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Abstract

We study the critical behavior of the component sizes for the configuration model when
the tail of the degree distribution of a randomly chosen vertex is a regularly-varying function
with exponent τ − 1, where τ ∈ (3, 4). The component sizes are shown to be of the order
n(τ−2)/(τ−1)L(n)−1 for some slowly-varying function L(·). We show that the re-scaled ordered
component sizes converge in distribution to the ordered excursions of a thinned Lévy process.
This proves that the scaling limits for the component sizes for these heavy-tailed configuration
models are in a different universality class compared to the Erdős-Rényi random graphs. Also
the joint re-scaled vector of ordered component sizes and their surplus edges is shown to have
a distributional limit under a strong topology. Our proof resolves a conjecture by Joseph, Ann.
Appl. Probab. (2014) about the scaling limits of uniform simple graphs with i.i.d degrees in the
critical window, and sheds light on the relation between the scaling limits obtained by Joseph
and this paper, which appear to be quite different. Further, we use percolation to study the
evolution of the component sizes and the surplus edges within the critical scaling window,
which is shown to converge in finite dimension to the augmented multiplicative coalescent
process introduced by Bhamidi et. al., Probab. Theory Related Fields (2014). The main results
of this paper are proved under rather general assumptions on the vertex degrees. We also
discuss how these assumptions are satisfied by some of the frameworks that have been studied
previously.

1 Introduction

Most random graph models posses a phase-transition property: there is a model-dependent pa-
rameter θ and a critical value θc such that whenever θ > θc, the largest component of the graph
contains a positive proportion of vertices with high probability (w.h.p) and when θ ≤ θc, the
largest component is of smaller order than the size of the graph w.h.p The random graph is called
critical when θ = θc. The study of critical random graphs started in the 1990s with the works of
Bollobás [17], Łuczak [34], Janson et al. [28] and Aldous [4] for Erdős-Rényi random graphs. A
large body of subsequent work in [10, 13, 20, 30, 36, 37, 43] showed that the behavior of a wide
array of random graphs at criticality is universal in the sense that certain graph properties do not
depend on the precise description of the model. One of these universal features is that the scaling
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limit of the large component sizes, for many graph models, is identical to that of the Erdős-Rényi
random graphs. All these universality results are obtained under the common assumption that the
degree distribution is light-tailed, i.e., the asymptotic degree distribution has sufficiently large mo-
ments. For critical configuration models, a finite third-moment condition proves to be crucial [20].
However, empirical studies of real-world networks from various fields including physics, biol-
ogy, computer science [3, 7, 21, 32, 39, 40] show that the degree distribution is heavy-tailed and
of power-law type. A first work towards understanding the critical behavior in the heavy-tailed
network models is [14], which showed that, for rank-one inhomogeneous random graphs, when
the weight distribution follows a power-law with exponent τ ∈ (3, 4), the component sizes and
the scaling limits turn out to be quite different from that of the Erdős-Rényi random graph. This
revealed an entirely new universality class for the phase transition of heavy-tailed random graphs.
In this paper, we study the configuration model with heavy-tailed power-law degrees. The con-
figuration model is the canonical model for generating a random multi-graph with a prescribed
degree sequence. This model was introduced by Bollobás [16] to generate a uniform simple d-
regular graph on n vertices, when dn is even. The idea was later generalized to general degree
sequences by Molloy and Reed [35] and others. We will denote the multi-graph generated by the
configuration model on the vertex set [n] = {1, . . . , n} with the degree sequence d by CMn(d).
The configuration model, conditioned on simplicity, yields a uniform simple graph with the same
degree sequence, which explains its popularity.

Our main contribution. Let Dn be the degree of a uniformly chosen vertex, independently of
the random graph CMn(d). The main goal of this paper is to obtain various asymptotic results
for the component sizes of CMn(d) when P (Dn ≥ k) ∼ L0(k)/k

τ−1 for some τ ∈ (3, 4) and L0(·)
a slowly-varying function (here ∼ denotes an unspecified approximation that will be defined in
more detail below). In fact, under a general set of assumptions (see Assumptions 1 and 2), we
prove the following:

(1) The largest connected components are of the order n(τ−2)/(τ−1)L(n)−1 and the width of the
scaling window is of the order n(τ−3)/(τ−1)L(n)−2 for some slowly-varying function L(·).

(2) The joint distribution of the re-scaled component sizes and the surplus edges converges in
distribution to a suitable limiting random vector under a strong topology. It turns out that
the scaling limits for the re-scaled ordered component sizes can be described in terms of the
ordered excursions of a certain thinned Lévy process that only depends on the asymptotics
of the high-degree vertices, which is also the case in [14]. Further, the scaling limits for the
surplus edges can be described by Poisson random variables with the parameters being the
areas under the excursions of the thinned Lévy process.

(3) The results hold conditioned on the graph being simple, thus solving [30, Conjecture 8.5] in
this case.

(4) The scaling limits also hold for the graphs obtained by performing critical percolation on a
supercritical graph. The percolation clusters can be coupled in a natural way using the Harris
coupling. This enables us to study the evolution of the component sizes and the surplus edges
as a dynamic process in the critical window. The evolution of the component sizes and sur-
plus edges is shown to converge to a version of the augmented multiplicative coalescent process
that was first introduced in [10]. In fact, our results imply that there exists a version of the
augmented multiplicative coalescent process whose one-dimensional distribution can be de-
scribed by the excursions of a thinned Lévy process and a Poisson process with the intensity
being proportional to the thinned Lévy process, which is also novel.
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Thus, this paper provides a detailed understanding about the critical component sizes and surplus
edges for the heavy-tailed graphs in the critical window. Before stating our main results precisely,
we introduce some notation and concepts.

1.1 The model

Consider n vertices labeled by [n] := {1, 2, ..., n} and a non-increasing sequence of degrees d =
(di)i∈[n] such that ℓn =

∑

i∈[n] di is even. For notational convenience, we suppress the dependence
of the degree sequence on n. The configuration model on n vertices having degree sequence d is
constructed as follows:

Equip vertex j with dj stubs, or half-edges. Two half-edges create an edge once they are
paired. Therefore, initially we have ℓn =

∑

i∈[n] di half-edges. Pick any one half-edge and
pair it with a uniformly chosen half-edge from the remaining unpaired half-edges and keep
repeating the above procedure until all the unpaired half-edges are exhausted.

Note that the graph constructed by the above procedure may contain self-loops or multiple edges.
It can be shown that conditionally on CMn(d) being simple, the law of such graphs is uniform
over all possible simple graphs with degree sequence d [41, Proposition 7.13]. It was further
shown in [26] that, under very general assumptions, the asymptotic probability of the graph being
simple is positive.

1.2 Definition and notation

We use the standard notation of
P−→, and

d−→ to denote convergence in probability and in distribu-
tion, respectively. We often use the Bachmann–Landau notation O(·), o(·) for large n asymptotics
of real numbers. The topology needed for the convergence in distribution will always be specified
unless it is clear from the context. The notation An ∼ Bn will be used to say that An/Bn → 1.
We say that a sequence of events (En)n≥1 occurs with high probability (w.h.p) with respect to the
probability measures (Pn)n≥1 whenPn

(

En
)

→ 1. Define fn = O
P

(gn) when (|fn|/|gn|)n≥1 is tight;

fn = o
P

(gn) when fn/gn
P−→ 0 whp; fn = Θ

P

(gn) if both fn = O
P

(gn) and gn = O
P

(fn). For a
random variable X and a distribution F , we write X ∼ F to denote that X has distribution F .
Denote

ℓp↓ :=
{

x = (x1, x2, x3, ...) : x1 ≥ x2 ≥ x3 ≥ ... and
∞
∑

i=1

xpi < ∞
}

(1.1)

with the p-norm metric d(x,y) =
(
∑∞

i=1 |xi − yi|p
)1/p

. Let ℓ2
↓
×N∞ denote the product topology

of ℓ2
↓

and N∞ withN∞ denoting the sequences onN endowed with the product topology. Define
also

U↓ :=
{

((xi, yi))
∞
i=1 ∈ ℓ2↓ ×N∞ :

∞
∑

i=1

xiyi < ∞ and yi = 0 whenever xi = 0 ∀i
}

(1.2)

with the metric

dU((x1,y1), (x2,y2)) :=

( ∞
∑

i=1

(x1i − x2i)
2

)1/2

+
∞
∑

i=1

∣

∣x1iy1i − x2iy2i
∣

∣. (1.3)

Further, let U0
↓ ⊂ U↓ be given by

U
0
↓
:=
{

((xi, yi))
∞
i=1 ∈ U↓ : if xk = xm, k ≤ m, then yk ≥ ym

}

. (1.4)

Let (U0
↓
)k denote the k-fold product space of U0

↓
. For any z ∈ U↓, ord(z) will denote the element of

U
0
↓

obtained by suitably ordering the coordinates of z.
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We often use the boldface notationX for the process (X(s))s≥0, unless stated otherwise. D[I,E]
will denote the space of càdlàg functions from a locally compact second countable Hausdorff space
I to the metric space E = (E,d) equipped with Skorohod J1-topology. D[0, t] (resp. D[0,∞))
simply denotes the case I = [0, t] (resp. [0,∞)) with E = R. Consider a decreasing sequence
θ = (θ1, θ2, . . . ) ∈ ℓ3

↓
\ ℓ2

↓
. Denote by Ii(s) := 1{ξi≤s} where ξi ∼ Exp(θi/µ) independently, and

Exp(r) denotes the exponential distribution with rate r. Consider the process

S̄λ
∞(t) =

∞
∑

i=1

θi (Ii(t)− (θi/µ)t) + λt, (1.5)

for some λ ∈ R, µ > 0 and define the reflected version of S̄λ
∞(t) by

refl(S̄λ
∞(t)) = S̄λ

∞(t)− min
0≤u≤t

S̄λ
∞(u). (1.6)

The process of the form (1.5) was termed thinned Lévy processes in [14] (see also [2, 44]), since
the summands are thinned versions of Poisson processes. For any function f ∈ D[0,∞), define

¯
f(x) = infy≤x f(y). D+[0,∞) is the subset of D[0,∞) consisting of functions with positive jumps
only. Note that

¯
f is continuous when f ∈ D+[0,∞). An excursion of a function f ∈ D+[0, T ] is an

interval (l, r) such that

min{f(l−), f(l)} =
¯
f(l) =

¯
f(r) = min{f(r−), f(r)} and f(x) >

¯
f(r), ∀x ∈ (l, r) ⊂ [0, T ].

(1.7)
Excursions of a function f ∈ D+[0,∞) are defined similarly. We will use γ to denote an excursion,
as well as the length of the excursion γ to simplify notation.

Also, define the counting process N to be the Poisson process that has intensity refl(S̄λ
∞(t)) at

time t conditional on (S̄λ
∞(u))u≤t. Formally, N is characterized as the counting process for which

N(t)−
t
∫

0

refl(S̄λ
∞(u))du (1.8)

is a martingale. We use the notation N(γ) to denote the number of marks in the interval γ.
Finally, we define a Markov process (Z(s))s∈R on D(R,U0

↓), called the augmented multiplica-
tive coalescent (AMC) process. Think of a collection of particles in a system with X(s) describing
their masses and Y(s) describing an additional attribute at time s. Let K1,K2 > 0 be constants.
The evolution of the system takes place according to the following rule at time s:

⊲ For i 6= j, at rate K1Xi(s)Xj(s), the ith and jth component merge and create a new compo-
nent of mass Xi(s) +Xj(s) and attribute Yi(s) + Yj(s).

⊲ For any i ≥ 1, at rate K2X
2
i (s), Yi(s) increases to Yi(s) + 1.

Of course, at each event time, the indices are re-organized to give a proper element of U0
↓ . This

process was first introduced in [10] to study the joint behavior of the component sizes and the
surplus edges over the critical window. In [10], the authors extensively study the properties of
the standard version of AMC, i.e., the case K1 = 1,K2 = 1/2 and showed in [10, Theorem 3.1]
that this is a (nearly) Feller process, a property that will play a crucial rule in the final part of this
paper.

Remark 1. Notice that the summation term in (1.5), after replacing θi by µθi, is of the form

V θ(s) = µα
∞
∑

i=1

(

θi1{ξi≤s} − θ2i s
)

, (1.9)

where ξi ∼ Exp(θi) independently over i and θ ∈ ℓ3↓ \ ℓ2↓ . Therefore, by [5, Lemma 1], the process
refl(S̄λ

∞) has no infinite excursions almost surely and only finitely many excursions with length at
least δ, for any δ > 0.
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1.3 Main results for critical configuration models

Throughout this paper we will use the shorthand notation

α = 1/(τ − 1), ρ = (τ − 2)/(τ − 1), η = (τ − 3)/(τ − 1), (1.10a)

an = nαL(n), bn = nρ(L(n))−1, cn = nη(L(n))−2, (1.10b)

where τ ∈ (3, 4) and L(·) is a slowly-varying function. We state our results under the following
assumptions:

Assumption 1. Fix τ ∈ (3, 4). Let d = (d1, . . . , dn) be a degree sequence such that the following
conditions hold:

(i) (High-degree vertices) For any fixed i ≥ 1,

di
an

→ θi, (1.11)

where θ = (θ1, θ2, . . . ) ∈ ℓ3
↓
\ ℓ2

↓
.

(ii) (Moment assumptions) Let Dn denote the degree of a vertex chosen uniformly at random from

[n], independently of CMn(d). Then, Dn
d−→ D, for some integer-valued random variable D

and

1

n

∑

i∈[n]

di → µ := E [D] ,
1

n

∑

i∈[n]

d2i → E[D2], lim
K→∞

lim sup
n→∞

a−3
n

n
∑

i=K+1

d3i = 0. (1.12)

(iii) (Critical window) For some λ ∈ R,

νn(λ) :=

∑

i∈[n] di(di − 1)
∑

i∈[n] di
= 1 + λc−1

n + o(c−1
n ). (1.13)

(iv) Let n1 be the number of vertices of degree-one. Then n1 = Θ(n), which is equivalent to
assuming that P (D = 1) > 0.

Note that Assumption 1 (i)-(ii) implies lim infn→∞E[D
3
n] = ∞. The following three results

hold for any CMn(d) satisfying Assumption 1:

Theorem 1. Consider CMn(d) with the degrees satisfying Assumption 1. Denote the ith-largest cluster
of CMn(d) by C(i). Then,

(

b−1
n |C(i)|

)

i≥1

d−→ (γi(λ))i≥1 , (1.14)

with respect to the ℓ2↓-topology where γi(λ) is the length of the ith largest excursion of the process S̄λ
∞, while

bn and the constants λ, µ are defined in (1.10b) and Assumption 1.

Theorem 2. Consider CMn(d) with the degrees satisfying Assumption 1. Let SP(C(i)) denote the number
of surplus edges in C(i) and let Zn := ord(b−1

n |C(i)|,SP(C(i)))i≥1 and Z := ord(γi(λ), N(γi))i≥1. Then,
as n → ∞,

Zn
d−→ Z (1.15)

with respect to the U0
↓ topology, where N is defined in (1.8).

Theorem 3. The results in Theorem 1 and Theorem 2 also hold for CMn(d) conditioned on simplicity.
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Remark 2. The only previous work to understand the critical behavior of the configuration model
with heavy-tailed degrees was by Joseph [30] where the degrees were assumed to be i.i.d an sam-
ple from an exact power-law distribution and the results were obtained for the component sizes
of CMn(d) (Theorem 1). We will see that Assumption 1 is satisfied for i.i.d degrees in Section 2.2.
Thus, a quenched version of [30, Theorem 8.3] follows from our results. Further, if the degrees
are chosen approximately as the weights chosen in [14], then our results continue to hold. This
sheds light on the relation between the scaling limits in [14] and [30] (see Remark 11). Moreover,
Theorem 3 resolves [30, Conjecture 8.5].

Remark 3. The conclusions of Theorems 1, 2, and 3 hold for more general functionals of the
components. Suppose that each vertex i has a weight wi associated to it and let Wi denote the
total weight of the component C(i), i.e., Wi =

∑

k∈C(i)
wk. Then, under some regularity condi-

tions on the weight sequence w = (wi)i∈[n], in Section 8 we will show that the scaling limit for
Zw
n := ord(b−1

n Wi,SP(C(i)))i≥1 is given by Z = ord(κγi(λ), N(γi))i≥1, where the constant κ is given
by κ = limn→∞

∑

i∈[n] diwi/
∑

i∈[n] di. Observe that, for wi = 1{di=k}, Wi gives the asymptotic

number of vertices of degree k in the ith largest component.

Remark 4. It might not be immediate why we should work with Assumption 1. We will see in
Section 2.1 that Assumption 1 is satisfied by the degree sequences in some important and natural
cases. The reason to write the assumptions in this form is to make the properties of the degree
distribution explicit (e.g. in terms of moment conditions and the asymptotics of the highest de-
grees) that jointly lead to this universal critical limiting behavior. We explain the significance of
Assumption 1 in more detail in Section 3.

1.4 Percolation on heavy-tailed configuration models

Percolation refers to deleting each edge of a graph independently with probability 1−p. Consider
percolation on a configuration model CMn(d) under the following assumptions:

Assumption 2. (i) Assumption 1 (i), and (ii) hold for the degree sequence and CMn(d) is super-
critical, i.e.,

νn =

∑

i∈[n] di(di − 1)
∑

i∈[n] di
→ ν =

E [D(D − 1)]

E [D]
> 1. (1.16)

(ii) (Critical window for percolation) The percolation parameter pn satisfies

pn = pn(λ) :=
1

νn

(

1 + λc−1
n + o(c−1

n )
)

(1.17)

for some λ ∈ R.

Let CMn(d, pn(λ)) denote the graph obtained through percolation on CMn(d) with bond re-
tention probability pn(λ). The following result gives the asymptotics for the ordered component
sizes and the surplus edges for CMn(d, pn(λ)):

Theorem 4. Consider CMn(d, pn(λ)) satisfying Assumption 2. Let S̃λ
∞ denote the process in (1.5)

with θi replaced by θi/
√
ν, and C

p
(i) denote the ith largest component of CMn(d, pn) and let Z

p
n(λ) :=

ord(b−1
n |C p

(i)|,SP(C p
(i)))i≥1, Zp(λ) := ord((ν1/2γ̃i(λ), N(γ̃i(λ)))i≥1, where γ̃i(λ) is the largest excursion

of S̃λ
∞. Then, for any λ ∈ R, as n → ∞,

Zp
n(λ)

d−→ Zp(λ) (1.18)

with respect to the U0
↓

topology.
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Now, consider a graph CMn(d) satisfying Assumption 2 (i). To any edge (ij) between vertices
i and j (if any), associate an independent uniform random U(ij). Note that the graph obtained
by keeping only those edges satisfying U(ij) ≤ pn(λ) is distributed as CMn(d, pn(λ)). This con-
struction naturally couples the graphs (CMn(d, pn(λ)))λ∈R using the same set of uniform random
variables. Our next result shows that the evolution of the component sizes and the surplus edges
of CMn(d, pn(λ)), as λ varies, can be described by a version of the augmented multiplicative coa-
lescent process described in Section 1.2:

Theorem 5. Suppose that Assumption 2 holds, and ℓn/n = µ + o(n−ζ) for some η < ζ < 1/2. Fix
any k ≥ 1, −∞ < λ1 < · · · < λk < ∞. Then, there exists a version AMC = (AMC(λ))λ∈R of the
augmented multiplicative coalescent such that, as n → ∞,

(Zp
n(λ1), . . .Z

p
n(λk))

d−→ (AMC(λ1), . . . ,AMC(λk)) (1.19)

with respect to the (U0
↓
)k topology, where at each λ, AMC(λ) is distributed as the limiting object in (1.18).

Remark 5. Theorem 5 also holds when E[D3
n] → E[D3] < ∞ with α = η = 1/3, ρ = 2/3 and

L(n) = 1. This improves [20, Theorem 4], which was proved only for the cluster sizes.

Remark 6. Theorem 5, in fact, shows that there exists a version of the AMC process whose dis-
tribution at each fixed λ can be described by the excursions of a thinned Lévy process and an
associated Poisson process. This did not appear in [10, 19], since the scaling limits in their settings
were described in terms of the excursions of a Brownian motion with parabolic drift.

Remark 7. The additional assumption in Theorem 5 about the asymtotics ℓn/n is required only in
one place for Proposition 24 and the rest of the proof works under Assumption 2 only. That is why
we have separated this assumption from the set of conditions in Assumption 2. It is worthwhile
mentioning that the condition is not stringent at all, e.g., we will see that this condition is satisfied
under the two widely studied set ups in Section 2.1.

Remark 8. As we will see in Section 10, the proof of Theorem 5 can be extended to more general
functionals of the components. For example, the evolution of the number of degree k vertices
along with the surplus edges can also be described by an AMC process. The key idea here is
that these component functionals become approximately proportional to the component sizes in
the critical window and thus the scaling limit for the component functionals becomes a constant
multiple of the scaling limit for the component sizes.

2 Important examples

2.1 Power-law degrees with small perturbation

As discussed in the introduction, our main goal is to obtain results for the critical configuration
model satisfying P (Dn ≥ k) ∼ L0(k)k

−(τ−1) for some τ ∈ (3, 4). In this section, we consider
such an example and show that the conditions of Assumption 1 are satisfied. Thus, the results
in Section 1.3 hold for CMn(d) in the following set-up that is closely related to the model studied
in [14] for rank-1 inhomogeneous random graphs.

Fix τ ∈ (3, 4). Suppose that F is the distribution function of a discrete non-negative random
variable D such that

G(x) = 1− F (x) =
CFL0(x)

xτ−1
(1 + o(1)) as x → ∞, (2.1)

7



where L0(·) is a slowly-varying function so that the tail of the distribution is decaying like a
regularly-varying function. Recall that the inverse of a locally bounded non-increasing function
f : R→ R is defined as f−1(x) := inf{y : f(y) ≤ x}. Therefore, using [15, Theorem 1.5.12],

G−1(x) =
C

1/(τ−1)
F L(1/x)

x1/(τ−1)
(1 + o(1)) as x → 0, (2.2)

where L(·) is another slowly-varying function. Note that [15, Theorem 1.5.12] is stated for positive
exponents only. Since our exponent is negative, the asymptotics in (2.2) holds for x → 0. Suppose
that the random variable D is such that

ν =
E [D(D − 1)]

E [D]
= 1. (2.3)

Define the degree sequence dλ by taking the degree of the ith vertex to be

di = di(λ) := G−1(i/n) + δi,n(λ), (2.4)

where the δi,n(λ)’s are non-negative integers satisfying the asymptotic equivalence

δi,n(λ) ∼ λG−1(i/n)c−1
n , as n → ∞. (2.5)

The δi,n(λ)’s are chosen in such a way that Assumption 1 (iv) is satisfied. Fix any K ≥ 1. Notice
that (2.2) and (2.5) imply that, for all large enough n (independently of K), the first K largest
degrees (di)i∈[K] satisfy

di =

(

nαCα
FL(n/i)

iα

)

(

1 + λc−1
n + o(c−1

n )
)

. (2.6)

Therefore, dλ satisfies Assumption 1 (i) with θi = (CF/i)
α. We next address Assumption 1 (ii), (iii)

in the next two lemmas:

Lemma 6. The degree sequence dλ defined in (2.4) satisfies Assumption 1 (ii).

Proof. Note that, by (2.6), d21 = o(n). Also, since G−1 is non-increasing

∫ 1

0
G−1(x)dx− d1

n
≤ 1

n

∑

i∈[n]

G−1(i/n) ≤
∫ 1

0
G−1(x)dx. (2.7)

Therefore,

1

n

∑

i∈[n]

di =
1

n

∑

i∈[n]

G−1(i/n)(1 +O(c−1
n )) =

∫ 1

0
G−1(x)dx+O(d1/n) +O(c−1

n ) = E [D] +O(b−1
n ).

(2.8)
Similarly,

∑

i∈[n] d
2
i = nE[D2]+O(d21) = nE[D2]+o(n). To prove the condition involving the third-

moment, we use Potter’s theorem [15, Theorem 1.5.6]. First note that 3α− 1 = (4− τ)/(τ − 1) > 0
since τ ∈ (3, 4). Fix 0 < δ < α− 1/3 and A > 1 and choose C = C(δ,A) such that for all i ≤ nC−1,
L(n/i)/L(n) < Aiδ. Therefore, (2.2) implies

a−3
n

∑

i>K

d3i ≤ A
∑

i>K

i−3α+3δ +
sup1≤x≤C L(x)3

L(n)3

∑

i>nC−1

i−3α. (2.9)

From our choice of δ, −3α + 3δ < −1 and therefore
∑

i≥1 i
−3α+3δ < ∞. By [15, Lemma 1.3.2],

sup1≤x≤C L(x)3 < ∞. Moreover,
∑

i>nC−1 i−3α = O(n1−3α) and 1 − 3α < 0. Thus, the proof
follows by first taking n → ∞ and then K → ∞.
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Lemma 7. The degree sequence dλ defined in (2.4) satisfies Assumption 1 (iii), i.e., there exists λ0 ∈ R
such that

νn(λ) = 1 + (λ+ λ0)c
−1
n + o(c−1

n ). (2.10)

Proof. Firstly, Lemma 6 guarantees the convergence of the second moment of the degree sequence.
However, (2.10) is more about obtaining sharper asymptotics for νn(λ). We use similar arguments
as in [14, Lemma 2.2]. Denote νn := νn(0). Note that νn(λ) = νn(1+λc−1

n )+ o(c−1
n ), so it is enough

to verify that
νn = 1 + λ0c

−1
n + o(c−1

n ). (2.11)

Consider di(0) as given in (2.4) with λ = 0. Lemma 6 implies

νn =

∑

i∈[n] di(0)
2

nE [D]
− 1 + o(c−1

n ). (2.12)

Fix any K ≥ 1. We have

∫ 1

K/n
G−1(u)2du− d2K

n
≤ 1

n

n
∑

i=K+1

d2i ≤
∫ 1

K/n
G−1(u)2du. (2.13)

Now by (2.4), d2K/n = Θ(K−2αL(n/K)2n−η). Therefore,

ν − νn =
1

E [D]

(

K
∑

i=1

∫ i/n

(i−1)/n
G−1(u)2du− 1

n

K
∑

i=1

d2i

)

+O(K−2αL(n/K)2n−η). (2.14)

Again, using (2.4),

1

n

K
∑

i=1

d2i = n−η
K
∑

i=1

(

CF

i

)2α

L(n/i)2 + o(c−1
n ) = c−1

n

K
∑

i=1

(

CF

i

)2α

+ ε(cn,K), (2.15)

where the last equality follows using the fact that L(·) is a slowly-varying function. Note that the
error term ε(cn,K) in (2.15) satisfies limn→∞ cnε(cn,K) = 0 for each fixed K ≥ 1. Again,

K
∑

i=1

∫ i/n

(i−1)/n
G−1(u)2du = n−η

K
∑

i=1

∫ i

(i−1)

(

CF

u

)2α

L(n/u)2du+ o(c−1
n )

= c−1
n

K
∑

i=1

∫ i

(i−1)

(

CF

u

)2α

du+ ε′(cn,K),

(2.16)

where limn→∞ cnε
′(cn,K) = 0 for each fixed K ≥ 1. Thus combining (2.14), (2.15), and (2.16) and

first letting n → ∞ and then K → ∞, we get

lim
n→∞

cn(νn − ν) = λ0, (2.17)

where

λ0 = − C2α
F

E [D]

∞
∑

i=1

(
∫ i

i−1
u−2αdu− i−2α

)

. (2.18)

Using Euler-Maclaurin summation [23, Page 333] it can be seen that λ0 is finite which completes
the proof.
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Remark 9. Note that if we add approximately cn1−η (c > 0 is a constant) ones in the degree se-
quence given in (2.4), then we end up with another configuration model for which limn→∞ nη(νn−
ν) = ζ ′ with ζ > ζ ′. Similarly, deleting cn1−η ones from the degree sequence increases the new ζ
value. This gives an obvious way to perturb the degree sequence in such a way that the configura-
tion model is in different locations within the critical scaling window. In our proofs, we will only
use the precise asymptotics of the high degree vertices. Thus, a small (suitable) perturbation in the
degrees of the low degree vertices does not change the scaling behavior fundamentally, except for
a change in the location inside the scaling window.

Remark 10. If ν in (2.3) is larger than one, then the degree sequence satisfies Assumption 2. There-
fore, the results for critical percolation also hold in this setting. (2.8) implies that the additional
assumption in Theorem 5 is also satisfied.

2.2 Random degrees sampled from a power-law distribution

We now consider the set-up discussed in [30]. Let D1, . . . ,Dn be i.i.d samples from a distribution
F , where F is defined in (2.1). Therefore, the asymptotic relation in (2.2) holds. Consider the
random degree sequence d where di = D(i), D(i) being the ith order statistic of (D1, . . . ,Dn). We
show that d satisfies Assumption 1 almost surely under a suitable coupling. We use a coupling
from [18, Section 13.6]. Let (E1, E2, . . . ) be an i.i.d sequence of unit rate exponential random
variables and let Γi :=

∑i
j=1Ej . Let

d̄i = D̄(i) = G−1(Γi/Γn+1). (2.19)

It can be checked that (d1, . . . , dn)
d
= (d̄1, . . . , d̄n) and therefore, we will ignore the bar in the

subsequent notation. Note that, by the stong law of large numbers, Γn+1/n
a.s.−−→ 1. Thus, for each

fixed i ≥ 1, Γn+1/(nΓi)
a.s.−−→ 1/Γi. Using (2.2), we see that d satisfies Assumption 1 (i) almost surely

under this coupling with θi = (CF /Γi)
α. The first two conditions of Assumption 1 (ii) are trivially

satisfied by d almost surely using the strong law of large numbers. To see the third condition, we
first claim that

P

( ∞
∑

i=1

Γ−3α
i < ∞

)

= 1. (2.20)

To see (2.20), note that Γi has a Gamma distribution with shape parameter i and scale parameter
1. Thus, for i > 3α,

E[Γ−3α
i ] =

Γ(i− 3α)

Γ(i)
= i−3α(1 +O(1/i)), (2.21)

where Γ(x) is the Gamma function and the last equality follows from Stirling’s approximation.
Therefore,

E

[ ∞
∑

i=1

Γ−3α
i

]

=

∞
∑

i=1

E

[

Γ−3α
i

]

< ∞ (2.22)

and (2.20) follows. Now, using the fact that Γn+1/n
a.s.−−→ 1, we can use arguments identical to (2.9)

to show that limK→∞ lim supn→∞ a−3
n

∑

i>K d3i = 0 on the event {∑∞
i=1 Γ

−3α
i < ∞} ∩ {Γn+1/n →

1}. Thus, we have shown that the third condition of Assumption 1 (ii) holds almost surely.
To see Assumption 1 (iii), an argument similar to Lemma 7 can be carried out to prove that

lim
n→∞

cn(νn − ν)
a.s.−−→ Λ0, (2.23)

where

Λ0 := − C2α
F

E [D]

∞
∑

i=1

(

∫ Γi

Γi−1

u−2αdu− Γ−2α
i

)

. (2.24)
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Therefore, the results in Section 1.3 hold conditionally on the degree sequence if we assume the
degrees to be i.i.d samples from a distribution of the form (2.1). For the percolation results, notice
that the additional condition in Theorem 5 is a direct consequence of the convergence rates of
sums of i.i.d sequence of random variables [31, Corollary 3.22].

Remark 11. Let us recall the limiting object obtained in [30, Theorem 8.1] and compare this with
the limiting object S̄

Λ0
∞ , defined in (1.5) with Λ0 given by (2.24). We will prove an analogue of

[30, Theorem 8.1] in Theorem 8. Although we use a different exploration process from [30], the
fact that the component sizes are huge compared to the number of cycles in a component, one can
prove Theorem 8 for the exploration process in [30] also. This will indirectly imply that Joseph’s
limiting object obeys the law of S̄

Λ0
∞ , averaged out over the Γ-values. This is counter intuitive,

given the vastly different descriptions of the two processes; for example our process does not
have independent increments. We do not have a direct way to prove the above mentioned claim.

3 Discussion

Assumptions on the degree distribution. Let us now briefly explain the significance of Assump-
tion 1. Unlike the finite third-moment case [20], the high-degree vertices dictate the scaling limit in
Theorem 1 and therefore it is essential to fix their asymptotics through Assumption 1 (i). Assump-
tion 1 (iii) defines the critical window of the phase transition and Assumption 1 (iv) is reminiscent
of the fact that a configuration model with negligibly small amount of degree-one vertices is al-
ways supercritical. Assumption 1 (ii) states the finiteness of the first two moments of the degree
distribution and fixes the asymptotic order of the third-moment. The order of the third-moment
is crucial in our case. The derivation of the scaling limits for the components sizes is based on the
analysis of a walk which encodes the information about the component sizes in terms of the excur-
sions above its past minima [4, 13, 14, 20, 37]. Now, the increment distribution turns out to be the
size-biased distribution with the sizes being the degrees. Therefore, the third-moment assumption
controls the variance of the increment distribution. Another viewpoint is that the components can
be locally approximated by a branching process Xn with the variance of the same order as the
third-moment of the degree distribution. Thus Assumption 1 (ii) controls the order of the survival
probability of Xn, which is intimately related to the asymptotic size of the largest components.

Connecting the barely subcritical and supercritical regimes. The barely subcritical (supercriti-
cal) regime corresponds to the case when νn(λn) = 1 + λnc

−1
n for some λn → −∞ (λn → ∞) and

λn = o(c−1
n ). Janson [24] showed that the size of the kth largest cluster for a subcritical configura-

tion model (i.e., the case νn → ν and ν < 1) is dk/(1 − ν) (see [24, Remark 1.4]). In [11], we show
that this is indeed the case for the entire barely subcritical regime, i.e., the size of the kth largest
cluster is dk/(1− νn(λn)) = Θ(bn|λn|−1). In the barely supercritical case, the giant component can
be locally approximated by a branching process Xn having variance of the order a3n/n and the size
of the giant component is of the order nρn, where ρn is the survival probability of Xn [42]. The
asymptotic size of the giant component turns out to be Θ(bn|λn|). Therefore, the fact that the sizes
of the maximal components in the critical scaling window are Θ(bn) for λn = Θ(1) proves a con-
tinuous phase transition property for the configuration model within the whole critical regime.

Percolation. The main reason to study percolation in this paper is to understand the evolution
of the component sizes and the surplus edges over the critical window in Theorem 5. It turns
out that a precise characterization of the evolution the percolation clusters is necessary for under-
standing the minimal spanning tree of the giant component with i.i.d weights on each edge [1].
Also, since the percolated configuration model is again a configuration model [22, 25], the natural
way to study the evolution of the clusters sizes of configuration models over the critical window
is through percolation.
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Universality. The limiting object in Theorem 1 is identical to that in [14, Theorem 1.1] for rank-1
inhomogeneous random graphs. Thus, CMn(d) with regularly-varying tails falls onto the domain
of attraction of the new universality class studied in [14]. This is again conforming to the pre-
dictions made by statistical physicists that the nature of the phase transition does not depend on
the precise details of the model. Our scaling limit fits into the general class of limits predicted
in [5]. In the notation of [5, (6)], the scaling limits CMn(d), under Assumption 1, give rise to the
case κ = 0. To understand this, let us discuss some existing works. In [4, 6, 13, 20, 30], the limit-
ing component sizes are described by the excursions of a Brownian motion with a parabolic drift.
All these models had a common property: if the component sizes in the barely subcritical regime
are viewed as masses then (i) these masses merge as approximate multiplicative coalescents in the
critical window, and (ii) each individual mass is negligible/“dust" compared to the sum of squares
of the masses in the barely subcritical regime. Indeed, (ii) is observed in [4, (10)], [6, (4)]. In the
case of [14] and this paper, the barely subcritical component sizes do not become negligible due to
the existence of the high-degree vertices (see [14, Theorem 1.3]). As discussed in [5, Section 1.4],
these large barely subcritical clusters can be thought of as nuclei, not interacting with each other
and “sweeping up the smaller clusters in such a way that the relative masses converge”. It will
be fascinating to find a class of random graphs, used to model real-life networks, that has both
the nuclei and a good amount of dust in the barely subcritical regime, so that the scaling limits
predicted by [5] can be observed in complete generality.

Component sizes and the width of the critical window. We have already discussed how the
width of the scaling window and the order of the maximal degrees should lead the asymptotic
size of the components to be of the order bn. For the finite third-moment case, the size of the
largest component is of the order n2/3 ≫ bn. We do not have a very intuitive explanation to ex-
plain the reduced sizes of the components except for the fact that a similar property is true for the
survival probability of a slightly supercritical branching process. The width of the critical window
decreases by a factor of L(n)−2 as compared to [14] if the size of the high-degree vertices increases
by a factor of L(n) (see (1.10b)). Indeed, an increase in the degrees of the high-degree vertices is
expected to start the merging of the barely subcritical nuclei earlier, resulting in an increase in the
width of the critical window. The fact that the width decreases by a factor of L(n)−2 comes out of
our calculations.

Open problems.
(i) A natural question is to study what the component sizes, viewed as metric spaces, look like.
Recently, [12] studied this problem for rank-1 inhomogeneous random graphs for heavy-tailed
weights. In a work in progress Bhamidi et al. [11], we show that the metric space structure of
CMn(d) is in the same universality class of the rank-one inhomogeneous model, as shown in [12].
This is the first step in understanding the minimal spanning tree problem (see [1]).
(ii) As discussed in Section 2.2 (see Remark 11), it will be interesting to get a direct proof of the fact
that the limiting object in [30, Theorem 8.1] is obtained by averaging the distribution of S

Λ0
∞ over

the collections (Γi)i≥1.
(iii) We have only shown the finite-dimensional convergence in Theorem 5. It is an open question
to obtain a suitable tightness criterion that would imply the process level convergence of the vec-
tor of component sizes and surplus edges over the whole critical window.

Overview of the proofs. The proofs of Theorems 1 and 2 consist of two important steps. First,
we define an exploration algorithm on the graph that explores one edge of the graph at each step.
The algorithm produces a walk, termed exploration process, that encodes the information about
the number of edges in the explored components in terms of the hitting times to its past minima.
In Section 4, the exploration process, suitably rescaled, is shown to converge. The surplus edges
in the components are asymptotically negligible compared to the component sizes; these two facts
together give us the finite-dimensional scaling limit of the re-scaled component sizes. The proof

12



of Theorem 1 follows from the asymptotics of the susceptibility function in Section 5. The joint
convergence of the component sizes and surplus edges is proved by verifying a uniform tightness
condition on the surplus edges in Section 6. Then, in Section 7, we exploit the idea that the large
components are explored before any self-loops or multiple edges are created and conclude the
proof of Theorem 3. The proof of Theorem 4 is completed by showing that the percolated degree
sequence is again a configuration model satisfying Assumption 1. Section 10 is devoted to the
proof of Theorem 5 which exploits different properties of the augmented multiplicative coalescent
process.

4 Convergence of the exploration process

We start by describing how the connected components in the graph can be explored while gener-
ating the random graph simultaneously:

Algorithm 1 (Exploring the graph). Consider the configuration model CMn(d). The algorithm
carries along vertices that can be alive, active, exploring and killed and half-edges that can be
alive, active or killed. We sequentially explore the graph as follows:

(S0) At stage i = 0, all the vertices and the half-edges are alive but none of them are active. Also,
there are no exploring vertices.

(S1) At each stage i, if there is no active half-edge at stage i, choose a vertex v proportional to its
degree among the alive (not yet killed) vertices and declare all its half-edges to be active and
declare v to be exploring. If there is an active vertex but no exploring vertex, then declare the
smallest vertex to be exploring.

(S2) At each stage i, take an active half-edge e of an exploring vertex v and pair it uniformly to
another alive half-edge f . Kill e, f . If f is incident to a vertex v′ that has not been discovered
before, then declare all the half-edges incident to v′ active, except f (if any). If degree(v′) = 1
(i.e. the only half-edge incident to v′ is f ) then kill v′. Otherwise, declare v′ to be active and
larger than all other vertices that are alive. After killing e, if v does not have another active
half-edge, then kill v also.

(S3) Repeat from (S1) at stage i+ 1 if not all half-edges are already killed.

Algorithm 1 gives a breadth-first exploration of the connected components of CMn(d). Define
the exploration process by

Sn(0) = 0, Sn(l) = Sn(l − 1) + d(l)Jl − 2, (4.1)

where Jl is the indicator that a new vertex is discovered at time l and d(l) is the degree of the new

vertex chosen at time l when Jl = 1. Suppose Ck is the kth connected component explored by the
above exploration process and define τk = inf

{

i : Sn(i) = −2k
}

. Then Ck is discovered between
the times τk−1 + 1 and τk, and τk − τk−1 − 1 gives the total number of edges in Ck. Call a vertex
discovered if it is either active or killed. Let Vl denote the set of vertices discovered up to time l and
In
i (l) := 1{i∈Vl}. Note that

Sn(l) =
∑

i∈[n]

diIn
i (l)− 2l =

∑

i∈[n]

di

(

In
i (l)−

di
ℓn

l

)

+ (νn(λ)− 1) l. (4.2)

Recall the notation in (1.10b). Define the re-scaled version S̄n of Sn by S̄n(t) = a−1
n Sn(⌊bnt⌋). Then,

by Assumption 1 (iii),

S̄n(t) = a−1
n

∑

i∈[n]

di

(

In
i (tbn)−

di
ℓn

tbn

)

+ λt+ o(1). (4.3)
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Note the similarity between the expressions in (1.5) and (4.3). We will prove the following:

Theorem 8. Consider the process S̄n := (S̄n(t))t≥0 defined in (4.3) and recall the definition of S̄∞ :=
(S̄∞(t))t≥0 from (1.5). Then,

S̄n
d−→ S̄∞ (4.4)

with respect to the Skorohod J1 topology.

The proof of Theorem 8 is completed by showing that the summation term in (4.3) is predom-
inantly carried by the first few terms and the limit of the first few terms gives rise to the limiting
process given in (1.5). Fix K ≥ 1 to be large. Denote by Fl the sigma-field containing the informa-
tion generated up to time l by Algorithm 1. Also, let Υl denote the set of time points up to time l
when a component was discovered and υl = |Υl|. Note that we have lost 2(l − υl) half-edges by
time l. Thus, on the set {In

i (l) = 0},

P

(

In
i (l + 1) = 1

∣

∣Fl

)

=

{

di
ℓn−2(l−υl)−1 if l /∈ Υl,

di
ℓn−2(l−υl)

otherwise
(4.5)

and, uniformly over l ≤ Tbn,

P

(

In
i (l + 1) = 1

∣

∣Fl

)

≥ di
ℓn

on the set {In
i (l) = 0}. (4.6)

Denote MK
n (l) = a−1

n

∑

i∈[n] di
(

In
i (l)− di

ℓn
l
)

. Then,

E

[

MK
n (l + 1)−MK

n (l)
∣

∣Fl

]

= E

[ n
∑

i=K+1

a−1
n di

(

In
i (l + 1)− In

i (l)−
di
ℓn

)

∣

∣

∣
Fl

]

=
n
∑

i=K+1

a−1
n di

(

E

[

In
i (l + 1)

∣

∣Fl

]

1{In
i (l)=0} − di

ℓn

)

≥ 0.

(4.7)

Thus (MK
n (l))Tbn

l=1 is a sub-martingale. Further, (4.5) implies that, uniformly for all l ≤ Tbn,

P (In
i (l) = 0) ≥

(

1− di
ℓ′n

)l

, (4.8)

where ℓ′n = ℓn − 2Tbn − 1. Thus, Assumption 1 (ii) gives

∣

∣

E[MK
n (l)]

∣

∣ = a−1
n

n
∑

i=K+1

di

(

P (In
i (l) = 1)− di

ℓn
l

)

≤ a−1
n

n
∑

i=K+1

di

(

1−
(

1− di
ℓ′n

)l

− di
ℓ′n

l

)

+ a−1
n l

∑

i∈[n]

d2i

(

1

ℓ′n
− 1

ℓn

)

≤ l2

2ℓ′2n an

n
∑

i=K+1

d3i + o(1)

≤ T 2n2ρn3αL(n)3

2ℓ′2nL(n)
2nαL(n)

(

a−3
n

n
∑

i=K+1

d3i

)

+ o(1) = C

(

a−3
n

n
∑

i=K+1

d3i

)

+ o(1),

(4.9)

for some constant C > 0, where we have used the fact that

a−1
n l

∑

i∈[n]

d2i

( 1

ℓ′n
− 1

ℓn

)

= O(n2ρ+1−α−2/L(n)3) = O(n(τ−4)/(τ−1)/L(n)3) = o(1), (4.10)
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uniformly for l ≤ Tbn. Therefore, uniformly over l ≤ Tbn,

lim
K→∞

lim sup
n→∞

∣

∣

E[MK
n (l)]

∣

∣ = 0. (4.11)

Now, note that for any (x1, x2, . . . ), 0 ≤ a+ b ≤ xi and a, b > 0 one has
∏R

i=1(1− a/xi)(1− b/xi) ≥
∏R

i=1(1− (a+ b)/xi). Thus, by (4.5), for all l ≥ 1 and i 6= j,

P

(

In
i (l) = 0,In

j (l) = 0
)

≤ P (In
i (l) = 0)P

(

In
j (l) = 0

)

(4.12)

and therefore In
i (l) and In

j (l) are negatively correlated. Observe also that, uniformly over l ≤ Tbn,

Var (In
i (l)) ≤ P (In

i (l) = 1) ≤
l
∑

l1=1

P (vertex i is first discovered at stage l1) ≤
ldi
ℓ′n

. (4.13)

Therefore, using the negative correlation in (4.12), uniformly over l ≤ Tbn,

Var
(

MK
n (l)

)

≤ a−2
n

n
∑

i=K+1

d2iVar (In
i (l)) ≤

l

ℓ′na
2
n

n
∑

i=K+1

d3i ≤ Ca−3
n

n
∑

i=K+1

d3i , (4.14)

for some constant C > 0 and by using Assumption 1 (ii) again,

lim
K→∞

lim sup
n→∞

Var
(

MK
n (l)

)

= 0, (4.15)

uniformly for l ≤ Tbn. Now we can use the super-martingale inequality [38, Lemma 2.54.5] stating
that for any super-martingale (M(t))t≥0, with M(0) = 0,

εP

(

sup
s≤t

|M(s)| > 3ε

)

≤ 3E [|M(t)|] ≤ 3
(

|E [M(t)] |+
√

Var (M(t))
)

. (4.16)

Using (4.11), (4.14), and (4.16), together with the fact that (−MK
n (l))Tbn

l=1 is a super-martingale, we
get, for any ε > 0,

lim
K→∞

lim sup
n→∞

P

(

sup
l≤Tbn

|MK
n (l)| > ε

)

= 0. (4.17)

Define the truncated exploration process

S̄K
n (t) = a−1

n

K
∑

i=1

di

(

In
i (tbn)−

di
ℓn

tbn

)

+ λt. (4.18)

Define In
i (tbn) = In

i (⌊tbn⌋) and recall that Ii(s) := 1{ξi≤s} where ξi ∼ Exp(θi/µ).

Lemma 9. Fix any K ≥ 1. As n → ∞,

(In
i (tbn))i∈[K],t≥0

d−→ (Ii(t))i∈[K],t≥0 . (4.19)

Proof. By noting that (In
i (tbn))t≥0 are indicator processes, it is enough to show that

P (In
i (tibn) = 0, ∀i ∈ [K]) → P (Ii(ti) = 0, ∀i ∈ [K]) = exp

(

− µ−1
K
∑

i=1

θiti

)

. (4.20)

for any t1, . . . , tK ∈ R. Now,

P (In
i (mi) = 0, ∀i ∈ [K]) =

∞
∏

l=1

(

1−
∑

i≤K:l≤mi

di
ℓn −Θ(l)

)

, (4.21)
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where the Θ(l) term arises from the expression in (4.5) and noting that υl ≤ l. Taking logarithms
on both sides of (4.21) and using the fact that l ≤ maxmi = Θ(bn) we get

P (In
i (mi) = 0∀i ∈ [K]) = exp

(

−
∞
∑

l=1

∑

i≤K:l≤mi

di
ℓn

+ o(1)
)

= exp
(

−
∑

i∈[K]

dimi

ℓn
+ o(1)

)

. (4.22)

Putting mi = tibn, Assumption 1 (i), (ii) gives

midi
ℓn

=
θiti
µ

(1 + o(1)). (4.23)

Hence (4.23), and (4.22) complete the proof of Lemma 9.

Proof of Theorem 8. The proof of Theorem 8 now follows from (4.3), (4.17) and Lemma 9 by first
taking the limit as n → ∞ and then taking the limit as K → ∞.

Theorem 10. Recall the definition of refl(S̄∞) from (1.6). As n → ∞,

refl(S̄n)
d−→ refl(S̄∞). (4.24)

Proof. This follows from Theorem 8 and the fact that the reflection is Lipschitz continuous with
respect to the Skorohod J1 topology (see [45, Theorem 13.5.1]).

5 Convergence of component sizes

In this section, we complete the proof of Theorem 1. First, we prove a tail summability condition
that ensures that the vector of ordered component sizes is tight in ℓ2↓ . This also implies that Algo-
rithm 1 explores the large components before time Tbn for large T . Next, we show that the function
mapping an element of D[0,∞) to its largest excursions, is continuous on a special subset A of
D[0,∞) and the process refl(S̄∞) has sample paths in A almost surely. Therefore, Theorem 8 gives
the scaling limit of the number of edges in the components ordered as a non-increasing sequence.
Finally, we show that the number of surplus edges discovered up to time Tbn are negligible and
thus the convergence of the component sizes in Theorem 1 follows.

5.1 Tightness of the component sizes

The following proposition establishes a uniform tail summability condition that is required for the
tightness of the (scaled) ordered vector of component size with respect to the ℓ2↓ topology:

Proposition 11. For any ε > 0,

lim
K→∞

lim sup
n→∞

P

(

∑

i>K

|C(i)|2 > εb2n

)

= 0. (5.1)

Roughly speaking, the proof is based on the fact that the graph, obtained by removing a large
number of high-degree vertices, yields a graph that approaches subcriticality. More precisely, we
prove Lemma 12 below to complete the proof of Proposition 11. This fact is not true for the finite
third-moment setting [20]. However, since the large-degree vertices guide the scaling behavior
in the infinite third-moment case, the observation in Lemma 12 saves some computational com-
plexity, and gives a different proof of the ℓ2↓ tightness than the arguments with size-biased point
processes originally described in [4].
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Lemma 12. Consider CMn(d) satisfying Assumption 1. Let G[K] be the random graph obtained by
removing all edges attached to vertices 1, . . . ,K and let d′ be the obtained degree sequence. Suppose Vn is a
random vertex of G[K] chosen independently of the graph and let C [K](Vn) be the corresponding component.
Let {C [K]

(i) : i ≥ 1} be the components of G[K], ordered according to their sizes. Then,

lim
K→∞

lim sup
n→∞

c−1
n E

[

|C [K](Vn)|
]

= 0. (5.2)

Consequently, for any ε > 0,

lim
K→∞

lim sup
n→∞

P

(

∑

i≥1

∣

∣C
[K]

(i)

∣

∣

2
> εb2n

)

= 0. (5.3)

Proof. We make use of a result due to Janson [27] regarding bounds on the susceptibility functions
for the configuration model. In fact, [27, Lemma 5.2] shows that, for any configuration model
CMn(d) with νn < 1,

E [|C (Vn)|] ≤ 1 +
E [Dn]

1− νn
. (5.4)

Now, conditional on the set of removed half-edges, G[K] is still a configuration model with some
degree sequence d′ with d′i ≤ di for all i ∈ [n] \ [K] and d′i = 0 for i ∈ [K]. Further, the criticality
parameter of G[K] satisfies

ν [K]
n =

∑

i∈[n] d
′
i(d

′
i − 1)

∑

i∈[n] d
′
i

≤
∑

i∈[n] di(di − 1)−∑K
i=1 di(di − 1)

ℓn − 2
∑K

i=1 di

= νn − C1n
2α−1L(n)2

∑

i≤K

θ2i = νn − C1c
−1
n

∑

i≤K

θ2i

(5.5)

for some constant C1 > 0. Since θ /∈ ℓ2
↓
, K can be chosen large enough such that ν [K]

n < 1 uniformly
for all n. Also

∑

i∈[n] d
′
i = ℓn+ o(n) for each fixed K . LetEK [·] denote the conditional expectation,

conditioned on the set of removed half-edges. Using (5.4) on G[K], we get

EK

[

|C [K](Vn)|
]

≤ C2

1− ν [K]
n

≤ C2

1− νn + C1c
−1
n
∑

i≤K θ2i
≤ C2cn

−λ+ C1
∑

i≤K θ2i
, (5.6)

for some constant C2 > 0. Using the fact that θ /∈ ℓ2↓ , this concludes the proof of (5.2). The proof of
(5.3) follows from (5.2) by using the Markov inequality and the observation that

E

[

∑

i≥1

|C [K]

(i) |2
]

= nE
[

|C [K](Vn)|
]

. (5.7)

Proof of Proposition 11. Denote the sum of squares of the component sizes excluding the compo-
nents containing vertices 1, 2, . . . ,K by SK . Note that

∑

i>K

|C(i)|2 ≤ SK ≤
∑

i≥1

|C [K]

(i) |2. (5.8)

Thus, Proposition 11 follows from Lemma 12.
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5.2 Large components are explored early

As remarked at the beginning of Section 5, an important consequence of Proposition 11 is that
after time Θ(bn), Algorithm 1 does not explore large components. The precise statement needed
to complete our proof is given below. This is an essential ingredient to conclude the convergence
of the component sizes from the convergence of the exploration process since Theorem 8 only
gives information about the components explored on the time scale of the order bn.

Lemma 13. Let C ≥T
max be the largest among those components which are started exploring after time Tbn

by Algorithm 1. Then, for any ε > 0,

lim
T→∞

lim sup
n→∞

P (|C ≥T

max| > εbn) = 0. (5.9)

Proof. Define the event A n
K,T := {all the vertices of [K] are explored before time Tbn}. Recall the

definition of C
[K]

(i) from Lemma 12. Firstly, note that

P

(

|C ≥T

max| > εbn, A
n
K,T

)

≤ P
(

∑

i≥1

∣

∣C
[K]

(i)

∣

∣

2
> ε2b2n

)

. (5.10)

Moreover, using (4.5) and the fact that djbn = Θ(n), we get

P

(

(A n
K,T )

c
)

= P (∃j ∈ [K] : j is not explored before Tbn)

≤
K
∑

j=1

P (j is not explored before Tbn)

≤
K
∑

j=1

(

1− dj
ℓn −Θ(Tbn)

)Tbn

≤
K
∑

j=1

e−CT ,

(5.11)

where C > 0 is a constant that may depend on K . Now, by (5.10),

P (|C ≥T

max| > εbn) ≤ P
(

∑

i≥1

∣

∣C
[K]

(i)

∣

∣

2
> ε2b2n

)

+P
(

(A n
K,T

)c
)

. (5.12)

The proof follows by taking lim supn→∞, limT→∞, limK→∞ respectively and using (5.3), (5.11).

5.3 Sample path properties

Recall the definition of an excursion from (1.7). Define the set of excursions of a function f by

E := {(l, r) : (l, r) is an excursion of f}. (5.13)

We also denote the set of excursion end-points by Y , i.e.,

Y := {r > 0 : (l, r) ∈ E}. (5.14)

Definition 1. A function f ∈ D+[0, T ] is said to be good if the following holds:

(a) Y does not have an isolated point and the complement of ∪(l,r)∈E(l, r) has Lebesgue measure
zero;

(b) f does not attain a local minimum at any point of Y .
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Remark 12. We claim that if a function f ∈ D+[0, T ] is good, then f is continuous on Y . To see this,
fix any δ > 0 and denote the set of excursions of length at least δ by Eδ. Let r be the excursion end-
point of an excursion in Eδ and suppose that f(r) > f(r−). Thus, there is no excursion endpoint
in (r − δ, r). Moreover, since f is right-continuous, there exists δ′ > 0 such that f(x) > f(r−) + ε
for all x ∈ (r, r + δ′), where ε = (f(r) − f(r−))/2 > 0. Thus there is no excursion endpoint on
(r − δ, r + δ′) and thus r is an isolated point contradicting Definition 1. We conclude that f is
continuous at excursion endpoints of the excursions in Eδ, and since δ > 0 is arbitrary the claim is
established.

Let Li(f) be the length of the ith largest excursion of f and define Φm : D+[0, T ] → R

m by

Φm(f) = (L1(f),L2(f), . . . ,Lm(f)). (5.15)

Note that Φm(·) is well-defined for any good function defined in Definition 2.

Lemma 14. Suppose that f ∈ D+[0, T ] is good. Then, Φm is continuous at f with respect to the subspace
topology on D+[0, T ] induced by the Skorohod J1 topology.

Proof. We extend the arguments of [36, Proposition 22]. The proof here is for m = 1 and similar
arguments hold for m > 1. Let L denote the set of continuous functions Λ : R+ → R+ that are
strictly increasing and Λ(0) = 0,Λ(T ) = T . Suppose E1 = (l, r) is the longest excursion of f on
[0, T ], thus Φ1(f) = r − l. For any ε > 0 (small), choose δ > 0 such that

f(x) > min{f(r−), f(r)}+ δ ∀x ∈ (l + ε, r − ε). (5.16)

Let || · || denote the sup-norm on [0, T ]. Take any sequence of functions fn ∈ D+[0, T ] such that
fn → f , i.e., there exists {Λn}n≥1 ⊂ L such that for all large enough n,

||fn ◦ Λn − f || < δ

6
and ||Λn − I|| < ε, (5.17)

where I is the identity function. Now, by Remark 12, f is continuous at r. This implies that
f(r−) = f(r), and using (5.16) and (5.17), for all large enough n,

fn(y) > fn ◦ Λn(r) +
2δ

3
∀y ∈ (l + 2ε, r − 2ε). (5.18)

Further, using the continuity of f at r, fn(r) → f(r) and thus, for all sufficiently large n,

|fn ◦ Λn(r)− fn(r)| ≤ |fn ◦ Λn(r)− f(r)|+ |fn(r)− f(r)| < δ

3
. (5.19)

Hence, (5.18) implies that, for all sufficiently large n,

fn(y) > fn(r) +
δ

3
∀y ∈ (l + 2ε, r − 2ε). (5.20)

Thus, for any ε > 0, we have

lim inf
n→∞

Φ1(fn) ≥ r − l − 4ε = Φ1(f)− 4ε. (5.21)

Now we turn to a suitable upper bound on lim supn→∞Φ1(fn). First, we claim that one can find
r1, . . . , rk ∈ Y such that r1 ≤ Φ1(f)+ ε, T − rk < Φ1(f)+ ε, and ri− ri−1 ≤ Φ1(f)+ ε,∀i = 2, . . . , k.
The claim is a consequence of Definition 1 (a). Now, Definition 1 (b) implies that for any small
ε > 0, there exists δ > 0 and xi ∈ (ri, ri + ε) such that f(ri) − f(xi) > δ ∀i. Again, since ri is a
continuity point of f , fn(ri) → f(ri). Thus, using (5.17), for all large enough n,

fn(ri)− fn(Λn(xi)) >
δ

2
. (5.22)
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Now, Λn(xi) ∈ (ri, ri+ε) for all sufficiently large n, since xi ∈ (ri, ri+ε). Thus, for all large enough
n, there exists a point zni ∈ (ri, ri + ε) such that

fn(ri)− fn(z
n
i ) >

δ

2
. (5.23)

Also the function fn only has positive jumps and
¯
fn(ri) →

¯
f(ri), as

¯
fn is continuous, where we

recall that
¯
f(x) = infy≤x f(y). Therefore, fn must have an excursion ending point on (ri, ri+ ε) for

all large enough n. Also, using the fact that the complement of ∪(l,r)∈E(l, r) has Lebesgue measure
zero, f has an excursion endpoint r0i ∈ (li − ε, li). The previous argument shows that fn has to
have an excursion endpoint in (r0i , r

0
i + ε) and thus in (li − ε, li + ε), for all large n. Therefore, for

any ε > 0,
lim sup
n→∞

Φ1(fn) ≤ Φ1(f) + 3ε. (5.24)

Hence the proof follows from (5.21) and (5.24).

Remark 13. For f ∈ D+[0, T ], let Ai(f) denote the area under the excursion Li(f). Let (fn)n≥1

be a sequence of functions on f ∈ D+[0,∞) such that fn → f , with respect to the Skorohod J1
topology, where f is good. Then, (5.17), (5.21) and (5.24) also implies that (A1(fn), . . . ,Am(fn)) →
(A1(f), . . . ,Am(f)), for any m ≥ 1.

Definition 2. A stochastic process X ∈ D+[0,∞) is said to be good if

(a) The sample paths are good almost surely when restricted to [0, T ], for every fixed T > 0;

(b) X does not have an infinite excursion almost surely;

(c) For any ε > 0, X has only finitely many excursions of length more than ε almost surely.

Lemma 15. The thinned Lévy process Sλ
∞ defined in (1.5) is good.

Proof. Let us make use of the properties of the process Sλ
∞ that were established in [5]. Sλ

∞ satisfies
Definition 2 (b),(c) by [5, (8)]. The fact that the excursion endpoints of Sλ

∞ do not have any isolated
points almost surely follows directly from [5, Proposition 14 (d)]. Further, [5, Proposition 14 (b)]
implies that, for any u > 0, P

(

Sλ
∞(u) = infu′≤u S

λ
∞(u′)

)

= 0. Taking the integral with respect to
the Lebesgue measure and interchanging the limit by using Fubini’s theorem, we conclude that
almost surely

∫ T

0
1{Sλ

∞(u)=infu′≤u Sλ
∞(u′)}du = 0, (5.25)

which verifies Definition 1 (a). Now, let L be the Lévy process defined as

L(t) =

∞
∑

i=1

θi (Ni(t)− (θi/µ)t) + λt, (5.26)

where (Ni(t))t≥0 is a Poisson process with rate θi which are independent for different i. Via the
natural coupling that states Ii(t) ≤ Ni(t), we can assume that Sλ

∞(t) ≤ L(t) for all t > 0. Using [8,
Theorem VII.1],

inf{t > 0 : L(t) < 0} = 0, almost surely. (5.27)

Moreover, for any stopping time T > 0, (Sλ
∞(T + t)− Sλ

∞(T ))t≥0, conditioned on the sigma-field
σ(Sλ

∞(s) : s ≤ T ), is distributed as a process defined in (1.5) for some random θ and Λ. Now we
can take T to be an excursion endpoint and an application of (5.27) verifies Definition 1 (b).
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5.4 Finite-dimensional convergence

As described in Section 4, the excursion lengths of the exploration process S̄n gives the total num-
ber of edges in the explored components. Lemma 16 below estimates the number of surplus edges
in the components explored upto time Θ(bn). This enables us to compute the scaling limits for the
component sizes using the results from the previous section and complete the proof of Theorem 1.

Lemma 16. Let Nλ
n (k) be the number of surplus edges discovered up to time k and N̄λ

n (u) = Nλ
n (⌊ubn⌋).

Then, as n → ∞,

(S̄n, N̄
λ
n)

d−→ (Sλ
∞,Nλ), (5.28)

where Nλ is defined in (1.8).

Proof. We write Nλ
n (l) =

∑l
i=2 ξi, where ξi = 1{Vi=Vi−1}. Let Ai denote the number of active

half-edges after stage i while implementing Algorithm 1. Note that

P (ξi = 1|Fi−1) =
Ai−1 − 1

ℓn − 2i− 1
=

Ai−1

ℓn
(1 +O(i/n)) +O(n−1), (5.29)

uniformly for i ≤ Tbn for any T > 0. Therefore, the instantaneous rate of change of the re-scaled
process N̄λ at time t, conditional on the past, is

bn
A⌊tbn⌋

nµ
(1 + o(1)) + o(1) =

1

µ
refl(S̄n(t)) (1 + o(1)) + o(1). (5.30)

Recall from Theorem 10 that refl(S̄n)
d−→ refl(S̄∞). Then, by the Skorohod representation theorem,

we can assume that refl(S̄n) → refl(S̄∞) almost surely on some probability space. Observe that

(
∫ t
0 refl(S̄∞(u))du)t≥0 has continuous sample paths. Therefore, the conditions of [33, Corollary 1,

Page 388] are satisfied and the proof is complete.

Theorem 17. For any m ≥ 1, as n → ∞

b−1
n

(

|C(1)|, |C(2)|, . . . , |C(m)|
) d−→ (γ1(λ), γ2(λ), . . . , γm(λ)) (5.31)

with respect to the product topology, where γi(λ) is the ith largest excursion of S̄∞ defined in (1.5).

Proof. Fix any m ≥ 1. Let C T

(i) be the ith largest component explored by Algorithm 1 up to time

Tbn. Denote by D
ord,T
(i) the ith largest value of (

∑

k∈CT
(i)

dk)i≥1. Let g : Rm 7→ R be a bounded

continuous function. By Lemma 15 the sample paths of S̄∞ are almost surely good. Thus, using
Theorem 8, Lemma 14 gives

lim
n→∞

E

[

g
(

(2bn)
−1
(

D
ord,T
(1) ,Dord,T

(2) , . . . ,Dord,T
(m)

)

)]

= E
[

g
(

γT

1 (λ), γ
T

2 (λ), . . . , γ
T

m(λ)
)]

, (5.32)

where γT

i (λ) is the ith largest excursion of S̄∞ restricted to [0, T ]. Now the support of the joint
distribution of (γT

i (λ))i≥1 is concentrated on{(x1, x2, . . . ) : x1 > x2 > . . . }. Thus, using Lemma 16,
it follows that

lim
n→∞

E

[

g
(

b−1
n

(

|C T

(1)|, |C T

(2)|, . . . , |C T

(m)|
)

)]

= E
[

g
(

γT

1 (λ), γ
T

2 (λ), . . . , γ
T

m(λ)
)]

. (5.33)

Since Sλ
∞ satisfies Definition 2 (b), (c), it follows that

lim
T→∞

E

[

g
(

γT

1 (λ), γ
T

2 (λ), . . . , γ
T

m(λ)
)]

= E
[

g
(

γ1(λ), γ2(λ), . . . , γm(λ)
)]

(5.34)

Finally, using Lemma 13, the proof of Theorem 17 is completed by (5.33) and (5.34).

Proof of Theorem 1. The proof of Theorem 1 now follows directly from Theorem 17 and Proposi-
tion 11.
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6 Convergence in the U
0
↓

topology

The goal of this section is to prove the joint convergence of the component sizes and the surplus
edges as described in Theorem 2. We start with a preparatory lemma:

Lemma 18. The convergence in (1.15) holds with respect to the ℓ2↓ ×N∞ topology.

Proof. Note that Lemma 13 already states that we do not see large components being explored
after the time Tbn for large T > 0. Thus the proof is a consequence of Lemmas 14, 16, Remark 13
and Theorem 1.

Recall the definition of the metric dU from (1.3). Using Lemma 18, it now remains to obtain a
uniform summability condition on the tail of the sum of products of the scaled component sizes
and the surplus edges. This is formally stated in Proposition 19 below. The proof is completed in
the similar spirit as the finite third-moment case [20].

Proposition 19. For any ε > 0,

lim
δ→0

lim sup
n→∞

P

(

∑

i:|C(i)|≤δbn

|C(i)| × SP(C(i)) > εbn

)

= 0. (6.1)

The following estimate will be the crucial ingredient to complete the proof of Proposition 19.
The proof of Lemma 20 is postponed to Appendix B since this uses similar ideas as [20].

Lemma 20. Assume that lim supn→∞ cn(νn−1) < 0. Let Vn denote a vertex chosen uniformly at random,
independently of the graph CMn(d) and let C (Vn) denote the component containing Vn. Let δk = δk−0.12.
Then, for δ > 0 sufficiently small,

P (SP(C (Vn)) ≥ K, |C (Vn)| ∈ (δKbn, 2δKbn)) ≤
C
√
δ

anK1.1
(6.2)

where C is a fixed constant independent of n, δ,K.

Proof of Proposition 19 using Lemma 20. First consider the case λ < 0. Fix any ε, η > 0. Note that

P

(

∑

|C(i)|≤εbn

|C(i)|SP(C(i)) > ηbn

)

≤ 1

ηbn
E

[ ∞
∑

i=1

|C(i)|SP(C(i))1{|C(i)|≤εbn}

]

=
an
η
E

[

SP(C (Vn))1{|C (Vn)|≤εbn}

]

=
an
η

∞
∑

k=1

∑

i≥log2(1/(k
0.12ε))

P

(

SP(C (Vn)) ≥ k, |C (Vn)| ∈ (2−(i+1)k−0.12bn, 2
−ik−0.12bn]

)

≤ C

η

∞
∑

k=1

1

k1.1

∑

i≥log2(1/(k
0.12ε))

2−i/2 ≤ C

η

∞
∑

k=1

√
ε

k1.04
= O(

√
ε),

(6.3)

where the last-but-two step follows from Lemma 20. The proof of Proposition 19 now follows for
λ < 0.

Now consider the case λ > 0. Fix a large integer R ≥ 1 such that λ −∑R
i=1 θ

2
i < 0. This can

be done because θ /∈ ℓ2↓ . Using (5.10), for any η > 0, it is possible to choose T > 0 such that for all
sufficiently large n,

P (all the vertices 1, . . . , R are explored within time Tbn) > 1− η. (6.4)
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Let Te denote the first time after Tbn when we finish exploring a component. By Theorem 8,
(b−1

n Te)n≥1 is a tight sequence. Let G∗
T denote the graph obtained by removing the components

explored up to time Te. Then, G∗
T is again a configuration model conditioned on its degrees. Let

ν∗n denote the value of the criticality parameter for G∗. Note that

∑

i/∈VTe

di ≥ ℓn − 2Tbn =⇒
∑

i/∈VTe

di = ℓn + o
P

(n), (6.5)

and thus conditionally on FTe and the fact that (1, . . . , R) are explored within time Tbn,

ν∗n ≤
∑

i∈[n] d
2
i −

∑R
i=1 d

2
i

∑

i/∈VTe
di

− 1 = 1 + c−1
n

(

λ−
R
∑

i=1

θ2i
)

+ o(c−1
n ). (6.6)

Therefore, combining (6.4), (6.6), we can use Lemma 20 on G∗
T since cn(ν

∗
n − 1) < 0. Thus, if C ∗

(i)

denotes the ith largest component of G∗
T , then

lim
T→∞

lim
δ→0

lim sup
n→∞

P

(

∑

i:|C ∗
(i)

|≤δbn

|C ∗
(i)| × SP(C ∗

(i)) > εbn

)

= 0. (6.7)

To conclude the proof for the whole graph CMn(d) (with λ > 0), let

KT
n := {i : |C(i)| ≤ δbn, |C(i)| is explored before the time Te}.

Note that

∑

i∈KT
n

|C(i)| · SP(C(i)) ≤
(

∑

i∈Kn

|C(i)|2
)1/2

×
(

∑

i∈Kn

SP(C(i))
2
)1/2

≤
(

∑

|C(i)|≤δbn

|C(i)|2
)1/2

× SP(Te),

(6.8)

where SP(t) is the number of surplus edges explored up to time tbn and we have used the fact
that

∑

i∈Kn
SP(C(i))

2 ≤ (
∑

i∈Kn
SP(C(i)))

2 ≤ SP(Te)
2. From Lemma 16 and Proposition 11 we can

conclude that for any T > 0,

lim
δ→0

lim sup
n→∞

P

(

∑

i∈KT
n

|C(i)| · SP(C(i)) > εbn

)

= 0. (6.9)

The proof is now complete for the case λ > 0 by combining (6.7) and (6.9).

7 Proof for simple graphs

In this section, we give a proof of Theorem 3. Let Ps(·) (respectively Es[·]) denote the probabil-
ity measure (respectively the expectation) conditionally on the graph CMn(d) being simple. For
any process X on D([0,∞),R), we define XT := (X(t))t≤T . Thus the truncated process XT is
D([0, T ],R)-valued. Now, by [26, Theorem 1.1], lim infn→∞P(CMn(d) is simple) > 0. This fact
ensures that, under the conditional measure Ps, (b−1

n |C(i)|)i≥1 is tight with respect to the ℓ2↓ topol-
ogy. Therefore, to conclude Theorem 3, it suffices to show that the exploration process S̄n, defined
in (4.3), has the same limit (in distribution) under Ps as obtained in Theorem 8 so that the finite-
dimensional limit of (b−1

n |C(i)|)i≥1 remains unchanged under Ps. Thus, it is enough to show that
for any bounded continuous function f : D([0, T ],R) 7→ R,

∣

∣

E[f(S̄T
n )]−Es[f(S̄

T
n )]
∣

∣→ 0. (7.1)
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Let ℓ′n := ℓn− 2Tbn. We first estimate the number of multiple edges or self-loops discovered in the
graph up to time Tbn. Let vl denote the exploring vertex in the breadth-first exploration given by
Algorithm 1, dvl the degree of vl and (e1, . . . , er) the ordered set of active half-edges of vl when vl
is declared to be exploring. Note that, for l ≤ Tbn, ei creates a self-loop with probability at most
(dvl − i)/ℓ′n and creates a multiple edge with probability at most (i− 1)/ℓ′n. Therefore,

E [#{self-loops or multiple edges discovered while vl is exploring}|Fl−1] ≤
2d2vl
ℓ′n

. (7.2)

Thus, for any T > 0,

E [#{self-loops or multiple edges discovered up to time Tbn]

≤ 2

ℓ′n
E

[

∑

i∈[n]

d2i In
i (Tbn)

]

=
2

ℓ′n
E

[ K
∑

i=1

d2i In
i (Tbn)

]

+
2

ℓ′n
E

[ n
∑

i=K+1

d2i In
i (Tbn)

]

,
(7.3)

where In
i (l) = 1{i∈Vl}. Now, using Assumption 1 (i), for every fixed K ≥ 1,

2

ℓ′n
E

[ K
∑

i=1

d2i In
i (Tbn)

]

≤ 2

ℓ′n

K
∑

i=1

d2i → 0, (7.4)

since 2α−1 < 0. Moreover, recall from (4.6) thatP (In
i (Tbn) = 1) ≤ Tbndi/ℓ

′
n. Therefore, for some

constant C > 0,

2

ℓ′n
E

[ n
∑

i=K+1

d2i In
i (Tbn)

]

≤ Tbn
ℓ′2n

n
∑

i=K+1

d3i ≤ C

(

a−3
n

n
∑

i=K+1

d3i

)

, (7.5)

which, by Assumption 1 (ii), tends to zero if we first take lim supn→∞ and then take limK→∞.
Consequently, for any fixed T > 0, as n → ∞,

P (at least one self-loop or multiple edge is discovered before time Tbn) → 0. (7.6)

Now,

E

[

f(S̄T
n )1{CMn(d) is simple}

]

= E
[

f(S̄T
n )1{no self-loops or multiple edges found after time Tbn}

]

+ o(1)

= E
[

f(S̄T
n )P (no self-loops or multiple edges found after time Tbn|FTbn)

]

+ o(1),

(7.7)

Define, Te = inf{l ≥ Tbn : a component is finished exploring at time l}. Using the fact that
(b−1

n Te)n≥1 is a tight sequence, the limit of the expected number of loops or multiple edges discov-
ered between time Tbn and Te is again zero. As in the proof of Proposition 19, consider the graph
G∗, obtained by removing the components obtained up to time Te. Thus, G∗ is a configuration
model, conditioned on its degree sequence. Let ν∗n be the criticality parameter. Then, we claim

that ν∗n
P−→ 1. To see this note that

∑

i/∈VTe
di = ℓn + o

P

(n). Further, note that by Assumption 1 (ii)
(4.5), for any t > 0,

lim sup
n→∞

E

[

a−2
n

∑

i∈[n]

d2i Ii(tbn)
]

≤ lim sup
n→∞

a−2
n tbn

∑

i∈[n] d
3
i

ℓn − 2tbn
< ∞, (7.8)

which implies that
∑

i/∈VTe
d2i =

∑

i∈[n] d
2
i + o

P

(n) and thus the claim is proved. Since the degree
distribution has finite second moment, using [41, Theorem 7.11] we get

P

(

G∗ is simple
∣

∣

∣
FTe

)

P−→ e−3/4. (7.9)

Now using (7.7), (7.9) and the dominated convergence theorem, we conclude that

E

[

f(S̄T
n )1{CMn(d) is simple}

]

= E
[

f(S̄T
n )
]

P (CMn(d) is simple) + o(1). (7.10)

Therefore, (7.1) follows and the proof of Theorem 3 is complete.
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8 Scaling limits for component functionals

Suppose that vertex i has an associated weight wi. The total weight of the component C(i) is
denoted by Wi =

∑

k∈C(i)
wk. The goal of this section is to derive the scaling limits for (Wi)i≥1

when the weight sequence satisfies some regularity conditions given below:

Assumption 3. The weight sequences w = (wi)i∈[n] satisfies

(i)
∑

i∈[n]wi = O(n), and limn→∞
1
ℓn

∑

i∈[n] diwi = µw.

(ii) max{∑i∈[n] diw
2
i ,
∑

i∈[n] d
2
iwi} = O(a3n).

Theorem 21. Consider CMn(d) satisfying Assumption 1 and a weight sequence w satisfying Assump-
tion 3. Denote Zw

n = ord(b−1
n Wi,SP(C(i)))i≥1 and Zw := ord(µwγi(λ), N(γi))i≥1, where γi(λ), and

N(γi) are defined in Theorem 2. As n → ∞,

Zw
n

d−→ Zw, (8.1)

with respect to the U0
↓

topology.

The proof Theorem 21 can be decomposed in two main steps: the first one is to obtain the finite-
dimensional limits of Zw

n and then prove the U0
↓ convergence. The finite-dimensional limit is a con-

sequence of the fact that the total weight of the clusters is approximately equal to the cluster sizes.
The argument for the tightness with respect to the U

0
↓ topology is similar to Propositions 11 and 19

and therefore we only provide a sketch with pointers to all the necessary ingredients. Recall that
In
i (l) = 1{i∈Vl}, where Vl is the set of discovered vertices upto time l by Algorithm 1.

Lemma 22. Under Assumptions 1, 3, for any T > 0,

sup
u≤T

∣

∣

∣

∣

∑

i∈[n]

wiIn
i (ubn)−

∑

i∈[n] diwi

ℓn
ubn

∣

∣

∣

∣

= O
P

(an). (8.2)

Consequently, for each fixed i ≥ 1,
Wi = µw

∣

∣C(i)

∣

∣+ o
P

(bn). (8.3)

Proof. Fix any T > 0. Define ,

Wn(l) =
∑

i∈[n]

wiIn
i (l)−

∑

i∈[n] diwi

ℓn
l. (8.4)

The goal is to use the supermartingale inequality (4.16) in the same spirit as in the proof of (4.17).
Firstly, observe from (4.6) that

E[Wn(l + 1)−Wn(l)|Fl] = E

[

∑

i∈[n]

wi (In
i (l + 1)− In

i (l))
∣

∣

∣
Fl

]

−
∑

i∈[n] diwi

ℓn

=
∑

i∈[n]

wiE
[

In
i (l + 1)

∣

∣Fl

]

1{In
i (l)=0} −

∑

i∈[n] diwi

ℓn
≥ 0,

(8.5)
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uniformly over l ≤ Tbn and therefore, (Wn(l))
Tbn
l=1 is a sub-martingale. Let ℓ′n = ℓn − 2Tbn − 1.

Using (4.8), we compute

∣

∣

E[Wn(l)]
∣

∣ =
∑

i∈[n]

wi

(

P (In
i (l) = 1)− di

ℓn

)

≤
∑

i∈[n]

wi

(

1−
(

1− di
ℓ′n

)l

− di
ℓ′n

l

)

+ l
∑

i∈[n]

wi

(

di
ℓ′n

− di
ℓn

)

≤ 2(2Tbn)
2

∑

i∈[n] d
2
iwi

ℓ′2n
= O(b2na

3
n/n

2) = O(an),

(8.6)

uniformly over l ≤ Tbn. Also, using (4.12), (4.13), and Assumption 3 (ii),

Var(Wn(l)) ≤
∑

i∈[n]

w2
i var(In

i (l)) ≤ Tbn

∑

i∈[n] diw
2
i

ℓ′n
= O(a2n), (8.7)

uniformly over l ≤ Tbn. Using (4.16), (8.6) and (8.7), we conclude the proof of (8.2). The proof of
(8.3) follows using Lemma 13 and simply observing that an = o(bn).

Proof of Theorem 21. Lemma 22 ensures the finite-dimensional convergence in (8.1). Thus, the
proof is complete if we can show that, for any ε > 0

lim
K→∞

lim sup
n→∞

P

(

∑

i>K

W
2
i > εb2n

)

= 0, (8.8a)

and

lim
δ→0

lim sup
n→∞

P

(

∑

|C(i)|≤δbn

Wi × SP(C(i)) > εbn

)

= 0. (8.8b)

The arguments for proving (8.8a), and (8.8b) are similar to Propositions 11 and 19 and thus we only
sketch a brief outline. Denote ℓwn =

∑

i∈[n]wi. The main ingredient to the proof of Proposition 11
is Lemma 12, and the proof Lemma 12 uses the fact that the expected sum of squares of the cluster
sizes can be written in terms of susceptibility functions in (5.7) and then we made use of the
estimate for the susceptibility function in (5.4). Let V ′

n denote a vertex chosen according to the
distribution (wi/ℓ

w
n )i∈[n], independently of the graph. Notice that for any CMn(d),

E

[

∑

i≥1

W
2
i

]

= ℓwnE
[

W (V ′
n)
]

. (8.9)

Now, [27, Lemma 5.2] can be extended using an identical argument to compute the weight-based
susceptibility function in the right hand side of (8.9). See Lemma 31 given in Appendix A. The
proof of (8.8b) can also be completed using an identical argument as Proposition 19 by observing
that

P

(

∑

|C(i)|≤δbn

Wi × SP(C(i)) > εbn

)

≤ ℓwn
εbn
E

[

SP(C (V ′
n))1{|C (V ′

n)|≤δbn}

]

. (8.10)

Moreover, an analog of Lemma 20 also holds for V ′
n (see Appendix B), and the proof of (8.8b) can

now be completed in an identical manner as the proof of Proposition 19.

While studying percolation in the next section, we will need an estimate for the proportion
of degree-one vertices in the large components. In fact, an application of Theorem 21, yields the
following result about the degree composition of the largest clusters:
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Corollary 23. Consider CMn(d) satisfying Assumption 1. Let vk(G) denote the number of vertices of
degree k in the graph G. Then, for any fixed i ≥ 1,

vk
(

C(i)

)

=
krk
µ

∣

∣C(i)

∣

∣+ o
P

(bn), (8.11)

where rk = P(D = k). Denote Zk
n = ord(b−1

n vk(C(i)),SP(C(i)))i≥1 and Zk := ord(krkµ γi(λ), N(γi))i≥1,
where γi(λ), and N(γi) are defined in Theorem 2. As n → ∞,

Zk
n

d−→ Zk, (8.12)

with respect to the U0
↓

topology.

Proof. The proof follows directly from Theorem 21 by putting wi = 1{di=k}. The fact that this
weight sequence satisfies Assumption 3 is a consequence of Assumption 1.

9 Percolation

In this section, we study critical percolation on the configuration model for fixed λ ∈ R and
complete the proof of Theorem 4. As discussed earlier, CMn(d, p) is obtained by first constructing
CMn(d) and then deleting each edge with probability 1 − p, independently of each other, and
the graph CMn(d). An interesting property of the configuration model is that CMn(d, p) is also
distributed as a configuration model conditional on the degrees [22]. The rough idea here is to
show that the degree distribution of CMn(d, pn(λ)) satisfies Assumption 1, where pn(λ) is given
by Assumption 2. This allows us to invoke Theorem 2 and complete the proof of Theorem 4.
Recall from Assumption 2 that ν = limn→∞ νn > 1, and pn = pn(λ) = ν−1

n (1 + λc−1
n ). We start by

describing an algorithm due to Janson [25] that is easier to work with.

Algorithm 2 (Construction of CMn(d, pn)). Initially, vertex i has di half-edges incident to it. For
each half-edge e, let ve be the vertex to which e is incident.

(S1) With probability 1−√
pn, one detaches e from ve and associates e to a new vertex v′ of degree-

one. Color the new vertex red. This is done independently for every existing half-edge
and we call this whole process explosion. Let n+ be the number of red vertices created by
explosion and ñ = n+ n+. Denote the degree sequence obtained from the above procedure
by d̃ = (d̃i)i∈[ñ], i.e., d̃i ∼ Bin(di,

√
pn) for i ∈ [n] and d̃i = 1 for i ∈ [ñ] \ [n];

(S2) Construct CMñ(d̃) independently of (S1);

(S3) Delete all the red vertices and the edges attached to them.

It was also shown in [25] that the obtained multigraph has the same distribution as CMn(d, p)
if we replace (S3) by

(S3′) Instead of deleting red vertices, choose n+ degree-one vertices uniformly at random without
replacement, independently of (S1), and (S2) and delete them.

Remark 14. Notice that Algorithm 2 (S1) induces a probability measure Pn
p on N∞. Denote their

product measure by Pp. In words, for different n, (S1) is carried out independently. All the almost
sure statements about the degrees in this section will be with respect to the probability measure
Pp.
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Let us first show that d̃ also satisfies Assumption 1 (ii). Note that the total number of half-edges
remain unchanged during the explosion in Algorithm 2 (S1) and therefore,

∑

i∈[ñ] d̃i =
∑

i∈[n] di
and by Assumption 2 (i),

1

n

∑

i∈[ñ]

d̃i → µ Pp a.s. (9.1)

This verifies the first moment condition in Assumption 1 (ii) for the percolated degree sequence
Pp a.s. Let Iij := the indicator of the jth half-edge corresponding to vertex i being kept after the
explosion. Then Iij ∼ Ber(

√
pn) independently for i ∈ [n], j ∈ [di]. Let

I := (Iij)j∈[di],i∈[n] and f1(I) :=
∑

i∈[n]

d̃i(d̃i − 1). (9.2)

Note that f1(I) =
∑

i∈[ñ] d̃i(d̃i − 1) since the degree-one vertices do not contribute to the sum. One
can check that by changing the status of one half-edge corresponding to vertex k we can change
f1 by at most 2(dk + 1). Therefore an application of [29, Corollary 2.27] yields

Pp

(∣

∣

∣

∑

i∈[n]

d̃i(d̃i − 1)− pn
∑

i∈[n]

di(di − 1)
∣

∣

∣
> t
)

≤ 2 exp

(

− t2

2
∑

i∈[n] di(di + 1)2

)

. (9.3)

Now by Assumption 2 (i),
∑

i∈[n] d
3
i = O(a3n). If we set t = n1−εc−1

n , then t2/(
∑

i∈[n] d
3
i ) is of the

order nα−2ε/L(n). Thus, choosing ε < α/2, using (9.3) and the Borel-Cantelli lemma we conclude
that

∑

i∈[n]

d̃i(d̃i − 1) = pn
∑

i∈[n]

di(di − 1) + o(nc−1
n ) Pp a.s. (9.4)

Thus, using Assumption 2, the second moment condition in Assumption 1 (ii) is verified for the
percolated degree sequence Pp a.s. Let d̃(i) denote the ith largest value of (d̃i)i∈[ñ]. The third-

moment condition in Assumption 1 (ii) is obtained by noting that d̃i ≤ di for all i ∈ [n] and

lim
K→∞

lim sup
n→∞

a−3
n

ñ
∑

i=K+1

d̃3(i) ≤ lim
K→∞

lim sup
n→∞

a−3
n

ñ
∑

i=K+1

d̃3i

≤ lim
K→∞

lim sup
n→∞

a−3
n

(

n
∑

i=K+1

d̃3i + n+

)

≤ lim
K→∞

lim sup
n→∞

a−3
n

(

n
∑

i=K+1

d3i + n+

)

→ 0 Pp a.s.,

(9.5)

where we have used Assumption 2 (i) and the fact that a−3
n n+ → 0, Pp a.s., which follows by

observing that n+ ∼ Bin(ℓn, 1−√
pn). To see that d̃ satisfies Assumption 1 (iii) note that by (9.4),

∑

i∈[ñ] d̃i(d̃i − 1)
∑

i∈[ñ] d̃i
= pn

∑

i∈[n] di(di − 1)
∑

i∈[n] di
+ o(c−1

n ) = 1 + λc−1
n + o(c−1

n ) Pp a.s., (9.6)

where the last step follows from Assumption 2 (ii). Assumption 1 (iv) is trivially satisfied by d̃.
Finally, in order to verify Assumption 1 (i), it suffices to show that

d̃(i)

an
→ θi

√
p, Pp a.s., (9.7)

where p = 1/ν. Recall that d̃i ∼ Bin(di,
√
pn). A standard concentration inequality for the binomial

distribution [29, (2.9)] yields that, for any 0 < ε ≤ 3/2,

P(|d̃i − di
√
pn| > εdi

√
pn) ≤ 2exp(−ε2di

√
pn/3), (9.8)
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and using the Borel-Cantelli lemma it follows that Pp almost surely, d̃i = di
√
pn(1 + o(1)) for all

fixed i. Moreover, an application of (9.5) yields that

lim
K→∞

lim sup
n→∞

a−3
n max

i>K
d̃3i = 0. (9.9)

Now, since θ is an ordered vector, the proof of (9.7) follows.
To summarize, the above discussion in (9.1), (9.4), (9.5), and (9.7) yields that the degree se-

quence d̃ satisfies all the conditions in Assumption 1. Therefore, Theorem 2 can be applied to
CMñ(d̃). Denote by C̃(i) the ith largest component of CMñ(d̃). Let Z̃n = ord(b−1

n |C̃(i)|,SP(C̃(i))i≥1

and Z̃ := ord(γ̃i(λ), N(γ̃i))i≥1, where γi(λ), and N(γi) are defined in Theorem 4. Now, Theorem 2
implies

Z̃n
d−→ Z̃, (9.10)

with respect to the U
0
↓

topology.

Since the percolated degree sequence satisfies Assumption 1 Pp a.s., (8.11) holds for C̃(i) also.
Let vd1(C̃(i)) be the number of degree-one vertices of C̃(i) which are deleted while creating the
graph CMn(d, pn) from CMñ(d̃). Since the vertices are to be chosen uniformly from all degree-one
vertices as described in (S3′),

vd1(C̃(i)) =
n+

ñ1
v1(C̃(i)) + o

P

(bn) =
n+

ñ1

ñ1

ℓn

∣

∣C̃(i)

∣

∣+ o
P

(bn) =
n+

ℓn

∣

∣C̃(i)

∣

∣+ o
P

(bn)

=
µ
(

1−√
p
n

)

+ o(1)

µ+ o(1)

∣

∣C̃(i)

∣

∣+ o
P

(bn) =
(

1−√
pn
)
∣

∣C̃(i)

∣

∣+ o
P

(bn),

(9.11)

where the last-but-one equality follows by observing that n+ ∼ Bin(ℓn, 1−
√
pn). Now, notice that

by removing degree-one vertices, the components are not broken up, so the vector of component
sizes for percolation can be obtained by just subtracting the number of red vertices from the com-
ponent sizes of CMñ(d̃). Moreover, the removal of degree-one vertices does not effect the count of
surplus edges. Therefore, the proof of Theorem 4 is complete by using Corollary 23.

10 Convergence to AMC

Let us give an overview of the organization of this section: In Section 10.1, we discuss an alterna-
tive dynamic construction that approximates the percolated graph process, coupled in a natural
way. This construction enables us to compare the coupled percolated graphs with a dynamic con-
struction. Then, we describe a modified system that evolves as an exact augmented multiplicative
coalescent and the rest of the section is devoted to comparing the exact augmented multiplicative
coalescent and the corresponding quantities for the graphs generated by the dynamic construc-
tion. The ideas are similar to [20, Section 8], and we only give the overall idea and the necessary
details specific to this paper.

10.1 The dynamic construction and the coupling

Let us consider graphs generated dynamically as follows:

Algorithm 3. Let s1(t) be the total number of unpaired or open half-edges at time t, and Ξn be an
inhomogeneous Poisson process with rate s1(t) at time t.

(S0) Initially, s1(0) = ℓn, and Gn(0) is the empty graph on vertex set [n].

(S1) At each event time of Ξn, choose two open half-edges uniformly at random and pair them.
The graph Gn(t) is obtained by adding this edge to Gn(t−). Decrease s1(t) by two. Continue
until s1(t) becomes zero.
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Notice that Gn(∞) is distributed as CMn(d) since an open half-edge is paired with another
uniformly chosen open half-edge. The next proposition ensures that the graph process generated
by Algorithm 3 sandwich the graph process (CMn(d, pn(λ)))λ∈R. This result was proved in [20,
Proposition 28]. The proof is identical under Assumption 2 and therefore is omitted here. Define,

tn(λ) =
1

2
log

(

νn
νn − 1

)

+
1

2(νn − 1)

λ

cn
. (10.1)

Proposition 24. Fix −∞ < λ⋆ < λ⋆ < ∞. There exists a coupling such that with high probability

Gn(tn(λ)− εn) ⊂ CMn(d, pn(λ)) ⊂ Gn(tn(λ) + εn), ∀λ ∈ [λ⋆, λ
⋆] (10.2a)

and
CMn(d, pn(λ)− εn) ⊂ Gn(tn(λ)) ⊂ CMn(d, pn(λ) + εn), ∀λ ∈ [λ⋆, λ

⋆] (10.2b)

where εn = cn−γ0 , for some η < γ0 < 1/2 and the constant c does not depend on λ.

From here onward, we augment λ to a predefined notation to emphasize the dependence on λ.
We write C(i)(λ) for the ith largest component of Gn(tn(λ)) and define

Oi(λ) = # open half-edges in C(i)(λ). (10.3)

Think of Oi(λ) as the mass of the component C(i)(λ). Let Zo
n(λ) denote the vector of the number

of open half-edges (re-scaled by bn) and surplus edges of Gn(tn(λ)), ordered as an element of
U
0
↓
. For a process X, we will write X[λ⋆, λ

⋆] to denote the restricted process (X(λ))λ∈[λ⋆ ,λ⋆]. Let
ℓon(λ) =

∑

i≥1 Oi(λ). Note that

ℓon(λ) =
nµ(ν − 1)

ν
(1 + o

P

(1)). (10.4)

(10.4) is a consequence of [9, Lemma 8.2] since the proof only uses the facts that |ℓn/n−µ| = o(n−γ)
for all γ < 1/2, and

∑

i∈[n] di(di− 1)/ℓn → ν. Now, observe that, during the evolution of the graph

process generated by Algorithm 3, between time [tn(λ), tn(λ + dλ)], the ith and jth (i > j) largest
components, merge at rate

2Oi(λ)Oj(λ)×
1

ℓon(λ)− 1
× 1

2(νn − 1)cn
≈ ν

µ(ν − 1)2
(

b−1
n Oi(λ)

)(

b−1
n Oj(λ)

)

, (10.5)

and creates a component with open half-edges Oi(λ) +Oj(λ)− 2 and surplus edges SP(C(i)(λ)) +
SP(C(j)(λ)). Also, a surplus edge is created in C(i)(λ) at rate

Oi(λ)(Oi(λ)− 1)× 1

ℓon(λ)− 1
× 1

2(νn − 1)cn
≈ ν

2µ(ν − 1)2
(

b−1
n Oi(λ)

)2
, (10.6)

and C(i)(λ) becomes a component with surplus edges SP(C(i)(λ))+1 and open half-edges Oi(λ)−2.
Thus Zo

n[λ⋆, λ
⋆] does not evolve as an AMC process but it is close. The fact that two half-edges are

killed after pairing, makes the masses (the number of open half-edges) of the components and the
system to deplete. If there were no such depletion of mass, then the vector of open half-edges,
along with the surplus edges, would in fact merge as an augmented multiplicative coalescent. Let
us define the modified process [20, Algorithm 7] that in fact evolves as augmented multiplicative
coalescent:

Algorithm 4. Initialize Ḡn(tn(λ⋆)) = Gn(tn(λ⋆)). Let O denote the set of open half-edges in the
graph Gn(tn(λ⋆)), s̄1 = |O| and Ξ̄n denote a Poisson process with rate s̄1. At each event time of the
Poisson process Ξ̄n, select two half-edges from O and create an edge between the corresponding
vertices. However, the selected half-edges are kept alive, so that they can be selected again.
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Remark 15. The only difference between Algorithms 3 and 4, is that the paired half-edges are not
discarded and thus more edges are created by Algorithm 4. Thus, there is a natural coupling
between the graphs generated by Algorithms 3 and 4 such that Gn(tn(λ)) ⊂ Ḡn(tn(λ)) for all
λ ∈ [λ⋆, λ

⋆], with probability one. In the subsequent part of this section, we will always work
under this coupling. The extra edges that are created by Algorithm 4 will be called bad edges.

In the subsequent part of this paper, we will augment a predefined notation with a bar to
denote the corresponding quantity for Ḡn(tn(λ)). Denote βn = (s̄1(νn − 1)cn)

1/2 and Z̄
o,scl
n (λ)

denote the vector ord(β−1
n Ōi(λ),SP(C̄(i)(λ)))i≥1. Using an argument identical to (10.5), and (10.6),

it follows that Z̄o,scl
n [λ⋆, λ

⋆] evolves as a standard augmented multiplicative coalescent. Note that
there exists a constant c > 0 such that βn = cbn(1 + o

P

(1)), and therefore the scaling limit of any
finite-dimensional distributions of Z̄o

n[λ⋆, λ
⋆] can be obtained from Z̄

o,scl
n [λ⋆, λ

⋆].

10.1.1 Augmented multiplicative coalescent with mass and weight

The near Feller property of the augmented multiplicative coalescent [10, Theorem 3.1] ensures
the joint convergence of the number of open half-edges in each component together with the
surplus edges of Ḡn(tn(λ)). To deduce the scaling limits involving the components sizes let us
consider a dynamic process that is further augmented by weight. Initially, the system consists of
particles (possibly infinitely many) where particle i has mass xi, weight zi and an attribute yi. Let
(Xi(t), Zi(t), Yi(t))i≥1 denote masses, weights, and attribute values at time t. The dynamics of the
system is described as follows: At time t,

⊲ particles i and j coalesce at rate Xi(t)Xj(t) and create a particle with mass Xi(t) + Xj(t),
weight Zi(t) + Zj(t) and attribute Yi(t) + Yj(t).

⊲ for each i, attribute Yi(t) increases by 1 at rate Y 2
i (t)/2.

For (x,y), (z,y) ∈ U
0
↓
, we write (x,z,y) for ((x,y), (z,y)) ∈ (U0

↓
)2. Denote by MC2(x,z, t)

and AMC2(x,z,y, t) respectively the vector (Xi(t), Zi(t))i≥1 and (Xi(t), Zi(t), Yi(t))i≥1 with ini-
tial mass x, weight z and attribute value y. We will need the following theorem:

Theorem 25. Suppose that (xn,zn,yn) → (x,x,y) in (U0
↓)

2 and
∑

i xi = ∞. Then, for any t ≥ 0

AMC2(xn,zn,yn)
d−→ AMC2(x,x,y). (10.7)

Proof. By [20, Theorem 29],

MC2(xn,zn, t)
d−→ MC2(x,x, t). (10.8)

For xn = (xni )i≥1, and zn = (zni )i≥1 let w+
n = sort(xni ∨ zni ), w

−
n = sort(xni ∧ zni ), where sort denotes

the decreasing ordering of the elements. Notice that w+
n → x, and w−

n → x in ℓ2
↓
. Let us denote by

AMC1(x,y, t) the usual augmented multiplicative coalescent process at time t with starting state
(x,y). Now, since

∑

i xi = ∞, we can use the near Feller property [10, Theorem 3.1] to conclude

that AMC1(xn,yn, t)
d−→ AMC1(x,y, t). Moreover, AMC2(w

+
n ,w

+
n , yn, t) and AMC2(w

−
n ,w

−
n , yn, t)

converges to the same limit. For (x,z,y) ∈ (U0
↓)

2, if Spr(x,z,y) =
∑

i ziyi, then under the sub-
graph coupling

Spr(AMC2(w
+
n ,w

+
n , yn, t)) − Spr(AMC2(w

−
n ,w

−
n , yn, t))

P−→ 0, (10.9)

which implies that

(AMC1(xn,yn, t), Spr(AMC2(xn,zn, yn, t)))
d−→ (AMC1(x,y, t), Spr(AMC2(x,x, y, t))). (10.10)

Now, using (10.8), (10.10), an application of [10, Lemma 4.11] concludes the proof.
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10.2 Asymptotics for the open half-edges

The following lemma shows that the number of open half-edges in Gn(tn(λ)) is approximately pro-
portional to the component sizes. This will enable us to apply Theorem 25 for deducing the scaling
limits of the required quantities for the graph Ḡn(tn(λ)).

Lemma 26. There exists a constant κ > 0 such that, for any i ≥ 1,

Oi(λ) = κ|C(i)(λ)|+ o
P

(bn). (10.11)

Further, (Zo
n(λ))n≥1 is tight in U

0
↓
.

Proof. Let (dλk)k∈[n] denote the degree sequence of CMn(d, pn(λ)) and define

Op
i (λ) =

∑

k∈C
p

(i)
(λ)

(dk − dλk) =
∑

k∈C
p

(i)
(λ)

dk − 2(|C p
(i)(λ)| − 1 + SP(C p

(i)(λ))). (10.12)

Using (10.2b) and the fact that the number of surplus edges in the large components are tight, it is
enough to prove the lemma by replacing Oi(λ) by Op

i (λ) and C ′
(i)(λ) by C

p
(i)(λ). For a component

C̃ of CMñ(d̃), the corresponding component in the percolated graph is obtained by cleaning up
R(C̃ ) red degree-one vertices. Thus, the degree deficiency of that percolated cluster is given by

∑

k∈C̃∩[n]

dk −
∑

k∈C̃∩[n]

d̃k + 2R(C̃ ). (10.13)

Now, all the three terms appearing in the right hand side of (10.13) can be estimated using The-
orem 21, where we recall from Section 9 that d̃ satisfies Assumption 1. The proof is now com-
plete.

For an element z = (xi, yi)i≥1 ∈ U
0
↓ and a constant c > 0, denote cz = (cxi, yi)i≥1. Thus,

Lemma 26 states that, for each fixed λ, Zo
n(λ) is close to κZn(λ). The following lemma states that

formally:

Corollary 27. For each fixed λ, as n → ∞, dU(Z
o
n(λ), κZn(λ))

P−→ 0.

Proof. Let πk, Tk : U0
↓
7→ U

0
↓

be the functions such that for z = ((xi, yi))i≥1, πk(z) consists of only
(xi, yi) for i ≤ k and zeroes in other coordinates, and Tk(z) consists only of (xi, yi) for i > k. Thus,

dU (Zo
n(λ), κZn(λ)) ≤ dU (πK(Zo

n(λ)), πK(κZn(λ))) + ‖TK(Zo
n(λ))‖U + ‖TK(κZn(λ))‖U. (10.14)

Now, for each fixed K ≥ 1 the first term in the right hand side of (10.14) converges in probability
to zero, by (10.11). Also, using the tightness of both (Zn(λ))n≥1 and (Zo

n(λ))n≥1 with respect to the
U
0
↓ topology, it follows that for any ε > 0,

lim
K→∞

lim
n→∞

P (‖TK(Zn(λ))‖U > ε) = lim
K→∞

lim
n→∞

P (‖TK(Zo
n(λ))‖U > ε) = 0, (10.15)

and the proof is now complete.

10.3 Comparison between the dynamic construction and the modified process

Suppose that, at time λ⋆, we have colored the components (C(i)(λ⋆))i∈[M ] blue, say, and then let
Algorithms 3 and 4 evolve. Additionally, we color all the components blue that gets connected
to one of the blue components during the evolution. Let CM (λ), C̄M (λ) denote the union of all
such blue components in Gn(tn(λ)) and Ḡn(tn(λ)). In this section, we show that (i) no bad edges
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are created that are surplus edge of some component, (ii) |C̄M (λ)| − |CM (λ)| is asymptotically
negligible, (iii) no bad edge is created between the large components, and (iv) with sufficiently
large probability, the largest components of Ḡn(tn(λ)) are contained within C̄M (λ), where M is
large. These facts together ensure that the scaling limit for the largest connected components
and surplus edges of Gn(tn(λ)) and Ḡn(tn(λ)) are identical. Consider the coupled evolution of
Algorithms 3, and 4. Thus, in the modified setup, more components get merged due to the creation
of bad edges. Denote BM (λ) = |C̄M (λ)| − |CM (λ)| and BSP(λ) the number of bad-edges that are
created as surplus edge of some component.

Lemma 28. For any λ ≥ λ⋆, BSP(λ)
P−→ 0 and for all M ≥ 1, b−1

n BM (λ)
P−→ 0.

Proof. Before going into the proof, recall Algorithm 4, and all the definitions. A bad edge is created
if, during some event time of Ξ̄n, a half-edge from O is selected that was already selected before.
Now, for some given pair (e0, f0), e0 6= f0, the number of ways in which one can choose a pair
(e, f), e 6= f such that e = e0, or f = f0, is given by 2s̄1−3. Thus, the bad edges are created between
times [tn(λ), tn(λ + dλ)] at rate (2(νn − 1)s̄1cn)

2/(2s̄1 − 3). Denote IM = IM (λ) = {i : C̄(i)(λ) ⊂
C̄M (λ)}. The created bad edge adds an additional mass of |C̄(i)(λ)| to C̄M (λ) if one end is from
C̄M (λ) (for which there are

∑

i∈IM
Oi(λ) possibilities) and the other half-edge is in C̄(i)(λ). The

created bad edge is a surplus edge if both of its endpoints come from the same component. For any
semi-martingale (Yt)t≥0, we write D(Y )(t) and QV(Y )(t), respectively to denote the compensator
and the quadratic variation, i.e.,

Yt −D(Y )(t), and (Yt −D(Y )(t))2 −QV(Y )(t) (10.16)

are both martingales. Now, D(BSP(λ)) ≥ 0, D(b−1
n B1(λ)) ≥ 0, and for some constants C1, C2 > 0

D(BSP)(λ) =

∫ λ

λ⋆

2s̄1 − 3

4(νn − 1)2s̄21c
2
n

∑

i≥1

(Ōi(λ
′)

2

)

dλ′ ≤ C1n

b2n

∫ λ

λ⋆

‖Ōn(λ
′)‖22dλ′ + o

P

(1)

≤ C1n

b2n
(λ⋆ − λ⋆)‖Ōn(λ

⋆)‖22 + o
P

(1),

(10.17a)

D(b−1
n B1)(λ) ≤ b−1

n

∫ λ

λ⋆

2s̄1 − 3

4(νn − 1)2s̄21c
2
n

∑

i∈IM (λ)

Ōi(λ
′)
∑

i≥1

Ōi(λ
′)|C̄(i)(λ

′)|dλ′

≤ C2n

b2n

∫ λ

λ⋆

(

b−1
n

M
∑

i=1

Ō(i)(λ
′)

)

‖Ōn(λ
′)‖2‖C̄n(λ

′)‖2dλ
′ + o

P

(1)

≤ C2n

b2n
(λ⋆ − λ⋆)

(

b−1
n

M
∑

i=1

Ō(i)(λ
⋆)

)

‖Ōn(λ
⋆)‖2‖C̄n(λ

⋆)‖2 + o
P

(1),

(10.17b)

where Ō(i) denotes the ith largest value of (Ōi)i≥1. Further,

QV(BSP)(λ) ≤
C1n

b2n
(λ⋆ − λ⋆)‖Ōn(λ

⋆)‖22 + o
P

(1), (10.18a)

and

QV(b−1
n B1)(λ) ≤ b−2

n

∫ λ

λ⋆

2s̄1 − 3

4(νn − 1)2s̄21c
2
n

∑

i∈IM (λ)

Ōi(λ
′)
∑

i≥1

Ōi(λ
′)|C̄(i)(λ

′)|2dλ′

≤ C2n

b2n

∫ λ

λ⋆

(

b−1
n

M
∑

i=1

Ō(i)(λ
′)

)

(

b−1
n |C̄(1)(λ

′)|
)

‖Ōn(λ
′)‖2‖C̄n(λ

′)‖2dλ
′ + o

P

(1)

≤ C2n

b2n
(λ⋆ − λ⋆)

(

b−1
n

M
∑

i=1

Ō(i)(λ
⋆)

)

(

b−1
n |C̄(1)(λ

⋆)|
)

‖Ōn(λ
⋆)‖2‖C̄n(λ

⋆)‖2 + o
P

(1).

(10.18b)
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Recall that using Lemma 26, an application of Theorem 25 yields that (Z̄n(λ))n≥1 is tight in U
0
↓ .

The proof now follows using the fact that n/b2n → 0.

Suppose that a bad edge is being created at time λ′. Now, this bad edge may be created by
choosing the open half-edges from C(i)(λ

′) and C(j)(λ
′) for 1 ≤ i, j ≤ M . For fixed M , let FM (λ) de-

note the number of such bad-edges created upto time λ. Using an argument identical to Lemma 28
one can show the following:

Lemma 29. For any λ ≥ λ⋆ and M ≥ 1, FM (λ)
P−→ 0.

The following is the last ingredient that will be needed in the proof:

Lemma 30. Fix any λ ∈ [λ⋆, λ
⋆]. For any ε > 0, and K ≥ 1, there exists M = M(ε,K) such that

lim sup
n→∞

P

(

C̄(1)(λ), . . . , C̄(K)(λ) are not contained in C̄M(λ)
)

≤ ε. (10.19)

Proof. Let IM := {i : C̄(i)(λ) ⊂ C̄M (λ)}. It is enough to show that, for any ε > 0, there exists M
such that

lim sup
n→∞

P

(

∑

i/∈IM

|C̄(i)(λ)|2 > εb2n

)

≤ ε. (10.20)

For any M ≥ 1, consider the merging dynamics of Algorithm 4, where at time λ⋆, all the com-
ponents (C̄(i)(λ⋆))i∈[M ] are removed. We refer to the above evolution as M -truncated system.
We augment a previously defined notation with a superscript > M to denote the corresponding
quantity for the M -truncated system. We assume that the M -truncated system and the modified
system are coupled in a natural way that at each event time of the modified truncated system, an
edge is created in the M -truncated system if both the half-edges are selected from the outside of
∪M
i=1C̄(i)(λ⋆). Under this coupling,

∑

i/∈IM

|C̄(i)(λ)|2 ≤
∑

i≥1

|C̄ >M

(i) (λ)|2. (10.21)

Now, using Lemma 26, an application of Theorem 25 yields that (Z̄n(λ))n≥1 is tight in U
0
↓
. Thus

the proof now follows.

10.4 Proof of Theorem 5

We now have all the ingredients to complete the proof of Theorem 5. For simplicity in writing, we
only give a proof for the case k = 2 since the proof for general k is identical. Take λ⋆ = λ1. Using
Lemma 26, Theorem 25 implies

(Z̄n(λ1), Z̄n(λ2))
d−→ (Z̄(λ1), Z̄(λ1, λ2)), (10.22)

for some random elements Z(λ1),Z(λ1, λ2) of U0
↓ . Now, Z̄n(λ1) = Zn(λ1). Moreover, using Lem-

mas 28, 29, and 30 and the facts that both (Z̄n(λ2))n≥1 and (Zn(λ2))n≥1 converge, it follows that
(see the argument in Corollary 27)

dU(Z̄n(λ2),Zn(λ2))
P−→ 0. (10.23)

Thus, (Zn(λ1),Zn(λ2)) converge jointly. Moreover, the limiting object Z(λ1, λ2) appearing in
(10.22) does not depend on λ1 by Theorem 2. Now, using induction, there exists a version of
the augmented multiplicative coalescent AMC = (AMC(λ))λ∈R such that for any k ≥ 1

(Zn(λ1), . . . ,Zn(λk))
d−→ (AMC(λ1), . . . ,AMC(λk)). (10.24)

Finally, the proof of Theorem 2 is completed by using Proposition 24.
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A Path counting

In this section, we derive a generalization of [27, Lemma 5.1] by extending their argument. Let V ′
n

denote the vertex chosen according to the distribution Fn on [n], independently of the graph. Also,
let D′

n denote the degree of V ′
n, Dn denote the degree of a uniformly chosen vertex (independently

of the graph) and C (v) denote the connected component containing v.

Lemma 31. Let w = (wi)i∈[n] be a weight sequence and consider CMn(d) such that νn < 1. Then,

E

[

∑

i∈C (V ′
n)

wi

]

≤ E
[

wV ′
n

]

+
E [D′

n]E
[

DnwVn

]

E [Dn] (1− νn)
. (A.1)

Proof. Consider all possible paths of length l starting from V ′
n and the w-value at the end of those

paths. If we sum over all such paths together with a sum over all possible l, then we obtain an
upper bound on

∑

i∈C (V ′
n)
wi. Write Ev[·] for the expectation conditional on V ′

n = v. Thus,

Ev

[

∑

i∈C (V ′
n)

wi

]

≤ wv + dv
∑

l≥1

∑

x1,...,xl

xi 6=xj ,∀i 6=j

∏l−1
i=1 dxi

(dxi
− 1)dxl

wxl

(ℓn − 1) . . . (ℓn − 2l + 1)
. (A.2)

Now, using the exactly same arguments as [27, Lemma 5.1], it follows that

E

[

∑

i∈C (V ′
n)

wi

]

≤ E
[

wV ′
n

]

+
E [D′

n]E [DnwVn ]

E [Dn]

∑

l≥1

νl−1
n , (A.3)

and this completes the proof.

B Appendix: Proof of Lemma 20

The proof is an adaptation of the proof of [20, Lemma 20]. Let V ′
n denote the vertex chosen ac-

cording to the distribution Fn on [n], independently of the graph and let D′
n denote the degree of

V ′
n. Suppose that lim supn→∞E[D

′
n] < ∞. We use a generic constant C to denote a positive con-

stant independent of n, δ,K. Consider the graph exploration described in Algorithm 1, but now
we start by choosing vertex V ′

n at Stage 0 and declaring all its half-edges active. The exploration
process is still given by (4.1) with Sn(0) = D′

n. Note that C (V ′
n) is explored when Sn hits zero. For

H > 0, let
γ := inf{l ≥ 1 : Sn(l) ≥ H or Sn(l) = 0} ∧ 2δKbn. (B.1)

Note that

E [Sn(l + 1)− Sn(l)| (In
i (l))

n
i=1] =

∑

i∈[n]

diP (i /∈ Vl, i ∈ Vl+1| (In
i (l))

n
i=1)− 2

=

∑

i/∈Vl
d2i

ℓn − 2l − 1
− 2 ≤

∑

i∈[n] d
2
i

ℓn − 2l − 1
− 2

: = λc−1
n + o(c−1

n ) +
2l + 1

ℓn − 2l − 1
×
∑

i∈[n] d
2
i

ℓn
≤ 0

(B.2)

uniformly over l ≤ 2δKbn for all small δ > 0 and large n, where the last step follows from the fact

that λ < 0. Therefore, {Sn(l)}2δKbn
l=1 is a super-martingale. The optional stopping theorem now

implies
E

[

D′
n

]

≥ E [Sn(γ)] ≥ HP (Sn(γ) ≥ H) . (B.3)
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Thus,

P (Sn(γ) ≥ H) ≤ E [D′
n]

H
. (B.4)

Put H = anK
1.1/

√
δ. To simplify the writing, we write Sn[0, t] ∈ A to denote that Sn(l) ∈ A, for all

l ∈ [0, t]. Notice that

P

(

SP(C (V ′
n)) ≥ K, |C (V ′

n)| ∈ (δKbn, 2δKbn)
)

≤ P (Sn(γ) ≥ H) +P
(

SP(C (V ′
n)) ≥ K,Sn[0, 2δKbn] < H,Sn[0, δKbn] > 0

)

.
(B.5)

Now,

P

(

SP(C (V ′
n)) ≥ K,Sn[0, 2δKbn] < H,Sn[0, δKbn] > 0

)

≤
∑

1≤l1<···<lK≤2δKbn

P (surpluses occur at times l1, . . . , lK , Sn[0, 2δKbn] < H,Sn[0, δKbn] > 0)

=
∑

1≤l1<···<lK≤2δKbn

E

[

1{0<Sn[0,lK−1]<H,SP(lK−1)=K−1}Y
]

,

(B.6)

where

Y = P
(

Kth surplus occurs at time lK , Sn[lK , 2δKbn] < H,Sn[lK , γ] > 0 | FlK−1

)

≤ CK1.1an

ℓn
√
δ

≤ CK1.1

bn
√
δ
.

(B.7)

Therefore, using induction, (B.5) yields

P

(

SP(C (V ′
n)) ≥ K,Sn[0, 2δKbn] < H,Sn[0, δKbn] > 0

)

≤ C

(

K1.1

√
δbn

)K (2δbn)
K−1

K0.12(K−1)(K − 1)!

2δKbn
∑

l1=1

P

(

|C (V ′
n)| ≥ l1

)

≤ C
δK/2

K1.1bn
E

[

|C (V ′
n)|
]

,
(B.8)

where we have used the fact that #{1 ≤ l2, . . . , lK ≤ 2δbn} = (2δbn)
K−1/(K − 1)! and Stirling’s

approximation for (K − 1)! in the last step. Since λ < 0, we can use Lemma 31 to conclude that for
all sufficiently large n

E [|C (Vn)|] ≤ Ccn, (B.9)

for some constant C > 0 and we get the desired bound for (B.5). The proof of Lemma 20 is now
complete.
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