gauge symmetry, we introduce another isotopic spin doublet of cbmplex scalar
fields

(7.55)
2

The Lagrangian of the system is
Z--205 % -8, X, + X x% )
4 [T v u ¢ 7 v

+ \:(au + -21—57? . iu)qb*] [(au - Eiz? ) 3’('”) ¢]

[

—H'(¢*¢ _ftz)z (7.56)

2
+ —;— (a“a)z -H(a2 —fz)

+J[ia ey -Ga]w

where X denotes the cross product in isotopic spin space. % is invariant under

the infinitesimal gauge transformation

—> — 1 — — —
> + £ 9 0w -0wx X
IR T

(7.57)

Following the standard procedure of eliminating the would-be Goldstone bosons

in the unitary gauge, we get
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- 2
15 p\2, L2 N2g2_ 1 - 2p?
gt e T bl
. ) ) 2>2 (7.58)
+ 5 -Hlo™ -f
7(0u0)" ( '
+$(i(’5 —51 tr °§%—Ga)¢
plus the additional term needed for the Feynman rule calculations
Ag .= -316%0) m 1+—pEL (7.59)
The field p in the unitary gauge does not respond to an isotopic rotation. The
canonical variables are XE and Ggﬂ which satisfy
k 04 . s kL 3
[Xa(x), Gy (x')] = i0 dabd (x - x'")
Following the same procedure and approximations as in the Abelian case,
we form the trial state
—fd XW (x) - G fd xE(x) ()
[S'> =e
) (7.60)
s i (3.
-ifd7xg(x)o(x) -1fd xg" (N)p(x)
e e B, IOL)
and calculate the energy
E'=(S'|HI|g) = 12, 15 W \7&7+\7V’\7v’2
=< ! X'z' 1 OV W T S Wx W,
1.2 2 52 =2
+—8~C(g+\/—f' ( +Wk)
2
+ el H'[(g v 212 —Zf'z] (7.61)
9 .
1 2 2 2
v LFg?+ule? - )

v xT il&*o"é’ +%Z?ozko\i}k + Gﬁg)x}



The variational principle for E' then gives the classical field equations

: |

4

122 [(ak+ W) B - ¢ XT—%X}

ﬁkz(ak"Lsz’x)WO

2
(0 W) (B + EW X)Wy + %. (gt + ﬁf,>2 7

4 %;XT?X=O

- (P *EW) (0, W, - B, W, + :ka W)

+%§2(g' + \/§f'>2W£+ z ){T ; @, X =0
- Vzg' +H'(g‘ + ﬁf‘)‘:(g' + \/Ef')z - 2f‘2:|

+

¢ (g + vEr) (W - Wh)eo

W

—V2g+ 4Hg(g2 —fz) +GXX =

=

(. @y - %;?’OW’ + -;—;?o akvv’k+eﬁg)x =

(=

(7.62)

(7.63)

We have not been able to find a self-consistent solution to these nonlinear coupled

differential equations. Among other things, the Dirac differential operator does

not commute with the angular momentum operator nor with the total isospin oper-

ator, because of the occurrence of the C-number fields WO’ Wk., Therefore, the

eigenfunctions X are not eigenfunctions of total angular momentum and total
isotopic spin. However, the results of the Abelian example suggest that the in-
clusion of the coherent clouds of the vector gauge fields only lowers the energy

of a trial state somewhat but does not alter its value by an order of magnitude.
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The situation is more complicated in the present non-Abelian case since the

vector gauge field is also a source for itself. Nevertheless, we are content to

-

duiscuss a much simplified trial state of the form

IS,N,ND=¢e

which is a state of Nqg's and Nq's. The function F is a sum of several terms

each of which contains NBT's and ITIDT

—ifd3xgd —i_fd3xg'[) I1I3
' e F

N,N

's, It is chosen so that the trial state is

(BT, DT) 1o, >

(7. 64)

a state of definite isospin I and third component 135 We are furthermore seeking

. solutions in which the isotopic wave function and spatial wave function factorize.

For a single quark state, we have

F =B
p p
F_ =D
p
For a qq system, we have
r=0: w0 =—— (87 &
2,0 yz \P1 M
I=1: F%é =gl B
P01 (pF gt
’ 2 Py By
F; 61 Bl Bz
H nl 2

—BT BT)
p

- gl ptf

(7. 65)

(7. 66)

(7.67)



I=1: Fi’i = DT BT
? nl 2

F;’g S (DT BT + BT DT )

’ vz \ "1 P2 Py Py
H pl nz

To compute the expectation value of the Hamiltonian, we have to evaluate

-2
17,

will apply the approximation (7.22) extended to the non-Abelian case. It means

| 8> . To replace this divergent quantity by a finite expression, we

that we approximate

¢st172 1sd>=S " (sIT IS > (s, 1T, 18>
0 0 13 13 0
13
where the sum is extended over all states in the same multiplet as S. With this

approximation, we can evaluate the matrix element rather easily. From the

transformation property of TO under isospin rotation, we obtain
{(1=0 |’j*0(x) 1I=0> =0

for isospin singlet states by the Wigner-Eckart theorem. For these states, the
gauge coupling has no effect on the energies. For a non—singlet‘ state, we have
N

.a _ A T

(I,I3 l@]o(x) II,13> = CI3 E Xi Xi

o . . im1

50
N

LI, 1T (%) - Ty () 1 LIg>=C ZXf(x) X, ()

N i=1

/T 1 1

PIEHOPACY
i=1

(7.67)

(7.68)

(7.69)

(7.70)
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The constant + C can be easily determined by integrating over x and x':

L

L1 172111 =11+ =N C

-

C = I(I+1) (7.71)
= .
so we arrive at
| N ?
’ =, .2
(815,07 18> =1(1+1) '11TI E X:(x) X (%) (7.72)
i=1

where X (x) is the normalized wave function for a quark or antiquark. This re-
sult neglects some possible exchange terms which will be commented upon later.
Let's now compute the expectation value of H. For simplicity, we will assume
that each of the quarks and antiquarks occupies a different state. But our final re-
sult is applicable even if some of the quarks (antiquarks) occupy the same states.

We have

i=1
(7.73)
N o
_Z vT(O‘.",V +GBG)V.
1 1 1
i=1
_ 2
9 N N
+L2 I(I+1) ZXIXH‘ ZV}L v,
My i=1 =1

which makes it clear that if the state is an isosinglet, I =0, then E ‘reduces to

the case discussed in the previous section,
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The energy E is minimized by the following equations:

—V2g+4Hg(g2+fz)+G Zr Yi X, -G z Vivfo

(0‘—%1+G3g+v>xi= 8, X,

- (7.74)
Y =
( i +G‘8g+V)Vi——(§iVi

m> N+ TN 1 N N

2
v = 4 _~_1_:1(1+1) ()(f)(1 +...+VT_V ) > 0
B

These equations are now exactly of the same structure as in the Abelian case.
Thus we conclude as in the Abelian case

1/6

Gf >»E.,.>H f

T
which is much higher than the color singlet states.
We would like to comment on several possible corrections:

(1) Exchange force. Since the quarks are identical fermions, there exist ex-

change potentials in addition to the direct interaction energies we have calculated
here. These neglected exchange potentials are off-diagonal terms so they cannot
be as big as the direct terms. These exchange terms do not arise in the "color
singlet" states. Since "color singlet" states have to be totally antisymmetrical
in color, the quarks in such a state are all distinguishable.

(2) Bhabha forces. For a qq system, there are also additional quantum effects

besides the direct potentials computed above. These are annihilation terms.

Again, for color singlet states, these terms do not contribute, since
— rad .

because the Ti are traceless.
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(3) Self-coupling of the gauge fields. If we accept that the energy of a color non-

singlet state is of order Gf > ET >> Hl/Gf, then the gauge field BO has a magnitude

-

Gf >» | IWO | ~ET>> Hl/Gf

It seems to be self—consiStent to assume that thié is also true for the spatial com-
ponent"s ¢ \?Vk. In that case, the self coupling is smaller by a fractional power
of G as compared with the leading terms in Eq. (7.61). If this turns out to be the
lowest energy configuration, then our neglect of the coherent states of the vector
gauge field will not change our qualitative conclusions.

These discussions for SU(2) also apply to SU(3) color. The only difference is
that to completely break the SU(3) gauge symmetry, we need more Higgs scalar
fields. One possibility is to introduce two complex triplets. In particular, the

quantum annihilation force still vanishes for color singlets of qq systems since
{C=01i%x 10 ) =0

because the Aa are traceless.
In our scheme, we have no explanation for the absence of color singlet

exotic states.

VIII. Static Properties of the Ground State Baryons and Mesons

We turn next to the task of calculating the static properties of the color
singlet ground states constructed in Section VI. In addition to their masses, as
already known from (6;5) and (6.6), these include the magnetic moments of the
baryons, the M1 transition moments of both baryons and mesons, the axial vector
coupling constant of the nucleon and the F to D ratio. We also compute the mean

squared charge radii of the baryons and mesons although these are not strictly
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static properties since they are probed by finite momentum transfer interactions

which lead to recoil corrections. The calculations in this section'are performed o
lésing the states of zero average momentum constructed in Section VI. The cor-
rect physical amplitudes are defined, however, in terms of zero momentum
eigenstates rather than in terms of localized pac;kets with (3) = (0. We shall
constrpct momentum eigenstates in the following section and find that the correc-
tions to the results obtained here are numerically small. Among the physical
parameters being calculated, the M-1 transition moments for the baryon are re-
lated to the magnetic moment by Clebsch-Gordan coefficients for the SU(6) states.
However, their numerical relation to the hadron radii and to the meson M-1
transition moments are determined by the underlying dynamics and wave functions

of our theory.

Magnetic Moment of the Proton and Neutron

Since we are working with a local Lagrangian field theory, the electromag-
netic interaction is introduced via the usual minimal coupling. The magnetic
moment of the nucleon is then computed from the energy shift in a weak, constant

external magnetic field:

0E = -7 - B
Bp

In terms of a spin-up trial state for the proton as constructed in (6.10), the mag-

netic moment is given by

. 1 . 1
B =P zé‘l#z'p,]z=§> (8.1)

where H, is the z-component of the magnetic moment operator

— 3_ o
L= %fd XT X § (%) : (8.2)
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The electromagnetic current operator j in a three triplet quark model is given

by
. T=cyiEqy (8.3)
Y= | d (8.4)
S
2
3 4 0
Q= 0 -5 0 (8.9)
1
0 0 -5

Using the proton state (6.10), we find directly that

L _1_f3 ¥,
F= g /d x[?x(x ozX)]z (8.6)

where X is the ground state wave function of a single quark with jz =1/2. Now
it follows from Eq. (4.13) that

2F G

T - 00 1
“i«’x(x a’x)|z——;—2—— ;(rz—zz) (8.7)
So we get
_ 1 3 1 2 2
h 2 efd x(ZFOGO)-——r3 - 3T (8.8)

where an angular average has been performed. Since to leading order Fo(r) and

GO(I‘)are equal and are peaked at r = R, we have
Ho o= % eR (8.9)

where we have made use of the normalization condition

3.1 ~ 3_1
fd X—I‘—2—2FG=fd X?(F§+G§)=1 , (8.10)
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_ 31 e
In terms of the mass of 56 , Mge = 5 R Ve obtain finally
e
- b= 3( ) (8.11)
p 2 M56

The magnetic moment of other baryons in the ground state 56 can be calculated
similarly, their ratios being given by the Clebsch-Gordan coefficients appropriate

to SU(6). For example, for a neutron, we find

2
u‘ = .-—3—/_1 (8012)

M1 Transition Moments

The M1 transition moments for baryon radiative decay are calculated sim-
ilarly and their magnitudes are determined in terms of the appropriate SU(6) co-

efficients. 23 For example, for the radiative decay

A—p+vy
we have computed
. 1 T . 3
* = = = e
PR = <P 0, = 5 e, 1AL, 5 D (8.13)
obtaining
p* = 27 u (8.14)
A 3 p i
As another example, we calculate the M1 transition moment for the radiative
decay of a meson, viz.,
W —> 10+ y (8. 15)
The result is
1/3
pr o= Gl lw,j =0> =(2) (8.16)
w Z * Vg 3 P *
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The factor (2/3) 1/3 in Eq. (8.16) is the ratio of the radius of a meson state to

that of a baryon state and represents a correction to the prediction of the non-
relativistic quark model as discussed in Section I which seems to improve the
;axperimental agreement considerably. 24
Charge Radii

For computing the mean squared charge radii of baryons and mesons, we
make ;:he approximation using the static definition of the radius. For the proton

and neutron, respectively, we find

e (rz) = (p lfd3x[l'zjo(x)]lp> = eR” (8.17)
P
or
9 1/2
el D = R (8.18)
p
and
2
{r > =0 (8.19)

The same results apply to the charged and neutral meson radii, respectively,

with the same factor (2/3) 1/3

appearing as the ratio of radii for the §q meson
system and the qqq baryon system. Corrections due to mass splittings among
the meson 35 and the hadron 56 are not known and may be appreciable, partic-

ularly for the relatively light pion.

Axial Vector Coupling Constant g

Although our theory as written does not have a conserved (or almost con-
served) axial vector current, we attempt to identify the axial coupling for neutron

p-decay, g A’ through the matrix elements of the quark current

. 1 )
JAp (p'yu Vs 5 (2\1+17\2)¢ (8.20)
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This is a natural choice for the axial vector current of the weak interactions
since it satisfies the usual commutation rules of current algebra., The axial

vector CGoupling constant g A is then given by

: 3 [.3 .
8A T (p‘lfd x[]A(x)]In) : (8.21)
where both the proton and the neutron are in the jZ =+1/2 state. Using the

explicit representation (6.10) for the proton and neutron states, we have

g, = %deX(XTog x) (8.22)

In the static SU(6), X is an eigenstate of o, so the integral is unity. However,

3

in our theory, X is an eigenstate of the total angular momentum but not of the spin.

Making the approximation FO= + GO,We find

) 2 z2
X a3>< =2G, —5 (8.23)
Tr
Therefore
25 .2 8y am?
5 (8.24)
)

where we have used the normalization condition (8.10) again. This value of g A
is less than one-half the observed value, 1.25.
We have also comﬁuted the ratios for the amplitudes of the weak decay proc-

esses, > —* EO and 3 —> A. For the vector part, the ratio is

v(s—x’): V(s —a4)=1:0 | (8. 25)
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and that for the axial vector part is

A (2‘—» 20) . A (2‘ — A) =1: %Ji - (8.26)

)

These results agree with the SU(6) prediction and correspond to a so-called
F/D ratio of 2/3.
Comparison of these results with experiment has already been presented
in Section I. Here we would like to make two additional remarks. These resuits
are not sensitive to the value of the coupling constant G. The corrections fo the

2/3.

results given above are smaller by a factor of G~ The smallness of our re-

sult for g A is the result of the large ratio of the lower to the upper components

of the quark wave function. Note that with a fixed ratio GO= - aF(‘),, the result is

3—a2

1+a2

w|u;

g4 (8.27)

which doubles in value to ~10/9 for a ~0.6. In contrast, the magnetic moment

which is given by

_ e 2a
= 2 (70) @29

is maximized in value at a = 1 and decreases only by 11% when a decreases to

~ 0.6.

Another factor to be studied is the sensitivity of these results to the use of
localized states versus momentum eigenstates for the hadron. As we show in
the following section, the corrections to the M1 matrix elements avre negligible,
~ 0(1/G), whereas for the axial charge, they are ~ 0(1/4nG) and perhaps more

significant if the color thresholds are found to be not much higher than ~ 10 GeV.
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IX. Momentum Eigenstates

The states we have constructed so far are described relative to a fixed
origin and the corresponding wave functions are localized in space and concen-
trated in a rather vsmall region. Especially, the Fermion wave function is dif-
ferent from zero only in a very thih spherical shell. This pibture of a hadron
is surprisingly different from the intuitive one deduced from the empirical in-
formation on electromagnetic and purely hadronic reactions. They suggest the
view of a hadron as an extended object with almost free point-like constituents
confined inside.

Should we take our "unusual" variational states and wave functions seriously ?
Variational calculations in non-relativistic quantum mechanics are known to yield
excellent results for energies of ground states even though the trial wave functions
are crude. We can test the detailed properties of our trial states by calculating
observable matrix elements in terms of them and comparing with experiment.
However, in order to go beyond the static properties calculated thus far and con-
front the theory with experimental data probing the detailed internal structure of
the hadron, we must first construct eigenstates of momentum or wave-packet
states with a momentum spread comparable to an actual experimental set-up.
Our average (1—6) states do not satisfy this condition, since by the uncertainty
principle the wave function contains high momentum components =~ Gf and V2H f.
Thus we need a definite procedure to construct momentum eigenstates. We must
also determine whethér the ground state energies and static hadron properties
computed in Section VIII remain unchanged, to a good approximation, or are
greatly altered if we construct actual eigenstates of momentum for use as our
trial functions.

This section is devoted to an attempt to construct momentum eigenstates
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both for hadrons at rest and with arbitrary momentum. Although this attempt
has not been completely successful, we sketch our efforts briefly in order to
}Sring out some of the difficulties we have encountered and to illustrate the cor-
.rections introduced by our procedure into calculations of the mass and the other
static properties 6f the ground states calculated in Section VIII. In particular,

we find that with a particular choice of the scalar meson mass m  we are able

t

to construct a single quark state which is an eigenstate of zero three-momentum
and with a mass within 10% of the mass of the local state constructed in SectionIV.
However, when we attempt to generalize this result, we encounter two serious
problems:
(1) We are not able to use this method to construct co-
variant eigenstates of non-vanishing three momentum,
In the P —> limit, the results simplify and covariance along

—_
the P = o0 direction is restored —namely, we have

1
E—P=—1\$—for'y = ——F— > 0

However, in this case, we have not been able to show by ex-
plicit calculation that M' is of the order of the rest mass.

(2) Even for zero three-momentum eigenstates, we cannot gen-
eralize the method used in the one quark sector to multi-
quark states. The problem is that the explicit Bogoliubov
transformatiop which we use to construct the single quark
state with a translationally invariant | Op) requires all quarks
of the same color to have the same spin, so that, for example,
we cannot construct the zero helicity vector mesons from | 0p >

Because of these problems, it is evident that we will eventually need a better
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prescription for constructing momentum eigenstates than the one we offer in
this section.

If the calculations of hadron static properties presented in Section VIII are
approximately valid, then we should obtain results for three-momentum eigen-
states similar to the resu‘lts obtained for the localized states in Section VIII. How-
ever, 1n view of the second problem cited above, we cannot construct multi-quark mo-
mentum eigenstates for praetical calculations. Inorder o proc e‘ed, we introduce an
additional assumption: thatall the three-momentum of a hadron is carriedby its constit-
uent valence quarks and scalar field or, in other words, that the no-particle
state | OL) , defined in Section Ill, is an approximate zero eigenstate of the
three-momentum operator, 15 IOL) = 0, With this assumption, we are able to
verify the results of Section VIII. These results and our efforts to solve the
problems discussed above are presented in some detail below.

The method which we use for constructing an eigenstate of momentum does
not require a knowledge of dynamics but is simply based on the requirement of
translational invariance. The natural procedure in the context of our variational
calculation would be to compute the expectation value of H with the trial states
that are eigenstates of momentum and apply a variational procedure as in Sec-
tion III to minimize the energy and to determine the wave functions. However,
such a calculation is extremely difficult in practice. The reason is that the ex-
pectation value of the energy is no longer a simple spatial integral of a local
energy density. Instead, it becomes a double integral involving overlapping
functions due to the superposition of localized states that must be constructed
in forming momentum eigenstates. Hence, in this case the variational principle
gives rise to integral equations and not to local differential equations.

As a practical attempt, we have tried with partial success an alternative
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procedure that is both simpler and approximate. Namely, we first construct a
state with a specified value of average momentum by a variational calculation
which minimizes its energy as carried out in Section V. We then form an eigen-
state of momentum equal in value to the average momentum by applying a momen-

tum projection operator, viz.

lﬁ>=ﬁ—1/2fd3Xei(?_?)'§ v > (9.1)
P is the momentum operator. |V ) denotes a state of average momentum

(FIPI?Y=MyV =T (9.2)
and energy

(PIHITY=E = JM2+F (9.3)

as in Eq. (5.41) and (5.42); and the normalization N is given in terms of the

overlap integral

CPIBD =@n’ (T -P) N

3 i(F-P) - &
N=fd APt ER A gy (9.4)
Construction of a One-Quark State with p = 0
The no-particle state I()L > is not translationally invariant since the BT'S and
DT'S create fermions and anti-fermions localized in space. Thus IOL) also

carries momentum as discussed in Section I, To construct a momentum eigen-
state in this basis is formally possible but it is very hard to carry out the ex-
plicit calculation. To expose the basic difficulty, we will limit ourselves to the
simplest bound state of one quark with zero momentum eigenvalue. In this case,
we can construct the bound state out of a trénslationally invariant trial vacuum

state by a Bogoliubov transformation as described in Section III.
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We begin with the formal construction of a one bound quark state from a

translationally invariant vacuum by introducing an operator producing "Cooper

pairs."

- %:fdspe (p» 5) [bz)s~d1—-ps "9 ps bps]

Up=e (9.5)

This is a formally unitary operator with the properties

-1 ¥ .
= = 0
BpS Up bps UF bpS cos 0 (p,s) + d—ps sin € (p, s)

(9. 6)
Dfps = Ui,l dfps Up = —bps sin 0 (p, s) + dfps cos 8 (p, s)
or equivalently
Yx = UL YU,
3 =) > i _..—'o-—»
d ps _ Z [bps U(p,s)e'P” X+dl‘;s V(p,s)e P % ] (9.7)
[(2m)° 2E s
p
where
U(p,s) =u(p,s)cosb (p,s) - v(-p, -s) sin 6 (p, s)
V(pv S) = V(p, S) sin 6 ("ps "S) + u("p: _S) sin 6 ("p’ _S)
The state
3
—1fd xg(x)o(x)
‘ 3
lhy =Uge Zfd ph(p,s)bgs 10> (9.8)

S

leads to the expectation value of H as before in Eq. (3.30).

E=(h |H [h)

= fdsz [%(—V’g)2+H(g2—f2)2 + XT(rl-_o? -V + G,Bg) x] (9.9)
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Here the ground state wave function is

- 3
X (x)= Td};— Z h (p, s) [u(p, s) cos 8 (p, s)
(27r)32E s
P
(9. 10)
ip. X

"V(—p’ S) sin 0 ("ps "S)]e

which is an arbitrary spinor since h and @ are arbitrary. Equation (9.8) gives
the desired one quark state and is an explicit construction of the Bogoliubov
transformation described in Section III for building our bound states from trans-
lationally invariant trial vacuum states.

To obtain Eq. (9.9), we have normal ordered the boson part as before and
we also normal ordered the transformed fermion part : Ul;l H UF : in keeping
with the tree approximation neglect of vacuum bubbles. Notice that UF commutes
with P

[UF, T)’] =0
since all the pairs in UF carry zero momentum by construction.
The procedure of (9.1) and (9.4) projects momentum eigenstates from [h)
in (9.8). We now consider |h) to be a state with zero average momentum,
sop=0.

It follows from

e o o TR = pxex)

that

N = ﬁSAfdsz XT(z) X(z+A)

i [Py - &) -] ) |

x (0le 0> (9.11)



87

In order to further reduce N, we must decompose & (y) into'its creation and
annihilation parts, i.e., its negative and positive frequency parts, respectively,
at t = 0:

o 0(?’ 0) = U(—) + U(+) , 0'(+) |0p> =0

o =6 4 o A 10> =0 (9.12)
The trial vacuum | 0p > for the scalar field is defined in terms of the free

Hamiltonian

H, = %fd‘?x[dz+(Vg)2+8Hf2(1—C)02] (9.13)
with

:I=I0: IOp)=0

and the mass of the o-field normal modes given by

mi = 8HIZ(1 - ¢) (9.14)

The proper choice of ¢ and of the mass of the normal modes will be made so that
the expectation value of the energy in the one-quark state will be close to the value
already computed in Section IV for the localized state at rest with average ( B> = 0.
It should be made clear that this choice of ¢ and of m, in Eq. (9.14) in no way af-
fects the value of E obtained in Section III. Different choices of m, correspond
to neglecting differenf: terms in the normal ordering of the Hamiltonian and it will
be important and necessary in future work to understand how the different choices
feed back into the higher order corrections to our present approximations.

From the canonical commutation rules and the definition (9.12) and (9.13), we

can calculate the equal time commutator
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5 = () 1] &3k K (Z-2)
[ (2), o (Z)] ) 3 “ e (9.15)
- (2
with
2 2
This gives for the normalization (9.9)
N =fd3Ad3z X' @-2) x (@) e~ X0 -Y(2)] (9. 16)
where
I 2 ik.-R (9.17)
Y(A) = > W, Ig(k) [ e
(2 m)
and where

g(k) = fd3k X Vg ()

To compute the expectation value of the energy, we also need the equal time

commutation relations
(9@, o@)]-[@, o@))--1 e @-7

Then a straightforward calculation gives

=§fd za*ae” 0 Y(A)]{ '@ B1 7V 0p 3e @ -5 el |x @
@3 x(;)fd?»y[;(gg@;)z rulg? - )
+ (g 5-B) - @) [er® + 2(e®® - ) + Li(e@-B) - )
(80 -2) -g®)° + (e - A)—gﬁ)(g(”)—f)]]} (9.18)
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Observe that the Dirac part can be evaluated directly since X satisfied the Dirac
equation according to the procedure described at the beginning of this section.,

An int;gration by parts yields

E= &+% f ®2a%a X' @-2) x(7) e YO - YD)

2
de y{g(eg(y)) +H(g(Y) - f ) +H[g(y-2) -g(] (9.19)
2 3 2 2 1 —r 3 e — — — 42
X (cf + g(g@ - f )+ gfg(y—A) -2(y)] g(37)+1i6 [g(y-A) -gy)] )}
The difference between this result and the ground state energy for a localized

(P> =0 trial state as in Eq. (4.19) arises from three factors in Eq. (9.19):

(1) A correlation or shielding factor

o~ X0 - Y(@)] (9.20)
(2) A fermion overlap factor
' X' @-Bx@) (9.21)

and
(3) Terms in the ¢g-field energy proportional to the difference

—

(6 -2 -g()] (9.22)

Neither of the first two factors differs very much from their value for zero
separation A = 0. It is readily found that Y (0) < 1 for any ratio of values
G/+H in our strong coupling regime of interest. Furthermore, no sensitive
cancellations appear in the fermion density and the factor (9.21) largely cancels
the normalization integral (9.,,14)., However, since the difference (9.22) is non-
vanishing and is 0(f) for a separation A £ R, it can be shown by a straightfor-

ward estimate that the last term in Eq.(9.19) contributes an amount of order
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2
Hl/ f>» Hl/Gf to the energy for general values of ¢, viz.,

-

% f Bz ae O YAz R v B & fzﬁg(?- 2 -2y

~ nf R° & 1Y%t ~ 1P (V%) ~ aV/PM

We now show that there is a unique choice of ¢ which will eliminate this
large contribution. For this purpose, we can replace g2 (for G, H > 1) by
g2 =ey-B7 =1
In this approximation, the last term of Eq. (9. 19) vanishes only if
c =3/4 (9.23)
corresponding to the mass in Eq. (9.14).

2 2
m,, = 2Hf (9.24)

With this choice, the energy of the zero momentum eigenstate stays practically
unchanged from the state with average zero momentum. We have checked this

explicitly, introducing (9.23) into (9.19) which becomes

E=& + %fdgzd?’A XT(E’—Z)X(E’) o [¥(0) -Y(a)]
x jd'g g(vg(Y)) +H(g(y) - f (9.25)
) A P 2 - — — —
+ %H[%(g(y - B’ —g(y)z) + (g(y)2 - fz)(g(Y-A)—g(y))z]}

The energy computed from Eq. (9.25) is less than 10% lower than the value
3/2R obtained in Section IV and the fact that the energy is reduced by this small
amount indicates that the_5= 0 eigenstate is a better approximation to the true

state.
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We do not understand physically why there is one particular choice of m;
given by Eq. (9.24) which makes the energy practically unchanged' in going from
z:ero a;erage momentum state to the corresponding zero momentum eigenstate.
Undoubtedly its meaning can be understood only after the true vacuum state is

treated properly.

Static Properties of Hadrons with p = 0

We would like to generalize the above procedure to construct a hadron trial
state which is a three-momentum eigenstate. As is evident from Eq. (9.10), we
would need a different Bogoliubov transformation for each quark with different
space-spin quantum numbers. This can be achieved for baryons by introducing
a separate UF for each color, but off diagonal contributions (i.e., U];l(é’l) UF( 92)
for 91 # 92), then make calculation of transition matrix elements with states such
as (6. 10) prohibitively difficult. For the mesons the problem is even more serious,
since we cannot bind quarks and antiquarks of the same color with different spins
and, therefore, cannot construct complete SU(6) multiplets.

An approximation which sidesteps these problems is to return to Eq. (9.1)
but leave the Bogoliubov transformation implicit by writing the state in terms of
the localized no-particle state |0L > as in Eq. (6.1) instead of making the trans-
formation explicit as in Eq. (9.8). In this way, we avoid having to evaluate off-
diagonal matrix elements discussed above. In place of that difficulty, there

now appear factors

e -
iP.

X 9.26
. 0,5 (9.26)

after the momentum operator is commuted to the right or left in the matrix ele-
ment. To proceed further, we now make the further approximation of ignoring

the momentum carried by the Cooper pairs in the Bogoliubov transformation,
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i.e., we set

— —3
iP.X -
- e 10> = 10> (9.27)

We can then repeat the calculations of the M1 moments and of the axial charge g A
using Eq. (9.27). | The results are found by straightforward calculation which we
summarize briefly:
1. The baryon magnetic moments and M1 transition amplitudes are unaltered
up to corrections ~ 0 <é> .
2. The axial charge is increased by corrections ~ 1/inG and the numerical

value of this increase is determined by the magnitude of the bare quark

= Gf and of the ratio GZ/Ha For a typical calculation with

mass M
Q
G2 ~ H, this increase is numerically small,
5 1
BpaT g 1Y TNy
S T,

N

However, this correction fo g A increases with a decreasing ratio of

2
H/G” « 1. Whether this sensitivity of the numerical result in the solu-
tion is real or significant remains to be studied and understood.

Construction of Eigenstates withp # 0

We now give a brief discussion of our attempt to construct an eigenstate of

momentum With?;é 0. From the state with average momentum

) 3 - - V . - —
. 1fd xg,(x)0(x) —lfd3Xg1(X)0(X) 3 —
v ) =e i e UF ﬁ plhl(p].S)b

-yS|0 )
pl P

(9.28)
we construct the corresponding eigenstate

L= D 2
B> = [a®x ! (P F) - X oy
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where

7=<P> =~ MV

-

and M is the rest-mass of the state. The functions g and g, are given by (5. 22)
and (5.23).

The normalization integral NV in

BIBD> =(20°6° @-B)N,_
is given by
— — = —
N‘—I_»=fd3Ae—1p°A &1 ¥ A 17 (9. 29)

To evaluate Nw‘/" in addition to (9.15) and (9.10), we need the equal time com-

mutation relations

The result we find is

= —
1P A Ry = dSZXI(?—Z) X, (5K (8) (9. 30)

where Xl given by (5.23) and Kl(z) is

3 =\ 2 — —
)

Incidentally, Eq. (9.30) is a generating functional which yields the expectation
—
values of all moments of B in an average momentum state with {( P) = MVy. The

calculation of the energy in the state I_[_)’) is similar to the calculétion of NV’ except

it is more complicated and lengthy. We only quote the result
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- 3.3 ~iPB, o i oo —
+fd Ad°ze 'P Kl(A) X;{‘:(Z—A)GBEV-V [gl(z—A)-gl(z)J xl(z)

TR v
17-8) X, ()

fd H{( [ Z-8)-g, @) + iV V(§1<?—Z’>—§1(’z’>)]2

f[gl(?-’&) - gl(_Z3 +ive 6’(‘g‘1 (z-R) - g, (;))Dz

s
_lp.

aBaddye AKl(Z) X

2
S Lo [gl(?—‘& -5,@+1V-¥ (8, @-D) -5, @)]
2
+ 3 (€7@ ) [, @D -5, () +17-9 (g, @ D) -5, @) |
3
+ 3 (8@ 1) g, @B -8, @ + 179 (g, G A)—gl(z>)] } (9.32)
where the function 'g'l (_Z) is defined to be
g @ D L, @ik (9.33)
1 (27‘,)3 wk 1
and
g @)= [k @e K E | (9.34)
1 (27r)3 1

We make two observations on this complicated expression:

/2

1. There are terms in Eq. (9.32) which are comparable with Gf and H
One of them is the second term associated with the fermion. Hence the
energy of the momentum eigenstate is changed by a large amount unless

these individually large terms cancel by appropriate choice of G, H, and

cormo,o
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2. The energy is a complicated function of velocity. It does not obviously
have the simple velocity dependence required by relative covariance.
Tgus our procedure appears neither to be consistent with relativity nor to
preserve the energy of the state. However, it may be hoped that by going to the
infinite momenturﬁ frame these bad features mafr disappear. Although the result
does greatly simplify for p — o0, there remain big terms in the non-leading

1
term of the energy, i.e., we find Ep =p+ —1\-7-/{— with M' ~ Gf as

Nevertheless, the covariance along the longitudinal direction is restored.

Notice first from the definition for §1 (9.83) and asy —> o0, we get

k ik, vz - ik
= d'k I | 1
g (z)+iv-vg.(z) = <1+ > gk) e (9.35)
1 1 (2 7r)3 ‘ lk”l .

where g(ES is the Fourier transform of g(ES. By a change of variable

Z"'—P"‘Z

v “l

we find

d3 — — oy e s > — = n
fz[gl(z—A)—gl(z)+1V"V(g1(Z"A)‘gl(z))]

3 n

d ;
—5 (2m) %5 ("1+k + )iﬂl 26(k".)g(ki)<e
1

#E )
-1

1t
Yoo VY (27!‘)

— 0 * (90 36)
This is so since it is impossible to satisfy simultaneously the two conditions

() k20 i=1, 2, ... D

1

n
Y ky =0 (9.37)
i=1
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unless all k" = 0. But the integrand does not have singular suppbrt at this point,
i
so the integral vanishes. With the scaling substitution

-

zZ 1 z
I v “l
(9.38)
1
AT YA
and making use of the relations (9.36) and (9.38), the energy simplifies to
E -V.P=1Mm (9. 39)
p Y
where
=M+ [aBae P By (l A, Z)
Ny Ny I 7L
><fd3z x*(z-2)GB %[g(?—’& - g(EB] X, (@)
1 3 —iE’oZ 1 — 3 R —
+N'yfd Ae Kl(y A Al)fd gx1-4) X, )
3 3 2 .2 — — — 2
X fd zH g(g(?) -f ,)[g(z &) -g(2) +g(Z-R) -g(z)]
1 — — — — — — — .3
+§(g(Z) - f) [g(z-A) -g(2) + g(z-4) -g(z)] } : (9.40)
Here
.L’ ,Y } ..l.’

and

- s B B B (14 =) (Bt o R ag Ay
N—(Nv>y . ,)_/j;l Ae K1<_'Y—A”’ Al)j:i ZX‘(Z"A)(1+OloV)X(z)

— 0
(9. 42)

We have evaluated the function K1 and found it to be very insensitive to its
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arguments, so Eq. (9.39) is a statement of relativistic covariance along the
longitudinal axis.

If we approximate g(?) - f by

g(z) -f=-20R - 1Z']) (9.43)
then the function
g(vzp %) =V-VEQ (9.44)
Y0
gives
2 2
L, 2f z” R -z
g(z) = =i in (9.45)

The singularity at z2 = R:2 is only superficial. It is a result of the approximation
Eq. (9.43 ). The argument of the logarithm at zz = R2 is of order H:t 1/3.
The second term in Eq. (9.40 ) which is associated with the fermion has

been computed. The result is, to a good approximation, given by

'1\?17 aa 'lp‘AKl@A",A )fd z X% (z- A)GB g(z-2) -g(z) X, (2)
- - = fodecﬁ&')] . (9.46)
0

2
One of the two extra boson terms is small, since g - fz is non-zero only near
the surface of the thin shell. The other term, however, is big and we have

only been able to bound its magnitude by
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1 {3, -ip-A, /1 — 3 - —
| Nyfd Ae K1<VA“,Al>fd gxX1(-4) ¥, (¥
xfd?’zH—zl-(g('zB—f) @2 -8@ +g@-B) -g@)]° ‘

4
< 13—6 R°H (4f2) %ﬂn 03« U tmm (9. 47)

We have not succeeded in establishing the sign and magnitude of Eq. (9.47)
and thereby determining whether there exists a specific condition for remaining
on the mass shell M by cancelling the contributions of Eq. (9.46) and (9.47 ) to

leading order as v/c —1.

X. Some Important Problems

In previous sections, we have seen that a variational approach to a relativ-
istic quantum field theory with spontaneous symmetry breaking and strong coupling
reveals several interesting and novel features. In this section, we wish to remark
briefly on some of the most important problems which remain to be understood.

Limitations of the Variational Principle

We have achieved considerable simplification by using the variational prin-
ciple. The advantage of this approach is that with it, we can apply our intuition
about the classical problem in order to illustrate certain qualitative properties of
the theory. On the otper hand, this approach has a liability inherent in all varia-
tional calculations, that is, to evaluate the validity of our variational guess. Even-
tually it will be necessary to proceed more systematically in order to verify the
existence of the bound states which are suggested by the variational calculation.
One possibility is to embark on a systematic study of the quantum fluctuation ef-
fects in the field theory beginning with our solution to the classical field equations

as the first approximation.
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Higher Order Quantum Effects

Our variational calculation has been performed in the tree approximation;
fherefgre, it remains to be seen whether the trial state and the energy and phys-
ical matrix elements will be significantly affected by including the quantum fluc-
tuations. This latfer point is particularly impori;ant in quantiun field theory
since the Hamiltonian density is an intrinsically singular operator and it requires
a careful definition to make it both finite and positive definite. In conventional
perturbation expansion in powers of coupling constants, this definition is pro-
vided by the renormalization program. However, the conventional perturbation
techniques are inapplicable here since we are interested in the strong coupling
behavior of the quantum field theory. While it may be prohibitively difficult in
the strong coupling quantum theory to derive and verify the validity of our re-
sults in quantitative detail, we are hopeful that qualitative answers may be found
to such questions as:

(a) Does the binding mechanism discussed in the present paper persist when

the quantum and renormalization effects are included ?

(b) If the binding still occurs, does the character of the solution change

qualitatively or quantitatively ?

(c) Does there exist a range of parameters such that the solution to the

field theory gives a reasonable description of the hadrons?
PCAC

PCAC and the roie of the pion present a fundamental challenge to all quark
models of hadrons. It is very attractive to suppose that the successes of SU(2) X
SU(2) are explained by viewing the pion as a Goldstone boson. On the other hand,
in a quark model with SU(6) mass spectra the pion is simply a q'chound state

partner of the rho meson in the 35 and is accorded no special role. How to make
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these two different viewpoints mutually compatible is at present an unsolved
problem.

In our theory, we don't have PCAC because the divergence of the axial-
vector current av A; = GUJ’ys Aul,b is non-vanishing, and in the strong coupling
limit with G > 1 is in no sense a '"small operatdr. " These difficulties with PCAC
may be related to the unsatisfactory result for g A which we have obtained since
Eq. (8.20) may very well define the wrong operator in contrast with the magnetic
moment operator which is constructed from the known and conserved electro-
magnetic current.

If we attempt to restore PCAC by enlarging the ¢ to a full chiral multiplet,
we introduce too many pseudoscalar mesons: the Goldstone bosons themselves
as candidates for the w, K, 77, as well as the qq bound states presumably formed
by our mechanism. Alternatively, we may view our model as a semi-phenom-
enological description of the underlying strong dynamics which- involves only mass-
less quarks and color Vector' gluons. By this conjecture, the ¢ is a bound state

as well as the hadrons it binds.

XI. Speculations

In this section, we speculate on possible future applications of our theory.
These speculations are based upon crude and naive calculations combined with
liberal doses of intuition and wishful thinking. Our main reason for including
them is to illustrate the enormously rich structure of a theory of the sort we are
studying. The topics we shall touch on include (i) the excited state spectrum
and a possible connection of <;ur model with the dual string model, (ii) Bjorken
scaling in deep inelastic electron scattering, and (iii) the production mechanism
and distribution of final state hadrons in deep inelastic electroproduction. As

before, our discussion will be based on semi-classical arguments.
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The Excited State Spectrum and the Dual String Model

The key question in the treatment of excited states is how rigidly the "classi-
cal" pgtential g(x) (the o-expectation value) resists changing when a quark is ex-
cited. If g(x) remains very nearly spherically symmetric, then a quark with non-
zero orbital anguiar mornentum £ will have an eﬁergy M!Z = (!Z‘+ 1) 2/3 M0 which is
the spectrum for the Dirac equation in the potential Gg(x) = Gf tan h v/2H f (r -R).
However, it is evident from Eq. (4.2) that g(x) will not remain exactly spherical
when the quark is in an £ # 0 state.

In fact, if angular momentum is imparted to a quark along, say, the z direc-
tion, its wave function will develop nodes along this direction and extend primarily
in orthogonal directions. We, therefore, expect the scalar potential to collapse
in shape around the quark since it can thereby reduce the surface area of the con-
fining bubble and thereby the field energy carried by the scalar field g(x). At the
same time, this deformation will not further squeeze the quark wave function which,
when £ > 0, is not using all the space available to it and so it will not increase its
energy. Thus, we intuitively expect that the shape of the self-consistent scalar
field will be distorted when the confined quarks carry angular momentum.

For a very crude estimate of the excitation energy associated with a deformed
potential or confining field bubble, we consider a torus as illustrated in Fig. 6
with inner radius a and major radius b. The same heuristic argument used in the

intuitive discussion of Section II gives the field energy associated with g(x) as

E, =k(4n2ab)4f° gl/2 (11.1)

v/ 2f of the transition

after minimizing with respect to the thickness D ~ 1/H
region for g(x) to change from +f to -f; k ~ 1 as in the spherical case. The

fermion energy in analogy with our previous result might be expected to take
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2
the form 5
R - (11.2)
a b

If we minimize the energy (11.1) plus (11.2) with respect to a and b, we find

a=b = %R, and setting k = 1,

1/3
_ 3242 _ 2 1/2)
Eirs™ 5 R 3vZ £(2+/2 ©2H (11.3)
In terms of the energy EJS of a quark with angular momentum j = ¢ + %—m a
spherical shell, this energy can be written
B, @nl/3
L (11.4)
j / 2/3
E - _1_)
i+ 2

which is ~ 1.2 > 1for j=3/2 and ~ 0.9 < 1for j=5/2. Equation (11.4)
shows that the energy of the toroid configuration is not very different from the
second and third excited states of the sphere even though g(x) is very different
in structure. It should also be emphasized that such a non-spherical solution
for g(x) must describe a superposition of many eigenstates of different total
angular momenta, as in the case of a rigid rotor. Therefore, the true energy
of the lowest state in this sum is smaller than what we have calculated.

Because of the softness of g(x) discussed above, it is evident that we will
not know anything about the details of the excited states of our theory until we
learn to solve the general problem for deformed, excited states. Nevertheless,
the above discussion of the low excitation energies of the toroidal type of config-
uration suggests a possible connection between these ideas and the general scheme
envisioned in the dual string model.

According to the preceding discussion, there will be a large number of nearby

states corresponding to rotational and vibrational excitations of the toroid ("'string").
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Since the energy of the toroid is proportional to its surface area,‘ and fora/b « 1
the quark energy will be like 1/a, clearly the nearby excitations will be those

\g\}hich (;o not change the length or cross-sectional area of the "string." Presum-
ably, the energy associated with these time-dependent motions willube approxi-
mately described by ascribing an effective mass aensity per unit length to the

torus. This leads to a correspondence between the spectrum of the excited states
in our model and the picture in a Virasoro-like dual string model. From this point-
of-view, the dual string picture may emerge as a phenomenological description of
the large density of states (collective string-like excitations) available in a canon-

ical relativistic field theory of the type being considered.

Scaling in Deep Inelastic Electron Scattering

The fact that the quark mass is effectively small only in a thin shell makes
any simple explanation of scaling in electroproduction hard to come by. One pos-
sibility, however, is that the softness of the shell to quark excitation and the small
quark effective mass in the shell itself where lg(x) | « f provides the dense set
of excited states required so that scaling can occur.

Accepting for the moment the conjecture that the softness of the bag can pro-
vide an explanation for observed scaling, one sees what may be an important dif-
ference between e e annihilation and deep inelastic lepton scattering processes. For
the deep inelastic processes, the virtual photon scatters from the proton bound
state, and the onset of scaling is controlled, as suggested by the preceding discus-
sion, by an energy sc;al»e of £ 1GeV associated with the excitations of the deform-
able shell. But in electron-positron annihilation into hadrons, there is no pre-
prepared bound state and the important scale may be the bare quark and scalar
o -gluon production thresholds which are much larger than 1 GeV. The point is

that in order to have scaling behavior, the time scale for production of the
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~ 1/ \/g should be brief relative to the interaction time as controlled

uark T
q P P
12

rod
by the bare quark mass, 1/Gf, and the range of the scalar interaction, ~ 1/H

As dischssed in Section VII, these, as well as the color thresholds, are energies
> 1 GeV. This speculation suggests striking changes in the energy dependence of
the total cross secfion as ‘we first cross color thx;esholds and then the bare quark
and scalar gluon production thresholds. Thus scaling might appear at present
machine energies for deep inelastic scattering but might require much larger en-
ergies to appear in electron-positron annihilation to hadrons. We emphasize,
however, that this is all speculation and it remains an open question whether a
simple scaling mechanism exists in our model.

We also comment that the observed rapid fall-off of the nucleon elastic form
factors may arise from the fact that in the presence of many low-lying deformed
"bubble' states the probability for a nucleon which is excited by a highly virtual photon
to remain in the ground state is rather small. Another question related to elastic
form factors is whether they have nodes because of the thin shell nature of the
wave functions of the quark constituents. To answer this question, we have to
understand the Lorentz contraction effect and the overlap factor for the "Cooper

pairs' of a nucleon at rest and a moving nucleon.

Production of Hadronic Final States

A simple heuristic picture which seems to possess most of the general fea-
tures of the inside-outside cascade postulated by Bjorken26 and discussed by
Casher, Kogut and Sus}s.kind,27 and others can be easily imagined.

Basically the idea is that a photon comes in and hits one of the three quarks
in a proton. This quark recoils from the other two quarks destroying local color
charge neutrality and unshielding large color current densities. In analogy to a

superconductor, an effect like the Meissner effect will probably take place toconfine
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the resulting large "magnetic" fields to a finite region. This is accomplished by
having a region surrounding the quarks become normal (i.e., {¢$*¢> = 0) with
':l.arge :olor supercurrents flowing on the boundary. As quarks separate the 'mor-
mal region" grows into a long tube (since the term (¢*¢ - f' 2)2 tends to keep the
volume of the normal region as small as possibfe), and one bbtams a restoring
force between the quarks that does not fall off like 1/ r2 (where r is the distance
bet\&een the quarks).

As the surface of the shell increases in area, the threshold for producing
quark-antiquark pairs decreases since they have more space in which to move,
and so there will be a critical distance at which the energy stored in the confined
color field will exceed the q ¢ production threshold. At this moment, a qq pair
will be produced and the color field will break and join separating sets of quarks.
The shell will then break in two, corresponding to two states having the quantum
numbers of a baryon and a meson. The process will repeat itself until the result-
ing fragments no longer have enough energy to separate. These regions would then
oscillate and decay into hadrons via a different mechanism. As a consequence of
the existence of these two different mechanisms, one would expect to have a set of
excited clusters formed possibly spaced by a fixed distance in rapidity, which
would decay into ordinary hadrons. Hence the general picture of an inside-outside
cascade producing a plateau with short-range correlations in rapidity would seem

natural from this point-of-view.

XII. Comparison with Related Works

‘ 28
In this section, we compare our approach to the MIT bag model and recent

12 and Dashen, Hasslacher,

works by Lee and Wick, 11 Chin and Walecka, 11 Creutz,

1

and Neveu. 13
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MIT Bag Model and Creutz's Work

In the MIT model, a hadron is a finite region of space to which almost free
Quanta‘of the hadronic fields (quarks or partons) are confined. It is obtained
from free field theory with two modifications:

(1) Adding to-the stress tensor TH” a term-g“VB, called the volume tension,
which acts to compress the bag against the outward pressure of the
quark gas.

(2) Imposing boundary conditions such that the hadronic fields be confined
in a finite region of space: the interior of a hadron or the bag.

Because of the boundary conditions, the MIT bag model is not a local field
theory. Our model, on the other hand, is based on a conventional local field
theory. A possible connection between the two models is discussed by Creutz
and by Creutz and Sohlz. At the classical level, Creutz has demonstrated that
the MIT bag model of a scalar field with Dirichlet boundary conditions can be
obtained from a local field theory with two scalar fields in a strong coupling
limit. One of the scalar fields produces the bag to confine the other scalar field.
Recently Creutz and Soh have also shown that the MIT bag model for fermions
can be obtained from a local field theory. In both cases, the scalar field which
produces the bag has a quartic self-coupling of the general type discussed in
the Appendix where a brief account of Creutz and Soh's arguments is presented.

Instead of a volume tension as in the MIT model, the scalar field energy in
our model provides a’surface tension. Furthermore, the quarks inside the po-
tential do not appear to be free nor are they massless. One consequence is that
radial excitations are absent in our model, but are present in the MIT bag mode1.29
Presumably, this qualitative difference will also have important Fonsequences in

the behavior of form factors and structure functions when momentum transfers

are large.
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Finally the mechanism for quark confinement in the two models is different.
Ours is only an approximate scheme in which the isolated quarks, as well as
color nonsinglets, have high but finite 1:hreshold.30 On the other hand, in the MIT
model, if the quarks are coupled to a non-Abelian gauge field associated with
color, then only color singlet states can exist. This is an exact selection rule
which follows from the boundary conditio;ls for the color gauge fields and Gauss'
law. Since this selection rule exists for any non-vanishing color gauge couplings,
it is interesting to study what happens as the color gauge coupling is turned off
smoothly.

Abnormal Nuclear States and Normal Nuclear Matter at High Density

In a very interesting paper, Leeand Wickllhave discussed ideas very similar
to these presented in our work, namely, they have also investigated the theoretical
possibility that in a limited domain in space, the expectation value of a neutral spin 0
field may be quite different from its normal vacuum expectation value. Lee and Wick
are mainly concerned with the formation of very heavy nuclei, while our primary
interest is the possibility of constructing low mass hadrons from heavy quarks. In
the former case, since the atomic number is large, Lee and Wick assume that
nucleons are approximately described by a degenerate Fermi distribution, char-
acterized by a maximum Fermi momentum. In the tree approximation, Lee and
Wick then find that when the coupling is sufficiently strong and density is high, the
classical field g( x) (in our notation) is favored to take the value 0 inside the nu-
cleus. Thus the nuclfeons are effectively massless inside a heavy nucleus. In our
case, however, the nuﬁlber of quarks in a hadron is so few that statistical mech-
anics does not apply. Instead we have to actually solve the Dirac equation as well
as the coupled equation for the scalar field. The quarks are fouqd to have a large

and negative mass inside a hadron instead of being massless.
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Similar techniques have been used by Walecka11 and Chin and Walecka11 to
study nuclear matter at high density. However, in their model, the scalar field
does not have sigma model self-interactions, so that there is no spontaneous
‘symmetry breakdown.

Dashen, Hasslacher and Neveu's Work

Recently Dashen, Hasslacher and Neveu13have developed a technique for finding
approximately the speétrum of bound states in a field theory without knowing the
bound state wave functions. Their starting point is a Feynman path integral repre-
sentation for the resolvent operator. It is the analog of W.K.B. approximation
in non-relativistic quantum mechanics. This method of finding bound state spectrum
reduces the problem to solving the same classical field equations as in our
work. In our case, these classical field equations arise from the minimization of
the energy in a particular class of trial states. Assuming that the trial states re-
semble the true states, we may compute, in addition to the bound state energy,
other (static) properties of the state as illustrated in Section VIII. Dashen,
Hasslacher and Neveu have applied their technique to the 1 + 1 dimensional version
of our model and find the exact classical solutions. They have also calculated the

first quantum correction to these classical solutions in the weak coupling case.
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APPENDIX
In this appendix we consider a more general class of modelsl,' in which the
meson-meson interactions are not restricted to the sigma model form considered
in Section II. We again find that the "quark" is confined to a thin spherical shell
but, unlike the sigma mddel solutioh, we find that the meson‘ field energy from
the enclosed spherical volume may be much larger than the meson field energy
from the shell. As a result, we recover the result suggested by the heuristic

argument of Section II, that E o le/ 4 (assuming that G > g1/ 4)° More pre-

cisely, for a many-quark system, in place of Eq. ( 6.4 ), we have

3/4

- 4n
E= 3R (A.1)
0
where now
Ry X —377 (A.2)
fH
The local Hamiltonian density we consider is
— 1/ 2 1 —\2
w@= 3 (6@)+3(ve@) + v (6@
0@ (T rpco@et))v@d (A.3)
in which the meson-meson interactions are given by
c 4 b 3 a ,2
U(¢)=737 ¢ +37 ¢ +59¢ (A.4)

A convenient parameterization is

4

Ug) = B o + S(1,+1 )0+ 21, 1 ¢>2} (A.5)
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We require H > 0 so that U(¢) has an absolute minimum and f+ f_ > 0 so that

L

¢ = 0 is a minimum. We also make the choice

-

1
f2f 25t >0 (A. 6)

so that U can be dépicted as in Fig: 7 , with a local minimum at ¢ = -f and
a local maximum at ¢ = —f+., With the choice f+ = -%—f_ =f, we recover the (dis-
placed) sigma model Hamiltonian considered above.

We now proceed with the variational calculation. Forming a trial state as

in Eq. ( 2.11) and varying the energy, we recover coupled differential equations

|5 +pae+ 0] x =6x (A.7)
2

dg42de . 90U _gxx (A.8)
dr r dr og

In first approximation, we let g be a square-well

g(r) = -f 6(R-r1) (A.9)
and provided that
1
G({_-f) » R (A.10)

the Dirac equation (A.7) has the familiar "shell" solution encountered in Sec-
tion IV. Since

ou

~f og

"oy

o =0 (A.11)

0

the meson equation (A.8) is also satisfied everywhere except near the shell.

For the energy of an n-quark state with all quarks in £ = 0 angular momentum

1

states, we have

’ 2
E 43—“ R3U(-f) + 47RZDU(-f.) + 47k Rz-fﬁ— + l‘ﬁ (A.12)
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where, as in Eq. (2.6), we have introduced a surface region of width D and a

shape dependent number k of order one. Requiring & E/3 D =0, we have

-

1/2
px—K i (A.13)
_\/U( -f_)
and provided that R > D, we may neglect the surface terms in Eq. (A.12) so
that OE/ O R = 0 implies
4 n_ .
R = TTU(<E) (A.14)

with E given by Eq. (A.1). Using Eq. (A.13) and (A.14) together with Eq. (A.6),
we see that the assumption R > D is justified provided that H > 1.

Although we have not been able to give an explicit solution for g which
specified g more completely near r = R, we will show, as in Section IV, that
the Klein-Gordon equation (A.8) "averaged'" across the surface is automatically
satisfied provided JE/ @ R = 0 and the Dirac equation (A.7) is satisfied. That

is, we shall verify

)
2
3 0g)o'g, 208  0OU _ygxl-=
"z 53 8r2+r 5 5o " GXX(=0 (A.15)
o]

where rz(rl) is sufficiently greater (less) than R so that §g/ 9 r is negligible.

Writing
d3z—7 dQdr r2
and
2 ; 2
og 0g -1 0 (08
or 61’2 2 0r \or)’

we use an integration by parts to rewrite the first term in Eq. (A.15) so that
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Eq. (A.15) becomes
)
- 3 0g )10g _ O8U _ % _
[d Z 31 {r or o8 GX X} 0 (A.16)
1
Now write
3 [1({0g\? |
E=fd A 5(%) + U(g)‘ + & (A.17)

where & is the fermion energy
& =/d3z x ("‘—1V—— +BGg)X

From the Dirac equation, precisely as in Eq. (4.21), we find

o0& _ 3.08 Ay
S fd x 95 aXx (A.18)

Differentiating the meson contribution to the energy and using the fact that g is

a function of r - R, so that §g/0r = - g/ OR, we find after an integration by

parts
S
8 (s )1 QE)
& [0 |1 (28) vue)
_ 3 0g )1 98 ou
_fd VA or {r o1 + o } (A,19)

Combining Eq. (A.18) and (A.19), we see that GE/G R = 0 implies the averaged
Klein-Gordon Equation (A.16).

For completeness, we now sketch briefly Creutz and Soh's arguments that
with a proper choice of parameters, it is possible to have a solution to (A.7) and

(A.8) with all the characteristics of the MIT bag model with fermions.
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We are looking for a solution with the properties:
1. The classical field g(x) is approximately a constant inside a
sphere of radius R, and quickly reaches its vacuum value 0
outside.
2. Inside the sphere, the fermion mass is effectively zero.
According to (A.8), we have for g(x) inside the potential well, i.e., for

[x | < R and for small deviations from the minimum of U(g) at g = -1

—m' Ix-yl

g(x) = -f + —-——/d e P GX X (y) (A.20)
~ 1 vl
= -f - _7 GXX(X)
-
2 L
where m'™ =4H{ -7/ For a massless fermion moving in a square well,

we specify f =f_in (A.7), and so X is given by (4.4) and (4.5).. Thus

Xx ~-% r <R. (A.21)
R

We require that the spatially varying part of g(x) be small, that is by (A.20)

lg(x)+f_ = —15- GXX <« f (A.22)
m!
or
G2 _1_3_ <f . (A.23)
m' R )

The volume tension constant B of the MIT bag is identified as the energy at the

secondary minimum

£
2
B = U(-f) = =H £ <f—+- - %> ( (A.24)
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The surface energy associated with the transition region of g(x) has been estimated

by Creutz,

-

E  ~ const. /2H R2 f?_’ (A.25)

1

v2H £

to dominate as in the MIT model, we require

and is stored in a thickness of In order for the volume energy

333 > /2H RZ f?i (A.26)

Under these conditions, the total energy of the system is

an 47 3
= 4 ——
En R 3 R B (A.27)

where a =~ 2.04 and n is the number of fermions and antifermions in the bag.

Equation (A.27) has a minimum at

1/4
@n__ - @ )/ (A.28)
with the value
m = £ an :
En(mm) =3 TR .

For strong binding to occur, we must have

1 «gr. (A.29)

R

The requirement that the fermion is effectively massless inside is the statement

Gg+ f) <<%{ (A.30)

which can be satisfied if

»> — - % (A.31)



115 M A

Equation (A.29) implies

4 f

- G + 1
>>}:'_— - E . (A.32)

H
Now Eq. (A.23) and (A.25) require

\2/3 f
HN Ty L q/8 (A.33)
P 272

All the se conditions can be fulfilled, for example, by the choice
H~G

f

1> &1 » g3 (A.34)

Finally, (A.8) implies a condition similar to (4.17). It is

Since XX is slole varying compared with g—% » wWe obtain

B = Gf_XX (R (A. 35)
which can be verified in the limit Gf_ —» o0 to reduce to the boundary condition

in the MIT model for a spherically symmetric solution.

2B =}——g—1:(/?x) r=R (A.36)

It can be readily shown that conditions (A. 33) and (A.34) ensure that the
bag solution has a lower energy than a shell solution with the field g (r) rising

back to the value 0 as r — 0.
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The bag solution is not realized when B = 0 for a potential with a symmetry

leading to a spontaneous breakdown which was the model used in the discussion

in this paper since then the field will remain at the value g = -f_ for all space,
there being in that case no volume energy. However, for B > 0 but so small

that

£

_+ 1 1/3
0<f_

1 -
2<<H

instead of (A.34), we also find bag-like fermion wave functions but with energies

/

given by H1 6f as in the shell solution.
Thus we see that by making different choices of the parameters in the

Hamiltonian, we obtain solutions with very different phenomenological implications.
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Figure Captions

Fig. 1‘ Classical guess for the solution to the Hamiltonian (2. i) in the one
fermion sector.

Fig. 2. The solution to (2.1) in the one fermion sector which is obtained in
Section IV. | |

Fig. 3. The solutions to Eq. (4.1) and (4.2) for the case vH > G >» 1.

Fig. 4. The solutions to Eq. (4.1) and (4.2) for the case G > ~H > 1.

Fig. 5. The scalar potential g and the vector potential WO which appear in
Eq. (7.23).

Fig. 6. Potential with torus shape.

Fig. 7. The potential of Eq. (A.5).
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