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ABSTRACT 

We investigate in canonical field theory the possibility that quarks may 

exist in isolation as very heavy particles, M 
quark 

>> 1 GeV, yet form strongly 

bound hadronic states, Mhadron N 1 GeV. In a model with spin5 quarks coupled 

to scalar gluons we find that a mechanism exists for the formation of bound states 

which are much lighter than the free constituents. Following Nambu, a color 

interaction mediated by gauge ,vector mesons is introduced to guarantee that all 

states with non-vanishing triality have masses much larger than 1 GeV. The 

possibility of such a solution to a strongly coupled fie’ld theory is exhibited by a 

calculation employing the variational princi@e in tree approximation. This pro- 

cedure reduces the field theoretical problem to a set of couljled differential 

. - 

equations for classical fields which are just the free parameters of the variational 

state. A striking property of the solution is that the quark wave function is con- 

fined to a thin shell at the surface of the hadronic bound state. Though the 

quantum corrections to this procedure remain to be investigated systematically, 

we explore some of the phenomenological im@ications of the trial wave functions 

so obtained. In particular, we exhibit the low-lying meson and baryon multi@lets 

of SU(6); their magnetic moments, charge radii, and radiative decays; and the 

axial charge of the baryons. 

States of non-vanishing momenta are constructed and the softness of the 

hadron shell to deformations in scattering processes is discussed qualitatively 

along with the implications for deep inelastic electron scattering and dual resonance 

models. 



I. Introduction 

The idea of quark constituents has been of very great importance in providing 
-a 

a simple, concrete model for describing and predicting the low-lying quantum 

states of hadrons and their observed properties. ’ Despite the successes of the 

quark model, one is puzzled as to why we do not see quarks. Are they non-existent 

as isolated observable particles; or, once isolated from the extremely strong forces 

that bind them as effectively light and non-relativistic constituents within hadronic 

matter of zero triality, are they very heavy so that their production thresholds lie 

beyond present accelerator energies? 

Another puzzling feature of the quark model is the question of quark statistics. 

For example, the successful SU(6) classification of the ground state and low-lying 

spectrum for baryons is derived on the assumption that the three quarks bind in a 

totally symmetric state in space, spin, and SU(3) coordinates. To account for 

. - this apparent conflict with the requirement of antisymmetry for a state of three 

spin I/2 fermions, an additional quantum number, labelled “color,” is introduced. 
2 

It is then assumed that physical hadron states are color singlets-i. e., totally anti- 

symmetric in the color quantum number for the three quarks (one red, one white, 

and one blue) forming the baryon. 

The motivation of the present work is to construct a canonical field theoretic 

model which accommodates these ideas and successes of the quark model in a con- 

sistent, systematic, and calculable way. We introduce quarks as the quanta of the 

fields and assume there are nine quarks-an SU(3) triplet for each of the three- 

color states that form an SU(3)’ of color. The non-appearance of quarks will be 

interpreted in terms of a heavy mass for “bare quarks” ( 77 1 GeV). The large 

quark “bare mass” results from the strong coupling of the quark field with a 

neutral scalar field, This interaction provides the attraction binding quarks into 
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bound states with masses corresponding to observed hadronic spectra. Formation 

of the bound state is traced in our approach to the “unconventional” dynamics of 

the sczar field which is specified so as to produce “spontaneous breakdown” of an 

underlying symmetry of the Hamiltonian 0 A strong color interaction mediated by 

gauge vector bosons pushes the non&nglet color states up to very high energies 

>> 1. GeV while leaving the color singlet states alone. Hadrons are formed as low- 

lying bound states of quarks in color singlet, or zero triality, states. Our color 

singlet selection rule is thus an approximate one, as is the rule for non-appearance 

of bare quarks since these unwanted states have high mass. In contrast to the stan- 

dard parton model3 approach which conceives of the nucleon as built of effectively 

free and light constituents in order to explain Bjorken scaling but rationalizes the 

embarrassment of unobserved partons, we first tackle here, using canonical field 

theory, the puzzle of unseen quarks. Whether our resolution of this problem can ex- 

plain why scaling is observed remains to be studied. 

Evidently the problem of constructing bound states in a canonical field theory 

with strong couplings is a very difficult one, The progress we are reporting in this 

paper is based on a variational approach-i. e. , we guess a trial form for the ground 

states and minimize the energy by a variational principle calculation. 4 

The coupled classical field equations for the quark wave functions and the interacting 

fields so constructed are solved and the states so constructed have much lower ener- 

gies than do the free bare quarks. In this way, we find unusual bound states in the 

strong coupling case that are inaccessible to a straightforward order-by-order per- 

turbation approach. We view this approach as a first approximation to a solution of 

the strong coupling problem. Its justification will ultimately rest on the systematic 

analysis of corrections to our variational “guess” for the form of the nucleon ground 

state D Such an anlysis is not included in the present work. In this paper, we report 



on the construction of low-lying bound hadronic states and the application of our 

I 
formalism to calculating physical quantities such as magnetic dipole transition 

- 

amplitudes, the axial charge renormalization, and the charge radius of the hadron. 

What emerges from our analysis is a picture of composite hadrons whose lowest 

mass configurations coincide with the L = 0, 35 of mesons and L = 0, 56 of baryons - 

predicted by the quark model., We reproduce the usual SU(6) results for the ratio 

of proton to neutron magnetic moments pp/pn = - 3/2 and for the ratio of rates for 

baryonic electromagnetic (Ml) transitions such as A+ -+ p + y and mesonic Ml 

transitions such as w - 7r” + Y 0 

We are also led to a prediction for the proton magnetic moment that is in close 

accord with its experimental value-i. e., we calculate ~1 
P 

N 3(e/2M) where M is 

the ground state mass of the baryon 56, there being no breaking of the basic SU(6) 

or SU(3) symmetry in our model. The experimental proton moment is pp = 
expt 

2.79 (e/2 Mp)O The “radius” of a meson constructed of a qG pair is found to be 

(2/3) 1’3 of the radius of a baryon formed by a qqq color singlet state. This same 

factor of (2/3) l/3 corrects the ratio of their magnetic dipole transition moments 

relative to the naive quark model. Although one cannot attach any real significance 

to such a factor while at the same time ignoring major mass splittings, it is dif- 

ficult to avoid commenting on the fact that a correction factor of (2/3) 2/3 = 076 to 

the naive quark model brings the calculated rate for w -+ x0 + ^r’ into close agree- 

ment with experiment = 890 keV 0 The mean squared charge radii 

for the proton and the neutron are 0.7 fm and 0, respectively.5 

We have also computed the value of the axial charge to be gA = 5/9 which is 

less than l/2 the observed value, 1.25. However, we do not know whether this 

unsatisfactory result is an argument against models of this type because the models 

being studied do not incorporate PCAC. This is evident from the fact that the IT and p 



I 
, I’:, 

6 

mesons are degenerate although the 7r should be a Goldstone boson associated with 
- , 

chiral symmetry. Whether or not proper inclusion of PCAC will sufficiently modify 
- 

the axial current in this model is an open question. In Section X, we discuss this 

and other sensitivities of our approach. In particular, the use of the variational 

principle and of the trial bound states for evaluating physical matrix elements as 

well as the neglect of quantum corrections to the tree approximation have led to 

considerable simplification of the quantum field theory. The accuracy of this ap- 

proach in the strong coupling region remains to be systematically studied. 

II. Intuitive Picture and Survey of Results 

This section of the paper is intended to present the basic idea of our approach 

with emphasis on the intuitive ideas and away from the formal aspects. It will also 

serve as a compendium of our results and as a guide to the remaining sections. 

’ (A) Intuitive picture of a quark bound state 

Before introducing the gauge vector mesons and the “color” interaction along 

the general lines first presented by Nambu, 
6 

we want to show how the strong inter- 

action of an elementary quark (fermion) field with a self-coupled scalar field can 

lead to a low mass bound-state. 

The basic idea of our approach is illustrated by the following simple semi- 

. classical model. This model was also discussed by VinciarellL7 Consider a quark 

described by wave function $ interacting with a neutral scalar field o with the 

Hamiltonian 

j - # - d3x z@(x) 

(2.1) 

where G, H >> 1 are large dimensionless coupling constants, and f has the dimension 



7 
‘? 

,, at.. 
,, 1 

of a mass. The form of the quartic self-interaction term 

of the theory under the discrete transformation LT - -Q . In a quantum field 

theory description, Eq. (2.1) describes a spontaneously broken theory and a has 

a non-vahishing vacuum expectation value 0 In the vacuum the field, o , takes one 

.- 

of two values, f f. Small vibrations about one of these ground states are usually 

studied by making the translation CJ --f o ’ = c + f. One readily finds that the 

small, 0 -vibrations have the mass rni = 8 Hf2 and the small $-vibrations have 

mass M 
Q 

= Gf. By assumption, the bare quark mass is 

MQ=Gf >>lGeV . (2.2) 

Our choice of the specific Hamiltonian (2.1) is arbitrary. We consider it as 

typical of a class of renormalizable field theories exhibiting spontaneous break- 

down. A wider class without spontaneous breakdown is described in the Appendix. 

Our key question is, “Do these theories also have quark states with much 

lower energy than indicated by the bare quark mass?” 

. 
For the purpose of developing an intuitive picture of non-perturbative solu- 

tions to the field equations, we approach this problem classically although this is 

no longer a purely classical question when fermions are present. The point is that 

in the one-fermion set tor when the charge 

has unit eigenvalue we are solving a Dirac equation for the quark in the presence 

of a scalar potential 0 0 We are faced with the usual question of negative energy 

states and must specify that all the negative energy states in the presence of this poten- i 

tial are filled, and then focusaour attention on the lowest positive energy eigenvalue. 

Since we are solving for the quark energy in a scalar potential, there is no Klein 

paradox of the familiar type encountered in the presence of strong, sharp vector 

potentials and therefore no ambiguity in identifying and interpreting the desired 

positive energy “one-particle” solutions. 



We proceed classically therefore with Q = 1. Classically, we expect that the 

quark wave function and the field amplitude u will avoid one another as indicated 

in Fig: 1, so as to escape the high mass energy (Eq. 2.2). 

The importance of this effect increases with the magnitude of M 
Q 

= Gf. At the 

same time, working against the formation of such a hole into which the quark will 

trap itself are the energies associated with the curvature of the localized quark 

wave function, with the curvature of the a-field as it changes its value, and the 

energy associated with the potential term H 0 ( 2 - f”) extending over the volume 

where u # f f. As a simple illustrative example of how these contributions balance, 

consider a potential as in Fig. 1 with CJ ----) 0 within a volume of radius R. Denoting 

by D the thickness of the shell in which the Q -field amplitude falls from +f to 0, we 

have for the energies contributing to Eq. (2.1) : 

+ ?a2d3x I I - +(f/D)2 4nR2D 

/H(02 -f2j2d3x [ 3 - Hf4 * R3 + 4nkR2 D ] 

(2.3) 

(2.4) 

(2.5) 

where the estimate (kq. 2.3) follows from the uncertainty principle and k N 1 is 

a shape dependent number. The energy of this configuration is given by the sum 

of (2.3), (2.4), and (2.5) 

Et% D) -$ +2nR2f2/D+Hf (206) 
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Minimizing with respect to D and R, we find a surface thickness given dimensionally 

by 

’ I 

4\ 

-gg =() *D - 1/H1’2f 

and if H1’2 f >> l/R, Le.‘, if the volume energy dominates the surface energy, then 

$j$ =0 a R-l/H l/df 

Hence the lowest possible energy is given by 

E = minE(R,D) =eR N fJ$4 (2.7) 

In this case 

D/R - H -II4 << 1 G-8) 

which is consistent with a thin transition shell region in the strong coupling limit. 

Comparing with (2.2)) we see that a localized bound state is formed if 

G >> H1’40 By Eq. (2.8)) we see that we are in the strong coupling domain. 

According to Fig. 1, the quark moves as a free massless quantum within the 

sharp well boundaries, suggesting some of the popular quark-parton model ideas. 

However, as we shall see in Section IV, the treatment as described above is much 

too naive and crude, although it illustrates the basic idea. We shall learn from a 

more systematic and careful treatment of Hamiltonian (2,l) in the following sec- 

tions that what actually emerges for the classical theory is a thin shell model of 

the hadron with the field rapidly changing from 0 = +f outside to o = -f in a region 

of thickness D - 1 ’ 

H1l2 f 
<< R, and with the quark confined to a thin shell within a 

distance l/Gf of R. The energy in this case is E - H L’6 f rather than the H1’4 f 

found in Eq. (2.7). This solution is illustrated in Fig. 2. 



10 

(B) Highlights of subsequent developments 

In Section III, we show how one can reduce the quantum field theory problem 
* 

- 

of finding bound states to just the type of classical problem that we have considered 

above. The method we discuss is to quantize the theory defined by Eq. (2.1) 

at time t = 0 by canonical methods. We then construct a Fock space state, Is> , 

as a trial state with the property 

Q Is> = Is> (20 9) 

and show that 

<s IHIs> << Gf . (2,lO) 

Our purpose in this discussion is to show (i) how, for a particular class of varia- 

tional states, our problem reduces in “tree” approximation to the classical problem, 

and (ii) to demonstrate in a systematic development all the approximations involved 

. 
in reducing our problem to a classical one, pointing out what we feel are the im- 

portant unanswered questions. These will involve questions of normal ordering 

and corrections to the tree approximation. 

Section IV is devoted to actually solving the classical problem in detail. Fol- 

lowing the analogy to the polaron problem that was referred to earlier (2.4)) the 

trial state 1 s> for the variational calculation is formed as a product of a coherent 

boson state and of a single quark state constructed in a basis whose coefficients 

are the localized wave functions in the self-consistent scalar potential; i.e., we 

write 

BL! 1°L> (2.11) 

where the quark field expansion in terms of particle annihilation and anti-particle 

creation operators B@ and DL, respectively, is 
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(2.12) -- 

and the orthonormality relations 

1 u;(x) Up(x)d3x = 6op 

(20 13) 

I U;(x) Vp(x)d3x = 0 

are required if the Ba! and Dar are to satisfy the usual anti-commutation rules: 

jB I o, Bi =b p 
i 

op, etc. OL> is a “no particle” state annihilated by the Ba’s 
I 

and Da’s, though not translationally invariant since the localized states are not 

momentum eigenstates. The classical field g(x) in Eq. (2.11) is the local expecta- 

tion value of 0 (x) in the state 1 s> ; viz. , <s [ a(x) 1 s> = g(x). . The coupled clas- 

sical differential equations satisfied by the field g(x) and the quark ground state 

function U. = X derived from (2.1) and (2.11) by requiring that <s IHIs> 

be stationary with respect to variations of g and X are: 

v2g - 4Hg(g2 -f2) = GXX , 

and 

( b- 7 
-+GpgX=&X, i : > 

(2.14) 

(2.15) 

Q appears as a Lagrauge multiplier since our trial state is normalized to 

J X’Xd3x = 1 by (2.13). The solution of these coupled classical equations gives 

the lowest ground state energy consistent with the form of our trial state 1 s> in 

Eq. (2.11) o As usual in dealing with the Dirac equation, there is no “lowest 
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energy” because of the negative energy spectrum as commented upon in the intro- 

due tion. Here, in referring to the lowest energy state, we make the usual assump- 

tion thgt the negative energy states are filled and X is the lowest positive energy 

state D In Section IV, we implement this restriction and exhibit a solution (free of 

Klein paradoxes since the potential g(x) is scalar). 

The solutions of these equations exhibit the properties described in the intro- 

duction. The solution of Eq. (2.14) leading to a bound state is a step-like spherical 

potential 

g = f tanh m f(r -R) 

A lower bound on 

G >> H1’6 (2,17) 

(2.16) 

is required to ensure this bound state to be of lower energy than that of a free 

. quark of mass M 
Q 

= Gf. This solution is illustrated in Fig. 2 with the quark con- 

fined to a thin shell of thickness D - l/Gf about R. In order to show simply and 

explicitly how these features of the solution emerge, we present the exact solution 

(discovered by C. K. Lee) to our coupled field equations in l-space, l-time 

dimension. 8 This simple example contains all essential features, of the general 

problem. 

In this case, we have to solve the coupled equations 

d2 ’ 

dx2 
g(x) - 4Hg tg2 - f2) = G xX(x) (2.18) 

and 

CY +x + Gpg(x) 
I 

X (x) = cfx (2.19) 
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There being no spin in l-space dimension, we have the two-component form for 

X(x) 
4. 

X(x) = 
yu w 

( ) XfJ w 

I 

(2.20) 

and choose a convenient representation in terms of Pauli matrices 

First observe that if we set G?X = 0 in Eq. (2.18), then the resulting equation 

admits the exact solution 

g(x) = ftanh af(x-x0) (2.21) 

If we now consider this as the input potential, we find that Eq. (2.19) then 

admits the exact solution 

X(x) = coshmf(x- (2.22) 

with 8 = 0. Now, using Eq. (2.22) to compute xX= XtpX, we find xX= 0, and 

so Eq. (2.21) and (2.22) provide exact solutions to the coupled equations. The 

general form of this solution is shown in Fig. 2 and it is obvious that as 

G/&-E -00, the quark is confined to a narrower and narrower region’; never- 

theless, one sees that the total energy corresponding to the quark part of the 

Hamiltonian manages, to be & = 0. To see why this is so, let us examine the two 

contributions to the energy of the quark. Since 2X= 0, the integral for the mass 

term vanishes: 

G 
/ 

~(x)X(x)g(x)dx = 0 (2.23) 



14 

Secondly, since the upper and lower components of X have the same slope in x, 

the kinetic energy term also vanishes: / / 

X?(x) a! & X(x) =o 

E =Jd+($$+H(g2 - f2)2 + X’(F -& + Qg)X] 

=2H 
I 

(9” -f2)2dx (2,25) 

(2.24) 

= 8/3 J% f3 

So long as 

Gf >> &j? f3 (2.26) 

the lowest energy state in the one-quark sector, Q = 
s 

XT X dx = 1, is not a 

free “bare” quark but a localized bound state., 

Of primary interest to us here are which features of this l-plus, l-dimensional, 

solution persist in the four-dimension case., Near r = R, Eq. (2.22) becomes for 

-G/ JzTi $)t+j 
I/2, m 

(2.27) , 
where 10 g2 m is the standard two-component angular solution j = l/2 and 1 = 0, 

, 
. 
i.e., X(r) is dropping with increasing 

r - R at the same rate as for X(x) in Eq. (2.22). This behavior does not persist 

all the way to r = 0 due to the correction terms indicated above but it does persist 

until X(r) has become negligibly small, as will be shown in Section IV. The 
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solution for g(r), Eq. (2.16), is similar to Eq. (2.21). This form is nearly exact 

at r = 0 and r = cc and is modified only slightly near r = R. ’ 

IntToducing EqO (2.27) into Eq, (2,3) to evaluate the quark kinetic energy, 

we find readily l/R, This difference from the vanishing result in Eq. (2.24) comes 

from the correction terms in Eq. (2-, 27)) which give the upper and lower components 

of the wave function slightly different radial dependences. Due to these terms, it is 

no longer true that XX = 0 for all r and, therefore, we also find a correction to 

Eq. (2.23) 0 What is true, however, is that XX c k x in the four-dimensional 

case as readily deduced from Eq. (2.27) and, therefore, 

G 
J 

XX gd3x << k (2.28) 

Hence quark confinement in a thin shell leads only to an -+ l/R contribution to the 

energy. Finally, we note that the inequality (2.26) becomes . 

H1/6 f <<Gf (2.29) 

for a tightly bound state. 

So far, we have considered localized bound quark solutions at rest. In Section 

V, we extend our solution by constructing variational states with arbitrary non- 

vanishing average three-momentum. Formally we do this by guessing a form for 

the trial state in our Fock space that allows the packet to move in time. Further 

we include the constraint that 

’ <sv(,ltopIsv> = -3 (2,30) 

in performing the variation to minimize the energy. The states so constructed 

preserve the required relation between energy and momentum, 
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E=M/&-?- 

or - 

/<s,i’I~,s,>} 2 - ((s~~~~~~s~>/~ = E2 -g2 = M2 

(2,31) 

(2.32) 

where v is the velocity of the bound state. The potential exhibits a Lorentz con- 

traction along the direction of motion, viz, : 

gv h,, ’ XI) = g (YXll ’ XI) (2.33) 

where gv denotes the potential for a moving state with velocity v, y = l/ \/l - v2 , 

and g is the solution for a state at rest. The transformation for the quark state is 

=StA)X(yx,,, XI 
i Evyx,, 

(2.34) 

where S (A ) is the familiar spinor transformation matrix and 8 is the quark energy 

in the rest state given by Eq. (2.15) 0 ? 

The further problem of constructing actual momentum eigenstates along with its 

attendant complexities are discussed in Section IX. 

Having come this far with a satisfactory single quark state, in Section VI 

we extend our scheme to the construction of multi-quark states and study the . 

spectrum of hadrons seen in nature. The thrust of the argument presented in 

this section is to answer the question, “If a single quark prefers to dig a hole in 

the vacuum and trap itself, what happens if one has two or more quarks or quark- 

antiquark pairs?” Our approach is to construct trial states as in Eq. (2.12) with 

several quarks present in the self-consistently produced potential g(x). Thus, as in 

the Hartree-Fock approximation for atoms, the quarks don’t interact directly with 

one another but via their average binding field produced self-consistently. Formally 



this means that we must do a variational calculation of the sort just discussed, 

except that now 

where n stands for the number of (anti-) quarks in the ground state of the poten- 

tial g. If we make the same substitutions as in the one quark case for the g of 

Fig. 2, we obtain for the energy 

E(R,D) 2 + + 4nR2D (2f/D)2 + Hf4 4nkR2D (2.36) 

where now n denotes the n-quark sector. Minimizing E(R,D) with respect to 

R and D yields 

R = n113 R. - n113 l/fH116 
n (2.37) 

and therefore 

E = n2i3 E. * (2.38) 

where R. and E. denote the results of doing the one-quark calculation. One im- 

mediate consequence of Eq. (2.38) is that the ratio of the mean mass of the ground 

state meson O-35 to the baryon Of56 is predicted to be (2/3) 2/3 
- - . The experimental 

significance of the hadron size being R n l/3 and the ground state energy oc n 2/3 

are discussed in Section VIII in detail. 

In order to proceed beyond this construction of multi-quark states to the clas- 

sification of physical hadron states, we need to introduce “color.” In particular, a 

qqq ground state for baryons will be totally symmetric in space coordinates with 

each quark in an 1 = 0 symmetric s state. It must also be symmetric in spin if we 

are to achieve an approximate SU( 6) symmetry with an L = 0 56 baryon ground state. - 
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Therefore, antisymmetrization in a ‘fcolor” quantum number is required. 
2 

Fur- 

thermore, a color interaction must be introduced in order to r’aise the energies 

of all zon-color singlet bound states not yet observed among the low-lying ground 

6 
states in nature. 

Section VII is devoted to a discussion of the way in which the introduction of 

gauge fields coupled to the “color” of a quark can accomplish this purpose and 

reproduce the desired classification. The basic idea follows the original observa- 

tion of Nambu’ that if colored quarks interact via colored gauge fields, then the 

interaction will be attractive for color singlet states and repulsive for color non- 

singlets (in the case of states made of particles belonging to a color triplet). What 

we do is adapt this argument to our self-consistent calculation in order to show how in 

this scheme only color singlet states remain with hadronic masses while all non- 

singlets are pushed up in energy. Leaving the discussion of true “color” -which 

corresponds to a non-Abelian theory-aside for the moment, we can here give a 

good idea of what is going on by highlighting the main ideas for the simpler abelian 

case. The detailed presentation both for Abelian and non-Abelian vector gauge inter- 

actions is presented in Section VII. 

The extension which we make of the theory we started with is to introduce a 

gauge field Xv and a complex Higgs field $ so that our theory is described by a 

Lagrangian of the form 

(2.39) 

As before, at the classical level (tree approximation), this theory is one in which 



the vacuum state has <a > = f f and <$ > = -+ f’ . Hence, substituting 0 ---t 0 + f 

and mod $--+ mod+ + f’, we obtain a theory which describes the’following roster 

of “bar; particles” : A o- meson of rn: = 8 f2 H, a fermion of mass M 
Q 

=Gf, a 

$-meson of m2 
+ 

= 4f12 H’, and a massive vector of mass rni = 2f2 f’ 2. Choosing 

G, H, H’, and < so that all bare quanta are very heavy, we can then, for the same 

reasons discussed in Section III, reduce our problem to that of finding stationary 

points of the classical energy 

E= <s’l#Is’> = ;(v’x$2$2(g’+ _/“f’)2(g2+B;) 

+ ;(ag’)2+ $J’gf2(g’+ &f’)2+ $(?g)2+H 
2 

(2.40) 

where z is the classical electric-type field associated with the vector potential 

XP, ij’ is the associated vector potential, and B. is defined as 

B. = 1 

C2(g’ + Jzf’)2 
(6 j-E*-- (2X) (2.41) 

We have in this manner reduced the problem to the classical form of the inter- 

action of massive vector “electric” and “magnetic” fields of color in interaction 

with a color charge density 

j,(x) = X'X (2.42) 

and current density 

T(x) = xtdx (2.43) 

In particular,quantum fluctuations are ignored in setting <s’ I(@‘@ - XT X) 2 Is’> = 0 

in writing Eq. (2.40) 0 As in the classical theory, there is a short range (Coulomb) 
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repulsion which causes any non-vanishing local charge density to expand. It is 

this local repulsion which raises the energy of the state by an amount proportional 

to the^coupling constant <. Only for color singlet states does the current density 

vanish locally so that the energy is not raised by the color interaction. The strength 

of the color coupling fixes the scale of energy by which states that are not color 

singlets are raised. Hence the color singlet, or zero triality selection rule, de- 

rived in our theory is approximate and not absolute. 10 

In Section VIII, we compute physical parameters for the hadronic ground states 

including Ml transition moments, the axial charge, and approximate charge radii 

using our trial solutions. 

Section Ix is devoted to constructing momentum eigenstates, a problem we 

have solved only for charge l/3 states at rest. Remaining difficulties and open 

problems are discussed, 

Section X is devoted to a discussion of what we see to be some of the important 

questions left totally unanswered to date. One of the most important of these ques- 

tions on which we can only speculate is whether or not one will ever be able to suc- 

cessfully incorporate PCAC into a scheme of this type. 

In Section XI, we speculate on the structure of excited hadron states. The key 

observation has to do with the “softness” of our shell solution to deformations of 

shape-a point which will be discussed heuristically in this section. The basic idea 

can be illustrated as follows: The potential g(x) is spherical with a contained quark 

in an s-state because this shape gives a surface of smallest area, and hence mini- 

mum field energy, while maximizing the volume into which the quark wave function 

is squeezed 0 However, when one excites the quark to a state of higher B # 0, the 

hole in the field potential can collapse around the quark wave function and thereby 

reduce its surface area and hence its energy without further increasing the curvature 
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of the quark wave function. Simple models suggest that this mechanism of a soft 

shell leads to low-lying excitations of the hadron state. The possible connection 

t 
of this scheme to the dual-string model, scaling, final hadron spectra, etc., are 

4, 

discussed. Our purpose is to show that the potential inherent in this approach, 

which requires further development, is very broad indeed. 

Finally, in Section XII, we compare our approach to the MIT “bag model” and 

recent works by Lee and Wick; Chin and Walecka ll; Creutz and SohlX; and Dashen, 

Hasslacher, and Neveu” who have also studied quark containment mechanisms in 

field theoretic models. 

An appendix is devoted to a discussion of a modified version of the simple 

model discussed in Section IV whose purpose is to try to explore how sensitive these 

results are to the addition of a term which forces the existence of a volume energy 

in addition to the surface energy in the a-field, In particular we sketch the argu- 

ments of Creutz and Soh’2 showing how the MIT bag model emerges for a 

specific choice of parameters. 

III, The Variational Calculation 

We have seen in the last section that a heuristic, semi-classical discussion of 

the Hamiltonion (Eq. 2,l) suggests the possible existence of bound states with 

masses much less than the bare masses of the constituents, In this section, we will 

show how such a semi-classical picture may emerge from a canonical quantum field 

theory. We have verified that this phenomenon occurs in a strong coupling theory, 

where a non-perturbative approach is essential. Cur analysis makes use of the 

variational principle for the expectation value of the Hamiltonian in a trial state. 

In carrying out the variational calculation, in addition to making a suitable guess 

for the trial state, we are forced to make one crucial approximation involving normal- 

ordering; this is the “tree” approximation. It remains to be shown how good our trial 

function and use of the tree approximation are in establishing the qualitative charac- 

ter of the strong coupling solution which we construct. A more complete treatment 
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including renormalization remains for the future and unquestionably requires a 

more systematic approach whose first step has hopefully been established by the 
- 

work we are reporting here. What we do accomplish in this section is the reduc- 

tion of the quantum. field theory problem to the classical theory described by solu- 

tions of the field equations (2.14) and (2.15) D 

For simplicity, we will not discuss SU(3) hadrons. Instead, we imagine a 

world with only a single quark species and demonstrate in Section IV the existence 

of bound states of mass much less than the bare quark mass. We defer to Sec- 

tion VII a discussion of SU(3) hadrons and of the color mechanism which ensures 

that states of non-zero triality have much larger masses than the hadrons of zero 

triality. 

Fock Space 

We consider the model Lagrangian 

2~ i(apo)2 - H(cr2 - f2j2 f $(irPa, - Go)@ (3.1) 

where CT and @ are scalar and fermion fields, respectively, f is a constant param- 

eter with dimensions of mass, and G, H > 0 are dimensionless coupling constants,, 

For our variational approach, we need only consider the system at a single time, 

which we take to be t = 0 (and we usually suppress the time argument in our nota- 

tion) . Only the canonical equal time commutation relations are needed and at t = 0, 

we may expand the field operators in a normal mode Fock space basis. 

For the scalar field, we choose a plane wave expansion 

(3.2) 
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’ ’ - uk = /q , rnz = 8Hf2 (3.3) 

and the operators are quantized by imposing the usual canonical commutation re- 

lations. In Eq. (3.3), we’have used the mass, rn, =2$Hf,for the small o- 

oscillations after making the translation (J ti Q + f , as discussed in Section II, 

For the fermion field, we make an expansion in terms of the eigenfunctions of the 

Dirac equation in an external potential to be specified later when we discuss the 

variational procedure 

$J(x> = c bnUn(x) + D;Vn(x)\ 
n L 

(3.4) 

The positive and negative energy eigenfunctions U, and V, satisfy the ortho- 

normality relations 

/ 

d3 x U; (x) Urn(x) = 
/ 

d3xV;(x) Vm(x) = 6,, 

I d3xU;(x) V,(x) = 0 

The non-vanishing equal-time anticommutators are 

(30 5) 

(3.6) 

The Hilbert space at t = 0 is constructed by applying the creation operators $ and 

BP ’ n, Dm to the translationally noninvariant no-particle state 1 OL> characterized by 

‘kl’L> = Bn lgL> = Dm (OL> = 0 (3.7) 
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The relation of this expansion to the usual one in terms of plane ‘waves and a trans- 

- 
lationally invariant trial vacuum will be clarified in terms of the Bogoliubov trans- 

for macon. 
14 

Normal Ordering and Definition of the Hamiltonian 

Our field theory model with LZ’ -given by Eq, (3.1) is a renormalizable theory. 

Because of the divergences inherent in any renormalizable quantum field theory, 

the meaning of a product of field operators at the same space-time point is ambig- 

uous and has to be properly defined, In the case of the Hamiltonian, these ambig- 

uities are related to the necessity of a renormalization program designed to remove 

the ultraviolet divergences in the theory. It is beyond the scope of the present paper 

to tackle the problem of renormalization in a strong coupling theory; we define the 

Hamiltonian by a naive normal ordering prescription. The prescription depends on 

the particular expansion chosen for the field operators. Hamiltonians normal 

ordered with respect to two different expansions such as Eq. (3; 4) and a plane wave 

expansion differ by a c-number contribution which is usually a difference of two 

infinite constants. In order to give such a difference a precise meaning, it would 

be necessary to regulate and properly renormalize the quantum field theory. 
15 

In this paper, a very fundamental approximation is to ignore these differences 

in normal ordering prescriptions, In other words, the Hamiltonian we are working 

with is correct only in the so-called “tree” approximation. To the same approxima- 

tion, the true vacuum state also coincides with the free field vacuum as defined for 

small oscillations about o = f. Our hope is that when renormalization effects are 

included, the conclusions will, be qualitatively similar although they may be quanti- 

tatively different. Specifically, this means we are ignoring the difference in energy 

between a theory with I=I normal-ordered in the basis (3.7) as constructed for the 

one fermion sector and a theory normal ordered in a translationally invariant trial 

vacuum. 16 
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The construction of the trial state is guided by our intuitive idea that the boson 

field * develops a localized expectation value in the neighborhood of the fermion 

-- 

source O To describe such a situation, we employ the so-called boson coherent 

states 

1 g> = U(g) IOL> (3.3) 

where U (g) is a unitary transformation 

-i d3 xg(x)ir(x) 
U(g) = e $ (3.9) 

which displaces the field operator o 

u-l(g) f (cm) U(g) = f[W + g(x)1 

u-l(g)dJ(g) = 6 (3,lO) 

Thus, if f(a) is any polynomial function of Q which is normal ordered term by 

term, then 

<gpt+> = <OLIf(~ + g) IOL> 
(3.11) 

= f(g) 

Equation (3.11) shows that the tree approximation rule for taking the expectation 

value of a function of Q in a coherent state is to replace CJ by the c-number ampli- 

tude g(x). This procedure gives a concrete realization of the intuitive picture 

presented in the introduction. 

Fermion States and the Bogoliubov Transformation 

We shall also want to replace the fermion field operator by an arbitrary c- 

number Dirac spinor wave function when we take the expectation value of H in 



26 

our trial state. For a trial state of fermion number one, we do ‘this by constructing 
- 

Is> = B;IQ> 
< 

(3.12) 
- 

where Bi is the creation operator for a fermion in an arbitrary state n and 

I 
OL> is the no-particle .state in the basis formed as shown in Eq, (3,4), (3.5), 

and (3.7). With this procedure, the expectation value of an operator bilinear in 

the fermion field and normal ordered in this basis is 

<s(: &x) r+(x) :Is> =u~wrUn(x) (3.13) 

where the arbitrary wave function is to be determined self-consistently by the 

variational calculation. 

If we want to study the relation of the localized no-particle state 
I 
OL> to a 

translationally invariant trial vacuum state I Op> or study the relation of the state 

(Eq. 3.12) to an expansion in a plane wave basis, we require a unitary trans- 

formation connecting the two representations. This change of basis is called a 

Bogoliubov transformation. To appreciate the significance of this transformation, 

let us first construct a trial state of fermion number one of the form 

b> = J d3p c h(p,s)b;,s(op> o 

S 

in terms of a plane wave basis 

e(x) = 

/ 

dtiz:2 EP 
0 

c [bpsh(p, s) ei”‘+ di, s v(p, s) eSiS “1 

(3.14) 

(3.15) 

Ep=\/rj2+M2 , M=Gf 
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Then the expectation value of an operator bilinear in the fermion field and normal 

ordered in this basis is 
, / 

- 
<& Q’(xjr@(x):Ih> = St(x) rstx) (30 16) 

where 

/ 

d3 
.-+ 4 

s(x) = q v&p elpo XW,s)utw) (3.17) 

However, s(x) is not an arbitrary spinor as required for performing a variational 

calculation since the positive energy solutions u(p, s) do not alone form a complete 

basis. Therefore, Eq. (3,14) is not a suitable trial state. It is apparent that a 

Bogoliubov transformation must be applied to Eq, (3.14) to mix together the par- 

ticle and anti-particle plane wave spinors in order to provide a complete basis for 

expanding the trial function. 

We illustrate how this is accomplished and exhibit the relation of OL> to the 
I 

state Op> in what follows. 
I 

For convenience, we quantize the system in a large 

but finite volume so that the momentum spectrum becomes discrete. This enables 

us to treat all expansions on the same footing. The connection between the two 

bases is 

Bn = 

.i = 
n 

where 

C! 
a! 

nmbm + ‘rim dm m ) 

xi ic 
m 

nmbm + SmdS > 

c! = 
nm , Pnm = 

J 
d3x U; (x) v,(x) 

z = 
nm d3x V;(wm 6) , Fnrn = V; (x) v,(x) 

(3.18) 

(3.19) 

- 
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These numbers can be regarded as elements of matrices CY, p, z, and z0 It fol- 

lows from the orthonormality of these eigenfunctions that these W&rices satisfy 

the reGtions 

In this matrix notation 

B=cub+pdt 

Dt =?Zb+pd’ 

and the inverse is 

(3.20) 

(3.21) 

(3.22) 

It is obvious that the transformation (b, dt)-(B, D’) is unitary., The connection 

is completed by giving the relation between the two no-particle states (this is a 

definition of IOL> ) : 

I 
OL> E -L- 

* Bn Dn lop> 
Jz n 

(3.23) 

It can be verified that 1 OL > is not a null state, In particular, if the transforma- 

tion conserves momentum, then a! and p are simply numbers 

B =a b 
P 

+ /3 d’ 
PP P-P 

Dt 
P = P, bp + ap “tP 

(3-24) 



and the relation reduces to the familiar one 

d+ b+ 
P -P P 

Op> (3025) 

If the potential is spherically symmetric, the positive and negative energy 

eigenfunctions do not mix under a spatial rotation; therefore, the B’s and D’s 

associated with two coordinates connected by such a rotation are related by 

B’ = RB 
(3.26) 

D’ = RD 

where R is a unitary matrix. Since 

)detRI = 1 (3.27) 

we have 

l7 B’ D’ 
M n n 

= (detR)2 n B,Dn 
n 

i.e., the no-particle state 
I 
OL > is rotationally invariant, 

Equations (3.12)) (3.18)) (3.19)) and (3.23) give the expansion of a trial 

state with fermion number one in a momentum basis, 

Derivation of Classical Field Equations from the Variational Principle 

We now apply the variational principle to the Hamiltonian derived from Eq. 

(3.1)) guessing as the trial state 

I s > = ,WPP~ OL> 
I 

- ‘- 1 
J = e 

d3xg(x)ti(x) T 

B. OL> I 

(3.28) 

(3.29) 

- 

t where B. is the creation operator associated with the ground state wave function 

in Eq. (3.4) and U(g) creates the coherent boson state (3.9). This procedure re- 

duces the quantum field theory problem to a classical form to which we can apply 



the heuristic discussion of Section III; it can also be solved by mathematical 

analysis. Specifically, if we assume the Hamiltonian to be normal ordered term- 

by-ter”m with respect to OL> as discussed earlier, it is straightforward to 
I 

evaluate the energy of the trial state. The result is 

E = <sj#ls> = d3x X’ [$a +G/3g)X 
/ i 

i- +($g)2 + H(g” - f2j2/ 

(3.30) 

Zero-point energies associated with the normal ordering prescription are dropped 

in writing Eq. (3.30). 

. 

Since we have not yet specified what the expansion basis (U,, Vn) is, except 

that it forms a complete basis, X is obviously arbitrary. The idea behind the 

variational principle is that the best choice of the trial state is such that the cor- 

responding g and X will minimize the energy E. However, this will be true only 

if the energy operator is positive definite for all g and X D This is not the case - 

in general, however, since the Dirac part in Eq, (3.30) is not positive definite. 

This is, of course, the original difficulty that led Dirac to formulate hole theory 

which we also must apply here, We proceed as follows: Assume that for any 

choice of g(x), we solve the Dirac equation exactly 

(;-a +Gpg)X = G(g)X 

and take the lowest “positive” eigenvalue 8 (g) 0 Since Eq, (3.31) describes the 

motion of a Dirac particle in a scalar potential, there is no Klein paradox as 

occurs for sharp localization of a Dirac particle in a strong vector (Coulomb) 

potentia1017The solutions for the positive and negative spectra are clearly 

separated in this case, and so one does not lower the energy of the trial state by 
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including particle-anti-particle pairs flowing into the region of localization as 

occurs with the Klein paradox. This is seen clearly in the solutions below in 

Sectio”n IV. 

To ensure that E is now always positive, we require that E be a minimum 

with respect to arbitrary variation ‘of g. Now 

+ &(g) 

and we have imposed the restriction from Eq, (3.5) that 

L d3x X’(x)X(x) = 1 
u 

Since 

6E = GF-)‘+ 
bg(x) $a+ GPg) -$$ 

,xt z?‘, 
-i- - (i-v + G&)X 

bg 1 

(3.32) 

(3.33) 

(3.34) 

=GFX+ 8(g)& 
J 

d3 x’ Xt, 

=G,?X 

&E - the condition bg - - Otleads to the classical field equation 

V2g-4Hg(g2-f2)=GXX (3.35) 

Equations (3.31), (3.33), and (3.35) are the same as if we had applied the varia- 

tional principle to (3.39 with the restriction (3.33). &(g) then appears as the 

Lagrangian multiplier enforcing the normalization condition. 
18 
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IV. Solution of the Coupled Equations 

Unlike the one-dimensional case discussed in the introductbry survey, we 

‘have iFot found an exact solution of the coupled differential equations in three 

dimensions a However, in the strong coupling limit, we have obtained the leading 

terms of a solution and the order of magnitude of the small corrections. The 

solution in this case is very similar to that of the one-dimensional problem. 

Rather than simply displaying this solution, we show how it comes about by 

following a more heuristic procedure. We do this in view of its surprising 

nature of confining the fermion field to a thin shell or bubble surface. First, 

then, we attempt to construct a solution of the type discussed in Section II(A), 

in which the effective mass of the trapped fermion field is zero, Finding that the 

coupled equations do not allow such a solution, we will be led to a solution in which 

the effective mass of the trapped fermion field is large and negative. We will find 

that only these bound states have positive energies that are small compared to the 

bare masses in the theory. 

Since we are seeking the lowest energy state, we expect the classical field g 

and its source FX to be spherically symmetric. The equations we wish to solve 

are then 

(4.1) 

&L 
dr2 

+ :2 Q 
r dr 

- 4Hg(g2 -f2) = GXX (4.2) 

- 

Our strategy is to make a guess for g, solve the Dirac equation for X, and then 

check the Klein-Gordon equation for consistency. According to the heuristic 

arguments originally presented, we first choose g so that the fermion field has 



zero effective mass inside a small region of space. That is, we ‘take 

g(r) = f 0 (R - r) 
I 

(4.3) 

as illustrated in Fig. 1, where R, the radius of the potential, is to be determined 

by minimizing E, just as in Eq, (2.6). The solution of the Dirac equation in a 

spherical square-well is well known; we have 

(484) 

(4.5) 

Here the i sign corresponds to j = B f i, the j, and ka are spherical Bessel func- 

tions of half integral order, 

(4.6) 

are two component angular solutions with j = P f i, respectively, and Am, Ba 
, 

are normalization constants, lg For Gf >> & and Gf >> l/R, we have k&AR) Z 

eVAR/hR and continuity at r = R implies the eigenvalue condition, 

j&W = f j,, 1 W) o (4.7) 

Equation(4,7) has solutions with k - 0 (l/R). For instance, for I= 0, we find a 

ground state energy at &’ S 2/R with higher energy states spaced at intervals 

- 0(1/R). However, this solution is not consistent with the Klein-Gordon 
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equation (4.2) 0 For r > R and far enough from the surface, both sides of Eq. 

(4.2) are - 0, but for r < R and far enough from the surface, the left-hand side 

is - O$ut the right-hand side of Eq. (4.2) is - G/R3. Thus we are not able to 

construct such a “heuristic” solution. 

The one-dimensional ‘example suggests that we look for a solution with the 

fermion field confined to the surface r - R so that the source term on the right- 

hand side of Eq. (4.2) will also vanish for r < R. This means making the inside 

potential very deep so that the fermion will have an effective mass IGgl >> G and 

thereby be restricted to a thin shell near r - R. In particular, we choose g = -f 

for r < R and far enough from the surface so that each term in Eq. (4.2) vanishes. 

Near the surface we expect also as guided by the one-space, one-time dimensional 

result that XX << X X f and also in the strong coupling limit 

2!xNf<<!&Lf f 
r dr RD dr2 D2 

Following Lee and Wick, 11 we solve Eq. (4.2) first by neglecting the ZX source 

term and 2 Q so 
r dr’ 

2 
- -4Hg(g2 -f2) = 0 
dr2 

(4.8) 

This is identical to Eq, (2.18) and we obtain 

g(x) = f tanh m f(r - R) (4.9) 

where one of the two integration constants is chosen so that g approaches its 

vacuum value g = f at large distances. The other constant, the radius R, is ad- 

justed later to minimize the total energy. It is shown that the two neglected 

terms then cancel on the “average.” 
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The details of the Dirac wave function X in the transition region depend on 

the relative magnitudes of G and H. However, the total energy of the state and 

the opt:mum choice of R are determined by Halone. To illustrate these points, 

we consider two extreme cases: (i) & >> G >> 1, and (ii) G >> 6 >> 1, 

(i) fi>>G>> 1 

In this case, it is a good approximation to replace g(x) by a square well 

potential. We are therefore invited to solve the Dirac equation in the potential 

g(x) = +f r >R 
(4,lO) 

= -f r<R 

Following the standard procedure for solving the Dirac equation in a central 

potential, we make the decomposition 

X= (4.11) 

where we have adopted the notations of ref. 19. It is immediately clear that for 

a spherically symmetric potential g(x), the only solutions of Eq. (4.1) which are 

consistent with Eq. (4.2) are those with j = l/2 (or P = 0). Otherwise, the right- 

hand side of Eq. (4.2) has an angular variation while its left-hand side does not. 

From now on we will restrict ourselves to the case P = 0. 

The radial wave functions satisfy the equations 

dG 
o=L;Go+(&+Gg)Fo dr 

(4.12) 

dFO -= 
dr 

-$Fo-(& -Gg)GO 



36 

In the limit Gf >> &, the solutions are (A- J&v) 

- 
Go =A sinh (Ar) r< R 

Ah 
FO= &-Gf 

Go = B emhr 

FO = - 

where the eigenvalue 8 

r>R 

& =$ 

GO 
is determined by the continuity of - at r = R. 

% 
The normalization condition 

determines 

The wave function X is concentrated in the region r - R. We now compute and 

compare XtX and XX 

X7X = h 

4~cR’ 
e 

-2hlr -R[ 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

=& [[l-$1 +&]xTx 

which are appreciably different from zero only in the transition region r - R. 

These features of the solution are illustrated in Fig. 3. 

We can now take into account the effects of the source term. A condition for 

R is supplied by requiring the two neglected terms to compensate each other on 
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the average. !Q This condition for R is obtained by multiplying Eq.: (4.2) by d r and 

integrating over r across the transition region. We obtain ’ 

(4.17) 

These integrals are insensitive to the precise upper and lower limits since the 

integrands decrease rapidly away from r = R. According to Eq. (4.9) and (4.16), 

!b GXX is a much more slowly varying function near r - R than d r D Thus we can 

replace G 2,~ by its value at r = R in Eq. (4.17). Making use of (4.9) and (4.16), 

we find that (4.17) gives 

1 32 -=- 

R3 
3 nJYZFf3 (4.18) 

which is independent of G. The value of R as given by Eq. (4.18) also minimizes 

the total energy. This can be verified explicitly or by the following formal 

argument. 

The total energy E is given by 

(4.19) J[ d3x ’ 4 2 
2 

E= +g) +H g2-f2 +E ( )I 

which follows from the fact that the two terms in the field energy are equal (4.18) 

and% is non-vanishing only when r - R. If we make the explicit substitution 

g(r) =f tanh m (r -R), we find 

E= F mR2f3+ ; .(4.20) 

which is a minimum at the value of R given in Eq. (4.18). We notice that 2/3 of 
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I 

the total energy is due to the fermion: 

3 1 
E=~R 

A more general way to see that. the value of R determined from the integrated 

meson .equation (4.17) minimizes the total energy is to take the derivative of Eq. 

(4.19) with respect to R. We obtain 

t3E - -- i3R J ( ) Q2+ a& 8aR dr dr 
ZJR 

But using Eq. (4.1) we find 

ae - -- 
8R G d3xpR XX J 

2 
=-4nR G drdr J f?9 xx 

dE 
Consequently aR - = 0 implies 

(4.21) 

(4.22) 

which coincides with Eq. (4.17) 0 From the inequality (2.29), H l/6 << G, we see 

that XX << X’X , s&me it follows from Eq. (4.16) that 

Xx - ‘(H~/~/G)~ ,XtX cc Xtx . 

(ii) G>>& >> 1 

In this case the Dirac wave function X is still given by Eq. (4.13) when 

(4.23) 

I I r-R >> 
1 

&If 0 
However, in the transition region r - R, a better 



representation for X can be found as follows: 

Introduce the notation 
h 

% 
= G&F 

U 
+ = PU- 

Then Eq. (4.12) becomes 

(4.24) 

dp _ - - 2Ggpi- 
dr 

($- 8) - P”($ +&) 

For a solution where g is +f outside the well (r > R) and falls to -f inside the 

well (r < R), p = + 1 at r = 0 and rapidly decreases away from the origin r= 0. 

At the same time u-(r) is exponentially increasing toward the surface (r - R). 

Hence we only have to solve the equations away from the origin where they reduce 

. to 

du 
- = -Ggu- 
dr 

dp = 2Ggp + 
dr 

We find immediately that 

(4.25) 

(4.26) 

The stability of the p equation implies that $ -6’ ZZ 0 when g(x) changes sign, 

hence the eigenvalue for the quark energy ,-$ is 

+ (4.27) 

We notice that u* varies more rapidly than the potential g(x). The half-width 
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of II-+ is given by 1 

G1’2H1’4f 
in contrast with the half-width of l/Gf in Eq, (4.13) 

of the previous case. Thus we can make the approximation ’ 

Gg(x) 2 G &ii f2 (r - R) 

Then Eq. (4.25) gives 

p=+ 
1 

2GJ2H f2R2 
cc 1 

The normalization condition (3.33) for X implies 

/- 

dru2 = & 

Now 

r- R 

xx = 1 pu2 = 1 

R2 - 
U2 

2Gaf2R4 - 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

The solutions are illustrated in Fig. 4. 

The condition (4.17) must also be satisfied in the present case. But now it 

is s which is slowly varying in the transition region and so it can be replaced 

by its value at r = R. The result gives the same value of R as in Eq. (4.18). 

Hence we have shown as claimed that the size and energy of the bound states 

are determined by H alone, independent of whether 1 << G << a or 

1 c & << G. This conclusion is also valid in the intermediate range of param- 

eters G - ~6 >> 1, although the detailed shape of the wave function is sensitive 

to G in the transition region as g changes from f to -f. 
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V. States with Non-Vanishing Average Momentum 

In the calculation of the expectation value of the Hamiltonian, ‘we have neglected 

terms%sociated with normal ordering. Since these terms depend on the scalar 

field g(x) and the wave function Xn of the fermion, they are different for different 

states. The question arises whether this is a consistent prescription. In this 

section we will show that at least this is a Lorentz covariant approximation. For 

this purpose we will extend our variational principle to states with non-zero average 

momentum. As can be verified, the states we constructed above have zero average 

momentum. 

We will be able to establish that the average momentum and energy of such a 

state is related to the energy of the corresponding state with zero average momentum 

by the mass shell condition, 

Ev = M/&l - v2 

where T;’ = $/Ev is the average velocity of the state and M is Ev at v = 0. 

Again let’s first illustrate our procedure in the one-dimensional example 

without fermions. Then 

+SH(,z -f2)i] 

We are interested in minimizing the energy in a state 1 
v> 

(5.1) 

(5.2) 

EV 
= <VII+> (5.3) 
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with the constraint 

Pv = <vlpop\v> 
(5.4) -- 

The coherent states (3.8) automatically give < Pop> = 0. To construct a state 

with non-vanishing average momentum, let’s consider 

i 

,’ Iv>=e 
J d x go Wdx) -i / d x g1 (x)&(x) 

e I o> (5.5) 

where g,(x) and g,(x) are arbitrary real functions to be determined by the varia- 

tional principle 0 Now 

-i 
/ 

dxgO (x)0(x) i / dxgO WNx) 

e f(b) e = f (” -I- go) (50 6) 

Again using the same normal-ordering prescription, we find 

Ev-woPv= <v\#-%?~,~v> 

=jxbgi+$$+H(g; -f2r+gow*-$gI] (5.7) 

where w is a Lagrange multiplier to take care of the momentum constraint (5.4). 

The variational principle leads to 
20 

z!Ez 
go+W’dx 81 = 0, 

d2 
-w .$go 7 ----& + 4Hgl g1 

( 1 
2-f2 =(), 

and 

(5.8) 

+$g1)2 + +(&gI)z+H(g; - f2r] (5.9) 



Without solving Eq, (5.8) we would intuitively expect that g,(x) is obtained from 

g(x) for Lorentz contraction. This is borne out by explicit construction. Let 

g(x) be?he solution for the problem with Pv = 0, so that g(x) satisfies Eq. (2.18) 

without the source term. We will show that the choice 

w=v 

g,(x) = !z(YX) 
y= & 

satisfies the differential equation (5.8) 0 To see this we define 

x’ = yx 

Then 

w2 
d2 g,(x) 

dx2 

_ d2gl(x) = -(l-w2) (Er d2g(x’) 

dx2 dxf2 

=-(1-w2)y2 st.aa . 

dxf2 

The energy also simplifies. Using the definition (5,lO) in Eq, 5.7)) we have 

Ev-v.P - v-$x~[~(l-w2)&Sl(x))2+H(gl(x)2-f2)2] 

=,$dx’[+(~~ + H(g(x’)2 - fZ)Z] 

lM =- 
Y I 

where 

M =ldx[+(v)2 + H (g(x)2 - f2)2] 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

is the energy in the rest frame. 



Another relation between E and P is supplied by the field equation (5.8) : 

Also 

pv=$xgo &.,;+ixg$ 
+(~)2=v qixpp.$) 

#- 
=vy dx’ J 

Thus Ev and Pv satisfy the mass shell conditions (5.1) and (5,2). 

We now proceed to discuss the three-dimensional case. The momentum 

operator is given by 

3 = 

/ 

d3= 
oP 

The trial state in this case is 

i 

I;> =e e 

With our usual normal ordering prescription for # and P 
op’ 

we find 

Eb = <‘? I’# 17;) 

ZZ + + (?g1)2 + H(g:-f2)2+X;( q+flGgl ) 1 x1 

= 1 

(5.15) 

(50 16) 

(5.17) 

(5.18) 

(5.19) 
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The fact that I ?> is a single fermion state gives the constraint’ 

/ 

t 

Q E d3x X; X1 = 1 

Introduce the Lagrange multipliers $ and g1 to take care of the constraints 

(5.19) and (5.20). From ‘the variational print iple 

b E,-&+ glQj=O 
( 

we find the equations 

go+&- ag,=o 

-(Go d,g, - v2gl + 4Hgl +GXxl=o 

?A+ 
i +/3Ggl cFl+ 

1 

Again we expect that both g,(x) and X,(x) are related to g(x) and X(x) for 

s-$= 0 states by a Lorentz transformation., Let g(x,y,z), X(X,Y,Z) ad 6’ 

be the solutions to these equations in the rest frame. Then if we assume the 

average momentum is along the x-axis, we can verify that the boosted functions 

g1 6) = gtw, Y, 4 = gtx’ > Ys z) x’ =yx 

&1 = B/y 

X,(x) = St A ) XW, YI z) e 
i&vyx G =yp 

r=l/ l-v J--“- 

satisfy the field equations. The matrix S( A ) transforms the Dirac spinor 

properly under a Lorentz boost. The matrices fl transform according to 

s-l y” s = y (yO + VYX) 

s-lyx s = y (yX + vyO) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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Since 

Xl x1 (4 = XX(xl) 

and 

(w2 2 -1)d = (w2-1)y 2 d2 d2 

dx2 

- =-- 
dxt2 dxt2 

g1 obviously satisfies the Klein-Gordon equation (5.22). To verify the Dirac 

equation, let’s rewrite Eq. (5.22) as 

gl+‘;+;J+Ggl 1 ,y, = 0 

(5.25) 

(5.26) 

(5027) 

and use 

s-l(A) y” (r +vp [ p1 x)-YxP~w~ =Y[r6~l-?xPx(l-v2)+Yxv~l] 

Px XtYx, Y, z) e [ 
iEvyx I[ = p,X(X’ , y, Z)eiGvyx 1 + y&vXe 

L&y x 
. 

(5 28) 

We find finally 

-YxPxr -YyPy- y,p, - Gig1 X(X’,Y,Z) = 6 1 
By the same scaling as in Eq. (5.23), we get 

Ev- woPv= LM 
Y 

where > 

M =/d3x[$(vg)2 + H(g2 - f2i”3 + 8 

(5.29) 

(5.30) 

(5.31) 

is the energy in the rest frame. 

In the one-dimensional case, a second relation is supplied by the field equa- 

tion. To find another relation between Ev and Pv in this case, we will make use 
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of general properties of the stress energy tensor. To fully utilize the covariance 

of a classical field theory, we introduce a set of time-dependent functions from 

Eq. (5.;3). 

gl(x’Y+4 = g[?/tx - vt), Y, z] 

go(x’Y,z,t) = --f - agp,y,z4 = -g g1 

Xl(x,y,z,t) - S(A)X [y(x-vt), y, z]e-i&y(t-vx) 

We verify that 

i-&-X1= -+;~i;+&?~ 
( 1 

X1 

Thus we can cast the equations for g1 and X1 in the covariant form 

( iy Qp - Ggl ) Xl = 0 (5,34) 

a2gl+4Hglg;-f2 = -Gx, X, 
( 1 

Furthermore 

Ev = 
J 

d3xT 
00 

Pk -+= 
/ 

d3xTok 
V 

(5.32) 

(5.33) 

(5.35) 

where Too and To’ are components of a symmetric stress energy tensor 

It follows from the covariant field equation (5.34) that ?ctv is conserved. 
(5.36) 

pv = dvT%O (5.37) 
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But from the explicit construction for g1 and xl we have 

, 

- a0 
Too = d Too 

-Vdx 

Then, in terms of T”, we find the momentum components to be 

P; =[d3xTol = $3+$ To11 

+ d 03 
aZT + 

(5.38) 

(5.39) 

=V 
s 

d3xToo 

P$ = P; = 0 

Finally we obtain 

(5.40) 

Equation (5.40) gives 

Eir’ = 
M 

J 1 - P2 

‘* 
P7 = 

Mv’ 

J 1 -v2 

and 

(5.41) 

Eb= 
J 

P;+ M2 (5.42) 
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This is a non-linear relation between the energies at rest and with average mo- 

mentum P. Establishment of Eq. (5.42) lends some credence to our seemingly 
4 

non-covariant normal ordering prescription. 

VI. The Multiquark States 

Multiquark bound states may be constructed using the variational method 

discussed in Section III. The variational state consists of a coherent scalar field 

plus quarks and antiquarks. As in the Hartree-Fock approximation, the quarks 

and antiquarks are assumed to move in the self-consistent scalar field, the source 

of which contains contributions from all of the quarks and antiquarks in the state. 21 

As for the single quark, the multiquark states are those which minimize the ex- 

pectation value of the energy. The potential g(x) is similar to the Hartree-Fock 

field in atomic physics and the (anti-) quarks move in the ground states of this 

self-consistent potential. 

To be more explicit, we consider multiquark states of the type 

I > sN 
= u(g,c; .D.. CL 1 OL> 

where C t creates quarks (B’) or antiquarks (D t ) in states corresponding to the 

potential g(x), which defines the coherent state for the scalar field. The energy 

functional becomes 

E z <SN I# I SN> 

= 2 3 +j-d3x [$%(i- H (g” - f2j2] 

where the quark energies are given by the solution to the Dirac equation 

(6.1) 

(6.2) 

(6.3) 
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and g(x) is determined by 

h V2g - 4Hg g2 - f2 ( )=Ge xi x. 
1 

i=l 

The solution we obtain from this system is identical in structure to the solutions 

found for the single quark system. 

Following our discussion of the single quark system, we find the energy of 

a state with N quarks or antiquarks in the ground state to be 

AN = 3 N?‘3 
-- 

EN 2 RN 2 R. (6.4) 

where the radius of the system, RN, is given in terms of the radius for a single 

quark, Ro, by 

RN 
= N1/3Ro, [32 j-41 

Ro= 3”a 

We would like to discuss the hadron spectrum based on this result. First of all, 

one must bear in mind that any variational calculation can at best give a reason- 

able approximation to the first few low-lying excited states. The above formula 

should not be taken seriously for highly excited states. In particular, we have 

solved the coupled equations (6.3) only for the quarks in Q = 0 states in a spherical 

potential g(x) as in Section IV. 

So far, the binding mechanism produces not only the physical hadrons but also 

non-zero triality particles of low masses. In Section VII, we propose a scheme 

utilizing Nambu’s idea of color to promote the physically unobserved states (color 

nonsinglets) to very high masses. Our scheme, however, leaves the physical 

hadrons (color singlets) unchanged with a spectrum still given by Eq. (6.3) D 
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We will now discuss the consequence of applying Eq. (6.3) to’ the color 

singlets. 

[k) q FSy stem 

Both q and q are in the Q = 0 states. These states have odd parity since qq 

has an odd intrinsic parity. They consist of the u- pseudoscalar and l- vector 

mesons. These are the (35) in SU(6) classification, and are degenerate with the 

energy 

EM 
= ; 6 (2)2/3 

(B) qqq System 

All the three quarks are in Q = 0 states. These are the positive parity (by 

definition) states with J = 3/2 and l/2, namely the (56) in SU(6) classification. 

Their common energy is 

. - EB = ; + (3)2/3 (6.6) 
0 

(6.5) 

0 
2/3 

Thus EB/EM is fixed at % . 

(C) Exotic States 

Among color singlet states there are states with more than one quark- 

antiquark pair or three quarks. These are the exotic states., So far there is no 

experimental evidence for the existence of the exotic states, According to Eq. 

(6.5) and (6.6)) exotic states appear in our spectrum, For example, a non- 

interacting two-nucleon system has a mass given by 

E2B 
‘iEB= ; + 2(3) 2/3 

0 

while a color singlet 6-quark state has a mass given by 

(6.7) 

E6q 
= 3 l 62/3 

2 R. (6.8) 



The two masses are related by 
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21’3 E 
I 

E2B = % 
E 1.26 E6q (6.9) 

That is, a 6q system has a lower mass than twice the nucleon mass. However, 

the 6q states are highly excited and, as we have emphasized, our variational 

treatment is more prone to fail for highly excited states. As long as we consider only 

Q=O quark states, wemaynotformbound stateswithbaryonnumbergreaterthantwo. 

From the basis (6. l), we can construct color singlet states of definite spin 

and unitary spin. For later applications, we gave a few examples here. Let 

(u,d) be the nonstrange quarks which form an isospin doublet. We will use arrows 

to indicate jz = + l/2 or jz = -l/2, For baryon states, the first quarks are red, 

the second blue, and the third white. For meson states, the quark and antiquark 

are of the same color and a summation over color is understood. All the follow- 

ing are states with zero average momentum: 

8 djz=~> = 'dyUTUf> + hTdTUT> + [ uTurdT> 

& Ip9jz=+> =2 IuyuTdl> - IuyU1df> - ~UIUTdT> 

(6.10) 

+ 2 ' UT$ UT> - ' UT dTul> - ' U1 dTUT> 

+ 2 f diUTUt> - ’ dTUIUT> - i dTuTul> 

The neutron states are obtained from the proton states by interchange of u and 

d quarks, For the w meson and the a0 we have 

lw,jz=O> Li[lT~U~> f 1c~l-l~) f laidT> + IaTdlj 
2 

‘no> =$ - 
[ 

’ rTuI> + ’ bT”l> + $uT> - ‘“ldT> 1 
(6.. 11) 

An overall exponential faCtOr u(g) = e 
-i 

/ 
d3 xg(x)+(x) 

, as in Eq. (6.1) is im- 

plicit in the states constructed in Eq. (6.10) and (6.11). 
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VII. Color Symmetry 

General Ideas I 

As%scussed in the previous section, the usual quark model picture of the 

ground state mesons and baryons is obtained so long as the color degree of free- 

dom is added to the quarks. 
2 

The observed hadronic spectrum is consistent with 

the existence of only color singlet bound states of qqq (baryons) and gq (mesons). 

However, the binding mechanism provided by a singlet scalar field does not distin- 

guish between color singlet and non-singlet states giving equivalent binding to all 

such states including diquark states. It is clear that an additional mechanism must 

be introduced to unbind the undesired states. Such a mechanism was suggested by 

Nan&u’ which utilizes a vector interaction coupled to the color degrees of freedom. 

As an example, consider the effect of coupling of nucleons via an interaction 

coupled to the vector isotopic spin current. This interaction leads to a non- 

relativistic discription of the isospin coupling in terms of two-body potentials in 

the form 

V ij 
=vQT ) v>o 

3 
(7.1) 

where 7’ is the isospin of the ith particle and V contains the dependence on the other 

degrees of freedom. The potential energ; of an n nucleon system ,may be estimated 

as 

V(n) = + 
c 

V 
ij 

if j 

= +V I(I+l) -nt(t+ 1) [ 1 

(7.2) 

where I is the total isospin of the system and t is the nucleon isospin. This force 



is seen to be attractive for the deuteron (I = 0) and repulsive for the dineutron 

system (I = 1) D , 

To<xtend these ideas to quark bound states, the quarks are endowed with 

the additional internal quantum numbers of color so that there are three triplets 

of quarks: red, blue, and white. The color interaction is mediated by an octet 

of non-Abelian gauge bosons coupled to the SU(3) vector currents of the color 

symmetry. 

In analogy with the isospin interaction, the effective potential energy for an 

n quark system is 

8 

V(n) = +V C C hT ^p 

i#j a=1 

(7.3) 

where h 
a i 1 i 

are octet coupling matrices to the quarks. The potential energy may 

be reduced to the form 

I  

V(n) = +V(C - nc), v>o (7.4) 

where C is the eigenvalue of the Casimir operator for SU(3) of color for the n 

particle system 

(7.5) 

and c = 4/3 is the equivalent eigenvalue for the quark. Since C is positive definite 

and has zero eigenvalue only for color singlet states, the strongest attractive 

interaction occurs for those states which are color singlets. 

In this section, we will estimate the effects of the color interaction on the 

quark binding mechanism. We will demonstrate that the color interaction has the 

effect of increasing the energies of all color non-singlet states to an arbitrarily 

high level so as to be consistent with the observed hadron spectrum. 
10 

However, 
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/’ ‘1 
) “r. , :; 

\ 

‘; 1, 

‘I 

we should also emphasize that there is an important difference between the original 
, 

Nambu suggestion and our use of the color interaction. According to Nambu, the 

dolor a”cts as the binding force for color singlets and an unbinding force for color 

non-singlets. In our approach, the binding of color singlets is provided by an ef- 

fective scalar interaction with the quarks. The color interaction couples to the full 

color current which has zero expectation value for singlet states. Hence, the color 

interaction serves only to push the non-singlet states to higher mass leaving the 

color singlet states unaffected. 

In the following, we will first use an Abelian gauge model to set up the for- 

malism and demonstrate the unbinding mechanism. Then we will discuss the non- 

Abelian case. For clarity of presentation only the SU(2) case will be discussed in 

detail. Aside from mathematical complications, the treatment of color SU(3) is 

analogous to the SU(2) model. 

The Abelian Example 

Consider a “quark” field @ coupled to a scalar Q and a U(1) vector gauge 

field X 
lJ* 

The latter is also coupled to a complex scalar $I (Higgs field) which 

breaks the U( 1) gauge symmetry so that the vector field XP attains a large 

22 
mass. The Lagrangian of such a system is 

+ $ (ap;)” - H(02 - f2 ,” - H’(,+* G _ ff”)” (7.6) 

which is invariant under the local gauge transformation 
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- 
4 

x ’ (x) 4 x ; (x) + 
I-1 

$ a, h(x) 

l)‘(x) --+ eiAlx) $l’(x) 

$(x) + eihtx) G(x) 

(7.7) 

However, the vacuum is unstable and both 0 and $ acquire a non-vanishing ex- 

pet tation value 

<9>,= f’ <a>O=f (7.8) 

To make explicit the nature of the spontaneous symmetry breaking, let’s introduce 

the Kibble transformation 

C#I (x) = fi (X/Z f’ + p (x)) e J’zf’ 

XI(x) = Xp(x) - 
Gff 

a, 6 (3 

$),(x) =, A 6 (x)i(x) 

Then Eq. (7.6) becomes 

g:-+ a x - a 
( P v 

v x,)2+ gyp + &f’)2XirXP 

2 -$H’p’ 
2 

p+2$f’ 

+ +(apo)2 -H(02 -f2)2 

(7.9) 

(7.10) 



plus the additional term for Feynman rule calculations in the unitary gauge 

A geff = 

It will be further assumed 

( mB3 mp, 

that (mB = &<f’ is the mass of gauge boson) 

1 

$ 
m 

0’ mQ ) 
>>H f 

(7.11) 

(7.12) 

so the field quanta in the theory are all very heavy and not presently observable, 

This choice bounds the size of the color charge and, as will be shown below, is 

responsible for the large upward shift of the energy for a “charged” state-Le., 

the analogue of a color non-singlet in this example. The energy density of the 

theory is given by 

a?-- 2’ Gok 2+$(&??)2+$2(p+ fift)2(z2+ -- ( 1 4 

++b2+;(ap)2+$H’p2 (p + 2&f’j2,. 

(7.13) 

+2 
&2++(+)2+H 0 ( 2 -f2j2 

where the dependent variable X0 is given by 

x0 = l2 (p+ :z,,,2 [1 ,kGOk - 
trorO@] 

and 

G 
Ok = do ,xk - (jk x0 

(7.14) 

(7.15) 

The canonical variables are Xk and G 
OQ 

which satisfy the commutation relation 

C xk(x), GoQ(xl) 1 = id %“(x -x’) (7.16) 
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According to the general idea of reducing the quantum problem to a classical 

field theory, we may consider the following trial state of quark number one: 
4 

IS’> =e 
-i/d3xWk (x) Gok(x) i/h3x S(X) 0 2 (x) 

e 
(7.17) 

-i d3xg(x)G(x) / -i d3xg’(x)fi(x) 
Ae 

/ 
e 

The classical expression for the energy is 

E’ = < S’ I # I S’> 

+ $(vg’)2 + $H’gf2(g’ + &f’)2 

( 1 
2 

+ +(qg)2+H g2 -f2 

+ XT %i?n$ +G&+(& i$ 
( i )I X 

where W. is defined by 

w. = 1 

f2(g’ + J!z f’)2 

(+~-i.XtX) 

To arrive at this expression for E’, aside from the normal ordering problem 

discussed before, one ‘more approximation has to be introduced. This is asso- 

t 2 ciated with how to evaluate the (< X X ) 

<S’ I(f&)2 IS’> = 00 ’ 

term in # . Strictly speaking 

. 

(7.18) 

(7.19) 
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, 

<s!lc2(P+ &f’)2x; IS’> = <S’ I c2(p+1&fl)2 (akGok-c $‘t+)2 1 St> 

1 = 

t2(g’ + & f’) 
2 <OL Do, (7 0 E - 5‘ @‘@)2 B; I OL> 

ZZ 1 

t2(g’ + &f’)2 
%<X’X)Z+ <OL IBo[$fi - (Xt,] 2 B; I O,)j 

The approximation in deriving (7.18) is to ignore the fluctuation term 

A= <OL IBo 

(7.20) 

(7.21) 

That is, we set 

<jo2> ~ < j”)2” Jo2 . (7.22) 

In making the approximation (7.22)) we hope that the quantum fluctuation effects 

are small when the theory is properly regulated. 

As before, the requirement that the energy E’ be a minimum leads to the 

classical field equations 

-v2wo + c2 ( 
2 

g’ 9 &Yf’ 1 wo+ (XTX =o (7.23) 

-V2g’+H’(gq+JZ.f’) (g’+ fif’ [ jZ-zf’2]+~2js.rJzf’)(~2-w~)= 0 

-V2g+4Hg g2 ( -f2 +G xX=0 1 



It is difficult to solve these coupled differential equations self-consistently. 

In particular because the vector potential 3 appears, the Dirac equation is not 

a centrzl field problem so that the total angular momentum j is not a good quantum 

number and the no-particle state I OL> is not rotationally invariant. Since we 

are only interested in the qualitative differences between an electrically charged 

system and an electrically neutral one, we simplify the problem by first setting 

ic=o (7.24) 

in the state I S’ > o Corrections for nonvanishing % will be treated perturbatively. 

The variational principle now gives Eq. (7.23) with iif = 0. 

To simplify further the Dirac equation, we require that W. be spherically 

symmetric 0 This is the case for II = 0 states, since the source for Wo, X’X is 

then spherically symmetric. 

As a first step in finding a self-consistent solution to Eq. (7.23) with G = 0, 

we consider the Dirac equation with the magnitude of the color potential -<W, 

much smaller than the confining scalar potential GPg and with its range correspond- 

ing to a length D’ N L 
2tf’ 

by Eq. (7.12) and (7.23) of the order of or slightly larger 

than D = l/Gf. On this scale we can approximately represent GPg - <W. as illus- 

trated in Fig. 5 and solve the simplified Dirac equation. 

with 

g(r) = :f 

=+f 

v(r) = 0 

r<R 

r >R 

r<R l=R-$ 

(7.25) 

(7.26) 

=v>o 

ZZ 0 r > R2 



61 

Our assumption is that V << Gf and the thickness D’ in which V(r) $ 0 is of order 

D’ 2 l/mBO Since g rises to its asymptotic value within this width, we can ap- 

proxim;te it as a step function of zero width on this scale. The solution for a 

j = i state is given by 

GI 
= A A r i. (h r) 

FI = -A Cf t& hril(hr) 

FII = - 
A’ 

Gf - &‘+V 
(A’ r) k2 il (h’ r) + D2 kl (A’ r)] 

GIII 
=h’r + D3ko( h’r) 

3 

FIII = 
A’ 

Gf+ ‘3-V 
il (A’ r) + D,kl(h’ r) I 

G =- 

IV 
z BArkO(hr) 

FIV = - 7c 
2B Gf ; 8 hrkl(hr) 

sinh z 
i,(z) = z 

cash z 
ii(z) = z 

sinh z 
-yz- 

(7.27) 

(7028) 

(7.29) 

kg(z) = - 22 e 
-2 
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where 

h = J(Gf)2 - g2 
(7.30) 

We are looking for solutions with I Q I << G f. It. will be verified later that it is 

consistent to keep only the leading terms in the asymptotic expansion of ia and ka: 

i,(z) - 
1 z 

22 e (Q= 0,l) 
Z-+cO 

(7.31) 

kp(z) - t-l)Q+1 7r -z 22 e 
Z-+cO 

Then the continuity conditions on the boundaries determine the coefficients 

C2e 

A’ RI 
=AehR1 (I+ &) 

nD2e -h’R1 = Ae hR1 v 
2Gf 

C3e 

A’ R2 
= AehR -$& 

nD3e 
-h’R2 

= -AeAR 1 _ &) 

-hR2 
Be = +Ae hR 

and the eigenvalue 

q= V l-eBGfD’ 
i 1 

The constant A is determined by the normalization condition of X 

A2 z & e-2hR 

Now to be consistent with Eq. (7.32), we must impose 

i <i Q << Gf 

(7.32) 
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We will now check the consistency of other equations in (7.23) for the case 

H2 >> G. To maintain the character of the solution for g as used’ ih solving the 

Dirac equation for X , we must require that the source term G XX as well as 

2dg 
Rdr 

is small, i.e., 

1 GXX I, = & + 6’ << Hf3 
R 

and 

k &f2<<Hf3 

The equation for g’ can be approximately satisfied everywhere by 

if 

g* + J;zf’ N ,//z f’ + small corrections 

H’ f’ 2 

(7.36) 

(7.37) 

(7.38) 

We will choose the parameters so that Eqe (7.38) is satisfied. 

We can now estimate the electrostatic field energy, EJ, the scalar field 

energies, E and E 
g g 

, , and the ** Fermion energy”, EF, and minimize the total 

energy to determine R for a hadron in a color non-singlet state. Finally we can 

verify the above inequalities. 

The results by straightforward calculation are 

E = d3x1d2 1 2 2 
J /[ 

zE i-~mBWo ]=+j3xWo(- V2 + mi)W, 

(7.39) 

= - +c d3xWo JO 
J 

where m B = fiff’. Evaluating this in the approximation used in solving the 

Dirac equation, i. e., setting -{W, = V as defined in Eq. (7.26)) we find 

EJ= $Vl-e ( 
-GfD’ 

1 (7.40) 
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The energy associated with the g’ field is very small so that 

4. Eg+E g *= E!z= 

F &%R2f3 
I 

Finally for the fermion energy 

EF= &+.t 
/ 

d3xXtXWo=&-2EJ” 0 

The total energy is the sum 

ET=EJ+Eg+E ,+EF 
g 

=- 2’ I 5‘WO(R) I (1 -e -GfD’) + ‘y &j R2 f3 

The quantity WO(R) can be computed with the aid of Eq. (7.23) which gives 

-m 2-s 1 
z 

/ 

Bl 
WOW) = - 4n d3x e 

IT=?-3 I 
xf (4 x 6) 

c 1 -i mBD 
=-- 

4n 
rni R2D 

l-e ) 

where D = l/G f. Hence we find 

dET _ Its minimum, determined by x - 0, gives 

and 

R4 = -?-- 2 &s (1-,-+) (1 -e,W) 
256 n2 &!i f f’ 

(7.41) 

(7.42) 

(7.43) 

(7.44) 

(7.45) 

(7,46) 

(7.47) 
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which automatically assures Eq. (7.37) O Now Eq. (7.35) is satisfied if 

Equation (7.36) follows simply from the choice G << H20 Finally Eq. (7.38) 

requires 

HI ‘I4 f 
>> 7 

(G&i$‘4 f 

(7.48) 

(7.49) 

Both (7.48) and (7.49) can be satisfied without difficulty with proper choice of 

H’ and f’, Now it follows from Eq. (7.48) that 

Gf >> ET >> H1’6 f (7.50) 

as desired, i.e., the state of non-zero charge, analogous to color non-singlets 

in thenon-A.belian case of SU(3) of color, is promoted to an energy much higher 

than in the absence of color interactions, its magnitude depending on the specific 

choices of the parameters f , f’, and H’ O This estimate can be further improved 

by adding the magnetic interaction energy in a perturbation treatment. The added 

terms in Eq. (7.18) are 

(7.51) 

E$=~fi3x$*(-V2+rn~)%+ <fi3xXiaX * ?? 

‘1 
J 

=- d3xXf$Xo $ 

which when added to Eq, (7.43) lowers the electrostatic energy by 

EW +$=$ 
0 / ( 

d3x -XpXWo+ XtzX 0$ 
1 

(7.52) 

p,(x) Jo(x’) -5’(x) l j,x’)] 



where JP = - ’ X y X. Jn the local limit, mB + r;o , this energy is still positive 
/ 

although reduced by a factor of l/2 and Eq. (7.50) remains valid. To complete 
- 

this discussion, we next show that the electrically neutral system, the analogue 

of the color singlet, is not shifted in energy by the strong color interaction. As 

an example of an electrically neutral system, consider two types of fermion with 

opposite charge called p+ and e-, which have identical coupling to the scalar 

fields. Then it is clear that if p+ and e- occupy the same state, then 

J’(x) = 0 (7.53) 

and, therefore, the energy of such a state is not affected by the electromagnetic 

coupling and is given by the calculation of the last section without the vector 

gauge field 0 Furthermore, if the p+ amd e- occupy different states, then one can 

form the eigenstates of C-conjugation by symmetrization or antisymmetrization, 

For both symmetrized and antisymmetrized states, it can be readily verified that 

JP(x) = 0 

and their energies are again not affected by the coupling to the gauge field, 

The Non-Abelian Case -SU(Z) 

We now turn to the non-Abelian case to show that the gauge coupling has no 

effect on the color singlet states, Our only purpose is to give an order of magni- 

tude estimate of the change in energy of the color non-singlet states. We will, 

therefore, simplify the problem as much as possible. For simplicity and clarity 

of presentation, we consider the group SU( 2) 0 The case of SU(3) will be mentioned 

briefly below. A quark doublet 

$e p 
0 n 

(7.54) 

is coupled to an isotopic triplet of vector gauge fields. To completely break the 
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gauge symmetry, we introduce another isotopic spin doublet of complex scalar 

fields 

The Lagrangian of the system is 

-H’($*c$ - f’2)2 

(7.55) 

(7.56) 

+ $ (a,o)2 -H(c2 -f2)2 

+&is 
[ 

-${?+ox’ -Ga 
3 

t,b 

where x denotes the cross product in isotopic spin space. 2 is invariant under 

the infinitesimal gauge transformation 

(7.57) 

Following the standard procedure of eliminating the would-be Goldstone bosons 

in the unitary gauge, we get 
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- 2 2; 
_ 

$H 
p 

+&f’)2 
- 

2ff2 1 2 

2 
(7.58) 

plus the additional term needed for the Feynman rule calculations 

A .ztFeff = -3id4(0) Pn (7,59) 

The field p in the unitary gauge does not respond to an isotopic rotation., The 

01 
canonical variables are X”, and Ga which satisfy 

C X:(x), GF(x’) 1 = ib kQ dab d"(x - x') 
Following the same procedure and approximations as in the Abelian case, 

we form the trial state 

-i 
IS*> =e 

/d3xsk(x) Ozok(x) iJd3xzk(x) 0 zk(x) 
e 

(7.60) 

-i 
J d3xg(x)&(x) -i / d3xg’ (x) p(x) 

e e BT 
0 IO,> 

and calculate the energy 

E’ z <S’ I #, IS’> = 

+ $(vg’)2 + $H’ 
C 
(g’ + &f’) 2 - 2ff2 I 

2 

-I- + (Tg)2 + H( g2 - f2)2 

(7.61) 
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where 

- Go = c4,2 [(ak + t ‘kx) ‘k - c x7 gx] 

The variational principle for Et then gives the classical field equations 

xk=(ak+i.izkX ii3 
1 0 

(7.62) 

(7.63) 

+i{2(g’ + &f’)2%1+ t xf ; a,x =o 

- V2g’ + H’(g’ + &f’)[(g’ + &f’)2 - 2ff2] 

-v2g + 4Hg(g2 - f2) + GXX = 0 

We have not been able to find a self-consistent solution to these nonlinear coupled 

differential equations. Among other things, the Dirac differential operator does 

not commute with the angular momentum operator nor with the total isospin oper- 

ator, because of the occurrence of the C-number fields Wo, Wk. Therefore, the 

eigenfunctions X are not eigenfunctions of total angular momentum and total 

isotopic spin. However, the results of the Abelian example suggest that the in- 

clusion of the coherent clouds of the vector gauge fields only lowers the energy 

of a trial state somewhat but does not alter its value by an order of magnitude. 
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The situation is more complicated in the present non-Abelian case since the 

vector gauge field is also a source for itself. Nevertheless, we are content to 

discusra much simplified trial state of the form 

-i 
lS,N,N>=e 

xg*fi 1,13 ~ 
e FN 5 (BP, Df ) 1 oL> 

, 
(7064) 

which ‘is a state of N q’s and N<‘s, The function F is a sum of several terms 

each of which contains NB t ‘s and 8 Dt’sO It is chosen so that the trial state is 

a state of definite isospin I and third component IQ0 We are furthermore seeking 

solutions in which the isotopic wave function and spatial wave function factorize. 

For a single quark state, we have 

F = BT 
P P 

(7.65) 

= Df etc D 
P 

For a qq system, we have 

I= 0: 0 F2,0 = 1 
J2 

I= 1: 

., 

1 F2,O LO- -- - Bt Bt 
J2 P2 Pl 

1, -1 = Bt Bt 

Fi, 0 

For a qp system, we have . 

I= 0: Fw = 1 

i 

.’ B’ - Bt Dt 
l, IL Jz nl n2 P2 Pl 

(7.66) 

(7067) 



+ Bt Dt 
p2 p1 

F1, --l, 
121 

.t Bt 
p1 n2 

To compute the expectation value of the Hamiltonian, we have to evaluate 

<s I$ IS> 0 To replace this divergent quantity by a finite expression, we 

will apply the approximation (7.22) extended to the non-Abelian case. It means 

that we approximate 

<SIT; IS>SX <s ITo IS, > 
3 

<sl 
3 

ITo IS> 

I3 

(7.67) 

(7.68) 

where the sum is extended over all states in the same multiplet as S. With this 

approximation, we can evaluate the matrix element rather easily, From the 

transformation property of To under isospin rotation, we obtain 

<I=0 q)(x) lI=O> =o 

for isospin singlet states by the Wigner-Eckart theorem. For these states, the 

gauge coupling has no effect on the energies, For a non-singlet state, we have 

N 

<&I, Ia j:(x) 1191,) =CF C Xl ‘i (7.69) 
3 

i=l 

so 

<I, I3 1 x(X) l To (x’) I 1, 

[ 

N 

c 
i=l 

r 

N 

13>’ c 
c 

Xf 
i 

i=l 

Xt (x’)Xi (x’) 

1 

‘(x) Xi(x) 

I (7.70) 



The constant + C can be easily determined by integrating over x and x’ : 

4, <I, I3 I T2 l I, 13> = I(I+ 1) = N2 C 
/ 

c - W+Q 

N2 

so we arrive at 

<S 1 
N 

\ 

2 

lTo(x)2 I s> = 1(1+ 1) + c XT (x) ‘i (x) 

i=l 

(7.72) 

where X(x) is the normalized wave function for a quark or antiquark. This re- 

(7,71) 

sult neglects some possible exchange terms which will be commented upon later. 

Let’s now compute the expectation value of #. For simplicity, we will assume 

that each of the quarks and antiquarks occupies a different state. But our final re- 

sult is applicable even if some of the quarks (antiquarks) occupy the same states. 

We have 

$%)2 + H(.g” - f2)2 

-I- FL.. 
-+pGg i 

i=l 

i=l 

N 
2 

+ J$ I(I+1) 2x!xi+ xv; vi 

mB I i=l i=l ii 

(7.73) 

which makes it clear that if the state is an isosinglet, I = 0, then E reduces to 

the case discussed in the previous section. 
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The energy E is minimized by the following equations: 

- 
- V2g+4Hg(g2 -t f2) f G . c 

yi X. - G 
1 c 

lpi=0 

( 
d of; - -kG@g+ 

i 

d 3 

i 
+GPgi-V Vi=- giVi 

(7.74) 

t2 1 V=2 
N+N 

I(I+l) x1x1 +... +vf v 

mB ( 
N i;s >o 

i 

These equations are now exactly of the same structure as in the Abelian case. 

Thus we conclude as in the Abelian case 

Gf >>ET>>H1’6 f 

which is much higher than the color singlet states. 

We would like to comment on several possible corrections: 

(1) Exchange force. Since the quarks are identical fermions, there exist ex- 

change potentials in addition to the direct interaction energies we have calculated 

here. These neglected exchange potentials are off-diagonal terms so they cannot 

be as big as the direct terms. These exchange terms do not arise in the “color 

singlet” states. Since llcolor singlet” states have to be totally antisymmetrical 

in color, the quarks $ such a state are all distinguishable. 

(2) Bhabha forces. For a qq system, there are also additional quantum effects 

besides the direct potentials ‘computed above. These are annihilation terms. 

Again, for color singlet states, these terms do not contribute, since 

<I=O, qq 1% IO,) =o 

because the 7i are traceless, 



(3) Self-coupling of the gauge fields. If we accept that the energy of a color non- 

singlet state is of order Gf >> ET >> H lb.3 f, then the gauge field B” has a magnitude 

Gf >> I iGo 1 NET>> H1’6f 

It seems to be self-consistent to assume that this is also true for the spatial com- 

ponents { Sk. In that case, the self coupling is smaller by a fractional power 
I 

of G as compared with the leading terms in Eq. (7.61). If this turns out to be the 

lowest energy configuration, then our neglect of the coherent states of the vector 

gauge field will not change our qualitative conclusions. 

These discussions for SU(2) also apply to SU(3) color. The only difference is 

that to completely break the SU(3) gauge symmetry, we need more Higgs scalar 

fields. One possibility is to introduce two complex triplets. In particular, the 

quantum annihilation force still vanishes for color singlets of qc systems since 

I - <C=O Ij;(x) IOL> =0 

because the ha are traceless. 

In our scheme, we have no explanation for the absence of color singlet 

exotic states. 

VIII. Static Properties of the Ground State Baryons and Mesons 

We turn next to the task of calculating the static properties of the color 

singlet ground states’constructed in Section VI, In addition to their masses, as 

already known from (615) and (6.6)) these include the magnetic moments of the 

baryons, the Ml transition moments of both baryons and mesons, the axial vector 

coupling constant of the nucleon and the F to D ratio. We also compute the mean 
. 

squared charge radii of the baryons and mesons although these are not strictly 



static properties since they are probed by finite momentum transfer interactions 

which lead to recoil corrections., The calculations in this section ‘are performed 
4 

using the states of zero average momentum constructed in Section VI. The cor- 

rect physical amplitudes are defined, however, in terms of zero momentum 

eigenstates rather than fn terms of localized packets with <?> = 0. We shall 

construct momentum eigenstates in the following section and find that the correc- 

tions to the results obtained here are numerically small. Among the physical 

parameters being calculated, the M-l transition moments for the baryon are re- 

lated to the magnetic moment by Clebsch-Gordan coefficients for the SU(6) states. 

However, their numerical relation to the hadron radii and to the meson M-l 

transition moments are determined by the underlying dynamics and wave functions 

of our theory. 

Magnetic Moment of the Proton and Neutron 

Since we are working with a local Lagrangian field theory,. the electromag- 

netic interaction is introduced via the usual minimal coupling. The magnetic 

moment of the nucleon is then computed from the energy shift in a weak, constant 

external magnetic field: 

In terms of a spin-up trial state for the proton as constructed in (6, lo), the mag- 

netic moment is given by 

P pz= < P, jz = i 1 Pz I p, jz = + > 

where ~1, is the z-component of the magnetic moment operator 

(80 1) 

j? = + 
/ 

d3xF’x -j’(x) 
(8-2) 
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The electromagnetic current operator j in a three triplet quark model is given 

U 

$.= d 0 S 

Using the proton state (6. lo), we find directly that 

( 
f X ??X 

)I 
(8.6) 

Z 

where X is the ground state wave function of a single quark with jz = l/2. Now 

it follows from Eq. (4.13) that 

TX xtdx ( ) 

2F G 
00 1 I,=, ;tr 

2 - 22) 
r 

So we get 

2 2 
d3x(2FoG6)$ 0 zr 

r 

where an angular average has been performed. Since to leading order Fdr) and 

Go(r) equal and are peaked at r = R, we have 

LeR Pp = 3 

where we have made use of the normalization condition 

/ 
d3x L2FG 2 

r2 / 
d3xL(F;+G;) = 1 

r3 

(80 3) 

(8.4) 

(8.5) 

(80 7) 

(8.8) 

(8.9) 

(8.10) 
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3 1 
In terms of the mass of 56 , M56 = 2 E , we obtain finally - 

I-lP 
= 

3 2G5, 
i 1 

- 

(8.11) 

The magnetic moment of other baryons in the ground state 56 can be calculated 

similarly, their ratios being given by the Clebsch-Gordan coefficients appropriate 

to SU( 6) 0 For example, for a neutron, we find 

2 
P, = - Vp 

(8 0 12) 

Ml Transition Moments 

The Ml transition moments for baryon radiative decay are calculated sim- 

ilarly and their magnitudes are determined in terms of the appropriate SU(6) co- 

efficients, 
23 

For example, for the radiative decay 

A-+P+Y 

we have computed 

I-L i G <p, jz = i IP, I A’, jz = 4 > 

obtaining 

(8.13) 

(8.14) 

As another example, we calculate the Ml transition moment for the radiative 

decay of a meson, viz., 

w-do+ y (8.15) 

The result is 

G 

2 l/3 
E <a0 1 p, I w, jz = O> = 2 

0 pP 
(8.16) 



78 

The factor (2/3) 
l/3 in Eq. (8.16) is the ratio of the radius of a meson state to 

that of a baryon state and represents a correction to the prediction of the non- 

relati&tic quark model as discussed in Section I which seems to improve the 

experimental agreement considerably. 
24 

Charge Radii 

For computing the mean squared charge radii of baryons and mesons, we 

make the approximation using the static definition of the radius. For the proton 

and neutron, respectively, we find 

e <rE> G <p l/a3x~jo(n)llp> =eR2 

or 

<ri> l/2 
=R 

(8.17) 

(8.18) 

and 

<rz> =0 (8.19) 

The same results apply to the charged and neutral meson radii, respectively, 

with the same factor (2/3) l/3 appearing as the ratio of radii for the pq meson 

system and the qqq baryon system. Corrections due to mass splittings among 

the meson 35 and the hadron 56 are not known and may be appreciable, partic- - - 

ularly for the relatively light pion. 

Axial Vector Coupling Constant gA 

Although our theory as yritten does not have a conserved (or almost con- 

served) axial vector current, we attempt to identify the axial coupling for neutron 

p-decay, gA’ through the matrix elements of the quark current 

(8.20) 



This is a natural choice for the axial vector current of the weak interactions 

since it satisfies the usual commutation rules of current algebra. , The axial 

vector Coupling constant gA is then given by 

gA = <p .I 

where! both the proton and the neutron are in the jz = + l/2 state. Using the 

explicit representation (6.10) for the proton and neutron states, we have 

gA = gd3x(x’u3 x) 

(8.21) 

(8.22) 

In the static SU(6), X is an eigenstate of a3 so the integral is unity. However, 

in our theory, X is an eigenstate of the total angular momentum but not of the spin. 

Making the approximation Fo= A Go ,we find 

Therefore 

2 
xfu3x =2G; % 

r 

5 2 
gA=s’s d3x C+,(r)2 

5 =- 
9 

(8.23) 

where we have used the normalization condition (8.10) again. This value of gA 

is less than one-half the observed value, 1.25. 

We have also computed the ratios for the amplitudes of the weak decay proc- 

esses, X-AZ0 and c- - A. For the vector part, the ratio is 

vp--x0): v(z--*) = l:O (8.25) 
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and that for the axial vector part is 

‘) : A (c- - A) = 1: ffi ’ 

These results agree with the SU(6) prediction and correspond to a so-called 

F/D ratio of 2/3. 

Comparison of these results with experiment has already been presented 

in Section I. Here we would like to make two additional remarks. These results 

are not sensitive to the value of the coupling constant G, The corrections to the 

results given above are smaller by a factor of G 
-2/3 

. The smallness of our re- 

sult for gA is the result of the large ratio of the lower to the upper components 

of the quark wave function. Note that with a fixed ratio Go= - aI& the result is 

(8.26) 

5 3-a’ 
gA=9l+ 

which doubles in value to - 10/9 for a - 0.6. In contrast, the magnetic moment 

which is given by 

pp = 3(e6) (5) 

is maximized in value at a = 1 and decreases only by 11% when a decreases to 

Another factor to be studied is the sensitivity of these results to the use of 

localized states versus momentum eigenstates for the hadron. As we show in 

the following section, the corrections to the Ml matrix elements are negligible, 

- O( l/G), whereas for the axial charge, they are - 0( l/h G) and perhaps more 

significant if the color thresholds are found to be not much higher than - 10 GeV. 

(8.27) 

(8.28) 
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IX. Momentum Eigenstates 

The states we have constructed so far are described relative to a fixed 
- 

origin and the corresponding wave functions are localized in space and concen- 

trated in a rather small region. Especially, the Fermion wave function is dif- 

ferent from zero only in a very thin spherical shell. This picture of a hadron 

is surprisingly different from the intuitive one deduced from the empirical in- 

formation on electromagnetic and purely hadronic reactions. They suggest the 

view of a hadron as an extended object with almost free point-like constituents 

confined inside D 

Should we take our “unusual” variational states and wave functions seriously? 

Variational calculations in non-relativistic quantum mechanics are known to yield 

excellent results for energies of ground states even though the trial wave functions 

are crude. We can test the detailed properties of our trial states by calculating 

observable matrix elements in terms of them and comparing with experiment, 

However, in order to go beyond the static properties calculated thus far and con- 

front the theory with experimental data probing the detailed internal structure of 

the hadron, we must first construct eigenstates of momentum or wave-packet 

states with a momentum spread comparable to an actual experimental set-up. 

Our average (Td) states do not satisfy this condition, since by the uncertainty 

principle the wave function contains high momentum components z Gf and &%I f. 

Thus we need a definite procedure to construct momentum eigenstates. We must 

also determine whether the ground state energies and static hadron properties 

computed in Section VIII remain unchanged, to a good approximation, or are 

greatly altered if we construct actual eigenstates of momentum for use as our 

trial functions o 

This section is devoted to an attempt to construct momentum eigenstates 
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both for hadrons at rest and with arbitrary momentum. Although this attempt 

has not been completely successful, we sketch our efforts briefly’in order to 

bring Gt some of the difficulties we have encountered and to illustrate the cor- 

rections introduced by our procedure into calculations of the mass and the other 

static properties of the ground states calculated in Section VIII. In particular, 

we find that with a particular choice of the scalar meson mass ma we are able 
I 

to construct a single quark state which is an eigenstate of zero three-momentum 

and with a mass within 10% of the mass of the local state constructed in SectionIV. 

However, when we attempt to generalize this result, we encounter two serious 

problems : 

(1) We are not able to use this method to construct co- 

variant eigenstates of non-vanishing three momentum. 

In the ‘d + co limit, the results simplify and covariance along 

the ft = 00 direction is restored-namely, we have 

E-P= 
M’ 
Y 

fory = L-k 2 

However, in this case, we have not been able to show by ex- 

plicit calculation that M’ is of the order of the rest mass. 

(2) Even for zero three-momentum eigenstates, we cannot gen- 

eralize the method used in the one quark sector to multi- 

quark states. The problem is that the explicit Bogoliubov 

transformation which we use to construct the single quark 

state with a translationally invariant 1 Op> requires all quarks 

of the same color to have the same spin, so that, for example, 

we cannot construct the zero helicity vector mesons from 1 Op) . 

Because of these problems, it is evident that we will eventually need a better 



‘I, ! / 0; 

83 

prescription for constructing momentum eigenstates than the one we offer in 

this section. 
- 

If the calculations of hadron static properties presented in Section VIII are 

approximately valid, then we should obtain results for three-momentum eigen- 

states similar to the results obtained for the localized states in Section VIII. How- 

ever, in view of the second problemcited above, we cannot construct multi-quark mo- 

mentum eigenstates for practical calculations. Inorder to proceed, we introduce an 

additional assumption: that all the three-momentum of a hadron is carried by its constit- 

uent valence quarks and scalar field or, in other words, that the no-particle 

state 1 OL> , defined in Section III, is an approximate zero eigenstate of the 

three-momentum operator, 5 10,) = 0, With this assumption, we are able to 

verify the results of Section VIII. These results and our efforts to solve the 

problems discussed above are presented in some detail below. 

The method which we use for constructing an eigenstate of momentum does 

not require a knowledge of dynamics but is simply based on the requirement of 

translational invariance. The natural procedure in the context of our variational 

calculation would be to compute the expectation value of # with the trial states 

that are eigenstates of momentum and apply a variational procedure as in Sec- 

tion III to minimize the energy and to determine the wave functions. However, 

such a calculation is extremely difficult in practice. The reason is that the ex- 

pectation value of the energy is no longer a simple spatial integral of a local 

energy density. Instead, it becomes a double integral involving overlapping 

functions due to the superposition of localized states that must be constructed 

in forming momentum eigenstates. Hence, in this case the variational principle 

gives rise to integral equations and not to local differential equations. 

As a practical attempt, we have tried with partial success an alternative 
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procedure that is both simpler and approximate, Namely, we first construct a 

state with a specified value of average momentum by a variational calculation 

which minimizes its energy as carried out in Section V. We then form an eigen- 

state of momentum equal in value to the average momentum by applying a momen- 

tum projection operator, viz D 

1 p’> = N-112 
. / 

d3X .i($-3) l 2 l7 > 

3 is the momentum operator. I ?> denotes a state of average momentum 

and energy 

as in Eq. (5.41) and (5.42) ; and the normalization N is given in terms of the 

overlap integral 

<$lj?> =(ZX)~~(+$‘) N 

N = 
/ 

d3 A <q eitp’-?$ o 3 ,?> 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

Construction of a One-Quark State with ‘$ k 0 

The no-particle state 1 OL > is not translationally invariant since the Btt s and 

Dfls create fermions and anti-fermions localized in space. Thus IO,) also 

carries momentum as discussed in Section III, To construct a momentum eigen- 

state in this basis is formally possible but it is very hard to carry out the ex- 

plicit calculation. To expose the basic difficulty, we will limit ourselves to the 

simplest bound state of one quark with zero momentum eigenvalue. In this case, 

we can construct the bound state out of a translationally invariant trial vacuum 

state by a Bogoliubov transformation as described in Section III. 
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We begin with the formal construction of a one bound quark state from a 

translationally invariant vacuum by introducing an operator producing “Cooper 
- 

pairs D ” 

KJ- d3PB (P, s) b;s.dlps - dVPS bps] 
II 

UF=e 

This is a formally unitary operator with the properties 

B 
Ps 

= U;‘bps UF = bps cos 8 (p, s) + df -ps sin f3 (P, s) 

Df = U-l df 
-ps F 

U = -bpssinB (p,s) + dt 
-ps F -ps cos 0 (P, s) 

(9.5) 

(9*6) 

or equivalently 

gtx> = u;l titx> ‘F 

d3 0 
(g-7) J,,T;32Ep F [bpsU(p,s)ei~o~+d~sV(p;s)e-i~ “1 

where 

U(P,S) =u(P,s)cose (p,s) - v(-p, -s) sine (p,s) 

VP, s) = v(p, s) sin e (-4% -s) + u (-p, -s) sin 8 (-p, -s) 

The state 

-d 
s 

d3xg(x) a(x) 

Ih) =u,e 
cl 

d3pUp, s)bzs 1 Op> S 
leads to the expectation value of # as before in Eq. (3.30). 

E=<h I# Ih) 

Z ( 2 g -f 2)2+ Xf(+&?+G/3g)x] 

(9.3) 

(9.9) 



Here the ground state wave function is 

- / 

X(X) = 
d3p 

J 

c h (P, s) [u (P, s) cos 0 (P, s) 

(2Q32Ep ’ 

-v(-p,s) sin0 (-p, -s)]e” 
.?i’ 

(9.10) 

which is an arbitrary spinor since h and 0 are arbitrary. Equation (9.8) gives 

the desired one quark state and is an explicit construction of the Bogoliubov 

transformation described in Section III for building our bound states from trans- 

lationally invariant trial vacuum states. 

To obtain Eq. (9.9), we have normal ordered the boson part as before and 

we also normal ordered the transformed fermion part : UF’ 3Z’U 
F 

: in keeping 

with the tree approximation neglect of vacuum bubbles. Notice that UF commutes 

with P 
I 

[ 1 uF’ 
7s =o 

since all the pairs in UF carry zero momentum by construction. 

The procedure of (9.1) and (9.4) projects momentum eigenstates from I h > 

in (908). We now consider I h > to be a state with zero average momentum, 

so j?= 0. 

It follows from 

that 

i 
x <Ole 

J d3g[g(y - A) - gty)]b (Y) 
IO> (9.11) 
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In order to further reduce N, we must decompose ir (y) into’its creation and 

annihilation parts, i. e 0 , its negative and positive frequency parts; respectively, 

at t = i5‘: 

u E c&,0) =u t-1 + CA+) , CT(+) 1 0 > = 0 

ir = ($4 + tit+) ) &t+) , op> = o 
P 

The trial vacuum 1 Op > for the scalar field is defined in terms of the free 

Hamil tonian 

(&T)~ + 8Hf2(1- c)02 1 

(9.12) 

(9.13) 

with 

: Ho : lop>=o 

and the mass of the o-field normal modes given by 

2 
mu G 8Hf2(1 - c) (9.14) 

The proper choice of c and of the mass of the normal modes will be made so that 

the expectation value of the energy in the one-quark state will be close to the value 

already computed in Section IVfor the localized state at rest with average < g> = 0. 

It should be made clear that this choice of c and of m. in Eq. (9.14) in no way af.- 

fects the value of E obtained in Section III. Different choices of mo correspond 

to neglecting different terms in the normal ordering of the Hamiltonian and it will 

be important and necessary in future work to understand how the different choices 

feed back into the higher order corrections to our present approximations. 

From the canonical commutation rules and the definition (9,12) and (9.13)) we 

can calculate the equal time commutator 



*with 

This gives for the normalization (9* 9) 

N= 
/ 

d3Ad3z X’(z-z)X(;)e - [Y(O) - Y(A)] 

where 

uk Ig(k) I2 eii;-’ 

(9.15) - 

(9el6) 

(9.17) 

and where 

To compute the expectation value of the energy, we also need the equal time 

commutation relations 

Then a straightforward calculation gives 

E=+ - [Y(O) -VA)] 

+ X’(~-~)X(%$. d3y $?+g(g)2 + H(g(yj2 - f2)” 
I [ 

+ H(&-2) - gt?j)" bf2 + ;(g(g2 - f2) + ;f(g(+2) - g(y)) L 
+&(gtW) -gt3)2+$( 6 - a - gi3;f) (dd - f)]] ) (9.18) 



Observe that the Dirac part can be evaluated directly since X satisfied the Dirac 

equation according to the procedure described at the beginning of this section. 

An inte^gration by parts yields 

E = G-I- $ 
/ 

d3z d3A X’ (Z-3) X(T) e - CW) - ml 

x (9.19) 

The difference between this result and the ground state energy for a localized 

<P > = 0 trial state as in Eq. (4.19) arises from three factors in Eq. (9.19): 

(I) A correlation or shielding factor 

e- bv) - ml 

(2) A fermion overlap factor 

X’(Z 2) X(T) 

and 

(3) Terms in the a-field energy proportional to the difference 

Neither of the first two factors differs very much from their value for zero 

separation A = 0. It is readily found that Y ( 0 ) < 1 for any ratio of values 

G/&l in our strong coupling regime of $erest. Furthermore, no sensitive 

cancellations appear in the fermion density and the factor (9.21) largely cancels 

the normalization integral (9 0 14) 0 However, since the difference (9.22) is non- 

vanishing and is 0 ( f) for a separation A S R, it can be shown by a straightfor- 

ward estimate that the last term in Eq.(9.19) contributes an amount of order 

(9.20) 

(9.21) 

(9.22) 



H1/2 f >> H1’6 f to the energy for general values of c, viz., 

-‘d] x-f- (z -t&-j2 d3y 

e Hf4R3 & H l/zf ~ HI/3 116 (H f) CC H1’3 &I 

We now show that there is a unique choice of c which will eliminate this 

large contribution. For this purpose, we can replace g2 (for G, H >> 1) by 

gG2 = g(T-x)2 = f2 

In this approximation, the last term of Eq. (9.19) vanishes only if 

c = 3/4 

corresponding to the mass in Eq, (9,14). 

mi= 2Hf2 

(9.23) 

(9.24) 

With this choice, the energy of the zero momentum eigenstate stays practically 

unchanged from the state with average zero momentum. We have checked this 

explicitly, introducing (9.23) into (9.19) which becomes 

E=&+$ / d3zd3A X7(7?-z)x(;)e - rw) - yt-z] 

X +(&(3)2 + H(g(32 - f2j2 (9.25) 

- gG2 

The energy computed from Eq. (9.25) is less than 10% lower than the value 

3/2R obtained in Section IV and the fact that the energy is reduced by this small 

amount indicates that the;= 0 eigenstate is a better approximation to the true 

state 0 



We do not understand physically why there is one particular choice of ma 

given by Eq. (9.24) which makes the energy practically unchanged’ in going from 

zero aTerage momentum state to the corresponding zero momentum eigenstate. 

Undoubtedly its meaning can be understood only after the true vacuum state is 

treated properly. 

Static Properties of Hadrons with3 = 3 

We would like to generalize the above procedure to construct a hadron trial 

state which is a three-momentum eigenstate. As is evident from Eq. (9. lo), we 

would need a different Bogoliubov transformation for each quark with different 

space-spin quantum numbers. This can be achieved for baryons by introducing 

a separate UF for each color, but off diagonal contributions (i, e. , UF’( 81) UF( Q2) 

for 01 f O,), then make calculation of transition matrix elements with states such 

as (6.10) prohibitively difficult. For the mesons the problem is even more serious, 

since we cannot bind quarks and antiquarks of the same color with different spins 

and, therefore, cannot construct complete SU(6) multiplets, 

An approximation which sidesteps these problems is to return to Eq. (9,l) 

but leave the Bogoliubov transformation implicit by writing the state in terms of 

the localized no-particle state I OL > as in Eq. (6.1) instead of making the trans- 

formation explicit as in Eq. (9.8) ., In this way, we avoid having to evaluate off- 

diagonal matrix elements discussed above. In place of that difficulty, there 

now appear factors 

e 
iGoz IO,> 

(9.26) 

after the momentum operator is commuted to the right or left in the matrix ele- 

ment o To proceed further, we now make the further approximation of ignoring 

the momentum carried by the Cooper pairs in the Bogoliubov transformation, 
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i.e., we set 

, 

e 
i~~fz loL> r 

1 OL> (9.27) 

We can then repeat the calculations of the Ml moments and of the axial charge gA 

using Eq. (9.27). The results are found by straightforward calculation which we 

summarize briefly: 

1. The baryon magnetic moments and Ml transition amplitudes are unaltered 

up to corrections - 
ok)o 

2, The axial charge is increased by corrections - l/hG and the numerical 

value of this increase is determined by the magnitude of the bare quark 

mass M 

G2 ’ 

= G f and of the ratio G2/H. For a typical calculation with 

- H, this increase is numerically small, 

gA 
=; 1+ 1 

i ) MQ 3Qn - 
MN 

However, this correction to gA increases with a decreasing ratio of 

H/G2 << 1. Whether this sensitivity of the numerical result in the solu- 

tion is real or significant remains to be studied and understood. 

Construction of Eigenstates with5 f 0 

We now give a brief discussion of our attempt to construct an eigenstate of 

momentum with $ # 0 0 From the state with average momentum 

i 
I?> =e 

go( -i d3xgl(2)b(“, s 
e uF c s ’ Op> 

(9.28) 
we construct the corresponding eigenstate 

I;> = 

/ 

d3xei(P$ o 2 
I?’ 
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where 

and M is the rest-mass of the state. The functions go and g1 are given by (5.22) 

and (5.23). 

The normalization integral NV in 

<$I$‘> =(2~)~6~(5-j?,N, 

is given by 

Nq= 
/ 

d3Ae-i?ox g l ei’od 17:) (9.29) 

To evaluate N-+, in addition to (9 (I 15) and (9. lo), we need the equal time com- 

mutation relations 

[ ir(ij, CT(+) “)] = [b(T), J-) ($1 = -; a”(; -2) 

The result we find is 

Xl(;K1(x) (9.30) 

where X1 given by (5,23) and K1(x) is 

- mk (9.31) 

Incidentally, Eq. (9.30) is a generating functional which yields the expectation 

values of all moments of ?? in an average momentum state with <3> = M?y. The 

calculation of the energy in the state I;> is similar to the calculation of N?except 

it is more complicated and lengthy. We only quote the result 
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- I 
+ d3Ad3ze -i’o ‘K1(Aj XT(~-~)GP$~O~[~~(~-~) -+)] X,(z) 

+ d3Ad3ye 
/ 

- $a ‘K1 (2) X; (Y-2) Xl (7) 

x d3H 
1 I([ 

i g,(T+-2) -g,(T) + i% F( g,(??-iS) - gl$))12 

+ f g1 (2-Z) - g1 (Y) + i70 7(gl (2-x) - El (74 
[ )I) 

2 

1+c 2 - ?f 
[ 
g,(T-3) -gl(?$+i7*d( gl(T-7$ -El(;) ,3 

2 

+ %(gT(G) -f2) [p,(Y--2) -gl(zj+i~a?(~l(~-Z) -gl(;))]’ 

+ +(g,(ij -f) [g,(L;t-;i) - g,G + i?*“( ii;,(F+--d) - glzj]‘[ (9.32) 

where the function gl (2) is defined to be 

and 

p,G = J d3k 
- -A g,(X) e- 

iZ*2 

(2Q3 Wk 

We make two observations on this complicated expression: 

1. There are terms in Eq. (9.32) which are comparable with Gf and H l/2 f . 

One of them is the setiond term associated with the fermion. Hence the 

energy of the momentum eigenstate is changed by a large amount unless 

(9.33) 

these individually large terms cancel by appropriate choice of G, H, and 

c or m, 0 



i A,((, 

95 

2. The energy is a complicated function of velocity. It does not obviously 

have the simple velocity dependence required by relative Covariance. 

T&s our procedure appears neither to be consistent with relativity nor to 

preserve the energy of the state. However, it may be hoped that by going to the 

infinite momentum frame these bad features may disappear. Although the result 

does greatly simplify for p ---r 00, there remain big terms in the non-leading 

M’ with M’ term of the energy, i. e O , we find Ep = P + y - Gfas 

Nevertheless, the covariance along the longitudinal direction is restored. 

Notice first from the definition for 91 (9.33) and as y -+ co, we get 

. - 

g,(T) + i7.7 cl(T) = /-$k3 (I+&) g(k);ik”YZ -iTo’ (9.35) 

where g(c) is the Fourier transform of g(T). By a change of variable 

1 
zll - 7 zll 

we find 

ZZ 0 (9.36) 

This is so since it is impossible to satisfy simultaneously the two conditions 

(1) k/Ii 2 0 i = 1, 2, O O. n 

n 

t2) i&l 51i = O 
(9.37) 
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unless all k,, = 0. But the integrand does not have singular support at this point, 
“i 

so the integral vanishes. With the scaling 
- 

1 
zll - 7 zll 

1 

substitution 

(9.38) 

AII A - rA1l 

and making use of the relations (g-36) and (9.38), the energy simplifies to 

Ep -T;‘o j+ + M’ (9.39) 

where 

1 
M’=“+Ny 

d3Ae 
-iTox 

K 

X d3z X$-a)G/3 ; -g(q Xl(T) 1 

Here 

x /d3zH I;( g( ) -f [g(xx) -g(Y$+g(2xj -g(qZ T2 “) 

sl, (M-&)v) 

(9.40) 

and 

(9.42) 
We have evaluated the function K1 and found it to be very insensitive to its 
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arguments, so Eq. (9.39) is a statement of relativistic covariande along the 

longitudinal axis 0 

If Ge approximate g(T) - f by 

/ 

g(2) -f = -20(R - I??‘) 

then the function 

gives 

(9.43) 

(9.44) 

(9.45) 

The singularity at z2 = R2 is only superficial. It is a result of the approximation 

Eq. (9.43 )e The argument of the logarithm at z2 = R2 is of order H f l/3 . 

The second term in EqO (9.40 ) which is associated with the fermion has 

been computed. The result is, to a good approximation, given by 

One of the two extra boson terms is small, since g2 - f2 is non-zero only near 

the surface of the thin shell. The other term, however, is big and we have 

(9.46) 

- 

only been able to bound its magnitude by 
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‘K (‘A , xl 
ly II 

X 

/ 

d3 z H +(g (2) - f) [g $2) - g (2 + g (T-2) 

42 
,.enH 1’3 - &fI!nH 

We have not succeeded in establishing the sign and magnitude of Eq. (9.47 ) 

and thereby determining whether there exists a specific condition for remaining 

on the mass shell M by cancelling the contributions of Eq. (9.46 ) and (9.47 ) to 

leading order as v/c -1. 

X. Some Important Problems 

In previous sections, we have seen that a variational approach to a relativ- 

istic quantum field theory with spontaneous symmetry breaking’and strong coupling 

reveals several interesting and novel features. In this section, we wish to remark 

briefly on some of the most important problems which remain to be understood. 

Limitations of the Variational Principle 

We have achieved considerable simplification by using the variational prin- 

ciple, The advantage of this approach is that with it, we can apply our intuition 

about the classical problem in order to illustrate certain qualitative properties of 

the theory. On the other hand, this approach has a liability inherent in all varia- 

tional calculations, that is, to evaluate the validity of our variational guess. Even- 

tually it will be necessary to proceed more systematically in order to verify the 

existence of the bound states which are suggested by the variational calculation. 

One possibility is to embark on a systematic study of the quantum fluctuation ef- 

fects in the field theory beginning with our solution to the classical field equations 

as the first approximation. 
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Higher Order Quantum Effects 

Our variational calculation has been performed in the tree approximation; 

therefgre, it remains to be seen whether the trial state and the energy and phys- 

ical matrix elements will be significantly affected by including the quantum fluc- 

tuations. This latter point is particularly important in quantum field theory 

since the Hamiltonian density is an intrinsically singular operator and it requires 

a careful definition to make it both finite and positive definite. In conventional 

perturbation expansion in powers of coupling constants, this definition is pro- 

vided by the renormalization program. However, the conventional perturbation 

techniques are inapplicable here since we are interested in the strong coupling 

behavior of the quantum field theory, While it may be prohibitively difficult in 

the strong coupling quantum theory to derive and verify the validity of our re- 

sults in quantitative detail, we are hopeful that qualitative answers may be found 

to such questions as: 

(a) Does the binding mechanism discussed in the present paper persist when 

the quantum and renormalization effects are included? 

(b) If the binding still occurs, does the character of the solution change 

qualitatively or quantitatively? 

(c) Does there exist a range of parameters such that the solution to the 

field theory gives a reasonable description of the hadrons? 

PCAC 

PCAC and the role of the pion present a fundamental challenge to all quark 

models of hadrons. It is very attractive to suppose that the successes of SU(2) X 

SU(2) are explained by viewing the pion as a Goldstone boson. On the other hand, 

in a quark model with SU(6) mass spectra the pion is simply a qqbound state 

partner of the rho meson in the 35 and is accorded no special role. How to make - 



these two different viewpoints mutually compatible is at present ‘an unsolved 

problem. I , 

h?our theory, we don’t have PCAC because the divergence of the axial- 

vector current 8, AL = Go$y5Ap@ is non-vanishing, and in the strong coupling 

limit with G >> 1 is in no sense a “small operator.” These difficulties with PCAC 

may be related to the unsatisfactory result for gA which we have obtained since 

Eq. (8 ~ 20) may very well define the wrong operator in contrast with the magnetic 

moment operator which is constructed from the known and conserved electro- 

magnetic current. 

If we attempt to restore PCAC by enlarging the a to a full chiral multiplet, 

we introduce too many pseudoscalar mesons: the Goldstone bosons themselves 

as candidates for the ‘II, K, 7, as well as the qc bound states presumably formed 

by our mechanism. Alternatively, we may view our model as a semi-phenom- 

enological description of the underlying strong dynamics which. involves only mass- 

less quarks and color vector gluons. By this conjecture, the a is a bound state 

as well as the hadrons it binds,, 

XI. Speculations 

In this section, we speculate on possible future applications of our theory. 

These speculations are based upon crude and naive calculations combined with 

liberal doses of intuition and wishful thinking. Our main reason for including 

them is to illustrate the enormously rich structure of a theory of the sort we are 

studying. The topics we shall touch on include (i) the excited state spectrum 

and a possible connection of our model with the dual string model, (ii) Bjorken 

scaling in deep inelastic electron scattering, and (iii) the production mechanism 

and distribution of final state hadrons in deep inelastic electroproduction. As 

before, our discussion will be based on semi-classical arguments. 
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The Excited State Spectrum and the Dual String Model 

The key question in the treatment of excited states is how rigidly the “classi- 

cal” p%ential g(x) (the o-expectation value) resists changing when a quark is ex- 

cited. If g(x) remains very nearly spherically symmetric, then a quark with non- 

zero orbital angular momentum I will have an energy Me = (a+ 1) 2/3 MO which is 

the spectrum for the Dirac equation in the potential Gg(x) = Gf tan h&f (r - R) 0 

However, it is evident from Eq. (4.2) that g(x) will not remain exactly spherical 

when the quark is in an I # 0 state. 

In fact, if angular momentum is imparted to a quark along, say, the z direc- 

tion, its wave function will develop nodes along this direction and extend primarily 

in orthogonal directions. We, therefore, expect the scalar potential to collapse 

in shape around the quark since it can thereby reduce the surface area of the con- 

fining bubble and thereby the field energy carried by the scalar field g(x). At the 

same time, this deformation will not further squeeze the quark.wave function which, 

when I > 0, is not using all the space available to it and so it will not increase its 

energy 0 Thus, we intuitively expect that the shape of the self-consistent scalar 

field will be distorted when the confined quarks carry angular momentum. 

For a very crude estimate of the excitation energy associated with a deformed 

potential or confining field bubble, we consider a torus as illustrated in Fig. 6 

with inner radius a and major radius b. The same heuristic argument used in the 

intuitive discussion of Section II gives the field energy associated with g(x) as 

Eg =k(47r2ab)4f 3 l/2 
H 

after minimizing with respect to the thickness D - l/H l/2 f of the transition 

(11.1) 

region for g(x) to change from +f to -f; k - 1 as in the spherical case. The 

fermion energy in analogy with our previous result might be expected to take 
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If we minimize the energy (11.1) plus (11.2) with respect to a and b, we find 

a=b G $ R, and setting k = 1, 

l/3 
E 

torus 
= ; q = 3&f(2&r2H1’2) 

In terms of the energy E”, 
1 

of a quark with angular momentum j = I + 2 in a 

spherical shell, this energy can be written 

Et 2 7r) 1’3 
Ejs = fj(+ L 213 

( > 2 

(11.2) -- 

(11.3) 

(11.4) 

which is - 1.2 > lforj=3/2and - 0.9 < 1 for j = 5/2. Equation (11.4) 

shows that the energy of the toroid configuration is not very different from the 

second and third excited states of the sphere even though g(x) is very different 

in strut ture D It should also be emphasized that such a non-spherical solution 

for g(x) must describe a superposition of many eigenstates of different total 

angular momenta, as in the case of a rigid rotor. Therefore, the true energy 

of the lowest state in this sum is smaller than what we have calculated. 

Because of the softness of g(x) discussed above, it is evident that we will 

not know anything about the details of the excited states of our theory until we 

learn to solve the general problem for deformed, excited states, Nevertheless, 

the above discussion of the low excitation energies of the toroidal type of config- 

uration suggests a possible connection between these ideas and the general scheme 

envisioned in the dual string model. 

According to the preceding discussion, there will be a large #number of nearby 

states corresponding to rotational and vibrational excitations of the toroid (“string”). 
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Since the energy of the toroid is proportional to its surface area, and for a/b << 1 

the quark energy will be like l/a, clearly the nearby excitations’&11 be those 

which a’b not change the length or cross-sectional area of the “string.” Pre sum- 

ably, the energy associated with these time-dependent motions will be approxi- 

mately described by ascribing an effective mass density per unit length to the 

torus. This leads to a correspondence between the spectrum of the excited states 

in our model and the picture in a Virasoro-like dual string model. From this pomt- 

of-view, the dual string picture may emerge as a phenomenological description of 

the large density of states (collective string-like excitations) available in a canon- 

ical relativistic field theory of the type being considered. 

Scaling in Deep Inelastic Electron Scattering 

The fact that the quark mass is effectively small only in a thin shell makes 

any simple explanation of scaling in electroproduction hard to come by. One pos- 

sibility, however, is that the softness of the shell to quark excitation and the small 

quark effective mass in the shell itself where I g (x) I << f provides the dense set 

of excited states required so that scaling can occur, 

Accepting for the moment the conjecture that the softness of the bag can pro- 

vide an explanation for observed scaling, one sees what may be an important dif- 

ference between ee annihilation and deep inelastic lepton scattering processes. For 

the deep inelastic processes, the virtual photon scatters from the proton bound 

state, and the onset of scaling is controlled, as suggested by the preceding discus- 

sion, by an energy scale of 5 1 GeV associated with the excitations of the deform- 

able shell. But in electron-positron annihilation into hadrons, there is no pre- 

prepared bound state and the important scale may be the bare quark and scalar 

a-gluon production thresholds which are much larger than 1 GeV. The point is 

that in order to have scaling behavior, the time scale for production of the 
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quark T 
prod - 

l/ 4 should be brief relative to the interaction time as controlled 

by the bare quark mass, l/Gf, and the range of the scalar interaction, - l/H l/2 f . 

As disc:ssed in Section VII, these, as well as the color thresholds, are energies 

>> 1 GeV. This speculation suggests striking changes in the energy dependence of 

the total cross section as’we first cross color thresholds and then the bare quark 

and scalar gluon production thresholds. Thus scaling might appear at present 

machine energies for deep inelastic scattering but might require much larger en- 

ergies to appear in electron-positron annihilation to hadrons. We emphasize, 

however, that this is all speculation and it remains an open question whether a 

simple scaling mechanism exists in our model, 

We also comment that the observed rapid fall-off of the nucleon elastic form 

factors may arise from the fact that in the presence of many low-lying deformed 

“bubble” states the probability for a nucleon which is excited by a highly virtual photon 

to remain in the ground state is rather small. Another question related to elastic 

form factors is whether they have nodes because of the thin shell nature of the 

wave functions of the quark constituents. To answer this question, we have to 

understand the Lorentz contraction effect and the overlap factor for the “Cooper 

pairs” of a nucleon at rest and a moving nucleon. 

Production of Hadronic Final States 

A simple heuristic picture which seems to possess most of the general fea- 

26 
tures of the inside-outside cascade postulated by Bjorken and discussed by 

Casher, Kogut and Susskind,27 and others can be easily imagined. 

Basically the idea is that a photon comes in and hits one of the three quarks 

in a proton O This quark recoils from the other two quarks destroying local color 

charge neutrality and unshielding large color current densities. In analogy to a 

superconductor, an effect like the Meissner effect will probably take place toconfine 
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the resulting large “magnetic” fields to a finite region. This is accomplished by 

having a region surrounding the quarks become normal (i.e., < Cp’*Cp> = 0) with 

large dolor supercurrents flowing on the boundary. As quarks separate the “nor- 

ma1 region” grows into a long tube (since the term ($J*$ - f’2)2 tends to keep the 

volume of the normal region as small as possible), and one obtains a restoring 

force between the quarks that does not fall off like l/r2 (where r is the distance 

between the quarks) ,, 

As the surface of the shell increases in area, the threshold for producing 

quark-antiquark pairs decreases since they have more space in which to move, 

and so there will be a critical distance at which the energy stored in the confined 

color field will exceed the qq production threshold. At this moment, a qiJ’pair 

will be produced and the color field will break and join separating sets of quarks. 

The shell will then break in two, corresponding to two states having the quantum 

numbers of a baryon and a meson. The process will repeat itself until the result- 

ing fragments no longer have enough energy to separate. These regions would then 

oscillate and decay into hadrons via a different mechanism. As a consequence of 

the existence of these two different mechanisms, one would expect to have a set of 

excited clusters formed possibly spaced by a fixed distance in rapidity, which 

would decay into ordinary hadrons. Hence the general picture of an inside-outside 

cascade producing a plateau with short-range correlations in rapidity would seem 

natural from this point-of-view. 

XII, Comparison with Related Works 

In this section, we compare our approach to the MIT bag model 
28 

and recent 

works by Lee and Wick, 
11 

Chin and Walecka, 
11 

C reutz , 
12 

and Dashen, Hasslacher, 

and Neveu. 
13 / 
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MIT Bag Model and Creutz’s Work 

In the MIT model, a hadron is a finite region of space to which almost free 

quanta-of the hadronic fields (quarks or partons) are confined, It is obtained 

from free field theory with two modifications: 

(1) Adding to the stress tensor TpV a term 2” B, called the volume tension, 

which acts to compress the bag against the outward pressure of the 

quark gas. 

(2) Imposing boundary conditions such that the hadronic fields be confined 

in a finite region of space: the interior of a hadron or the bag. 

Because of the boundary conditions, the MIT bag model is not a local field 

theory. Our model, on the other hand, is based on a conventional local field 

. - 

theory. A possible connection between the two models is discussed by Creutz 

and by Creutz and Soh 
12 

. At the classical level, Creutz has demonstrated that 

the MIT bag model of a scalar field with Dirichlet boundary conditions can be 

obtained from a local field theory with two scalar fields in a strong coupling 

limit. One of the scalar fields produces the bag to confine the other scalar field. 

Recently Creutz and Soh have also shown that the MIT bag model for fermions 

can be obtained from a local field theory. In both cases, the scalar field which 

produces the bag has a quartic self-coupling of the general type discussed in 

the Appendix where a brief account of Creutz and Sob’s arguments is presented. 

Instead of a volume tension as in the MIT model, the scalar field energy in 

our model provides a surface tension. Furthermore, the quarks inside the po- 

tential do not appear to be free nor are they massless. One consequence is that 

radial excitations are absent in our model, but are present in the MIT bag model. 
29 

Presumably, this qualitative difference will also have important consequences in 

the behavior of form factors and structure functions when momentum transfers 

are large. 



Finally the mechanism for quark confinement in the two models is different. 

Ours is only an approximate scheme in which the isolated quarks,’ as well as 

color n%rsinglets, have high but finite threshold.30 On the other hand, in the MIT 

model, if the quarks are coupled to a non-Abelian gauge field associated with 

color, then only color singlet states can exist. This is an exact selection rule 

which follows from the boundary conditions for the color gauge fields and Gauss’ 

law. Since this selection rule exists for any non-vanishing color gauge couplings, 

it is interesting to study what happens as the color gauge coupling is turned off 

smoothly. 

Abnormal Nuclear States and Normal Nuclear Matter at High Density 

In a very interesting paper, Leeand Wick’lhave discussed ideas very similar 

to these presented in our work, namely, they have also investigated the theoretical 

possibility that in a limited domain in space, the expectation value of a neutral spin 0 

field may be quite different from its normal vacuum expectation. value. Lee and Wick 

are mainly concerned with the formation of very heavy nuclei, while our primary 

interest is the possibility of constructing low mass hadrons from heavy quarks. Jn 

the former case, since the atomic number is large, Lee and Wick assume that 

nucleons are approximately described by a degenerate Fermi distribution, char- 

acterized by a maximum Fermi momentum, In the tree approximation, Lee and 

Wick then find that when the coupling is sufficiently strong and density is high, the 

classical field g ( x ) (in our notation) is favored to take the value 0 inside the nu- 

cleus. Thus the nucleons are effectively massless inside a heavy nucleus. In our 

case, however, the number of quarks in a hadron is so few that statistical mech- 

anics does not apply. Instead we have to actually solve the Dirac equation as well 

as the coupled equation for the scalar field. The quarks are found to have a large 

and negative mass inside a hadron instead of being massless. 
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Similar techniques have been used by Walecka 11 and Chin and Walecka” to 

study nuclear matter at high density. However, in their model; the scalar field 

does nit have sigma model self-interactions, so that there is no spontaneous 

symmetry breakdown. 

Dashen, Hasslacher and ,Neveu’ s Work 

Recently Dashen, Hasslacher and Neveu 13 
have developed a technique for finding 

approximately the spectrum of bound states in a field theory without knowing the 

bound state wave functions. Their starting point is a Feynman path integral repre- 

sentation for the resolvent operator, It is the analog of W. K D B. approximation 

in non-relativistic quantum mechanics ., This method of finding bound state spectrum 

reduces the problem to solving the same classical field equations as in our 

work. In our case, these classical field equations arise from the minimization of 

the energy in a particular class of trial states. Assuming that the trial states re- 

semble the true states, we may compute, in addition to the bound state energy, 

other (static) properties of the state as illustrated in Section VIII. Dashen, 

Hasslacher and Neveu have applied their technique to the 1 + 1 dimensional version 

of our model and find the exact classical solutions. They have also calculated the 

first quantum correction to these classical solutions in the weak coupling case. 
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APPENDIX 

In this appendix we consider a more general class of models, in which the 
4 

meson-meson interactions are not restricted to the sigma model form considered 

in Section II. We again find that the “quark” is confined to a thin spherical shell 

but, unlike the sigma model solution, we find that the meson field energy from 

the enclosed spherical volume may be much larger than the meson field energy 

from the shell. As a result, we recover the result suggested by the heuristic 

argument of Section II, that E oc f H 1’4 (assuming that G >> H1i4) O More pre- 

cisely, for a many-quark system, in place of Eq. ( 6.4 ), we have 

E = $ n;‘4 
0 

where now 

R. Xc 
f H1’4 

The local Hamiltonian density we consider is 

in which the meson-meson interactions are given by 

U($) = --g C4+S e3 + ; c#12 

A convenient parameterization is 

(A. 1) 

(A.3 

(A. 3) 

(A. 4) 

(A. 5) 
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We require H > 0 so that U( $) has an absolute minimum and f+ f- > 0 so that 

$ = 0 is a minimum. We also make the choice / 

4. 

f- L f+ 2 2 _ If > 0 (A. 6) 

so that U can be depicted as in Fig. 7 , with a local minimum at C$ = -f and 

a local maximum at + = -f+O With the choice f+ = if- = f , we recover the (dis- 

placed) sigma model Hamiltonian considered above. 

We now proceed with the variational calculation. Forming a trial state as 

in Eq. ( 2.11) and varying the energy, we recover coupled differential equations 

[ 
d -7 
- +PG(g+f) i 1 X=&X 

22 
dr2 

+2iL 
r dr 

s =G?iX 

In first approximation, we let g be a square-well 

g(r) = -f- 0 (R - r) 

(A, 8) 

(A- 9) 

and provided that 

G(f- -f) >> ; (A. 10) 

the Dirac equation (A.7) has the familiar “she11” solution encountered in Sec- 

tion IV, Since 

’ au As- 
I ,ag -f dg 0 

= 0 (A. 11) 

the meson equation (A.8) is also satisfied everywhere except near the shell, 

For the energy of an n-quark state with all quarks in J? = 0 angular momentum 

states, we have 
I 

2 
E 5 y R3U(-f-) + 4gR2DU(-f-) + 4ak R2+ + ; (A. 12) 
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where, as in Eq, (2.6)) we have introduced a surface region of width D and a 

shape dependent number k of order one. Requiring i3 E/a D = 0, we have 

k1’2 f- 

Dx%T 

and provided that R >> D, we may neglect the surface terms in Eq. (A. 12) so 

that a E/ 8 R = 0 implies 

R 
4 

= 47&f-) 

(A. 13) 

(A. 14) 

with E given by Eq. (A. 1). Using Eq. (A, 13) and (A. 14) together with Eq. (A. 6), 

we see that the assumption R >> D is justified provided that H >> 1. 

Although we have not been able to give an explicit solution for g which 

specified g more completely near r = R, we will show, as in Section IV, that 

the Klein-Gordon equation (A.8) “averaged” across the surface is automatically 

satisfied provided 6 E/ a R = 0 and the Dirac equation (A. 7) is satisfied. That 

is, we shall verify 

+ fg - -$f- --GgX (A. 15) 

? 

where r2 (r1) is sufficiently greater (less) than R so that ag/ 3 r is negligible, 

Writing 

d3z 7 dQddr r2 

and 

we use an integration by parts to rewrite the first term in Eq. (A. 15) so that 



Eq. (A. 15) becomes 

Now write 
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E 

dg 
-G?X =0 

i 

where E is the fermion energy 

6’ =/d3z X’(y +PGg)X . 

From the Dirac equation, precisely as in Eq. (4. Zl), we find 

xi&=- 
aR / 

d3xa ar G?X 

. - Differentiating the meson contribution to the energy and using the fact that g is 

a function of r - R, so that dg/dr = - ag/aR, we find after an integration by 

parts 

(A. 16) 

(A. 17) 

(A. 18) 

(A. 19) 

Combining Eq. (A. 18) and (A. 19), we see that aE/a R = 0 implies the averaged 

Klein-Gordon Equation, (A. 16) ., 

For completeness, we now sketch briefly Creutz and Soh’s arguments that 

with a proper choice of parameters, it is possible to have a solution to (A.7) and 

(A.8) with all the characteristics of the MIT bag model with fermions. 



We are looking for a solution with the properties: 

1. The classical field g(x) is approximately a constant inside a 

4 
sphere of radius R, and quickly reaches its vacuum value 0 

outside. 

2. Inside the sphere, the fermion mass is effectively zero. 

According to (A. 8)) we have for g(x) inside the potential well, i.e. , for 

lx 1 < R and for small deviations from the minimum of U(g) at g = -f- 

/ -ml Ix-yl 
g(x) = -f-+ 2 

/ 

d3y e 
Ix-YI 

GxX (Y) (A. 20) 

Z -f -+ GXX(x) 
m’ 

2=4Hf2 
f 

where m’ -( -) 1-F o For a massless fermion moving in a square well, 

we specify f = f- in (A.7), and so X is given by (4.4) and (4.5). . Thus 

TX-3 r < R. (A. 21) 
R 

We require that the spatially varying part of g(x) be small, that is by (A.20) 

I g(x) + f - I 

or 

G l <<f -- . 
m’ 

zR3 )- 

The volume tension constant R of the MIT bag is identified as the energy at the 

secondary minimum 

B = U(-f ) = ;Hft - 

(A. 22) 

(A. 23) 

(A.24) 



The surface energy associated with the transition region of g(x) has been estimated 

by Creutz, 

-t, 

Es - 
const. 4i-M R2 f3 (A. 25) 

and is stored in a thickness of 1 

JZf ’ 
In order for the volume energy 

to dominate as in the MIT model, we require 

BR3 >> \6 R2 f3 

Under these conditions, the total energy of the system is 

En=%+ yR3~ 

where a = 2.04 and n is the number of fermions and antifermions in the bag. 

Equation (A. 27) has a minimum at 

with the value 

I/4 
@+ = (4 .B)1’4 

(A. 26) 

(A. 27) 

(A. 28) 

4 an 
En(min) = 3 R 

For strong binding to occur, we must have 

+Gf. (A.29) 

The requirement that the fermion is effectively ma&less inside is the statement 

G(g+f) <<i 

which can be sat isfied if 

f = f- 

H >> - - - f+ 1 

G4 f- 2 

(A. 30) 

(Ae.31) 
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Equation (A. 2 9) implies 

4 f+ 1 s- >> 
H r-2 

Now Eq. (A. 23) and (A. 25) require 

H-li3 >> i _ 1 
f- 2 

>\ +I3 

All the se conditions can be fulfilled, for example, by the choice 

f+ 1 
l>>f_-z >> H-1’3 

(A. 32) 

(A. 33) 

(A. 34) 

Finally, (A. 8) implies a condition similar to (4.17). It is 

* Since FX is slowly varying compared with d r , we obtain 

B = Gf- XX (R) (A. 35) 

which can be verified in the limit G f- -+ cc to reduce to the boundary condition 

in the MIT model for a spherically symmetric solution. 

a - z-J3 = _- ar (XX) r=R (A. 36) 

It can be readily shown that conditions (A. 33) and (A, 34) ensure that the 

bag solution has a lower energy than a shell solution with the field g(r) rising 

back to the value 0 as r --+ 0. 



The bag solution is not realized when B = 0 for a potential with a symmetry 

leading to a spontaneous breakdown which was the model used in the discussion 
* 

in this paper since then the field will remain at the value g = -f- for all space, 

there being in that case no volume energy. However, for B > 0 but so small 

that 

f+ 
O<f -+H -l/3 

instead of (A. 34), we also find bag-like fermion wave functions but with energies 

given by H l/6 f as in the shell solution. 

Thus we see that by making different choices of the parameters in the 

Hamiltonian, we obtain solutions with very different phenomenological implications. 
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Figure Captions 

Fig. 1. Classical guess for the solution to the Hamiltonian (2.1) in the one 
-wT 

fermion sector. 

Fig. 2. The solution to (2.1) in the one fermion sector which is obtained in 

Set tion IV. 

Fig. 3. The solutions to Eq. (4.1) and (4,2) for the case & >> G >> 1. 

Fig. 4. The solutions to Eq. (4.1) and (4.2) for the case G >> x.& >> 1. 

Fig. 5. The scalar potential g and the vector potential W. which appear in 

Eq. (7.23). 

Fig. 6. Potential with torus shape. 

Fig. 7. The potential of Eq. (A. 5) O 
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