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Abstract. Durations of rain events and drought events over a given region provide impor-
tant information about the water resources of the region. Of particular interest is the shape
of upper tails of the probability distributions of such durations. Recent research suggests
that the underlying probability distributions of such durations have heavy tails of hyperbolic
type, across a wide range of spatial scales from 2km to 120 km. These findings are based on
radar measurements of spatially averaged rain rate (SARR) over a tropical oceanic region.
The present work performs a nonparametric inference on the Pareto tail-index of wet and
dry durations at each of those spatial scales, based on the same data, and compares it with
conclusions based on the classical Hill estimator. The results are compared and discussed.
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1. Introduction

Rainfall is a physical phenomenon characterized by intermittency between dry

and wet states across a wide range of scales of observations, both spatial and tem-

poral. This type of intermittency combined with the “wild” variability of rainfall

intensity where and when it rains, from mild to moderate or higher and occasion-

ally cataclysmic levels, have led to the recognition of rain rate fields as multifractal

structures (Lovejoy and Mandelbrot [23], Lovejoy and Schertzer [24], [25], Gupta and

Waymire [11], [12], Tessier et al. [40], Over and Gupta [30], [31], Marsan et al. [29],

Foufoula-Georgiou [8]). Rainfall intensity is measured by rain rate in mm/hr units,

*The authors express sincere thanks to the Mathematisches Forschungsinstitut Oberwol-
fach (MFO) for facilitating their collaboration under a “Research in Pairs” project hosted
at MFO during March 5–25, 2006. The research of the second and third authors was
supported by the project LC06024.
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representing the flux of water volume carried by rain droplets passing through (or

landing on) an elementary surface of unitary area per unit of time. The dry state of

rainfall is represented by zero rain rate and its wet state is represented by positive

values of rain rate. If a field of rain rates is mapped over a (two-dimensional) geo-

graphic region at a given time instant, then the support of wet states constitutes a

multifractal subset of the mapped region.

Alternatively, if the observed rain rate field at a fixed time is spatially averaged

over the region, or if the small region can be approximately considered as a geometric

point, then the support of wet states becomes a multifractal subset of the time

interval during which rainfall is recorded. Dry epochs are defined as maximal time

segments with zero rain rate (everywhere in the region), and wet epochs are defined

as maximal time segments with positive rain rate (somewhere in the region). The

lengths of such segments are referred to as dry and wet durations, respectively.

The shape of probability tails of durations of wet and dry epochs is of impor-

tance for practice (e.g., for the management of storage and consumption of water

resources). Some authors used hydrological models for regionalization of hydrologic

extremes in large basins of river networks (Gupta and Waymire [13], Gupta [10]).

Empirical conclusions, pointing to hyperbolic probability tails of wet and dry epoch

durations, can be justified by the perception of rain fields as intermittent multifrac-

tal structures (Mandelbrot [28]). The Pareto tail-index (∆ + 1) of dry durations is

directly related with the (capacity) fractal dimension (∆) of the (temporal) support

of wet states (Lowen and Teich [26], Schmitt et al. [37], Pavlopoulos and Gupta [34]).

Moreover, the probability of wet states (i.e. the probability of raining) in aggregated

intermittent records or maps of rain rate, behaves as a power-law of the scale of

aggregation, with the exponent determined by the fractal dimension of the initial

(i.e. before aggregation) record or map (Kedem and Chiu [21], Over and Gupta [30],

Kundu and Bell [22]). There is also emerging evidence that heavier tail probabilities

of wet and dry epoch durations have an impact on the global memory properties

of the underlying rainfall process (De Michele and Pavlopoulos [5]). Heavy tailed

distributions of OFF durations are often causally associated with the long range de-

pendence (LRD) (Taqqu and Levy [39], Willinger et al. [41], Heath et al. [15], Adler

et al. [1], Doukhan et al. [6], Lowen and Teich [27]).

Pavlopoulos and Gupta [34] studied the effect of the scale of the considered region

on the higher orders quantiles of durations of wet and dry epochs of spatially averaged

rain rate (SARR). Their main result is that durations of regionally wet and dry

epochs have probability tails of hyperbolic type, in all the probed spatial scales, with

specific estimated values of the associated Pareto tail index. The data used in that

study and in the present work are briefly presented in Section 2, while the scaling

properties of their sample quantiles are summarized in Section 3. The main goal
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of the present paper is to test whether the predicted estimates of Pareto tail index,

obtained by multiscaling analysis of wet and dry durations of SARR, are acceptable as

trustworthy indicators of tail heaviness. Our main tool is a class of non-parametric

tests of hypotheses, confidence intervals and associated point estimators, recently

developed by the present as well as other authors. After a brief description of these

methods in Section 4, they are applied to real data in Section 5.

2. Description of working data and related issues

The raw data used by Pavlopoulos and Gupta [34] is a time series of digital maps

of radar reflectivity measurements. These maps were obtained during the Tropical

Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experi-

ment (COARE) by a shipboard Doppler precipitation radar (MIT). Each map cor-

responds to a single radar scan, probing a fixed oceanic region of reference S, with

an area 240 × 240 km2, in the tropical sector of South Pacific Ocean (China Sea:

2◦S, 156◦E). The temporal resolution between successive scans is (approximately)

20 minutes. Reflectivity measurements Z from each scan, binned over square pixels

of area 2×2km2, have been converted to instantaneous rain rate R by the Z-R rela-

tionship R = (Z/230)0.8, rendering a series of retrieved rain rate digital maps. The

entire series corresponds to the full period of Cruise 1 (November 10, 1992 through

December 9, 1992), consisting of 1992 scans, and to the early part of Cruise 2 (De-

cember 21, 1992 through December 29, 1992), consisting of 617 scans. A good source

of detailed information about TOGA-COARE and its objectives is Short et al. [38].

The experience showed that the multiscaling analysis of wet and dry durations can

be restricted to spatial scales ranging from 120km down to 2 km, following the rule

of half (approximately). This amounts to a total of seven scales, 120, 60, 30, 16, 8, 4,

2 km, of which the largest is referred to as scale of reference and the smallest as pixel

scale. It is convenient to refer to spatial scales in terms of a unit-free scale index

λ ∈ (0, 1], formally defined as the ratio of diameters of two geometrically similar

subregions, say A and Aλ, such that Aλ ⊂ A. For the set of 7 scales, 25 different

nestings of square (i.e. geometrically similar) subregions were sampled according to a

certain symmetric design of spatial sampling. A time series of spatially averaged rain

rate was obtained separately for Cruise 1 and Cruise 2 on each sampled subregions.

Spells of zeros and spells of positive values were identified as dry and wet epochs,

respectively. The integer-valued lengths of these spells, multiplied by 1/3, provide

“quantized” working data of dry and wet durations in units of hours (hr).

To suppress some bias of the data and to reduce the effect of the skewness, working

data from both cruises were pooled temporally and spatially. The final product of

the overall pooling amounts to 14 sets (7 wet and 7 dry) of spatio-temporally pooled
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working data of durations. The spatio-temporal pooling strategy is justifiable only

under conditions of “Temporal Homogeneity” and “Spatial Homogeneity” of proba-

bility distributions of durations, which was nonparametrically verified in Pavlopoulos

and Gupta [34, Section 4].

3. Multiscaling of tail quantiles

The spatio-temporally pooled working data of wet and dry durations can be consid-

ered as samples from the populations of random variables Wλ and Dλ, respectively,

with the corresponding quantile functions Q
(w)
λ (p) and Q

(d)
λ (p). Pavlopoulos and

Gupta [34] formulated the following parametric models for tail quantile functions of

wet and dry epoch durations:

Q
(w)
λ (p) = eα ln λ+β · (1 − p)γ ln λ+δ,(3.1)

Q
(d)
λ (p) = eα∗λ+β∗ · (1 − p)γ∗λ+δ∗

,(3.2)

where α = 0.3652, β = 0.8746, γ = 0.0285, δ = −0.5006, α∗ = −0.5117, β∗ =

0.2327, γ∗ = 0.379, δ∗ = −0.57 are estimates of parameter values obtained through

logarithmic regression in the range of 0.8 6 p 6 0.995.

This implies that the scaling of wet tail-quantiles is of power-law type,

(3.3) Q
(w)
λ (p) = λα+γ ln(1−p)Q

(w)
1 (p),

while the scaling of dry tail-quantiles is of exponential type,

(3.4) Q
(d)
λ (p) = e[α∗+γ∗ ln(1−p)](λ−1)Q

(d)
1 (p),

with respect to λ for a given tail probability level p near to 1. Figs. 1–2 depict QQ-

plots between sample tail quantiles and predicted tail quantiles according to the mul-

tiscaling models (3.1) and (3.2), respectively. Both models constitute quite significant

improvements when compared against power-law simple scaling models (i.e. γ = 0

in (3.3)). Simple scaling for both wet and dry duration quantiles has been investi-

gated as a potentially valid theory for small scales on the basis of TOGA-COARE

releases (Gritsis [9], Pavlopoulos and Gritsis [32], Pavlopoulos and Gupta [33]).

Inverting formulae (3.1) and (3.2), one easily obtains (upper) tail probabilities of

wet durations

(3.5) P (Wλ > u) = e−(α ln λ+β)/(γ ln λ+δ) · u1/(γ ln λ+δ)
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(E) Scale = 8 km, Correlation = 0.9874
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(B) Scale = 60 km, Correlation = 0.9683
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(F) Scale = 4 km, Correlation = 0.9681
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(C) Scale = 30 km, Correlation = 0.9934
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(G) Scale = 2 km, Correlation = 0.9552
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(D) Scale = 16 km, Correlation = 0.9965

Sample Quantiles

P
re

d
ic

te
d
 Q

u
an

ti
le

s

5 10 15

5
10

15
20

ooo
oo oo

ooo
oo oo

ooo
o o oo

ooo
o o o o

ooo
o o o

o

ooo
o o o

o

ooo
o o

o
o

ooo
o

o
o

o

o o
o
o

o
o

o

o
o

o
o

o

o

o

(H) All Scales, Correlation = 0.9464
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Figure 1. Q-Q-plots of wet duration quantiles predicted by the power-law multiscaling
model (3.1), versus sample estimates of wet duration quantiles, at probability
levels 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 0.985, 0.995, for each of the
seven scales considered (A-G plots) and collectively across all scales combined
(H plot). The correlation coefficient reported on each plot was obtained from
simple linear regression of predicted tail-quantiles against their sample estimates.
The line drawn in each plot is the diagonal through the origin.
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(E) Scale = 8 km, Correlation = 0.9823
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(B) Scale = 60 km, Correlation = 0.9920
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(F) Scale = 4 km, Correlation = 0.9883
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(C) Scale = 30 km, Correlation = 0.9669
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(G) Scale = 2 km, Correlation = 0.9905

Sample Quantiles

P
re

d
ic

te
d
 Q

u
an

ti
le

s

5 10 15 20

5
10

15
20

25

ooo oo o
o

o

o

o

(D) Scale = 16 km, Correlation = 0.9855
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(H) All Scales, Correlation = 0.9849
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Figure 2. Q-Q-plots of dry duration quantiles predicted by the exponential multiscaling
model (3.2), versus sample estimates of dry duration quantiles, at probability
levels 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 0.985, 0.995, for each of the
seven scales considered (A-G plots) and collectively across all scales combined
(H plot). The correlation coefficient reported on each plot was obtained from
simple linear regression of predicted tail-quantiles against their sample estimates.
The line drawn in each plot is the diagonal through the origin.
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for u > Q
(w)
λ (0.8) = eα ln λ+β · 0.2γ lnλ+δ, and (upper) tail probabilities of dry dura-

tions

(3.6) P (Dλ > u) = e−(α∗λ+β∗)/(γ∗λ+δ∗) · u1/(γ∗λ+δ∗)

for u > Q
(d)
λ (0.8) = eα∗λ+β∗ · 0.2γ∗λ+δ∗

. Formulae (3.5) and (3.6) not only reveal

that durations of wet and dry epochs have hyperbolic tails in all the spatial scales,

but also provide specific estimates of the Pareto tail index corresponding to each

scale, namely

m0(λ) = −(γ lnλ + δ)−1 for wet tails,

m∗

0(λ) = −(γ∗λ + δ∗)−1 for dry tails,

respectively (see also Tabs. 1–4).

These estimates reveal that the tail indices of both wet and dry durations increase

in the scale index λ and that the tails might be heavier in smaller regions than in

larger ones. Also, the tails of the wet duration appear to be potentially heavier than

the tails of the dry duration at each given scale of observations.

4. Semiparametric inference for Pareto tail index

4.1. Inference based on the Hill estimator

We work with the heavy tailed probability distribution whose cumulative distri-

bution function F satisfies

(4.1) lim
u→∞

− log(1 − F (u))

m lnu
= 1

for some 0 < m < ∞. The number m in (4.1) is referred to as the Pareto tail index

of F and (4.1) implies that the tail probability has the form

(4.2) 1 − F (u) = u−mL(u), u ∈ R,

with L being a positive function slowly varying at infinity, i.e. lim
u→∞

L(au)/L(u) = 1

for all a > 0 (see Embrechts et al. [7, Theorem 3.3.7]).

Our interest is focused partly on obtaining confidence intervals and partly on

testing hypotheses on the Pareto tail index.

The standard approach to obtain confidence intervals for the tail index is by

exploiting asymptotic normal distribution of the Hill estimator

H(k) =
1

k

k
∑

i=1

log X(l−i+1:l) − log X(l−k:l),
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where X(i:l) denotes the ith order statistic of the sample X1, . . . , Xl. In this spirit,

Cheng and Pan [2] considered a one-term Edgeworth expansion of the distribution

function of the Hill estimator in cases where the asymptotic bias is zero, while Cheng

and Peng [3] provided an algorithm for computing a plug-in value of the theoretically

optimal sample fraction k∗, in the sense of minimizing the absolute coverage error of

the confidence interval. The optimal sample fraction k∗ has been derived under the

instrumental condition that the scalar function L is of a specific form, such that the

underlying heavy tailed distribution corresponds to a special case of second-order

regular variation (see de Haan and Stadtmüller [4]).

The two-sided confidence interval for the Pareto tail index m = 1/ξ obtained by

this approach, at level 0 < α < 1, is given by

I2(α, k) =

(

√
k√

kH(k) + Φ−1(1 − α/2)H(k)
,

√
k√

kH(k) − Φ−1(1 − α/2)H(k)

)

,

while the one-sided right and left intervals are respectively given by

I1(α, k) =

(

√
k√

kH(k) + Φ−1(1 − α)H(k)
,∞

)

&

(

0,

√
k√

kH(k) − Φ−1(1 − α)H(k)

)

,

where Φ denotes the CDF of the standard normal law. These are also referred

to as Wald intervals, among several other types of intervals reviewed in a recent

paper by Haeusler and Segers [14], elaborating some new developments on Hill-

based confidence intervals for ξ = 1/m from Edgeworth expansions under certain

asymptotic conditions on the bias.

4.2. Inference based on sub-sample statistics

To verify the reliability of estimates m0(λ) and m∗

0(λ) of the Pareto tail index

associated with hyperbolic tails of wet and dry durations of SARR, we can test

the hypotheses of the form Hm0
: m 6 m0 (or H

∗

m0
: m > m0) against one-sided

alternatives Km0
: m > m0, (or K

∗

m0
: m < m0, respectively), for some motivated

values m0 > 0 of m0(λ) and m∗

0(λ).

Several semiparametric tests of Hm0
and H

∗

m0
have been recently developed by

Jurečková [16], [17], Jurečková and Picek [19], Picek and Jurečková [36] and Jurečková

et al. [18]. The idea in this approach is to split the sample into a set ofN independent

subsamples Xj = (Xj1, . . . , Xjn)′, for j = 1, . . . , N , and to represent each one by a

suitable statistic, say Sj , j = 1, . . . , N . The consistent and asymptotically normal

testing procedures are based on the empirical distribution functions of S1, . . . , SN .

Specific choices of Sj , j = 1, . . . , N are as follows:

sub-sample maxima: X
(j)
(n) = max{Xj1, . . . , Xjn}, j = 1, . . . , N ,
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sub-sample means: X
(j)
n =

1

n

n
∑

i=1

Xji, j = 1, . . . , N ,

sub-sample averaged block maxima: θ̂
(j)
n = (X

(1)
j + X

(2)
j )/4, where X

(1)
j =

X
(j)
(ν) = max{Xj1, . . . , Xjν}, X

(2)
j = max{Xj(ν+1), . . . , Xjn} for j = 1, . . . , N and

some fixed 1 6 ν 6 n − 1.

In particular, the test based on sub-sample maxima rejectsHm0
: m 6 m0 in favor

of Km0
: m > m0 at the asymptotic significance level 0 < α < 1, when

either 1 − F̂ ∗

N (uN,m0
) = 0,

or 1 − F̂ ∗

N (uN,m0
) > 0 and

N δ/2[− log(1 − F̂ ∗

N (uN,m0
)) − (1 − δ) log N ] > Φ−1(1 − α),

where uN,m := (nN1−δ)1/m for a chosen constant 0 < δ < 1
2 .

On the other hand, the test rejects H
∗

m0
: m > m0 in favor of K

∗

m0
: m < m0,

when

either F̂ ∗

N (uN,m0
) = 0,

or F̂ ∗

N (uN,m0
) > 0 and

N δ/2[− log(1 − F̂ ∗

N (uN,m0
)) − (1 − δ) log N ] 6 Φ−1(α).

The tests lead to one-sided confidence intervals (Picek [35]). The right-sided interval

is:

J1(α, δ) =

(

log(nN1−δ)

log
(

F̂ ∗−1
N (1 − exp{−N−δ/2Φ−1(1 − α) − (1 − δ) log N})

) , ∞
)

and the left-sided interval is

J1(α, δ) =

(

0 ,
log(nN1−δ)

log
(

F̂ ∗−1
N (1 − exp{N−δ/2Φ−1(1 − α) − (1 − δ) log N})

)

)

.

Moreover, inverting the tests in the Hodges-Lehmann manner, one obtains strongly

consistent point estimators of m (Jurečková and Picek [20]), given by

M∗(δ) =
1

2
(M∗

+ + M∗

−
),

M∗

+ := sup{m : 1 − F̂ ∗

N (uN,m) < N−(1−δ)},
M∗

−
:= inf{m : 1 − F̂ ∗

N (uN,m) > N−(1−δ)}.

Extensive simulation studies show that these tests distinguish very well the tail

behavior among different types of distributions, even for moderate sample sizes. Yet,

the performance of these procedures is affected by the chosen value of the constant δ.
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5. Results and discussion

The procedures described in Section 4 were applied to each of the 14 sets of

spatio-temporally pooled working data of wet and dry durations of SARR across

the considered seven spatial scales of averaging. Our focus of interest is mainly

on confidence intervals and on testing one-sided hypotheses about the Pareto tail

index m of the underlying probability distributions of wet and dry durations at

each spatial scale. The assumption of heavy-tailed distributions, as well as other

assumptions, are adopted in light of the evidence established by the multiscaling

analysis of sample tail quantiles of the same data. The numerical results are based

on the use of sub-sample maxima, as described in Section 4. Our conclusions are

based on the following Tabs. 1–4.

Tab. 1 tabulates P -values for testing one-sided hypotheses Hm0
and H

∗

m0
, with

m0 equal to the predicted benchmark valuesm0(λ) andm∗

0(λ). The P -values marked

by ∗ indicate the conclusion that Pareto tail index does not exceed the benchmark
values. Then we conclude that tails are at least as heavy as predicted by the

multiscaling analysis of sample tail quantiles. Pairs of P -values marked in bold-

face indicate the admissibility of the corresponding predicted benchmark value m0.

For example, wet durations at the 4 km scale for δ = 0.25 give P -value 0.982 to

H1.67 : m 6 1.67 and P -value 0.018 to H
∗

1.67 : m > 1.67, indicating that the for-

mal intersection H1.67 ∩ H
∗

1.67 : m = 1.67 may be considered non-rejectable at the

0.01 level of significance. In this sense, the predicted benchmark value 1.67 is con-

sidered admissible.

Tabs. 2 and 3 tabulate the right and left one-sided confidence intervals for the

Pareto tail index of wet and dry epoch durations, at 95% confidence level. Tab. 2

gives intervals coming from the tests of Hm0
: m 6 m0, while Tab. 3 gives the inter-

vals based on testing H
∗

m0
: m > m0, both based on empirical CDF’s of sub-sample

maxima. The I1(0.05) intervals are based on the Hill estimator for three different

options of choosing the sample fraction k. Intervals containing the corresponding

benchmark values of Pareto tail indexm0 are marked with ∗. The unmarked intervals
indicate that the values m0 might underestimate (Tab. 2) or overestimate (Tab. 3)

the true index of heavy tailed durations, with probability not greater than 5% for

each of these two events.

Tab. 4 tabulates values of the Jurečková-Picek point estimatorM∗(δ) and the Hill

estimator H(k) for the Pareto tail index of wet and dry epoch durations, along with

two-sided 95% confidence intervals I2(0.05) based on the Hill estimator. Intervals

containing the estimated values of Pareto tail index m0 by multiscaling are again

∗-marked. The value being “closest” to m0 predicted by multiscaling is marked in

boldface.
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Scale of spatial averaging 2 km 4 km 8km 16km 30 km 60 km 120km
Wet durations sample size (l) 2824 2897 2983 3179 3038 1421 25
Tail-index m0 = m0(λ) 1.62 1.67 1.73 1.79 1.85 1.92 1.99

Hm0
P -values, δ = 0.05 0.000 0.000 * 0.666 * 0.893 * 0.998 * 1.000 * 0.852

Hm0
P -values, δ = 0.25 *0.110 * 0.982 * 1.000 * 1.000 * 1.000 * 1.000 * 0.865

Hm0
P -values, δ = 0.45 *1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 0.743

H
∗

m0
P -values, δ = 0.05 1.000 1.000 0.334 0.107 * 0.002 * 0.000 0.148

H
∗

m0
P -values, δ = 0.25 0.890 0.018 0.000 * 0.000 * 0.000 * 0.000 0.135

H
∗

m0
P -values, δ = 0.45 *0.000 *0.000 * 0.000 * 0.000 * 0.000 * 0.000 0.257

Dry durations sample size (l) 2530 2618 2789 3087 3145 1679 45
Tail-index m0 = m∗

0(λ) 1.77 1.79 1.83 1.92 2.10 2.62 5.23

Hm0
P -values, δ = 0.05 *0.993 *0.990 *0.958 *0.990 *0.986 *1.000 *0.986

Hm0
P -values, δ = 0.25 *1.000 *1.000 *1.000 *1.000 *1.000 *1.000 *0.992

Hm0
P -values, δ = 0.45 *1.000 *1.000 *1.000 *1.000 *1.000 *1.000 *0.987

H
∗

m0
P -values, δ = 0.05 *0.007 *0.010 0.042 *0.010 0.014 *0.000 0.014

H
∗

m0
P -values, δ = 0.25 *0.000 *0.000 *0.000 *0.000 *0.000 *0.000 *0.008

H
∗

m0
P -values, δ = 0.45 *0.000 *0.000 *0.000 *0.000 *0.000 *0.000 0.013

Table 1. P -values for testing one-sided hypotheses Hm0
: m 6 m0 (vs. Km0

: m > m0) and H
∗

m0
: m >

m0 (vs. K
∗

m0
: m < m0) for the Pareto tail index of wet and dry epoch duration.
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Scale of spatial averaging 2 km 4km 8 km 16 km 30km 60 km 120km
Wet durations sample size (l) 2824 2897 2983 3179 3038 1421 25
Tail-index m0 = m0(λ) 1.62 1.67 1.73 1.79 1.85 1.92 1.99

J1(0.05), δ = 0.05 (1.750,∞) (1.753,∞) *(1.705,∞) *(1.590,∞) *(1.691,∞) *(1.451,∞) *(0.760,∞)
J1(0.05), δ = 0.25 *(1.569,∞) *(1.468,∞) *(1.517,∞) *(1.436,∞) *(1.425,∞) *(1.255,∞) *(0.669,∞)
J1(0.05), δ = 0.45 *(1.406,∞) *(1.337,∞) *(1.281,∞) *(1.280,∞) *(1.211,∞) *(1.063,∞) *(0.587,∞)
I1(0.05), k = plug-in k∗ *(1.231,∞) *(1.449,∞) (1.859,∞) *(1.599,∞) (2.563,∞) (2.441,∞) *(0.713,∞)
I1(0.05), k = l/10 *(1.538,∞) *(1.545,∞) *(1.629,∞) *(1.652,∞) (1.964,∞) *(1.579,∞) *(0.408,∞)
I1(0.05), k = 2

√
l (1.731,∞) *(1.666,∞) (1.803,∞) *(1.776,∞) (2.305,∞) (2.224,∞) *(0.390,∞)

Dry durations sample size (l) 2530 2618 2789 3087 3145 1679 45
Tail-index m0 = m∗

0(λ) 1.77 1.79 1.83 1.92 2.10 2.62 5.23

J1(0.05), δ = 0.05 *(1.660,∞) *(1.668,∞) *(1.693,∞) *(1.770,∞) *(1.820,∞) *(1.909,∞) *(2.185,∞)
J1(0.05), δ = 0.25 *(1.425,∞) *(1.432,∞) *(1.484,∞) *(1.494,∞) *(1.594,∞) *(1.740,∞) *(2.025,∞)
J1(0.05), δ = 0.45 *(1.191,∞) *(1.202,∞) *(1.263,∞) *(1.283,∞) *(1.421,∞) *(1.482,∞) *(1.986,∞)
I1(0.05), k = plug-in k∗ (2.365,∞) (2.046,∞) (2.342,∞) (2.778,∞) (2.844,∞) *(2.163,∞) *(2.719,∞)
I1(0.05), k = l/10 *(1.720,∞) *(1.601,∞) *(1.784,∞) *(1.573,∞) *(1.791,∞) *(2.294,∞) *(2.403,∞)
I1(0.05), k = 2

√
l (1.981,∞) (1.860,∞) (2.215,∞) (2.103,∞) (2.360,∞) *(2.285,∞) *(1.225,∞)

Table 2. Right-sided 95% confidence intervals for the Pareto tail index of wet and dry epoch durations.
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Scale of spatial averaging 2 km 4km 8km 16 km 30 km 60 km 120 km
Wet durations sample size (l) 2824 2897 2983 3179 3038 1421 25
Tail-index m0 = m0(λ) 1.62 1.67 1.73 1.79 1.85 1.92 1.99

J1(0.05), δ = 0.05 *(0, 2.071) *(0, 1.809) *(0, 1.899) *(0, 1.853) (0, 1.786) (0, 1.547) *(0, 4.596)
J1(0.05), δ = 0.25 *(0, 2.193) *(0, 2.103) *(0, 2.064) *(0, 1.982) *(0, 2.006) (0, 1.624) *(0, 4.918)
J1(0.05), δ = 0.45 *(0, 2.948) *(0, 2.639) *(0, 2.776) *(0, 2.608) *(0, 2.558) *(0, 2.101) *(0, 75.391)
I1(0.05), k = plug-in k∗ (0, 1.310) *(0, 1.834) *(0, 2.822) *(0, 10.497) *(0, 4.023) *(0, 3.668) (0, 1.434)
I1(0.05), k = l/10 *(0, 1.873) *(0, 1.876) *(0, 1.972) *(0, 1.988) *(0, 2.374) *(0, 2.084) *(0, 2.681)

I1(0.05), k = 2
√

l *(0, 2.390) *(0, 2.297) *(0, 2.477) *(0, 2.430) *(0, 3.162) *(0, 3.267) (0, 1.235)

Dry durations sample size (l) 2530 2618 2789 3087 3145 1679 45
Tail-index m0 = m∗

0(λ) 1.77 1.79 1.83 1.92 2.10 2.62 5.23

J1(0.05), δ = 0.05 (0, 1.735) (0, 1.752) (0, 1.828) (0, 1.874) (0, 2.041) (0, 2.187) (0, 3.283)
J1(0.05), δ = 0.25 (0, 1.469) (0, 1.494) (0, 1.571) (0, 1.590) (0, 1.769) (0, 1.862) (0, 2.958)
J1(0.05), δ = 0.45 (0, 1.322) (0, 1.309) (0, 1.359) (0, 1.377) (0, 1.500) (0, 1.631) (0, 2.506)
I1(0.05), k = plug-in k∗ *(0, 3.512) *(0, 2.883) *(0, 3.157) *(0, 4.961) *(0, 5.286) *(0, 3.161) *(0, 8.614)
I1(0.05), k = l/10 *(0, 2.117) *(0, 1.964) *(0, 2.174) *(0, 1.899) *(0, 2.158) *(0, 2.963) *(0, 8.236)

I1(0.05), k = 2
√

l *(0, 2.761) *(0, 2.584) *(0, 3.062) *(0, 2.881) *(0, 3.229) *(0, 3.307) (0, 3.282)

Table 3. Left-sided 95% confidence intervals for the Pareto tail index of wet and dry epoch durations.
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Scale of spatial averaging 2 km 4km 8km 16km 30km 60km 120km
Wet durations sample size (l) 2824 2897 2983 3179 3038 1421 25
Tail-indexm0 = m0(λ) 1.62 1.67 1.73 1.79 1.85 1.92 1.99

JP -estimate, δ = 0.05 1.78 1.77 1.74 1.68 1.70 1.50 0.82

JP -estimate, δ = 0.25 1.69 1.48 1.57 1.53 1.47 1.27 0.76
JP -estimate, δ = 0.45 1.43 1.39 1.32 1.34 1.26 1.09 0.78
Hill-estimate, k = plug-in k∗ 1.27 1.62 2.24 2.78 3.13 2.93 0.95

Hill-estimate, k = l/10 1.69 1.70 1.78 1.80 2.15 1.80 0.71

Hill-estimate, k = 2
√

l 2.01 1.93 2.09 2.05 2.67 2.65 0.59
I2(0.05), k = plug-in k∗ (1.22, 1.32) *(1.42, 1.88) (1.80, 2.97) *(1.48, 2.48) (2.48, 4.26) (2.36, 3.85) *(0.68, 1.59)
I2(0.05), k = l/10 *(1.51, 1.91) *(1.52, 1.92) *(1.60, 2.01) *(1.62, 2.03) (1.93, 2.42) *(1.54, 2.15) *(0.38, 5.74)

I2(0.05), k = 2
√

l (1.69, 2.48) *(1.62, 2.38) (1.76, 2.57) *(1.73, 2.52) (2.25, 3.28) (2.16, 3.42) (0.37, 1.56)

Dry durations sample size (l) 2530 2618 2789 3087 3145 1679 45
Tail-indexm0 = m∗

0(λ) 1.77 1.79 1.83 1.92 2.10 2.62 5.23

JP -estimate, δ = 0.05 1.71 1.72 1.76 1.80 1.86 2.06 2.70

JP -estimate, δ = 0.25 1.44 1.44 1.50 1.55 1.67 1.79 2.34
JP -estimate, δ = 0.45 1.24 1.25 1.32 1.34 1.46 1.57 1.99
Hill-estimate, k = plug-in k∗ 2.826 2.394 2.689 3.561 3.698 2.569 4.134

Hill-estimate, k = l/10 1.898 1.764 1.960 1.721 1.958 2.586 3.720

Hill-estimate, k = 2
√

l 2.307 2.163 2.571 2.431 2.727 2.702 1.785
I2(0.05), plug-in k∗ (2.29, 3.68) (1.99, 3.00) (2.28, 3.27) (2.66, 5.36) (2.72, 5.76) *(2.10, 3.31) *(2.55, 10.9)
I2(0.05), k = l/10 *(1.69, 2.16) *(1.57, 2.01) *(1.75, 2.22) *(1.55, 1.94) *(1.76, 2.20) *(2.25, 3.05) *(2.25, 10.7)

I2(0.05), k = 2
√

l (1.93, 2.87) (1.81, 2.68) (2.16, 3.18) (2.05, 2.99) (2.30, 3.35) *(2.22, 3.46) (1.16, 3.91)

Table 4. Point estimatesM∗(δ) andH(k) for the Pareto tail index of wet and dry epoch durations, along with two-sided 95% confidence
intervals based on the Hill estimator.
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Overall, we conclude that there is good agreement between the semiparametric

inference procedures and the predicted values of the Pareto tail index. This is quite

reassuring, because the performance of the semiparametric procedures apparently

have not yet been applied to any real data, but exclusively to simulated data.

The data used for this study represent the climate of a tropical oceanic region

during the monsoon period, which is very rich in rainfall represented by long wet

epochs, during which extremely high rain rates are locally experienced due to pre-

dominantly convective clouds. The tail heaviness of both wet and dry epochs might

be challenged in other types of climate.
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