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The light-cone method provides a convenient nonperturbative tool to study the heavy-to-light form
factors. We construct a light-cone quark model utilizing the soft collinear effective theory. In the leading
order of effective theory, the form factors for B-to-light pseudoscalar and vector mesons are reduced to
three universal form factors which can be calculated as overlaps of hadron light-cone wave functions. The
numerical results show that the leading contribution is close to the results from other approaches. The q2

dependence of the heavy-to-light form factors is also presented.
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I. INTRODUCTION

The hadronic matrix elements of weak B decays to a
light pseudoscalar (P) and to a vector meson (V) are
described by B! P and B! V transition form factors,
respectively. These heavy-to-light form factors are essen-
tial to study the semileptonic and even nonleptonic B
decays. Information on the form factors is crucial to test
the mechanism of CP violation in the standard model and
to extract the Cabibbo-Kobayashi-Maskawa (CKM) pa-
rameters [1]. For instance, the B! ���� form factors are
required to determine the CKM matrix element jVubj pre-
cisely. In B! V� and B! Vl�l� processes which are
sensitive to new physics, the precise evaluation of B! V
form factors is indispensable. Another interesting reason
for the study of the heavy-to-light form factors is that they
provide an ideal laboratory to explore the rich structures of
QCD dynamics. At the large recoil region where the final
state light meson moves fast, the heavy-to-light system
contains internal information on both short and long dis-
tance QCD dynamics with the factorization theorem.

There are already many methods calculating the heavy-
to-light transition form factors in the literature, such as the
simple quark model [2], the light-cone quark model
(LCQM) [3–6],1 light-cone sum rules (LCSR) [7–9], the
perturbative QCD (PQCD) approach based on kT factori-
zation [10], etc.

In Ref. [11], a model-independent way to look for
relations between different form factors is suggested by
analogy with the heavy-to-heavy transitions [12]. One
important observation is that, in the heavy quark mass
and large energy of light meson limits, the spin symmetry
relates the form factors for B! P and B! V to three

universal energy-dependent functions: �P for the pseudo-
scalar meson; and �k, �? for longitudinally and trans-
versely polarized vector mesons, respectively. The
development of soft collinear effective theory (SCET)
makes the analysis on a more rigorous foundation. The
SCET is a powerful method to systematically separate the
dynamics at different scales—the hard scale mb (b quark

mass), the hard intermediate scale �hc �
������������������
mb�QCD

q
, the

soft scale �QCD —and to sum large logs using the renor-
malization group techniques. After a series of studies [13–
17], a factorization formula was established for the heavy-
to-light form factors in the heavy quark mass and large
energy limit as

 Fi�q
2� � Ci�E;�I��j��I; E� ��B�!;�II�

� Ti�E; u;!;�II� ��M�u;�II�; (1)

where the indices j represent �P; k;?� and � denotes the
convolutions over light-cone momentum fractions. �B�!�
and�M�u� are light-cone distribution amplitudes for �B and
light mesons. The coefficients Ci and Ti are perturbatively
calculable functions which include hard gluon corrections.
The functions �j denote the universal functions that satisfy
the spin symmetry.

Although soft collinear effective theory is really power-
ful and rigorous, the form factors �j cannot be directly
calculated. These functions are nonperturbative in princi-
ple and the evaluation of them relies on nonperturbative
methods. Lattice simulation on heavy-to-light form factors
is usually restricted to the region with final meson energy
E< 1 GeV and cannot be applied to our case directly
where the light meson carries the energy of order MB=2.2

The construction of LCSR within SCET has been explored
recently in [20–22]. In these studies, only the pseudoscalar
meson form factor �P is calculated at present.*lucd@mail.ihep.ac.cn
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The light-cone field theory provides another natural
language to study these processes. As pointed out in [23],
light-cone QCD has some unique features which are par-
ticularly suitable to describe a hadronic bound state. For
instance, the vacuum state in this approach is much simpler
than that in other approaches. The light-cone wave func-
tions, which describe the hadron in terms of their funda-
mental quark and gluon degrees of freedom, are
independent of the hadron momentum and thus are explic-
itly Lorentz invariant. The light-cone Fock space expan-
sion provides a complete relativistic many-particle basis
for a hadron. For hard exclusive processes with large
momentum transfer, the factorization theorem in the per-
turbative light-cone QCD makes first-principle predictions
[24]. For nonperturbative QCD, an approach which com-
bines the advantage of the light-cone method with the low
energy constituent quark model is more appealing. This
approach, which we will call the LCQM, has been success-
fully applied to the calculation of the meson decay con-
stants and hadronic form factors [3–6,25,26].

As far as the form factors are concerned, they can be
generally represented by the convolution of B and light
meson wave functions in the light-cone approach as
 

F�q2� �
X
n1;n2

Z � �Y
i

dxid
2k?i

16�3

��
�Y
j

dxjd
2k?j

16�3

�

���n1��
M �xi; k?i��

�n2�
B �xj; k?j�; (2)

where the sum is over all Fock states with n1, n2 the par-
ticle numbers; i, j denote the ith and jth constituents of the
light meson and �B meson, respectively. The product is per-
formed over the longitudinal momentum fractions xi;j and
the transverse momenta k?i;j. The light-cone wave func-
tion ��x;k?� is the generalization of the distribution am-
plitude ��x� by including the transverse momentum distri-

butions. This formulation contains both hard and soft inter-
actions.

The main purpose of this paper is to develop a non-
perturbative light-cone approach within the soft collinear
effective theory and to evaluate the three universal heavy-
to-light form factors directly. The close relation between
the light-cone QCD and soft collinear effective theory was
noted in [15]. The SCET has the advantage that a system-
atic power expansion with small parameter �QCD=mb (or���������������������

�QCD=mb

q
) can be performed to improve the calculation

accuracy order by order. The combination of the two
methods can reduce the model dependence of nonpertur-
bative methods. In the conventional light-cone approach,
all the quarks are on shell. Now, in the new approach, it is
convenient to choose the light energetic quark as the col-
linear mode in the soft collinear effective theory and the
heavy quark field as that in the heavy quark effective
theory. The spectator antiquark remains as the soft mode.
By this way, the light-cone quark model within the soft
collinear effective theory is established. Then we can
calculate the B!P and B!V form factors order by order.

The paper is organized as follows. In Sec. II, we first
present the definition of the three universal form factors
from the spin symmetry relations. We then discuss a light-
cone quark model within soft collinear effective theory.
The numerical results for the form factors and discussions
are presented in Sec. III. The final part contains our
conclusion.

II. THE HEAVY-TO-LIGHT FORM FACTORS IN
THE LIGHT-CONE APPROACH

A. Definitions of the heavy-to-light form factors

The �B! P and �B! V form factors are defined under
the conventional form as follows:

 

hP�P0�j �q��bj �B�P�i � f��q
2�

�
�P� P0�� �

M2
B �M

2
P

q2 q�
�
� f0�q

2�
M2
B �M

2
P

q2 q�;

hP�P0�j �q���q�bj �B�P�i � i
fT�q

2�

MB �MP
	q2�P� P0�� � �M2

B �M
2
P�q

�
;

hV�P0; 	��j �q��bj �B�P�i � �
2V�q2�

MB �MV
	����	��P�P0�;

hV�P0; 	��j �q���5bj �B�P�i � 2iMVA0�q2�
	� � q

q2 q� � i�MB �MV�A1�q2�

�
	�� �

	� � q

q2 q�
�

� iA2�q2�
	� � q

MB �MV

�
�P� P0�� �

M2
B �M

2
V

q2 q�
�
;

hV�P0; 	��j �q���q�bj �B�P�i � �2iT1�q
2�	����	��P�P

0
�;

hV�P0; 	��j �q����5q�bj �B�P�i � T2�q2�	�M2
B �M

2
V�	

�� � �	� � q��P� P0��


� T3�q
2��	� � q�

�
q� �

q2

M2
B �M

2
V

�P� P0��
�
; (3)
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where q � P� P0 is the momentum transfer, MB the �B
meson mass, MP;V the mass of the pseudoscalar and vector
mesons, and 	 the polarization vector of the vector meson.
We have used the convention 	0123 � �1. In the following,
we choose the convention within which the vectors n� are
n�� � �1; 0; 0;�1�, n�� � �1; 0; 0; 1�, and the light-cone
momentum components are p� � n� � p � p0 � p3,
p� � n� � p � p0 � p3, pb � mbv. Our convention for
the vectors n� is different from that in most of the litera-
ture. In the above definitions, there are ten form factors in
total: f�, f0, fT for the pseudoscalar meson; V, A0, A1, A2,
T1, T2, T3 for the vector meson. Note that the form factors
are, in general, different for each hadron.

In SCET, the energetic light quark is described by its
leading two-component spinor 
 � n6 �n6 �

4 q, and the heavy

quark is replaced by hv � eimbv�x �1�v6 �
2 b. The weak current

�q�b in full QCD is matched onto the SCET current �
�hv
at tree level where we have omitted the Wilson lines for
simplicity. For an arbitrary matrix �, �
�hv has only three
independent Dirac structures. One convenient choice is
discussed in Refs. [13,27]: �
hv, �
�5hv, and �
��?hv. It
can be seen from a trace technology by

 

n6 �n6 �
4

�
�1� v6 �

2
�
n6 �n6 �

4
	c1 � c2�5 � c3�

�
?

�1� v6 �

2
;

(4)

where cis are defined as

 

c1 �
1
4 Tr	�1�v6 �n6 ��
; c2 �

1
4 Tr	�1� v6 �n6 ��5�
;

c3 �
1
4 Tr	�1� v6 �n6 ��?��
: (5)

The above spin symmetry leads to nontrivial relations
for the heavy-to-light form factors: the ten form factors are
reduced to three independent universal form factors. The
B-to-light universal form factors �P, �k;? are defined as

 hPj �
hvj �Bi � 2E�P�E�;

hVj �
�5hvj �Bi � �2iMV�k�E�v � 	�;

hVj
��?hvj �Bi � �2E�?�E�	
����	��v�n��;

(6)

where E � �M2
B � q

2�=2MB is the energy of the light
meson (neglecting the small mass of the final state meson)
and q is the momentum transfer. �i�i�P;k;�� are functions of
energy of the light meson. Up to leading order of �s and
leading power of �QCD=mb, the total ten physical form
factors are determined from the three independent factors
to the leading order of �s as

 

f��q2� �
MB

2E
f0�q2� �

MB

MB �MP
fT�q2� � �P�E�;

MB

MB �MV
V�q2� �

MB �MV

2E
A1�q

2� � �?�E�;

A0�q
2� � �k�E�;

A2�q
2� �

MB

MB �MV

�
�?�E� �

MV

E
�k�E�

�
;

T1�q
2� �

MB

2E
T2�q

2� � �?�E�;

T3�q2� � �?�E� �
MV

E
�k�E�: (7)

As in [11,28], we keep the leading kinematic light meson
mass correction and neglect the higher M2

P;V=M
2
B terms.

B. Light-cone quark model

We start with a discussion of hadron bound states on the
light cone. The goal is to find a relativistic invariant de-
scription of the hadron in terms of its fundamental quark
and gluon constituents. For a complete Fock state basis jni,
the hadron is expanded by a series of wave functions: jhi �P
njnihnjhi �

P
njni n=h. It is convenient to use a light-

cone Fock state basis on which the hadron with momentum
~P � �P�; P?� is described by [23]

 jh: ~Pi �
X
n;�i

Z � �Y
i

dxid2k?i����
xi
p

16�3

�
jn:xiP

�; xiP?i

� k?i; �ii�n=h�xi; k?i; �i�; (8)

where the sum is over all Fock states and helicities and the
product is performed on the variables xi and k?i, not on the
wave functions �n=h�xi; k?i; �i�,
 

�Y
i

dxid2k?i �
Y
i

dxid2k?i
�
1�

X
j

xj

�

� 16�32

�X
j

k?j

�
: (9)

The essential variables are boost-invariant light-cone mo-
mentum fractions xi � p�i =P

� with pi momenta of quarks
or gluons and the internal transverse momenta k?i �
p?i � xiP?. The light-cone momentum fractions xi and
the internal transverse momenta k?i are relative variables
which are independent of the hadron momentum. The wave
functions in terms of these variables are explicitly Lorentz
invariant and they are the probability amplitudes for find-
ing n partons with momentum fractions xi and relative
momentum k?i in the hadron. The total probability is equal
to 1 which implies a normalization condition

 

X
n;�i

Z � �Y
i

dxid2k?i
16�3

�
j�n=h�xi; k?i; �i�j2 � 1: (10)
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The hadron state jhi is the eigenstate of the light-cone
Hamiltonian HLCjhi � M2jhi with the hadron mass M.
Solving the eigenstate equation with the full Fock states
is very difficult and is beyond our capability. We will meet
an infinite number of coupled equations and the problems
of some nonphysical singularities (endpoint singularities
xi ! 0 or ultraviolet singularities k? ! 1). What con-
cerns us most is the wave function at the endpoint region.
For the wave functions �n=h�xi; k?i; �i�, one general prop-
erty is found [23]:

 �n=h�xi; k?i; �i� ! 0 as xi ! 0: (11)

This constraint means that the probability of finding par-
tons with very small longitudinal momentum is little. In
this mechanism, the �B meson wave function is overlapped
with the light meson wave function at the endpoint where
the valence antiquark carries momentum of order of the
hadron scale. In the infinite heavy quark mass limit, the
light meson wave functions at the endpoint are suppressed.
However, at the realistic mb scale, the suppression is not so
heavy that soft contribution still dominates the heavy-to-
light form factors.

The solution of all wave functions from first principles is
not obtainable at present. We will use the constituent quark
model. The constituent quark masses are about several
hundred MeV for light quarks which are much larger
than the current quark mass obtained from the chiral
perturbation theory. The appreciable mass absorbs dynami-
cal effects from a complicated vacuum in the common
instanton form [29]. A key approximation adopted in the
light-cone quark model is the mock-hadron approximation
[30] where the hadron is dominated by the lowest Fock
state with free quarks. Under the valence quark assump-
tion, we can write a meson state M constituting a quark q1

and an antiquark �q2 by
 

jM�P;S;Sz�i �
Z dp�1 d

2p1?

16�3

dp�2 d
2p2?

16�3 16�3

� 3� ~P� ~p1� ~p2�
X
�1;�2

�SSz�~p1; ~p2; �1; �2�

� jq1�p1; �� �q2�p2; ��i; (12)

with the meson denoted by its momentum P and spin S, Sz,
the constituent quarks q1� �q2� denoted by momenta p1�p2�,
and the light-cone helicities �1��2�. The 4-momentum p is
defined as

 ~p � �p�; p?�; p? � �p
1; p2�; p� �

m2 � p2
?

p�
:

(13)

From the momentum, we can see that the quarks in the
meson are taken to be on the mass shell. In the following,
we choose a frame where the transverse momentum of the
meson is zero, i.e., P? � 0. The light-front momenta p1

and p2 in terms of light-cone variables are

 p�1 � x1P
�; p�2 � x2P

�; p1? � �p2? � k?;

(14)

where xi are the light-cone momentum fractions which
satisfy 0< x1, x2 < 1, and x1 � x2 � 1. The invariant
mass M0 � p1 � p2 of the constituents and the relative
momentum pz in the z direction can be written as

 M2
0 �

m2
1 � k

2
?

x1
�
m2

2 � k
2
?

x2
;

pz �
x2M0

2
�
m2

2 � k
2
?

2x2M0
:

(15)

Note that the invariant mass of the quark system is different
from the meson total momentum, i.e. p1 � p2 � P.

The momentum-space wave function related to the me-
son bound state can be expressed as

 �SSz�p1; p2; �1; �2� � RSSz�1�2
�x; k?���x; k?�; (16)

where ��x; k?� describes the momentum distribution of
the constituents in the bound state with x  x2, and RSSz�1;�2

constructs a state of definite spin �S; Sz� out of the light-
cone helicity ��1; �2� eigenstates. In practice, it is conve-
nient to use the covariant form for RSSz�1;�2

[3,25]:

 RSSz�1;�2
�x; k?� �

�������������
p�1 p

�
2

q
���
2
p

~M0

�u�p1; �1��v�p2; �2�; (17)

where the parameter ~M0 
�������������������������������������
M2

0 � �m1 �m2�
2

q
and the �

matrices for the mesons are defined as

 �P � �i
�5������
Nc
p ; for the pseudoscalar meson;

�V �
� ^6	�Sz� �

	̂��p1�p2�
M0�m1�m2������
Nc
p ; for the vector meson

(18)

with Nc � 3. The transverse and longitudinal polarization
vectors 	̂ are

 	̂ ���1� � �0; 0; ~	?��1��;

	̂��0� �
1

M0

�
�
M2

0

P�
; P�; 0

�
;

(19)

where ~	?��1� � ��1;�i�=
���
2
p

. The Dirac spinors satisfy
the relation

 

X
�

u�p; �� �u�p; �� �
�p6 �m�
p�

; for quarks;

X
�

v�p; �� �v�p; �� �
�p6 �m�
p�

; for antiquarks:

(20)

The momentum distribution amplitude ��x; k?� is the
generalization of the distribution amplitude ��x� which is
normalized as
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Z dxd2k?
2�2��3

j��x; k?�j
2 � 1: (21)

Before discussing the form factors, we will study the
decay constants in the light-cone approach. The decay
constants fP;V are defined by the matrix elements of the
axial-vector current for the pseudoscalar meson and the
vector current for the vector meson:

 h0jA�jP�P�i � ifPP�; h0jV�jV�P�i � MVfV	�;

(22)

where P is the meson momentum, MV is the mass of the
vector meson and 	� the polarization vector: 	���1� �

�0; 0; ~	?�, 	��0� �
1
MV
�
�M2

V
P� ; P�; 0�. Note that the longitu-

dinal polarization vector of the meson is not the same as
that of the quark system due to MV � M0.

It is straightforward to show that the decay constant of a
pseudoscalar meson and a vector meson can be represented
by
 

fP � 4

���
3

2

s Z dxd2k?
2�2��3

�P�x; k?�
A���������������������

A2 � k2
?

q ;

fV � 4

���
3

2

s Z dxd2k?
2�2��3

�V�x; k?����������������������
A2 � k2

?

q 1

M0

�
x�1� x�M2

0

�m1m2 � k
2
? �

B

2WV

�
m2

1 � k
2
?

1� x
�
m2

2 � k
2
?

x

� �1� 2x�M2
0

��
; (23)

where

 A � m1x�m2�1� x�;

B � xm1 � �1� x�m2;

WV � M0 �m1 �m2:

(24)

In the above expression for the vector decay constant, we
have used the plus component for the longitudinal polar-
ization vector. When the decay constants are known from
the experimental data, they can be used to constrain the
parameters in the light-cone wave functions.

C. SCET light-cone quark model

Now, we discuss how to establish a light-cone quark
model utilizing soft collinear effective theory. Since the �B
meson mass is dominated by the b quark mass, the mo-
mentum fraction for the spectator light antiquark x is of
order �QCD=mb. The variable X  xmb is of order of �QCD

which is independent of mb in the limit mb ! 1. The B
meson wave function should have a scaling behavior in the
heavy quark limit [31]

 �B�x; k?� !
�������
mb
p

��X; k?�; (25)

where the factor
�������
mb
p

subtracts out the mb dependence of
�B�x; k?� and the function ��X; k?� is normalized asR
dXd2k?j��X; k?�j2 � 1. It is also found that ��X; k?�

is a function of v � pq: ��X; k?� ! ��v � pq� with pq the
momentum of the spectator antiquark. This observation is
important in heavy-to-heavy transitions; however, because
we work in the �B meson rest frame, it does not help us to
understand the heavy-to-light case. The light meson wave
function �M�x; k?� that appeared in the heavy-to-light
form factors is the wave function at endpoint x�
�QCD=E! 0 in the large energy limit. The form of the
light meson wave function at the endpoint is very impor-
tant in determining the scaling behavior inmb of the heavy-
to-light form factors.

In the heavy quark limit, the heavy quark momentum is
approximated as pb � mbv with other components ne-
glected. For the light energetic quark, p� � p? � p�.
Thus, the light quark momentum p is replaced by p� �

�n� � p�
n��
2 . As discussed before, in the soft collinear ef-

fective theory, the field describing the heavy quark is the
two-component spinor hv and the one describing the ener-
getic quark is the spinor 
. For our purpose, we need the
expression for the helicity sums for Dirac spinors in the
heavy quark limit. For the hheavy quark hv, the leading-
order contribution is

 

X
�

hv��� �hv��� � �1� v6 �: (26)

For the light quark field 
, the helicity sum gives

 

X
�


�p; �� �
�p; �� �
n6 �
2
: (27)

The above two equations provide the spin symmetry rela-
tions for heavy-to-light form factors. While for the specta-
tor which is a light antiquark, it satisfies the relation given
in Eq. (20).

The momenta for �B and light mesons are denoted by P
and P0, respectively. It is convenient to work in the �B
meson rest frame and set P0? � 0. In this Lorentz frame,
the momentum transfer q is purely longitudinal, i.e., q? �
0 and q2 � q�q� � 0 cover the entire physical range.

The lowest order contribution to the form factor comes
from the soft Feynman diagram where the spectator anti-
quark goes directly into the final light meson. The diagram
is depicted in Fig. 1. The valence quark approximation
guarantees that only the endpoint wave function of the light
meson overlaps with the �Bmeson. We use pb, p1, and pq to
denote the momenta of the b quark, the energetic quark,
and the spectator:

 p�b � �1� x�P
�; pb? � �k?;

p�1 � �1� x
0�P0�; p1? � �k?;

p�q � xP� � x0P0�; pq? � k?;

(28)
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where P� � MB and P0� � 2E. x, x0 are the momentum
fractions of the spectator antiquark in the �B meson and in
the final state meson, respectively. x and x0 are connected
by x � x0r. It is useful to define a variable rP0�=P��
1�q2=M2

B. Since x0 varies from 0 to 1, x varies from 0 to r.
Now, we are able to present the derivation of form

factors in the light-cone approach with some details. The
�B-to-pseudoscalar meson matrix element can be expressed

as
 

hPj �
hvj �Bi � ��1�Nc
Z r

0
dx
Z d2k?

2�2��3
P���P�x

0; k?�

��B�x; k?�
P�P0�

������������������
x�1� x�

p ��������������������
x0�1� x0�

p���
2
p

~M0

���
2
p

~M00

� Tr
�
�p6 q �mq�

p�q

�i�5�������
Nc
p

n6 �
2
�1� v6 �

��i�5�������
Nc
p

�
;

(29)

where mq is the mass of spectator antiquark. Since x�
x0 ��QCD=mb, we will neglect x, x0 compared to 1. The
mass difference between the b quark mass and the �Bmeson
is neglected, i.e., mb �

:
MB. It is easy to obtain the relation

������������������
x�1� x�

p
~M0 �

���������������������
A2 � k2

?

q
. Expanding the momentum

and keeping the leading power component, we get

 hPj �
hvj �Bi �
Z r

0
dx
Z d2k?

2�2��3

�
��P�x

0; k?��B�x; k?����������������������
A2

B � k
2
?

q ���������������������
A2

P � k
2
?

q xm2
b�p

�
q �mq�;

(30)

where p�q �
k2
?
�m2

q

xmb
. From Eqs. (6) and (30), one obtains

 �P �
mb

2E

Z r

0
dx
Z d2k?

2�2��3
��P�x

0; k?��B�x; k?����������������������
A2

B � k
2
?

q ���������������������
AP � k

2
?

q
��xmbmq �m

2
q � k

2
?�: (31)

We can see that the leading-order form factor �P depends
on the spectator quark mass mq and the scaleless factor
mb=E, and nonperturbatively it depends on E through the
light meson wave function �P�x0; k?� at x0 ��QCD=E.
The fact that mb must be associated with x means that
the form factor depends on the nonperturbative scale X �
xmb rather than the hard scale mb (except a normalization
constant factor

�������
mb
p

).
For �Bmeson decays to a longitudinally polarized vector,

substituting the polarization vector into the right-hand side
of Eq. (6), we get

 hVj �
�5hvj �Bi � �iMV�k

�
P0�

MV
�
MV

P0�

�
� �iP0��k; (32)

where we have dropped the subleading term. The expres-
sion in the light-cone approach gives

 

hVj �
�5hvj �Bi� i
Z r

0
dx
Z d2k?

2�2��3
��V�x

0;k?��B�x;k?�

2
��������������������
A2

B�k
2
?

q ��������������������
A2

V�k
2
?

q x0m2
bTr

�
�p6 q�mq�

�
� ^6	�

	̂ � �p1�pq�

WV

�
n6 �
2
�5�1�v6 ��5

�

�
�im2

bP
0�

2

Z r

0
dx
Z d2k?

2�2��3
��V�x

0;k?��B�x;k?�

M0V

��������������������
A2

B�k
2
?

q ��������������������
A2

V�k
2
?

q x
�

2z2�p�q �mq��
p�q �z2p�1

WV
�p�q �mq�

�
; (33)

with z  M0V=P0�. Although it seems that the first term is

suppressed by � �
���������������������
�QCD=mb

q
, later we find that this term

gives a relatively large contribution in the numerical cal-
culation. We obtain the expression for the longitudinal
leading-order form factor as
 

�k �
m2
b

2

Z dxd2k?
2�2��3

��V�x
0; k?��B�x;k?�

M0V

���������������������
A2

B� k
2
?

q ���������������������
A2

V � k
2
?

q
� x

�
2z2�p�q �mq� �

p�q � z
2rmb

WV
�p�q �mq�

�
: (34)

Similarly, we can analyze the leading-order transverse
form factor. When performing the calculation of �?, a
formula for the transverse momentum integral is useful,

 

Z
d2k?�	 � p1�p�q �

1

2

Z
d2k?k2

?	
�: (35)

The expression for �B to a transversely polarized vector
meson is

×

B L

s s

FIG. 1. The leading-order contribution to heavy-to-light form
factors with ‘‘s’’ representing the soft momentum.
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hVj �
��?hvj �Bi � i
Z r

0
dx
Z d2k?

2�2��3
��V�x

0; k?��B�x; k?�

2
���������������������
A2

B � k
2
?

q ���������������������
A2

V � k
2
?

q xm2
b Tr

�
�p6 q �mq�

�
� ^6	�

	̂ � �p1 � pq�

WV

�
n6 �
2
��?�1� v6 ��5

�

� �m2
b

Z dxd2k?
2�2��3

��V�x
0; k?��B�x; k?����������������������

A2
B � k

2
?

q ���������������������
A2

V � k
2
?

q 	����	��v�n��x
�
p�q �mq �

k2
?

WV

�
: (36)

It is straightforward to get
 

�? �
m2
b

2E

Z dxd2k?
2�2��3

��V�x
0; k?��B�x; k?����������������������

A2
B � k

2
?

q ���������������������
A2

V � k
2
?

q
� x

�
p�q �mq �

k2
?

WV

�
: (37)

D. Higher order corrections to the heavy-to-light form
factors in the light-cone perturbation theory

In this subsection, we will derive the higher order cor-
rections for the heavy-to-light form factors in the light-
cone perturbation theory of QCD. Besides the leading-
order soft contributions to the universal form factors, the
next-to-leading-order contribution is the kind of diagram
shown in Fig. 2 with one hard gluon exchange (for the
vertex corrections, please see [13,28]).

A four-component Dirac field  can be decomposed into
two-component spinors 
 and � by

  � 
� �; 
  P� �
n6 �n6 �

4
 ;

�  P� �
n6 �n6 �

4
 ;

(38)

where equations of motion for spinors 
 and � are

 in� �D
n6 �
2

� �i 6D? �m�� � 0; (39)

 in� �D
n6 �
2
�� �i 6D? �m�
 � 0: (40)

In light-cone quantization, the time variable is chosen to be
different from the conventional one t � x3. We adopt the
light-cone time as � � n� � x and then the timelike deriva-
tive is n� � @. In Eq. (40), there is no time derivative. Thus

� is a constrained field,3 since it is determined by 
 at any
time n� � x. From Eq. (40), the � field is obtained as

 � �
1

in� �D
�i 6D? �m�

n6 �
2

: (41)

For the gluon field, it satisfies the color Maxwell equa-
tion @�Fa�� � gJa�, where Ja� is the quark current. By
using the constraint n� � A � 0, we obtain one relation,
�n� � @�@�A

a� � �g�n� � J
a�. Thus, the field component

n� � A is not a dynamical variable but rather it is deter-
mined by A? through

 n� � A �
2

n� � @
@? � A? �

2

�n� � @�
2 g�n� � J

a�: (42)

The Feynman rules for 
 and A? have been derived,
such as in [32], which are not useful for our purpose. We
prefer to use another formulation given in [24]. In light-
cone perturbation theory, the diagrams are n� � x ordered
and all particles are on mass shell. For the propagator of the
quark, it contains an instantaneous part, in particular,

 

i�p6 �m�

p2 �m2 � i	
�

i�p6 on �m�

p2 �m2 � i	
�

in6 �
2n� � p

; (43)

where pon is the on-shell momentum pon � �n� �

p;
p2
?
�m2

n��p
; p?� and p2

on � m2. The second term in the quark

propagator n6 �
2n��p

is the instantaneous part induced by in-
tegrating out the field �. For the gluon field, the polariza-
tion sum is written as
 

d���k� 
X
�g

	��k; �g�	���k; �g�

�
X
i�1;2

�
�n��

	�i� � k
n� � k

� 	�i��

�

�

�
�n��

	�i� � k
n� � k

� 	�i��

�
; (44)

where 	�i� are purely transverse vectors: 	�i�� � 	�i�� � 0

and 	�i��? � 	
�j�
? � ij. There are two terms in brackets in

Eq. (44): the first term n��
	�i��k
n��k

comes from the longitudi-

nal component n� � A, and the second, 	�i�� , comes from the
transverse component A?. If the gluon momentum is
chosen to be in the longitudinal direction, then 	�i� � k �
0 and only the transverse components 	�i� remain. It reflects

×

B L

(a)

×

B L

(b)

FIG. 2. The one-gluon exchange contributions to heavy-to-
light form factors with the signs ‘‘�’’ representing the electro-
weak vertex.

3In some references, 
 is called a ‘‘good’’ component and � is
called a ‘‘bad’’ component.
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the fact that the physical gluon is transverse polarized. In
the above rules, the choice of n� and n� is arbitrary and
there is a symmetry by exchanging them. In this way, we
obtain the light-cone quantization rules for the light-cone
time n� � x.

For the one-gluon exchange diagram given in Fig. 2, the
amplitude at the quark level is given in the conventional
covariant form as
 

A�
g2

k2d��

�
�u�p1��

�p6 q1�mb�

p2
q1�m

2
b

TA��b�pb� �vs�pq�TA��v�p2�

� �u�p1�T
A��

p6 q2

p2
q2

�b�pb� �vs�pq�T
A��v�p2�

�
; (45)

where u�v� are light quark (antiquark) spinors, b�vs� are b
quark (spectator antiquark) spinors, pq1;q2 are the internal
quark momenta, k is the exchanged gluon momentum, and
k � p2 � pq, pq1 � pb � p2, pq2 � p1 � p2 � pq. The
first term of the amplitude comes from the contribution of
Fig. 2(a), and the second term comes from Fig. 2(b). We
have neglected the light quark masses. For the second term
in Eq. (45), we use the light-cone quantization rules of
Eqs. (43) and (44), while for the first term in Eq. (45), the
exchanged rules of Eqs. (43) and (44) by n� $ n� are
applied. Thus, the amplitude is rewritten in the light-cone
form by
 

A �
g2

k2

�
�u�
�

n6 �
2n� � pq1

�
�p6 q1�on �mb

p2
q1 �m

2
b

�

� TA
�
��? �

n6 �
n� � k

k�?

�
b �vsTA

�
�?� �

n6 �
n� � k

k?�

�
v

� �uTA
�
��? �

n6 �
n� � k

k�?

��
n6 �

2n� � pq2
�
�p6 q2�on

p2
q2

�

� �b �vsT
A
�
�?� �

n6 �
n� � k

k?�

�
v
�
: (46)

Neglecting the contributions suppressed by �QCD=mb,
we find that the contribution from the instantaneous inter-
action part is
 

Ah �
�g2

�n� � p2��n� � pq�

�
�
n��

n6 �
2mb

TA��?hv �vsT
A�?�
n�

� �
n�T
A��?

n6 �
2n� � P0

�hv �vsT
A�?�
n�

�
: (47)

This contribution is not singular for the leading twist
distribution amplitudes of B and light mesons. It is usually
called a ‘‘hard’’ contribution which breaks the spin sym-
metry due to n6 � and n6 � matrices. In the light-cone lan-
guage, the hard gluon exchange contributions come from
the instantaneous quark interactions and the transversely
polarized gluons. The hard one-gluon exchange contribu-
tions cannot be absorbed into the three universal form
factors because this type of higher order contribution
breaks the spin symmetry in the leading order.

III. NUMERICAL RESULTS AND DISCUSSIONS

The physical heavy-to-light form factors contain both
hard and soft contributions. In this study, we concentrate
on the leading-order soft form factors. The next-to-leading-
order �s corrections, which break the spin symmetry, will
be calculated in a future work. In order to obtain the
numerical results, we have to determine the wave functions
of the hadrons which contain all information of the hadron
state. The full solution takes great efforts, so we use the
phenomenological Gaussian-type wave function:

 ��x; k?� � N

��������
dkz
dx

s
exp

�
�

~k2

2!2

�
; (48)

where N � 4��=!2�3=4 and kz of the internal momentum
~k � � ~k?; kz� is defined through

 1� x �
e1 � kz
e1 � e2

; x �
e2 � kz
e1 � e2

; (49)

with ei �
�����������������
m2
i �

~k2
i

q
� xiM0

2 �
m2
i�k

2
?i

2xiM0
. We then have

 kz �
xM0

2
�
m2

2 � k
2
?

2xM0
;

dkz
dx
�

e1e2

x�1� x�M0
: (50)

In this wave function, the distribution of the momentum
is determined by the quark mass and the parameter !. The
quarks are constituent quarks and the quark masses are
usually chosen as

 mu;d � 0:25 GeV; ms � 0:40 GeV;

mb � 4:8 GeV:
(51)

The parameter ! can be determined by the hadronic re-
sults, for example, the decay constants [33].

As for the decay constants of � and �0, we should pay
much more attention to the mixing of these two particles.
Although the quark model has achieved great successes,
we still do not have the definite answer on the exact
components of these two mesons. The study of B to ��0�

decays, especially the study of the B! ��0� form factor,
can help us to understand their intrinsic character (for a
recent study, please see [34]). Here we view these two
particles as the conventional two-quark states. As for the
mixing, we use the quark flavor basis proposed by
Feldmann and Kroll [35], i.e. these two mesons are made
of �n � �nn � � �uu� �dd�=

���
2
p

and �s � �ss:

 

j�i
j�0i

� �
� U���

j�ni
j�si

� �
; (52)

with the mixing matrix

 U��� �
cos� � sin�
sin� cos�

� �
; (53)

where � is the mixing angle. In this mixing scheme, only
two decay constants fn (n � u, d) and fs are needed:

CAI-DIAN LÜ, WEI WANG, AND ZHENG-TAO WEI PHYSICAL REVIEW D 76, 014013 (2007)

014013-8



 h0j �n���5nj�n�P�i �
i���
2
p fnP�;

h0j �s���5sj�s�P�i � ifsP�:

(54)

This is based on the assumption that the intrinsic �nn� �ss�
component is absent in the �s��n�meson, i.e., based on the
Okubo-Zweig-Iizuka suppression rule. These decay con-
stants have been determined from the related exclusive
processes as [35]

 fn � �1:07� 0:02�f�; fs � �1:34� 0:06�f�: (55)

In the following we will calculate the form factors of B!
�n and Bs ! �s. The gluonic contribution to B! ��0� has
also been studied in Ref. [34]. We will neglect it, as it is
very small.

We use the following results for the decay constants as
input in the light-front wave functions:

 fB � 0:190 GeV; fBs � 0:236 GeV;

f� � 0:132 GeV; fK � 0:160 GeV;

f� � 0:205 GeV; f! � 0:195 GeV;

fK? � 0:217 GeV; f� � 0:231 GeV:

(56)

Then the parameters! in the light-front wave functions are
determined from these decay constants as

 !B � 0:55�0:05
�0:04 GeV; !Bs � 0:64�0:05

�0:06 GeV;

!� � 0:33 GeV; !K � 0:38 GeV;

!n � 0:38�0:09
�0:08 GeV; !s � 0:39�0:06

�0:06 GeV;

!� � 0:31�0:03
�0:03 GeV; !! � 0:29�0:03

�0:03 GeV;

!K? � 0:33�0:03
�0:03 GeV; !� � 0:35�0:03

�0:03 GeV;

(57)

where the uncertainties come from varying the decay con-
stants of the heavy and light mesons by 10%. Some light
meson decay constants have been determined to a high
accuracy, for example, f�, fK. We neglect the uncertainties
for them.

A. Results for the B! P form factor �P
Now we are ready to give the numerical results of the B-

to-pseudoscalar soft form factors at q2 � 0, i.e. E �
mB=2. Using the above parameters, we obtain the results
as follows:
 

�B!�P

�
mB

2

�
� 0:247; �B!KP

�
mB

2

�
� 0:297;

�B!�nP

�
mB

2

�
� 0:287�0:059

�0:065; �Bs!KP

�
mB

2

�
� 0:290;

�Bs!�sP

�
mB

2

�
� 0:288�0:047

�0:052; (58)

where the uncertainties are from the decay constant of the
light mesons. We also find that the uncertainties caused by
B meson decay constants are rather small and thus we
neglect these uncertainties. In Ref. [20], the SCET sum
rule result is calculated as �B!�P � 0:27 which is consistent
with our result within theoretical errors. The physical form
factors can be obtained directly using the relation in
Eq. (7). At maximal recoil r � 1, f� and f0 are equal to
each other, which are exactly the soft form factor �P; fT is
slightly larger. Table I lists the B! P form factors at q2 �
0.

These B! P form factors have also been studied sys-
temically in the usual light-cone quark model [4–6], the
light-cone sum rules [8], and the PQCD approach [10].
Although lattice QCD (LQCD) cannot give direct predic-

TABLE I. The physical B�u;d;s� ! P form factors at maximal recoil using the usual LCQM [6],
LCSR [8], LQCD [36–38], and PQCD [10] approaches. The different values for f��B! �� in
Ref. [37] correspond to different extrapolations.

LCQM [6] LCSR [8] PQCD [10] LQCD [36] LQCD [37] LQCD [38] This work

B! � f� 0.25 0.258 0.292 0.27 0.27(0.26) 0.23 0.247
fT 0.253 0.278 0.253
f0 0.25 0.292 0.27 0.247

B! K f� 0.35 0.331 0.321 0.297
fT 0.358 0.311 0.325
f0 0.35 0.321 0.297

B! �n
a f� 0.275 0.287
fT 0.285
f0 0.287

Bs ! K f� 0.290
fT 0.317
f0 0.290

Bs ! �s f� 0.288
f0 0.288

aThe form factor of B! �, rather than that of B! �n, is calculated in LCSR.
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tions on the B-to-light form factors at large recoiling, there
are some studies using the extrapolations from the results
at large q2: in quenched LQCD [36] and in unquenched
LQCD [37,38]. We cite these results in Table I.

Comparing the results in Table I, we can find that our
leading-order results agree with the results calculated using
other approaches. The numerical results of higher order
corrections which should be small in our approaches will
be taken into account in future work.

We compare our approach with the previous light-cone
quark models. As in the conventional form of [4] where the
quarks are on shell, the calculation of form factors is
performed in the physical momentum regions q2 � 0.
The difference between the approach in [4] and ours is
that we make approximations in the heavy quark mass and
large energy limits. The consistency of the numerical
predictions in the two methods means that our result is
the leading dominant contribution. In the covariant form in
[25], the quarks are off shell. The evaluations are per-
formed in the momentum regions q2 < 0, and the analytic
continuation is required to obtain the physical form factors.
The advantage of this approach is that the zero-mode
(k� � 0) contribution does not occur. In our method, the
zero-mode contribution vanishes in the heavy quark mass
and large energy limits.

Since our analysis is within the SCET framework, we
should make sure that the final state meson is energetic.
The energy of the light meson should be larger than�������������������
mB�QCD

q
� 1:5 GeV in order to ensure it is a collinear

meson. From this constraint, we can get q2 � m2
B �

2mBE< 10 GeV2. Thus we can directly calculate the
form factors in the range of 0< q2 < 10 GeV2 and the
results should be reliable. We plot the q2 dependence of the
B�s� ! P form factors in Fig. 3. In this figure, the form
factors f��q2� � �P�E�, fT�q2� � MB�MP

MB
�P�E�, and

f0�q
2� � 2E

mB
�P�E� are plotted. The q2 dependence of f�

and fT is essentially the same, except for the difference of
the form factor at q2 � 0. The curve of f0�q2� is more flat
than the other two because of the compensation of the
factor r � 2E

mB
� 1� q2

m2
B

.

In order to study the analytic q2 dependence of the
results for the form factors, we fit the data by adopting
the simple parametrization

 f�q2� �
f�0�

1� a�q2=m2
B� � b�q

2=m2
B�

2 ; (59)

where f�0� are the results at q2 � 0 which have been
discussed as above, while a and b are the parameters.

0 2 4 6 8 10
q2 in unit of GeV2
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0.3

0.35

0.4

0.45

0.5
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f0
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0 2 4 6 8 10
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0.3

0.35
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0.45
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f0

B K

0 2 4 6 8 10
q2 in unit of GeV2
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0.35

0.4
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0.5

0.55

f

f0

B n
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0.3

0.35
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0.45

0.5
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0.6
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fT

f

f0

Bs K

0 2 4 6 8 10
q2 in unit of GeV2

0.3

0.35

0.4

0.45

0.5

0.55
f

f0

Bs s

FIG. 3. The q2 dependence of B�s� ! P form factors. In this figure, we plot f�, f0, and fT for B! �, B! K, and Bs ! K
transitions. But for B! �n and Bs ! �s, only the first two form factors are shown for the ambiguity of the mass for �n and �s in fT .
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The fitted results for these two parameters are summarized
in Table II. From Fig. 3, we can see that all of the curves are
close to being straight lines and the parameters b should be
rather small. The results from the parametrization also
verify this expectation. Our results for parameters a for
different processes are also close to each other: around a �
1:5 for f� and fT or a � 0:5 for f0.

B. Results for B! V form factors

A similar analysis can also be applied to B! V form
factors. At q2 � 0, the results for the B! V soft form
factors are

 �B!�
k

�
mB

2

�
� 0:260�0:028

�0:030; �B!�?

�
mB

2

�
� 0:260�0:030

�0:031;

�B!!
k

�
mB

2

�
� 0:240�0:029

�0:031; �B!!?

�
mB

2

�
� 0:239�0:031

�0:031;

�B!K
�

k

�
mB

2

�
� 0:284�0:025

�0:027; �B!K
�

?

�
mB

2

�
� 0:290�0:027

�0:029;

�Bs!K
�

k

�
mB

2

�
� 0:279�0:030

�0:030; �Bs!K
�

?

�
mB

2

�
� 0:271�0:030

�0:030;

�Bs!�
k

�
mB

2

�
� 0:279�0:029

�0:030; �Bs!�?

�
mB

2

�
� 0:276�0:030

�0:030;

(60)

where the uncertainties are from the decay constants of the
light mesons. In order to make a comparison, we collect the
results for the physical form factors in LCQM [4,6], LCSR
[9], the PQCD [10] approach, LQCD [36,39], and our
leading-order results in Table III. Our results are consistent
with other approaches except for the smaller T2;3 and larger
T1 in PQCD approaches.

The features of our results are as follows:
(i) Our results of �k and �? for every meson are close to

each other, which is mainly due to the similar wave
function for the longitudinal and transverse
polarizations.

(ii) The physical form factors can be directly calculated
by using the soft form factors. The kinematic factor
as in Eq. (7) makes the physical form factors differ-
ent. V is the largest form factor which is enhanced by
the factor 1�MV=MB, while T3 is the smallest one
because there is a minus term in Eq. (7).

(iii) The soft form factor of B! K� is larger than that of
B! � because the s quark in the K� meson carries
more momentum than the d quark in �, which can
induce more overlap of the �B meson wave function
and the light K� meson wave function. �B!!

k;? is

smaller than �B!�
k;? , which is a consequence of the

fact that the decay constant of ! is smaller than that
of �.

(iv) As we have discussed above, we keep the first term

in �k, although it is suppressed by � �
���������������������
�QCD=mb

q
.

This term cannot be neglected in the numerics, as the
suppression is not so effective: the �B!�

k
without this

term becomes

 �B!�
k

�
mB

2

�
� 0:139; (61)

which is quite smaller than the result with it. This
small �k can lead to a small A0 but a large A2 and T3.

The q2 dependence (0< q2 < 10 GeV2) of the form
factors is plotted in Fig. 4. The two form factors V and
T1 have the same q2 dependence except for the different
results at q2 � 0, and both of them can be directly calcu-

TABLE II. The parameters in the parametrization of B�u;d;s� !
P form factors. The fitted values of a and b for fT are the same
as the ones in f�.

fB!�� fB!K� fB!�n� fBs!K� fBs!�s�

a 1.43 1.28 1.31 1.51 1.49
b 0.08 0.00 �0:00 0.23 0.22

fB!�0 fB!K0 fB!�n0 fBs!K0 fBs!�s0

a 0.56 0.46 0.48 0.66 0.64
b �0:14 �0:08 �0:14 �0:00 0.00

TABLE III. The physical B! V form factors at maximal
recoil, i.e. q2 � 0.

B! � B! K� B! ! Bs ! K� Bs ! �

LCQM [6] V 0.27 0.31
A0 0.28 0.31
A1 0.22 0.26
A2 0.20 0.24

LCSR [9] V 0.323 0.411 0.293 0.311 0.434
A0 0.303 0.374 0.281 0.360 0.474
A1 0.242 0.292 0.219 0.233 0.311
A2 0.221 0.259 0.198 0.181 0.234
T2 0.267 0.333 0.242 0.260 0.349

PQCD [10] V 0.318 0.406 0.305
A0 0.366 0.455 0.347
A1 0.25 0.30 0.24
A2 0.21 0.24 0.20

LQCD [36] V 0.35
A0 0.30
A1 0.27
A2 0.26
T1 0.24 [39]

This work V 0.298 0.339 0.275 0.323 0.329
A0 0.260 0.283 0.240 0.279 0.279
A1 0.227 0.248 0.209 0.228 0.232
A2 0.215 0.233 0.198 0.204 0.210
T1 0.260 0.290 0.239 0.271 0.276
T2 0.260 0.290 0.239 0.271 0.276
T3 0.184 0.194 0.168 0.165 0.170
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lated by �?�E�. A0�q
2� � �k�E� has similar q2 dependence

with �?�E�. When q2 gets large, A0 is a little sharper than V
and T1. The other four form factors are rather flat and are
less sensitive to q2. From the figure, we can see that A2 and
T3 show a tendency to decrease at large q2; these two form
factors may not be described by the above parametrization
and so we will not fit them as in B-to-pseudoscalar decays.
We use the same parametrization to describe the q2 depen-
dence of the other form factors, and the results for the fitted
parameters are given in Table IV. From the table, we can
see that the parameters a for various channels are close to
each other: around a � 1:5 for �k�A0� and �?�V; T1� or

a � 0:5 for 2E
mB
�?�A1; T2�. Another interesting feature is

that, for all form factors, the parameter b is not large and
the form factor is dominated by the monopole term.

IV. CONCLUSIONS

A light-cone quark model within the soft collinear ef-
fective theory is constructed in this study. We calculated all
the heavy-to-light B�s� ! P and B�s� ! V transition form
factors at the large recoiling region. The three universal
soft form factors are studied; in particular, the B! V form
factors �k;? are given for the first time. Our numerical
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FIG. 4. The q2 dependence of the B�s� ! V form factors.

TABLE IV. The parameters in the parametrization of B! V form factors.

�B!�
k
�A0� �B!!

k
�A0� �B!K

�

jj
�A0� �Bs!K

�

k
�A0� �Bs!�

k
�A0�

a 1.56 1.60 1.51 1.74 1.73
b 0.17 0.22 0.14 0.47 0.41

�B!�? �V; T1� �B!!? �V; T1� �B!K
�

? �V; T1� �Bs!K
�

? �V; T1� �Bs!�? �V; T1�

a 1.45 1.49 1.37 1.64 1.60
b 0.15 0.20 0.11 0.42 0.36

2E
mB
�B!�? �A1; T2�

2E
mB
�B!!? �A1; T2�

2E
mB
�B!K

�

? �A1; T2�
2E
mB
�Bs!K

�

? �A1; T2�
2E
mB
�Bs!�? �A1; T2�

a 0.62 0.66 0.55 0.82 0.48
b �0:11 �0:10 �0:05 0.08 0.04
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results are, in general, consistent with other nonperturba-
tive methods, such as light-cone sum rules and quark
models within theoretical errors. Our numerical results
are close to the results by other methods, which supports
the fact that the leading-order soft contribution is dominant
in the light-cone quark model. The theoretical uncertainties
caused by the lesser known B meson decay constants are
small. The q2 dependence of the B! P, V form factor is
also studied in the range 0< q2 < 10 GeV2.
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