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53 Rue des Martyrs, F-38026 Grenoble Cedex, France
bCenter for Cosmology, Particle Physics and Phenomenology CP3,
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1 Introduction

With the discovery of the Higgs boson [1, 2], the LHC has finally reached the very fron-

tiers of the Standard Model (SM). Dedicated analyses based on Run I data have so far

shown excellent agreement between the observed 125GeV bosonic resonance and the scalar

particle originally postulated by Higgs [3, 4], Englert and Brout [5], and Guralnik, Hagen

and Kibble [6]. Notwithstanding, it is an ongoing task to decipher whether such a state

corresponds indeed to the SM agent of electroweak (EW) symmetry breaking [7–9], or if al-

ternatively the LHC has unveiled just one Higgs-like state among many others, a composite

state, or the overlap of multiple resonances, just to mention few possibilities. Moreover, the

state-of-the-art precision in the Higgs coupling extraction lies within the 10–20% level [10],

right at the ballpark of the deviations predicted by popular new physics models. The

overall picture strengthens the belief that perhaps the Higgs discovery is in fact our first

glimpse at a more fundamental UV complete structure.

The arguably most simple, renormalizable extension of the Higgs sector, is con-

structed by expanding the SM Lagrangian with one additional spinless real electroweak

singlet [11–13]. This adds up one extra Higgs companion to the physical spectrum of

the model, providing an excellent framework to guide collider searches for exotic scalars,

either via direct production or through off-shell effects. Moreover, the coupling between

the doublet and the singlet fields mixes the two neutral Higgs states, leading to rescaled

Higgs couplings to the SM particles. A chief prediction for collider phenomenology are the

universally suppressed cross sections and partial amplitudes in all Higgs production modes

and decay channels.

Another paramount signature of a second Higgs is the possibility of the heavy-to-light

Higgs decay mode H → hh [12, 14]. The process is governed by the Higgs self-coupling

λHhh, and as such it constitutes a direct probe of the scalar potential of the model. If

the new Higgs boson is lighter than the SM Higgs, the novel H → hh decay distorts

all Higgs branching ratios, and thereby its signal strengths, from the SM expectations.

Alternatively, if the extra scalar is identified with a heavier Higgs companion and mH >

2mh, H → hh can significantly contribute to the heavy Higgs width and lineshape and

modify its decay pattern.

In this paper we present a thorough study of the heavy-to-light Higgs decay mode

H → hh in the singlet extension of the SM, including the complete set of radiative correc-

tions at one loop. Aside from being relevant on its own, we use this process as a physics case

to construct and compare different renormalization schemes for the extended Higgs sector

of the model. Using the Sloops [15–18] general non-linear gauge fixing setup, we illustrate

how certain prescriptions still exhibit gauge dependence for physical quantities. Our task

carries to completion the steps initiated in our previous publication [19], and sharpen up

all theoretical tools necessary to completely characterize the singlet model phenomenology

at next-to-leading order (NLO) accuracy.

The remainder of the paper is organized as follows. In section 2 we provide a brief

description of the model setup and constraints. In section 3 we discuss in full detail our

renormalization setup. We devote section 4 to characterize the general aspects of heavy-
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to-light Higgs decays at leading order and at one loop, while in section 5 we present a

detailed phenomenological analysis. We summarize and conclude in section 6. Additional

analytical details are provided in the appendix.

2 Model setup at the classical level

We construct the singlet extension of the SM by adding one colorless, real scalar field,

which transforms as a singlet under the SU(2)L ⊗ U(1)Y gauge charges [11–13, 19–21].

Such a simple renormalizable extension can be viewed as a simplified model approach to

the low-energy Higgs sector of a more fundamental UV completion, for instance the decou-

pling limit of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [22], some

realizations of GUTs [23], models with additional gauge sectors [24] or hidden valleys [25].

The implications of this model were addressed for the first time in refs. [11–13], and it

has been the object of dedicated investigation for the past two decades, displaying a very

attractive phenomenology, especially in the context of collider physics, see e.g. [26–58]. It

has also been subject to many dedicated searches by the LHC experiments, cf. e.g. [59–64]

for recent studies.

2.1 Classical Lagrangian

The singlet scalar extension of the SM (denoted as xSM) is defined by the Lagrangian

LxSM = Lgauge + Lfermions + LYukawa + Lscalar + LGF + Lghost , (2.1)

where the gauge boson and fermionic kinetic parts Lgauge,fermions, as well as the Yukawa

interaction LYukawa, are given by the respective SM contributions. The gauge-fixing and

ghost Lagrangians LGF,ghost will be defined in more detail below. The scalar sector is

given by

Lscalar = (DµΦ)†DµΦ+ ∂µS∂µS − V(Φ, S) , (2.2)

where Dµ is the covariant derivative and V(Φ, S) the scalar potential

V(Φ, S) = µ2Φ†Φ+ λ1 |Φ†Φ|2 + µ2
s S

2 + λ2 S
4 + λ3Φ

†ΦS2 . (2.3)

The latter corresponds to the most general, SUL(2) ⊗ U(1)Y -invariant, renormalizable

Lagrangian involving the Higgs doublet Φ and the singlet S fields, and compatible with

an additional discrete Z2 symmetry, that precludes other terms with odd (e.g. cubic) field

powers in the potential. By assuming all parameters in eq. (2.3) to be real, we disregard

additional sources of CP violation.

2.2 Mass spectrum

The doublet and singlet fields are expanded as

Φ =







G+

v + φh + iG0

√
2






S =

vs + φs√
2

, (2.4)
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where v ≡
√
2 〈Φ〉 = (

√
2GF )

−1/2 ≃ 246GeV and vs ≡
√
2 〈S〉 stand for their respective

vacuum expectation values (vevs). The fields G±, G0 denote the charged and neutral

Goldstone bosons. Since the singlet transforms trivially under the electroweak gauge group,

only the doublet vev v takes part in electroweak symmetry breaking, which proceeds exactly

as in the SM case.

The linear terms in the fields φh and φs from eq. (2.3) lead to the tadpole relations

Tφh
= µ2v + v3λ1 +

1

2
vv2sλ3 , (2.5)

Tφs
= µ2

svs + v3sλ2 +
1

2
vsv

2λ3 , (2.6)

by which we can express the minimization condition of the Higgs potential (2.3) as Tφh,φs
=0.

In turn, the quadratic terms in the Higgs fields may be arranged into a 2 × 2 squared

mass matrix M2
hs. In the gauge basis (φh, φs) these take the form

M2
hs = Tφh,φs

+M2
φh,φs

, (2.7)

where the tadpole component Tφh,φs
and the squared mass matrix M2

φh,φs
are defined by

Tφh,φs
=

(

Tφh

v 0

0
Tφs

vs

)

, M2
φh,φs

=

(

2λ1 v
2 λ3 v vs

λ3 v vs 2λ2 v
2
s

)

. (2.8)

Requiring this matrix to be positively defined leads to the stability conditions

λ1, λ2 > 0; 4λ1λ2 − λ2
3 > 0 . (2.9)

Once we impose the tadpoles Tφh,s
to vanish, eq. (2.8) can be readily transformed into

the (tree-level) Higgs mass basis through the rotation U(α) · M2
φh,φs

· U−1(α) = M2
hH =

diag(m2
h ,m2

H), the physical Higgs masses reading

m2
h,H = λ1 v

2 + λ2 v
2
s ∓ |λ1 v

2 − λ2 v
2
s |
√

1 + tan2(2α). (2.10)

We identify the corresponding mass-eigenstates as a light [h] and a heavy [H] CP-even

Higgs boson, which are related to the gauge eigenstates through
(

h

H

)

= U(α)

(

φh

φs

)

=

(

cosα − sinα

sinα cosα

)(

φh

φs

)

, (2.11)

where the rotation angle α is defined in the range −π/2 ≤ α ≤ π/2 by

sin 2α =
λ3vvs

√

(λ1v2 − λ2v2s)
2 + (λ3vvs)2

, cos 2α =
λ2v

2
s − λ1v

2

√

(λ1v2 − λ2v2s)
2 + (λ3vvs)2

. (2.12)

Likewise the tadpoles in the gauge basis [Tφh
, Tφs

] may be rotated into the mass basis

[Th,TH ] through U(α):
(

Th

TH

)

=

(

cosα − sinα

sinα cosα

)(

Tφh

Tφs

)

(2.13)
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The above equations are of service to recast the quartic couplings in the Higgs poten-

tial (2.3) as given by the physical Higgs boson masses m2
h,H and the mixing angle α,

λ1 =
m2

h

2v2
cos2 α+

m2
H

2v2
sin2 α− cosαTh + sinαTH

2v3
+

m2
hH

2v2
sin 2α , (2.14)

λ2 =
m2

h

2v2s
sin2 α+

m2
H

2v2s
cos2 α− cosαTH − sinαTh

2v3s
− m2

hH

2v2s
sin 2α , (2.15)

λ3 =
m2

H −m2
h

2vvs
sin 2α+

m2
hH

vvs
cos 2α . (2.16)

The mixed mass term m2
hH denotes the (symmetric) off-diagonal element of the squared

mass matrix M2
hH , defined in the mass-eigenstate basis. While at tree-level we have Th,H =

0 and m2
hH = 0, keeping these dependencies explicit in eqs. (2.14)–(2.16) will be useful to

link the Lagrangian parameter counterterms to the corresponding mass counterterms, as

we discuss in section 3. Similarly, it is practical to rephrase the bilinear mass terms µ and

µs in eq. (2.3) as

µ2 = −1

2
m2

h cos
2 α− 1

2
m2

H sin2 α− (m2
H −m2

h)vs
4v

sin 2α

+
3(cosαTh + sinαTH)

2v
− m2

hHvs
2v

cos 2α , (2.17)

µ2
s = −1

2
m2

h sin
2 α− 1

2
m2

H cos2 α− (m2
H −m2

h)v

4vs
sin 2α

− 3(sinαTh − cosαTH)

2vs
− m2

hHv

2vs
cos 2α. (2.18)

2.3 Input parameters

The Higgs sector of the model is determined at tree-level by i) the doublet vev, bilinear

mass term and quartic self-coupling; ii) their counterparts for the singlet field; and iii) the

portal coupling λ3 between both. The singlet vev is traded as customary via the parameter

tanβ ≡ vs
v .

1 With the help of the above relations (2.5)–(2.18), we can conveniently recast

them in terms of the following five independent parameters:

mh, mH , sinα, v, tanβ . (2.19)

Two of them are readily fixed in terms of experimental data: the doublet vev is linked to

the Fermi constant through v2 = (
√
2GF )

−1, while one of the Higgs masses is given by

the LHC value 125.09GeV [65]. Overall, we are left with three quantities which define

the relevant directions in the new physics parameter space. This is also helpful to identify

which physical parameters can be used to fix the renormalization conditions.

2.4 Gauge-fixing Lagrangian

Gauge invariance will play an important role when discussing the renormalization of the

singlet Higgs sector, in particular in defining a gauge-independent mixed mass counterterm,

1Note the different conventions for tan β employed in the literature. The definition we adopt herewith

is the inverse of that from refs. [19–21].
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as we discuss in detail in sections 3.3.6 and 5.2. Such non-linear gauges have proven useful

to check the gauge independence of higher order calculations within the SM [66–68], and

its supersymmetric extensions [15–18, 69–73]. The gauge-fixing Lagrangian can be written

in general as

LGF = − 1

ξW
F+F− − 1

2ξZ
|FZ |2 − 1

2ξA
|FA|2 , (2.20)

where the functions F depend non-linearly on the Higgs and gauge fields,

F± =

(

∂µ ∓ ieα̃Aµ ∓ ig cos θW β̃Zµ

)

Wµ+

± iξW
g

2

(

v + δ̃1h+ δ̃2H ± iκ̃G0

)

G+ , (2.21)

FZ = ∂µZ
µ + ξZ

g

2 cos θW

(

v + ǫ̃1h+ ǫ̃2H

)

G0 , (2.22)

FA = ∂µA
µ . (2.23)

In the above equations e is the electromagnetic coupling constant, g the SU(2)L coupling

constant and θW denotes the weak mixing angle. The quantities {α̃, β̃ · · · ǫ̃2} correspond

to the generalized gauge-fixing parameters. Setting these parameters to zero leads to the

standard linear Rξ gauge fixing, with ξi = 1 defining the familiar ’t Hooft-Feynman gauge.

In our renormalization setup we will take these gauge-fixing terms already as renormalized

quantities — in such a way that no additional counterterms δLGF are introduced for this

part of the Lagrangian.

In turn, the ghost Lagrangian Lghost is derived by requiring the complete Lagrangian at

the quantum level to be invariant under BRST transformations. This means δBRSTLxSM = 0

and hence δBRSTLGF = −δBRSTLghost. This follows from the fact that by construction the

gauge, fermionic, Yukawa and scalar components of LxSM are invariant under BRST trans-

formations, as the latter are equivalent to gauge transformations. We consider both LGF

and Lghost to be written in terms of renormalized quantities. The BRST transformations

specific to the singlet extension are given by

δBRSTG
0 = +

g

2
[G−c+ +G+c−]− e

2cW sW
cZ [v + cαh+ sαH] , (2.24)

δBRSTG
± = ∓ ig

2
c±[v + cαh+ sαH ∓ iG0]∓ ie

(

cA − s2W − c2W
2sW cW

)

G± ,

δBRSTh = cα

(

ig

2
[G−c+ −G+c−] +

e

2cW sW
cZG0

)

, (2.25)

δBRSTH = sα

(

ig

2
[G−c+ −G+c−] +

e

2cW sW
cZG0

)

, (2.26)

where cθ, sθ are shorthand notations for cos θ, sin θ, while cZ , c±, cA stand for the Faddeev-

Popov ghost fields associated to the Z0, W± and the photon field respectively. Within this

particular gauge fixing, we set in practice ξW,Z,A = 1. This is convenient since the gauge

boson propagators take a very simple form, while we still keep the possibility to check the

– 6 –
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gauge independence of the final result, at the expense of adding new gauge parameter-

dependent vertices to the model [66]. The gauge independence of a calculation can be

examined numerically by varying the non-linear gauge parameters α̃, β̃ · · · ǫ̃2. Technically,

we perform our implementation of the singlet model with non-linear gauge fixing using

LanHEP [74, 75] and Sloops [15–18].

2.5 Interactions

The key theoretical structure in the model is the doublet-singlet portal coupling LxSM ⊃
λ3(Φ

†Φ)S2, which is responsible for the Higgs mass eigenstates to be admixtures of the

doublet φh and the singlet φs neutral components. One main consequence of this mixing

is the universal depletion of all Higgs boson couplings to the SM particles as

gxxy = gSMxxy(1 + ∆xy) with 1 + ∆xy =

{

cosα y = h

sinα y = H
. (2.27)

This global rescaling is ultimately due to the fact that, owing to electroweak gauge in-

variance, only the doublet component can couple to the fermions (via ordinary Yukawa

interactions) and the gauge bosons (via the gauge covariant derivative). The limits of

sinα = 0 (resp. cosα = 0) correspond to the decoupling scenarios for the light (resp.

heavy) Higgs bosons, in which all couplings of the additional scalar to SM fields identically

vanish. The Higgs self-interactions do not obey such a plain rescaling pattern. Instead,

they depend non-trivially on the cross-talk between the singlet and the doublet fields.

Analytic expressions for their Feynman rules can be found in the appendix.

2.6 Constraints

As discussed above, the singlet model specified by the Lagrangian (2.1) is subject to

numerous constraints, which have been explicitly discussed in [19–21]. Although our pri-

mary focus in this paper is the structure of the higher order corrections in this model

irrespectively of the parameter constraints, we briefly remind the reader which ranges are

still feasible from the theoretical and experimental sides — and include all of them in our

phenomenological analysis of section 5. We consider

Theoretical constraints.

• perturbative unitarity at tree level [76, 77], which is taken into account by di-

agonalizing the five-dimensional X → Y scattering basis, with X,Y ∈ {hh, hH,

HHW+W−, ZZ}.2

• perturbativity of the self-couplings in the scalar potential, i.e. |λi (µrun) | ≤ 4π, where

the couplings are evolved through standard renormalization group equations [79] and

evaluated at a reference high-energy scale µrun ∼ 4 × 1010GeV,3 for the high-mass

2Electroweak gauge bosons are replaced by Goldstone scalars according to the Goldstone equivalence

theorem [78].
3This scale has been chosen such that the model still guarantees vacuum stability at a scale slightly

larger than the SM breakdown scale for which λ1 ≤ 0 in the SM limit (sinα = 0). Requiring validity up

to higher scales leads to stronger constraints, cf. the discussion in [20].

– 7 –
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and at µrun = v = 246GeV for the low-mass scenario (see [20, 21] for a more detailed

discussion). The high-mass (resp. low-mass) regions correspond to mH > 2mh, with

mh = 125.09GeV (resp. mH > 2mh, with mH = 125.09GeV);

• vacuum stability (cf. eq. (2.9)) up to the same high-energy scale.

Experimental constraints.

• electroweak parameters S, T, U [80–83] in agreement with the 95% C.L best-fit values

from [84];

• similarly, agreement with the measured value of the W -mass at 95% C.L. (see [19]

for more details);

• agreement with collider searches from LEP, Tevatron, and the LHC, as implemented

in HiggsBounds [85–87];

• agreement with the Higgs signal strength measurements at 95% C.L., as imple-

mented in HiggsSignals [88]. In addition, we have applied the constraints from the

combined signal strength fit, presented in [89], which lead to | sinα| ≤ 0.36 for

mH ≥ 152GeV.4

It is interesting to observe the interplay of these different constraints on the overall param-

eter space. We here only summarize the main features5 — a dedicated discussion can be

found in [21].

• in the high mass region the leading constraints stem from i) direct searches (for mH .

300GeV);6 ii) the difference between the experimental W-mass measurement and its

theoretical prediction [19] (in the intermediate range MH ∈ [300GeV; 800GeV]); and

iii) perturbativity of the self-couplings in the scalar potential (for mH ≥ 800GeV).

All these features are summarized in figure 1 and table 1;

• in the low mass region where mH ∼ 125GeV, the parameter space is extremely con-

strained, especially from demanding agreement with the LHC Higgs signal strength

measurement and the LEP constraints. In table 2 we summarize these constraints.

Note that in this regime the SM limit corresponds to | sinα| = 1.

Tables 1 and 2 show the current constraints for the maximal (minimal) allowed values

of sinα and tanβ, following the analysis presented in [21]. Note that the minimal tan β

4A detailed discussion of the determination of limits from the Higgs signal strength can be found in [21].

For mH ≤ 152GeV, we test a two-scalar hypothesis versus the LHC data, leading to an mH -dependence

for the respective χ2. Results in [89], however, are derived under an SM assumption. For mH ≥ 152GeV,

the χ2 is independent of the second resonance mass and in this range we therefore adopt the improved

combined experimental limit.
5See also [90].
6Note that the most recent experimental searches published in 2015 have not been included. These

potentially influence the allowed regions for mH . 300GeV. Indeed, preliminary studies show that results

from [62] especially modify constraints for mH ≤ 250GeV [91].
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perturbative unitarity (tanβ=10.)

LHC SM Higgs searches

Higgs signal rates

Figure 1. Maximal allowed values for | sinα| in the high mass region, for a heavy Higgs boson mass

in the range mH ∈ [130, 1000]GeV, from the following constraints: i) W boson mass measurement

(red, solid) [19]; ii) electroweak precision observables (EWPOs) tested via the oblique parameters

S, T and U (orange, dashed); iii) perturbativity, of the RG-evolved coupling λ1 (blue, dotted),

evaluated for an exemplary choice tan β = 10, iv) perturbative unitarity (grey, dash-dotted), v)

direct LHC searches (green, dashed), and vi) Higgs signal strength measurement (magenta, dash-

dotted). For Higgs masses mH ∈ [300GeV; 800GeV] the W boson mass measurement yields the

strongest constraint [19]. The present plot corresponds to an update of figure 8 from [21], where

the latest constraints from the combined signal strength [89] have been taken into account.

values shown here were taken at a fixed value of sinα, so results from a generic scan

might slightly differ. All the constraints mentioned above have been taken into account

when considering viable parameter space regions of the model for our numerical analysis

in section 5. Also the results from the combined ATLAS and CMS signal strength fit have

been included when applicable. We expect the results from the most recent LHC searches

to influence the global picture in the mass region mH . 350–400GeV, while for higher

values the W boson mass still poses the strongest constraint on the mixing angle.

3 Renormalization

3.1 Setup

The renormalization program we present here sticks close to the general strategy followed

in multidoublet Higgs extensions such as the MSSM [17, 93] and the Two-Higgs-Doublet

Model [94]. We generate the required counterterms by introducing multiplicative renor-

malization constants to the weak coupling constant, fields, tadpoles, masses and vevs.

These are then fixed by as many renormalization conditions as independent parameters

are present in the model [95]. We adopt on-shell conditions to renormalize the electroweak

gauge parameters [18, 96–99] and the diagonal terms of the Higgs boson mass matrices.

Using an on-shell scheme, as customary in this context, provides an unambiguous interpre-

– 9 –
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m [GeV] | sinα| source upper limit (tanβ)min

1000 [0.018, 0.17] λ1 perturbativity 4.34

900 [0.022, 0.19] λ1 perturbativity 3.85

800 [0.027, 0.21] mW at NLO 3.45

700 [0.031, 0.21] mW at NLO 3.03

600 [0.038, 0.23] mW at NLO 2.56

500 [0.046, 0.24] mW at NLO 2.13

400 [0.055, 0.27] mW at NLO 1.69

300 [0.067, 0.31] mW at NLO 1.28

200 [0.090, 0.36] signal rates 0.85

180 [0.10, 0.36] signal rates 0.77

160 [0.11, 0.36] signal rates 0.68

140 [0.16, 0.31] signal rates 0.60

Table 1. Table II from [21], with adjusted conventions for tan β, and updated constraints on

the maximally allowed mixing angle from the combined Higgs signal strength fit [89]. It presents

allowed ranges for sinα and tanβ in the high mass region for fixed Higgs masses m. The allowed

interval of sinα was determined fixing (tan β)−1 = 0.15. The 95% C.L. limits on sinα from the

Higgs signal rates are derived from one-dimensional fits and taken at ∆χ2 = 4. The lower limit on

sinα always stems from vacuum stability, and the upper limit on tan β always from perturbativity

of λ2, evaluated at sinα = 0.1. The source of the most stringent upper limit on sinα is named in

the third column. We fixed mh = 125.1 GeV and the stability and perturbativity were tested at

the reference scale µrun ∼ 4 × 1010 GeV.

tation of the bare parameters in the classical Lagrangian in terms of physically measurable

quantities. We also recall that field renormalization constants are not needed if we only

require the observables derived from S-matrices to be finite, but not each of the Greens’

functions individually. They are nonetheless convenient from the technical viewpoint, as

they account for loop corrections to the external legs and less Feynman diagrams have to

be explicitly included.

We proceed as customary by splitting the bare Lagrangian of the model (2.1) into

the renormalized and the counterterm pieces as L 0({X0}) → L ({X}) + δL ({δX}). Ac-
cordingly, we rewrite each of the bare parameters X0 as a renormalized part X and its

counterterm δX. For the purpose of this work we only need to deal with the scalar and

gauge sectors L 0
scalar,gauge, as the other sectors do not feature for the remainder of our dis-

cussion. We also recall that the gauge-fixing Lagrangian LGF does not contribute to δL ,

since we choose to write it already in terms of renormalized fields and parameters [17, 66].

The physical parameters of the gauge sector are the electromagnetic coupling constant e

and the gauge boson masses mW ,mZ that we split as [99],

e0 → e+ δZe, (m0
W )2 → m2

W + δm2
W , (m0

Z)
2 → m2

Z + δm2
Z . (3.1)
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mh [GeV] | sinα|min, HB | sinα|min, HS (tanβ)min (tanβ)no H→hh

120 0.410 0.918 0.12 –

110 0.819 0.932 0.11 –

100 0.852 0.933 0.10 –

90 0.901 – 0.09 –

80 0.974 – 0.08 –

70 0.985 – 0.07 –

60 0.978 0.996 0.06 4.76

50 0.981 0.998 0.05 5.00

40 0.984 0.998 0.04 5.56

30 0.988 0.998 0.03 6.25

20 0.993 0.998 0.02 8.33

10 0.997 0.998 0.01 12.5

Table 2. Table III from [21], with adjusted definition for tan β and updated constraints on the

minimally allowed mixing angle from the combined Higgs signal strength fit [89]. It presents limits

on sinα and tanβ in the low mass scenario for various light Higgs masses mh. The limits on sinα

have been determined at tan β = 1. The lower limit on sinα stemming from exclusion limits from

LEP or LHC Higgs searches is obtained using HiggsBounds [85–87, 92] and given in the second

column. If the lower limit on sinα obtained from the test against the Higgs signal rates using

HiggsSignals [88] results in stricter limits, we display them in the third column. The upper limit

on tanβ in the fourth column stems from perturbative unitarity for the complete decoupling case

(| sinα| = 1). In the fifth column we give the tan β value for which ΓH→hh = 0 is obtained, given

the maximal mixing angle allowed by the Higgs exclusion limits (second column). At this tan β

value, the | sinα| limit obtained from the Higgs signal rates (third column) is abrogated.

Also the bare parameters appearing in L 0
scalar in the gauge-eigenstate basis are decom-

posed as

λ0
i → λi + δλi [i = 1 · · · 3], v0 → v + δv, v0s → vs + δvs,

µ0 → µ+ δµ, µ0
s → µs + δµs . (3.2)

A similar splitting is introduced for the Higgs tadpoles T 0
φ → Tφ + δTφ ([φ = φh, φs]),

which feature explicitly for calculations beyond the leading order. Equivalent expressions

can be written trading some of the above bare parameters for more physical ones through

the relations given by eqs. (2.14)–(2.18).

In our setup we choose not to renormalize the mixing angle α. Instead, we promote

the relation between the Higgs eigenstates in the gauge (φh, φs) and mass basis (h,H) to

be valid to all orders,
(

h

H

)0

= U(α)

(

φh

φs

)0

and equivalently

(

h

H

)

= U(α)

(

φh

φs

)

. (3.3)

Doing so, the bare and the physical mixing angle coincide and we need no additional mixing

angle counterterm.
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In turn, field renormalization constants for the physical Higgs states are introduced by

shifting the bare Higgs fields in the mass basis as

(

h

H

)0

→







1 +
1

2
δZh

1

2
δZhH

1

2
δZHh 1 +

1

2
δZH







(

h

H

)

+O(α2
ew) . (3.4)

Finally, we introduce the (matrix-valued) Higgs mass counterterm via

M2
φ → M2

φ + δM2
φ , (3.5)

where the generic index φ applies to the squared mass matrix in both the gauge and the

mass basis. Their respective matrix counterterms are linked through

δM2
hH = U(α) · δM2

φh,φs
·U(−α) =

(

δm2
h δm2

hH

δm2
Hh δm2

H

)

, (3.6)

where the mixed mass counterterms are symmetric δm2
Hh = δm2

hH .

Thus, aside from the purely SM inputs, the renormalization of the scalar sector in the

singlet model is completely specified by four renormalization constants for the neutral Higgs

fields, the respective singlet and doublet vev counterterms, and five additional counterterms

linked to the parameters in the Higgs potential (2.3). In the mass eigenstate basis, these

can be traded by:

• tadpoles: δTh, δTH • vev: δv, δvs • mixing: δm2
hH

• Higgs masses: δm2
h, δm

2
H • fields: δZh, δZH , δZhH , δZHh.

(3.7)

Defining a renormalization scheme is then tantamount to identifying a set of independent

conditions by which to link the above quantities to physical inputs. The renormalization

conditions by which we fix these counterterms will rely on the one-point and two-point

Greens’ functions of physical fields. Depending on the scheme we choose for Higgs field

renormalization, not all of the above field renormalization constants will be independent

from each other.

A complete renormalization scheme fixes all the counterterms which are necessary to

absorb the UV-divergent contributions from loop-level amplitudes, such that one obtains

UV finite predictions for physical observables. Another important property of a renormal-

ization scheme is gauge independence. More precisely, maintaining gauge independence

when defining a scheme allows to write physical predictions as a function of the input

parameters in a way that does not vary when the gauge-fixing is changed. Only in this

case one can unambiguously relate physical observables to Lagrangian parameters. In this

work we examine different strategies to extend the conventional SM renormalization to the

singlet model case, and discuss in detail whether these comply with gauge independence.

The Sloops non-linear gauge-fixing setup (cf. eq. (2.20)) turns out to be instrumental in

this task.
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3.2 Gauge sector

We begin by introducing the on-shell definition of the electroweak mixing angle sin2 θW =

1 −m2
W /m2

Z , along with the shorthand notations s2W ≡ sin2 θW , c2W ≡ 1 − s2W [96]. This

relation fixes the weak mixing angle counterterm (s2W )0 → s2W + δs2W as

δs2W
s2W

= −c2W
s2W

(

δm2
W

m2
W

− δm2
Z

m2
Z

)

. (3.8)

The weak gauge boson masses are renormalized in the standard on-shell scheme [18, 96–99],

i.e. by requiring the real part of the transverse renormalized weak gauge boson self-energies

to vanish at the respective pole masses. The condition

Re Σ̂V
T (p

2) = ReΣV
T (p

2) + δZV (p2 −m2
V )− δm2

V

∣

∣

∣

∣

∣

p2=m2
V

= 0 [V = W±, Z] , (3.9)

where δZV stands for the weak gauge boson field renormalization V → Z
1/2
V V = (1 +

1/2δZV )V +O(α2
ew), leads to

δm2
W = −ReΣW

T (m2
W ) and δm2

Z = −ReΣZ
T (m

2
Z) . (3.10)

All renormalized self-energies are denoted hereafter by a hat. The transverse part of the

gauge boson self-energies follows from the vacuum polarization tensor,

Σµν
V V ′(p

2) ≡ ΣV V ′

T (p2) + pµ pν ΣV V ′

L (p2) . (3.11)

The explicit form of the weak gauge boson two-point functions in the singlet model can be

found in ref. [19].

To renormalize the electromagnetic coupling constant, we require the electric charge

to be equal to the full eeγ vertex in the Thompson limit. With the help of the QED

Ward identities, this condition is given in terms of the photon and mixed Z − γ two-point

functions

δZe

e
=

1

2
Πγ(0) +

sW
cW

ΣT
γ Z(0)

m2
Z

, with Πγ =
d2

∂p2
Σγγ(p

2)

∣

∣

∣

∣

∣

p2=0

. (3.12)

To avoid large logarithms from light fermion masses, we rephrase as customary the photon

vacuum polarization as

Πγ(0) = ∆αlep +∆αhad +
1

m2
Z

ReΣlight f
γ (m2

Z), (3.13)

where the superindex indicates that only the light fermion contributions (all leptons and

quarks, except the top) are included in the photon self-energy, while the QED-induced shift

to the fine structure constant,

∆α = ∆αlep +∆αhad = −Re Π̂lep
γ (m2

Z)− Re Π̂had
γ (m2

Z), (3.14)

is known to very good accuracy [100, 101].
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The improved electric charge counterterm in the Thompson limit is thus given by

δZe

e
=

1

2

d2

dp2
Σno light f
γ (p2)

∣

∣

∣

∣

∣

p2=0

+
1

2
∆α+

1

2m2
Z

ReΣlight f
γ (m2

Z) +
sW
cW

ΣT
γ Z(0)

m2
Z

, (3.15)

in such a way that the value of the renormalized electric charge at zero momentum transfer

e(0) =
√

4π αem(0) can be extracted from the measured fine-structure constant in this

limit: αem(0) = 1/137.035999074(44) [102].

On the other hand, the very precise measurement of the muon lifetime provides a link

between the weak gauge boson masses, the fine structure constant and the Fermi constant.

This allows for different input choices to fix the electroweak sector. In our numerical

analysis we shall use two alternative parametrizations:

• The αem-parametrization, in which we select αem(0) and mW,Z as input parameters;

• The GF -parametrization, in which we instead replace the W-boson mass by the Fermi

constant GF = 1.1663787(6)× 10−5GeV−2 [102], the latter being fixed by the muon

lifetime via [98, 103–105].

These two parametrizations are related via the conventional parameter ∆r [98, 103–107] as

m2
W

(

1−
m2

W

m2
Z

)

=
παem√
2GF

(1 + ∆r) , (3.16)

where mW,Z and sW are renormalized in the on-shell scheme. For a detailed analysis of ∆r

in the singlet model cf. ref. [19]. Since ∆r vanishes at leading-order, both parametrizations

are trivially linked at tree-level as GF√
2
= παem

2m2
W

s2
W

, while they depart from each other at

higher perturbative orders. We will explicitly quantify these departures further down in

section 5.

3.3 Extended Higgs sector

3.3.1 Tadpole renormalization

For the tadpole renormalization we proceed as customary [18, 96–99] and impose

T̂h = Th + δTh = 0; T̂H = TH + δTH = 0. (3.17)

This is equivalent to requiring that v and vs are the physical vacuum expectation values

of the doublet and the singlet fields respectively, so that they define the (renormalized)

minimum of the Higgs potential. In practice, this implies that no Higgs one-point insertions

feature explicitly in our calculation.

3.3.2 Doublet vev renormalization

The vev v of the scalar doublet Φ is fixed as in the SM through its relation to the electroweak

on-shell parameters

v =
2mW sW

e
→ δv

v
=

1

2

δm2
W

m2
W

+
δsW
sW

− δZe

e
, (3.18)

where all needed counterterms are defined in (3.10), (3.15) and (3.8).
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3.3.3 Singlet vev renormalization

The general renormalization transformation of a generic scalar field vev [108] can be par-

ticularized to the singlet vev case as

φs + vs → Z
1/2
S (φs + vs + δv̄s), (3.19)

where we have introduced for convenience the singlet field renormalization in the gauge

basis S0 → Z
1/2
S S = (1 + δZS/2)S+O(α2

em). The additional counterterm δv̄s characterizes

to what extent the singlet vev renormalizes differently from the singlet field φs itself. In

ref. [108] it was shown that, in an Rξ gauge, a divergent part for δv̄s is forbidden if the scalar

field obeys a rigid invariance (see also ref. [109] and references therein). This is precisely

the case in the singlet model, since the singlet field is unlinked from the gauge sector and

hence invariant under global gauge transformations. In addition to that, the singlet field

renormalization constant δZS is also UV-finite. This can be easily shown by computing

δZS in the unbroken phase where 〈Φ〉 = 〈S〉 = 0. Such a scenario is analogous to a plain

λφ4-theory, in which the (singlet) scalar field is coupled to a second scalar (doublet) field

only through the gauge-singlet quartic coupling L ⊃ λ3Φ
†ΦS2. In this case, all one-

loop contributions to the singlet two-point function are momentum-independent, implying

that δZS does not get a UV pole (cf. e.g. [110]).7 We thus conclude that the singlet

vev counterterm δvs = δvs + δZS/2 defined by eqs. (3.2) and (3.19) gets at most a finite

contribution at this order.

We finally note that, given the condition of vanishing tadpoles (3.17), the singlet vev

vs corresponds to the physical minimum of the Higgs potential in the broken phase in the

singlet field direction, viz. 〈S〉 = vs/
√
2, at a given order in perturbation theory. Since vs

does not contribute to the electroweak symmetry breaking, it cannot be fixed in terms of

SM observables. Instead, we must promote it to an independent input parameter (which

should eventually be determined from a future measurement of e.g. the Hhh coupling).

So doing, any finite shift δvs can be subsumed into the physical definition of vs itself at

one-loop. Therefore, in our renormalization setup we can simply fix δvs in the MS scheme,

δvMS
s = 0, so that no singlet vev counterterm features in one-loop calculations.

3.3.4 Higgs masses renormalization

The (matrix-valued) Higgs mass counterterm in the gauge basis yields

δM2
φh,φs

=

(

2(v2δλ1 + 2vλ1δv) + δTφh
/v vs(vδλ3 + λ3δv)

vs(vδλ3 + λ3δv) 2v2sδλ2 + δTφs
/vs

)

, (3.20)

where we have already fixed δvs = 0, as justified above. This result can be linked as

customary to the mass basis through eq. (3.6).

To renormalize the physical Higgs masses we impose on-shell conditions on the renor-

malized diagonal Higgs self-energies,

Re Σ̂φ(m
2
φ) = 0 with Re Σ̂φ(p

2) = ReΣφ(p
2)+δZφ(p

2−m2
φ)−δm2

φ, [φ = h,H], (3.21)

7We have numerically verified that δZS is UV-finite at one loop in all of the different renormalization

schemes.
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whereby we obtain

δm2
h = ReΣh(p

2)
∣

∣

∣

p2=m2
h

and δm2
H = ReΣH(p2)

∣

∣

∣

p2=m2
H

. (3.22)

The explicit form of the field renormalization constants δZφ in different schemes is discussed

below in section 3.3.5.

In theories where the gauge eigenstates mix, the renormalization of the non-diagonal

or mixing terms must be addressed with care (cf. [17, 18, 93] for an analogue discussion in

the context of the squark sector in the MSSM). As we have seen in section 2, a bare angle

α0 ≡ α rotates the scalar fields from the gauge basis to the mass basis through eq. (2.11).

While such diagonal form is valid at leading order, radiative corrections will in general

misalign the (tree-level) mass eigenstates. This is reflected in the off-diagonal terms of the

loop-corrected propagators,

∆−1
Higgs =

(

p2 −m2
h + Σ̂h(p

2) Σ̂hH(p2)

Σ̂Hh(p
2) p2 −m2

H + Σ̂H(p2)

)

traded by the non-diagonal Higgs two-point function

Re Σ̂hH(p2) = ReΣhH(p2) +
1

2
δZhH(p2 −m2

h) +
1

2
δZHh(p

2 −m2
H)− δm2

hH . (3.23)

One possibility is to absorb these additional quantum effects into the renormalization

of the mixing angle. This is equivalent to diagonalizing the loop-corrected mass matrix

further through an additional rotation U(δα), where δα plays the role of a mixing angle

counterterm, such that α0 → α + δα. Alternatively, in our approach we take the mixing

matrix U(α) as written in terms of the physical mixing angle and hence valid to all orders.

The two alternative approaches are related through

δm2
hH = (m2

H −m2
h) δα . (3.24)

The residual mixing induced by the off-diagonal terms in the mass matrix is instead removed

by the non-diagonal field renormalization constants, which we present below.

3.3.5 Higgs field renormalization: diagonal parts

Taking the Higgs boson masses mh,H as experimental inputs, we fix the diagonal field

renormalization constants via the on-shell conditions

Re Σ̂′
h(m

2
h) = 0 and Re Σ̂′

H(m2
H) = 0 , (3.25)

where Re Σ̂φ(p
2) was defined in eq. (3.21), while the familiar shorthand notation f ′(p2) ≡

df(p2)/dp2 denotes the derivative with the respect to the momentum squared. This leads to

δZh = −ReΣ′
hh(m

2
h) and δZH = −ReΣ′

HH(m2
H) , (3.26)

which set the Higgs propagator residues to unity in the limit p2 → m2
φ (φ = h,H).
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3.3.6 Higgs field renormalization: non-diagonal parts

Fixing the non-diagonal field renormalization is a crucial step in setting up a gauge-

invariant scheme, in which the renormalized one-loop amplitudes are independent of the

gauge-fixing parameters, as discussed above. We first construct a set of schemes in analogy

to the more familiar approaches in the literature. As we will show, these lead in general

to gauge-dependent predictions for physical observables. To circumvent this problem, we

introduce an additional (dubbed improved) scheme, which is defined merely in terms of

two-point functions and gives numerically stable results throughout the entire parameter

space. Similar discussions are addressed e.g. when defining renormalization schemes for

the parameter tan β in the MSSM [17, 111].

Minimal field. As a first setup to fix the non-diagonal Higgs field renormalization δZhH

we resort to a minimal field renormalization. We attach one single renormalization factor

per field in the gauge basis,

Φ → Z
1/2
Φ Φ =

(

1 +
δZΦ

2

)

Φ+O(α2
ew); S → Z

1/2
S S =

(

1 +
δZS

2

)

S +O(α2
ew) , (3.27)

where we have expanded them to first order.

This procedure is in straight analogy to the conventional renormalization of the Higgs

sector in multidoublet extensions such as the MSSM [93] and the Two-Higgs-Doublet

Model [94]. Assuming symmetric off-diagonal components, and using the rotation ma-

trix U(α) in eq. (2.11), we can write the physical Higgs wave function renormalization

constants in terms of the gauge basis ones δZΦ,S as

δZh = c2α δZΦ + s2α δZS ; δZH = s2α δZΦ + c2α δZS ;

δ ZhH = sαcα(δZΦ − δZS) =
1

2
t2α [δZh − δZH ] , (3.28)

with the shorthand notation {sα, cα, tα} = {sinα, cosα, tanα}. The scheme is dubbed

minimal as the non-diagonal field renormalization δZhH is not independent. Instead, it

is linked to the diagonal parts δZh,H , which we have already fixed via on-shell condi-

tions (3.26). Additionally, since at one-loop we have δZMS
S = 0 (cf. section 3.3.3), we can

further simplify the relations above to get

δZh = c2α δZΦ; δZH = s2α δZΦ; δZhH = sαcαδZΦ =
1

2
s2α [δZh + δZH ] . (3.29)

Finally, for the mixed mass counterterm, which enters explicitly in the Hhh vertex counter-

term, we demand the off-diagonal renormalized Higgs self-energy to vanish at an arbitrary

renormalization scale,

Re Σ̂hH(p2)
∣

∣

∣

p2=µ2
R

=0; wherefrom δm2
hH=ReΣhH(p2)

∣

∣

∣

p2=µ2
R

+δZhH

(

µ2
R−

m2
h+m2

H

2

)

.

(3.30)

From eq. (3.30) we see that in this scheme all vertices with external Higgs legs receive a

finite wave-function renormalization correction, which absorbs the residual loop-induced
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h −H mixing for an external on-shell Higgs state. These finite wave-function factors are

given in general by [93]

ẐhH = − Σ̂hH(m2
h)

m2
h −m2

H + Σ̂H(m2
h)

= − Σ̂hH(m2
h)

m2
h −m2

H

+O(α2
ew);

ẐHh = − Σ̂Hh(m
2
H)

m2
H −m2

h + Σ̂H(m2
H)

= − Σ̂Hh(m
2
H)

m2
H −m2

h

+O(α2
ew), (3.31)

where O(α2
ew) denote the contributions beyond one-loop accuracy. Since the diagonal field

renormalization has been fixed via on-shell conditions eq. (3.26), the diagonal finite factors

at one loop yield Ẑh,H = 1 and hence we do not include them explicitly.

On-shell. We define a second prescription in close analogy to squark renormaliza-

tion [112–114].8 This time we attach one field renormalization constant δZh, δZH per

Higgs field directly in the mass-eigenstate basis (3.4), in which case the off-diagonal field

renormalization constants δZhH and δZHh are not directly related to the diagonal terms.

The diagonal parts δZh,H are again given by the on-shell relations of eq. (3.26). The non-

diagonal field renormalization constants are set up by imposing that no loop-induced H−h

transitions occur for external Higgs states on their mass shell, i.e.

Re Σ̂hH(m2
h) = 0; and Re Σ̂hH(m2

H) = 0 . (3.32)

Using eq. (3.23) leads to

δZhH =
2

m2
h −m2

H

[

ReΣhH(m2
H)− δm2

hH

]

, (3.33)

δZHh =
2

m2
H −m2

h

[

ReΣhH(m2
h)− δm2

hH

]

. (3.34)

Therefore, to fully fix the non-diagonal renormalization constants one must provide a proper

definition of the mixed mass counterterm δm2
hH . One possibility, as inspired from [112–114],

is to impose δZhH = δZHh, which fixes δm2
hH accordingly as

δm2
hH =

1

2

[

ReΣhH(m2
h) + ReΣhH(m2

H)
]

and δZhH =
ReΣhH(m2

H)− ReΣhH(m2
h)

m2
h −m2

H

.

(3.35)

The above condition removes the loop-induced H − h mixing when either of the two Higgs

bosons are on shell, so that the physical states propagate independently and do not oscillate.

The customary on-shell scheme, as well as the minimal field scheme discussed above,

show indisputable benefits, e.g. the fact that all counterterms are given in terms of two-

point functions and related to physically measurable quantities. However, both of them

lead to renormalized one-loop amplitudes which, albeit UV finite, may still have a left-

over dependence on the parameters of the gauge-fixing Lagrangian (2.20). This is a well

8While this work was being finalized, we learned of the work [115], which presents a study of the

quantum corrections to the Higgs couplings to fermions and gauge bosons in a similar singlet model setup.

The renormalization scheme for the extended Higgs sector used by these authors is equivalent to the on-shell

scheme we discuss here, and which, as we analyse in the following, is not gauge-independent.
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known fact for on-shell fermion [116–120] and sfermion mixing in supersymmetric theo-

ries [18, 121, 122]. Exploiting the non-linear gauge fixing of eq. (2.20), we explicitly verify

this drawback to appear in the singlet model case as well, and illustrate it numerically

in section 5.2. In this discussion, it is worthwhile recalling that gauge dependencies may

well persist in general in all non-physical building blocks which are involved in the renor-

malization of any gauge theory (e.g. field renormalization constants). The key test for a

given renormalization scheme is thus whether it leads to gauge-independent predictions for

physical observables. In the minimal field and the on-shell schemes, renormalized one-loop

amplitudes are proven to contain left-over gauge-dependent contributions. These can be

traced back to the mixed mass counterterm δm2
hH , which also enters the non-diagonal field

renormalization constants δZhH,Hh. The former is fixed in these schemes through eqs. (3.30)

and (3.35) respectively, and ultimately follows from the h − H mixing self-energy. Using

the non-linear gauge of (2.20), we find

ΣhH(p2) = ΣhH(p2)
∣

∣

ξW=ξZ=1,δ̃i=0

+
1

16π2

{

g2

2

[

δ̃1(m
2
H − p2)sα + δ̃2(m

2
h − p2)cα

]

B0

(

p2,m2
W ,m2

W

)

}

+
1

16π2

{

g
′2

4s2W

[

ǫ̃1(m
2
H − p2)sα + ǫ̃2(m

2
h − p2)cα

]

B0

(

p2,m2
Z ,m

2
Z

)

}

, (3.36)

where B0(p
2,m2,m2) is the two-point Passarino-Veltman scalar integral [123] and the δ̃i

terms are a short-hand notation for the non-linear gauge parameters in eq. (2.20). The first

line of eq. (3.36) is identical to the result of the self-energy computation in the ’t Hooft-

Feynman gauge. The second and third lines correspond to the genuine gauge-dependent

contributions in the non-linear gauge (we recall that for practical calculations we always set

ξA,W,Z = 1). The latter enter the mixed mass counterterm definition through eqs. (3.30)

or (3.35) and are responsible for the uncancelled dependencies on the gauge-fixing param-

eters in the renormalized H → hh one-loop amplitude, which we pin down numerically

in section 5.2.

One first roadway to construct a gauge-independent definition of δm2
hH alternative to

eq. (3.35) would be to exploit the pole structure of a process-specific one-loop amplitude

(e.g. a Higgs decay) in the limit m2
h → m2

H , as suggested by ref. [18]. Such a limit corre-

sponds though to a vanishing quartic coupling λ3 (2.16) and hence to a vanishing mixing

angle α (2.12). Therefore, in this no-mixing situation, δm2
hH cannot be defined through the

mixed self-energy ΣhH , because it is identically zero. A second possibility would be to link

the problematic mixed mass counterterm to a physical observable directly — viz. using a

per se gauge-independent quantity such as a decay rate or scattering cross section [17, 111].

The price one would pay would be a process-dependent scheme definition, and sometimes

one would have to resort to quantities out of current experimental reach. A third option

is retaining only the UV-divergent part of such a quantity via an MS prescription, which

we examine next. Besides this possibility, we also propose an additional prescription lead-

ing to a gauge invariant scheme, which furthermore does not render artificially enhanced

contributions in any part of the parameter space.
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Mixed MS/on-shell. In this case we trade δm2
hH by one of the Higgs self-coupling

counterterms δλi from eq. (2.3), and fix it using MS conditions. For convenience we choose

λ2 and compute the divergent part of the one-loop correction to the singlet field four-point

coupling λ2 S
4. So doing we find

δλMS
2 =

−1

16π2

[

λ2
3 + 9λ2

2

]

∆ , (3.37)

where ∆ stands for the UV divergent part in dimensional regularization

∆ ≡ 1/ǫ− γE + log(4π). (3.38)

This result is manifestly gauge independent, as it should, and agrees with the beta function

for the singlet quartic coupling λ2 given in ref. [21]. The corresponding gauge-invariant

counterterms for λ1,3 can now be traded by δm2
h,H , δv, δTh, δTH and δλMS

2 using the rela-

tions from eqs. (2.14)–(2.16),

δλ1 =
δm2

h + δm2
H

2v2
+

vsα − vscα
2v3vs

δTh −
vssα + vcα

2v3vs
δTH − v2s

v2
δλMS

2 − 2λ1

v
δv; (3.39)

δλ3 =
ctαδm

2
H − tαδm

2
h

2vvs
+

c2α
2vv2s

[

δTh

cα
− δTH

sα

]

− 2

t2α

vs
v
δλMS

2 − λ3

v
δv. (3.40)

We are thus left with

δm2
hH = v2s2αδλ1 − δλMS

2 v2ss2α + vvsc2αδλ3 +
s2α
2

[(

cα
v

+
sα
vs

)

δTh +

(

sα
v

− cα
vs

)

δTH

]

+ (2vs2αλ1 + vsc2αλ3) δv. (3.41)

Finally, we use the on-shell relations (3.33)–(3.34) to obtain the non-diagonal field renor-

malization constants, which are now fixed in terms of eq. (3.41).

Since all of the renormalization constants within δm2
hH are either related to physical

observables and/or correspond to prefactors of gauge invariant operators (e.g. λ1,2,3) the

mixed mass counterterm δm2
hH is by construction gauge-invariant — and leads in turn to

gauge-independent renormalized one-loop amplitudes, as we prove numerically in section 5.

This observation, together with the analytical structure of the mixed self-energy ΣhH(p2)

from eq. (3.36), reflects that the renormalization conditions chosen for δm2
hH (and linked

to them, for δZhH,Hh) are the ultimate origin of the uncancelled gauge dependence found

in the minimal field and the on-shell schemes.

In spite of leading to gauge-independent results, this mixed MS/on-shell scheme tends

to produce overestimated radiative corrections in the phenomenologically interesting re-

gions (sα → 0, cα → 0), as manifest from the analytic dependencies of the countert-

erms (3.39)–(3.40), which are proportional to inverse powers of small trigonometric factors.

We therefore refrain from using this scheme explicitly in our phenomenological analysis,

and instead propose an improved gauge-independent setup right below.
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δZh,H δZhH,Hh δm2
hH

Minimal field
δZh = −ReΣ′

h(m
2
h) δ ZhH =

1

2
s2α [δZh + δZH ] ReΣhH(µ2

R) +

[

µ2
R −

m2
h +m2

H

2

]

δZH = −ReΣ′
H(m2

H) δ ZHh = δZhH

OS
δZh = −ReΣ′

h(m
2
h) δ ZhH =

ReΣhH(m2
H)− ReΣhH(m2

h)

m2
h −m2

H

ReΣhH(m2
h) + ReΣhH(m2

H)

2

δZH = −ReΣ′
H(m2

H) δ ZHh = δZhH

Mixed MS/OS
δZh = −ReΣ′

h(m
2
h) δ ZhH =

2

m2
h −m2

H

[

ReΣhH(m2
H)− δm2

hH

]

eq. (3.41)

δZH = −ReΣ′
H(m2

H) δ ZHh =
2

m2
H −m2

h

[

ReΣhH(m2
h)− δm2

hH

]

Improved OS
δZh = −ReΣ′

h(m
2
h) δ ZhH =

2

m2
h −m2

H

[

ReΣhH(m2
H)− δm2

hH

]

ReΣhH(p2∗), p2∗ =
m2

h +m2
H

2

δZH = −ReΣ′
H(m2

H) δ ZHh =
2

m2
H −m2

h

[

ReΣhH(m2
h)− δm2

hH

]

Table 3. Overview of the scheme-dependent counterterms in the different renormalization setups

considered in this paper.

Improved on-shell. A second alternative to sidestep the gauge-dependent δm2
hH de-

finition in the default on-shell scheme is to isolate the gauge invariant part of the mixed

self energy of eq. (3.36). In so doing, we can use it to define the problematic mixed mass

counterterm through a gauge-independent improved self-energy [124]. This is actually

possible if the mixed scalar self-energy (3.36) is computed in the linear ’t Hooft-Feynman

gauge and evaluated at the average geometrical mass p2∗ = (m2
h + m2

H)/2. As shown in

ref. [122] with the help of the so-called pinch technique, [124–126], the mixed scalar self-

energy (3.36) obtained in this way coincides with the gauge-invariant part of the pinched

result. While the results proven in ref. [122] are applied to the squark and Higgs sectors of

the MSSM, the proof does not rely on Supersymmetry and hence can be exported to the

more general case of a system of two gauge eigenstates which mix in the mass basis. In

addition, self-energies computed using the pinch technique are independent of the gauge-

fixing scheme [124]. With these arguments in mind, we thus retain only the first line in

eq. (3.36) and define the mixed mass counterterm through

δm2
hH = ReΣhH(p2∗)

∣

∣

ξW=ξZ=1,δ̃i=0
with p2∗ =

m2
h +m2

H

2
, (3.42)

which must be therefore gauge-independent (as we again confirm numerically in section 5.2).

Finally, the non-diagonal field renormalization are once more fixed using OS condi-

tions (3.32) and fully determined in terms of δm2
hH .

In table 3 we provide a summarized overview of the different renormalization schemes

discussed in this section. Notice that they differ from each other in the renormalization

conditions used to fix the non-diagonal Higgs field renormalization δZhH,Hh constants and

the mixed mass counterterm δm2
hH .
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4 Heavy-to-light Higgs decay width

4.1 Leading-order contribution

When kinematically accessible, the heavy-to-light Higgs decay mode H → hh proceeds at

leading order (LO) via the tree-level contact interaction λHhh with partial width [12, 14]

ΓLO
H→hh =

λ2
Hhh

32πmH

√

1− 4m2
h

m2
H

, (4.1)

where

λHhh = − is2α
v

[

m2
h +

m2
H

2

]

(cα + sα t
−1
β ) . (4.2)

Notice that, owing to the structure of the scalar self-coupling, the decay width is not

symmetric under a sign flip of the mixing angle sα → −sα.

As such, this decay mode constitutes a genuine new physics contribution to the total

heavy Higgs width — aside from the global rescaling of its decay modes into SM particles.

The opening of this novel channel is thus capable to alter the Higgs boson lineshape signif-

icantly, as well as its decay pattern. More specifically, the branching fractions of the heavy

Higgs boson of mass mH to SM fields φ are modified as

BRH→φφ (mH) =
s2α Γ

SM
H →φφ (mH)

s2α Γ
SM
Htot

(mH) + ΓH→hh (mH)
, (4.3)

where ΓSM
H (mH) stands for the total width of a SM-like Higgs boson with mass mH . For

the lighter Higgs boson with mass mh, the branching fractions are exactly as for a SM-like

Higgs with that mass.

Notice that for λHhh = 0, all partial decay widths are universally rescaled in terms of

the Higgs mixing angle α, leading to the same branching ratios that a Higgs boson of that

mass would experience in the SM.

Two competing mechanisms determine the overall size of ΓLO
H→hh. On the one hand

there is the kinematic factor βkin/m
2
H = 1/m2

H

√

1− 4m2
h/m

2
H , where βkin trades the light

Higgs-pair velocity in the heavy Higgs boson rest frame. Its dependence with respect to

mH is displayed in the left panel of figure 2, for a fixed light Higgs mass mh = 125.09GeV.

The characteristic O(m−1
H ) phase-space suppression is compensated by the trilinear

Higgs coupling strength λHhh, which depends quadratically on both the light and the

heavy Higgs masses. On the other hand, there are cot β-enhanced contributions which can

invigorate these Higgs self-interactions for tβ < 1, and push the H → hh rates even higher.

We illustrate these effects in the right panel of figure 2, in which we show the leading-order

heavy-to-light Higgs decay width ΓLO
H→hh in the sα− tβ plane for a heavy Higgs boson with

mass mH = 300GeV. We can identify three different configurations in which the H → hh

mode exactly vanishes [21]: i) the light Higgs decoupling limit, sα = 0; ii) the heavy Higgs

decoupling limit, |sα| = 1; and iii) the line tβ = −tα. In cases i (resp. ii), all couplings of

the heavy (resp. light) Higgs boson eigenstate are identically zero.
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Figure 2. Left panel: kinematical factor βkin =
√

1− 4m2
h/m

2
H as a function of the heavy Higgs

mass, for mh = 125.09GeV. Right panel: leading-order heavy-to-light Higgs decay width ΓLO
H→hh

[in GeV] over the sinα − tanβ plane for a fixed heavy Higgs mass of mH = 300GeV. The grey

lines signal the configurations sinα = 0 and tan β = − tanα along which ΓLO
H→hh vanishes.
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Figure 3. Representative Feynman diagrams for H → hh at one-loop electroweak accuracy in the

’t Hooft-Feynman gauge. The Feynman diagrams are generated using FeynArts.sty [127].

4.2 Electroweak one-loop corrections

Since all external particles involved in this process are colorless and electrically neutral, the

next-to-leading order (NLO) corrections are given by purely weak one-loop effects. These

O(αew) corrections stem from the interference of the LO amplitude and different subsets

of one-loop graphs. On the one hand we have the genuine one-particle irreducible (1PI)

vertex corrections. These include triangle and bubble-like three-point topologies which

involve the exchange of virtual heavy fermions, weak gauge bosons and Higgs bosons, as

generically illustrated in figure 3. The neutral Goldstone bosons and the SU(2)L Faddeev-

Popov ghost contributions appear explicitly in the ’t Hooft-Feynman gauge. In addition

to the genuine 1PI topologies, the one-loop corrections involve as well the Hhh vertex

counterterm, which relies on a combination of Higgs and gauge boson two-point functions,

as discussed beforehand in section 3. This contribution cancels the UV-divergent poles

of the 1PI amplitude and allows us to write the complete one-loop amplitude in terms

of physical (renormalized) parameters. Lastly, we must include the finite wave-function

corrections to the external Higgs boson legs (3.31) in the minimal field scheme — while for

the on-shell schemes these are identically zero.
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Combining all these pieces we may express the NLO heavy-to-light Higgs decay

width as

ΓNLO
H→hh =

1

32πmH

√

1− 4m2
h

m2
H

[

λ2
Hhh + 2ReλHhh

(

δΓ△
Hhh + δΓWF

Hhh + δλHhh

)]

. (4.4)

By δΓ△
Hhh we denote the one-loop contribution from the 1PI three-point vertex graphs.

The wave-function corrections yield

δΓWF
Hhh = 2ẐhHλHHh + ẐHhλhhh =

1

m2
h −m2

H

[

λhhhΣ̂hH(m2
H)− 2λHHhΣ̂hH(m2

h)
]

, (4.5)

where we have introduced the finite field renormalization constants eq. (3.31) and expanded

them to first order in αew. Finally, δλHhh stands for the counterterm of the trilinear scalar

coupling. The latter is constructed from the tree-level expression (4.2), expanding all the

bare quantities as customary as X0 → X + δX. Doing so we find

δ λHhh = λHhh

[

δZh +
1

2
δZH +

1

2

λhhh

λHhh
δZhH +

λHHh

λHhh
δZhH

]

+ cHhh
1 δm2

h + cHhh
2 δm2

H + cHhh
3 δm2

hH + cHhh
4 δTh + cHhh

5 δTH + cHhh
6

δv

v
, (4.6)

where the coefficients ci are quoted separately in the appendix.

The relative size of the quantum effects is quantified through the ratio

δα ≡ ∆Γ1-loop
α

ΓLO
α

=
ΓNLO
α − ΓLO

α

ΓLO
α

, (4.7)

where all quantities are given in the αem-parametrization. The pure one-loop corrections

∆Γ1-loop include all terms stemming from the LO-NLO interference.

5 Phenomenology

Hereafter we describe the phenomenology of heavy-to-light Higgs decays at NLO EW accu-

racy. We begin in section 5.2 by completing the discussion on the gauge dependence issues

that were pointed out qualitatively in section 3. We here revisit them on quantitative

grounds and justify the choice of the improved on-shell scheme as our default setup for the

remainder of the analysis. Furthermore, we perform a dedicated numerical comparison of

different schemes and show that these theoretical shortcomings have arguably a negligible

impact in practice.

We continue in sections 5.3 and 5.4 with a detailed presentation of our phenomeno-

logical analysis. In line with ref. [21], we separately consider two regions of interest, where

heavy-to-light Higgs decays are kinematically accessible.

• High-mass region: in which the lighter eigenstate is identified with the discovered SM-

like Higgs of (fixed) mass mh, while the heavier mass-eigenstate corresponds to an

additional heavy Higgs companion with a variable mass mH , such that mH > 2mh.
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• Low-mass region: where one instead identifies the heavier mass eigenstate with the

SM-like Higgs of (fixed) mass mH , while h represents now a light Higgs companion

and mH > 2mh.

Specific scenarios with maximal H → hh branching fractions in agreement with all of

the model constraints are analysed separately in section 5.5.

5.1 Computational setup

In the remainder of our numerical analysis, we fix the SM Higgs boson mass to the best-fit

value based on the combined data samples of the ATLAS and CMS experiments mh =

125.09GeV [65]. Whenever needed, we use in addition the current best averages of the

top-quark mass mt = 173.07GeV; the (pole) bottom-quark mass mpole
b = 4.78GeV; and

the weak gauge boson masses mW = 80.385GeV, mZ = 91.1875GeV [102]. The singlet vev

is linked to the physical doublet vev through the input parameter tan β as vs = vphys tanβ,

with vphys ≡ vGF
= (

√
2GF )

−1/2 = 246.219GeV. This is in fact equivalent to defining

tanβ in the GF -parametrization. To perform our calculation in the αem-parametrization,

we must translate it accordingly through eq. (3.16)

tanβ
]

αem

= tanβ
]

GF

(

vphys
vαem

)

=
tanβ

]

GF√
1 + ∆r

, (5.1)

where

v2αem
=

m2
W

(

1−m2
W /m2

Z

)

π αem(0)
and hence vαem

= vGF

√
1 + ∆r . (5.2)

Plugging the above relation along with eq. (3.16) into the expression for the decay

width (4.4),

ΓLO
GF

= ΓLO
αem

(

1 +
∆ r

1 + tα/ tanβ

)

, (5.3)

which relates the αem and GF parametrizations up to NLO EW accuracy through

δGF
≡

∆Γ1-loop
GF

ΓLO
GF

= δαem

(

1− ∆ r

1 + tα/ tanβ

)

+O(G3
F ). (5.4)

Feynman rules for the singlet model rely on two independent implementations. For one

of them we use LanHEP [74, 75] and Sloops [15–18] and include a non-linear gauge fixing

Lagrangian (2.20). For the second one we generate UFO [128] and FeynArts [127] files

using FeynRules [129], while the counterterms are derived analytically and implemented

by hand. Both implementations are in perfect agreement.

The one-loop decay amplitude is generated with FeynArts and analytically processed

via FormCalc [127]. The loop form factors are handled with dimensional regularization

in the ’t Hooft-Veltman scheme, and written in terms of standard loop integrals. These

are further reduced via Passarino-Veltman decomposition and evaluated with the help of

LoopTools [130].

– 25 –



J
H
E
P
0
2
(
2
0
1
6
)
1
4
7

5.2 Scheme choice and gauge invariance

Gauge-fixing parameters may appear explicitly at intermediate stages in the calculation of

S-matrix elements in gauge theories. Taken separately, counterterms and unrenormalized

loop amplitudes may in general depend on the gauge-fixing parameters and are eventually

also UV-divergent. We only expect these UV divergent contributions to cancel once all the

different building blocks are combined together into predictions for physical observables.

Nonetheless, depending on which renormalization conditions are chosen for a certain input

parameter X, one may obtain loop amplitudes which, albeit finite, still depend on the

gauge-fixing. These situations reflect that, for such a renormalization scheme, the definition

for X is gauge-dependent.

In the following we check the different renormalization schemes introduced in sec-

tion 3.3.6 in the light of gauge independence. We compute the one-loop correction to

the heavy-to-light Higgs decay width δΓ1-loop
H→hh ≡ ΓNLO

H→hh − ΓLO
H→hh in the general non-

linear gauge of eq. (2.20), where the quantities ΓLO
H→hh and ΓNLO

H→hh are given by eqs. (4.1)

and (4.4) respectively. We resort to the SloopS implementation of the singlet model

Feynman rules which includes the general non-linear gauge-fixing Lagrangian of eq. (2.20),

and vary the gauge-fixing parameters {nlgs} = {α̃, β̃, κ̃, δ̃1, δ̃2, ǫ̃1, ǫ̃2} within the fiducial

range {nlgs} = 0 . . . 10. Notice that the lower endpoint {nlgs = 0} reproduces the familiar

’t Hooft-Feynman linear gauge. As a sample parameter space point we take

mh = 125.09GeV, mH = 260GeV, sinα = 0.3, tanβ = 5 , (5.5)

which gives a leading-order width ΓLO
H→hh = 0.137GeV. In table 4 we compare the re-

sults for δΓ1-loop
H→hh in the linear gauge ({nlgs = 0}) and one exemplary non-linear setup

({nlgs = 10}). Simultaneously, we check the UV-finiteness of our results by sweeping the

range ∆ = 0 . . . 107, where the parameter ∆ trades the UV-divergences of the one-loop

amplitude as defined by eq. (3.38). Gauge independence and UV-finiteness are verified

if δΓ1-loop remains unchanged (within numerical precision) under these varations.9 The

fact that in the first two columns δΓ1-loop remain constant confirms that all of the four

schemes introduced in section 3.3.6 yield UV-finite results in the linear gauge. However,

only the mixed MS/OS and the improved OS setups produce UV-finite, {nlgs}-independent
results for the generalized non-linear gauge-fixing. Instead, in the minimal field and the OS

schemes we observe left-over δΓ1-loop dependencies on the gauge-fixing parameters. These

{nlgs}-dependent remainders affect both the finite parts and the UV-divergent contribu-

tions, and are thus responsible for the incomplete cancellation of the UV-poles, cf. the last

column of table 4. This breakdown can be ultimately traced back to the renormalization

condition that determines the mixed mass counterterm δm2
hH . Its definitions in the mini-

mal field scheme (3.30) and the OS scheme (3.35) are not gauge-independent, and lead

to a {nlgs}-dependent decay width. Instead, we find no residual {nlgs}-dependencies in

the mixed MS/OS and the improved OS schemes, in which δm2
hH is fixed via the gauge-

independent definitions of eq. (3.41) and (3.42) respectively. We make these observations

9Using double precision we expect an agreement of 14 to 15 digits. Given the variation ranges ∆ =

0 . . . 107 and {nlgs} = 0 . . . 10, we deem the test as satisfactory if 6 to 8 common digits are achieved.
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δΓ1-loop
H→hh [GeV]

Scheme ∆ = 0, {nlgs} = 0 ∆ = 107, {nlgs} = 0 ∆ = 107, {nlgs} = 10

Minimal field +4.28079888× 10−3 +4.28079882× 10−3 −6.63340412× 104

OS +4.26334888× 10−3 +4.26334886× 10−3 −5.27015844× 103

Mixed MS/OS +6.8467506× 10−3 +6.8467504× 10−3 +6.8467500× 10−3

Improved OS +3.9393569× 10−3 +3.9393568× 10−3 +3.9393556× 10−3

Table 4. Checks on UV-finiteness and gauge independence of the one-loop correction to the

heavy-to-light Higgs decay width δΓ1-loop
H→hh (in GeV) within the different renormalization schemes

introduced in section 3.3.6. The model parameters are fixed as in eq. (5.5). For the (scale dependent)

minimal field scheme we set the renormalization scale at µ2
R = (m2

h +m2
H)/2. Bold-faced numbers

highlight the first departing digits between the entries of the different columns in a given row.

patent in table 5, where we display the numerical value of the mixing counterterm δm2
hH

corresponding to the four renormalization schemes under analysis. Since the counterterm

is not UV finite, we split it into a finite and singular part as (with ∆ as defined in (3.38))

δm2
hH = δm2

hH

∣

∣

∣

∞
·∆+ δm2

hH

∣

∣

∣

fin

. (5.6)

Neither the coefficient of the UV pole δm2
hH

∣

∣

∣

∞
nor the finite remainder δm2

hH

∣

∣

∣

fin

depend on

the gauge-fixing parameters when we fix δm2
hH either in the mixed MS/OS or the improved

OS conditions. Instead, both terms are shifted when we switch from the linear {nlgs} = 0

to the non-linear gauge-fixing choice {nlgs} = 10, when the calculation is performed using

the minimal field or the OS schemes. In view of the fact that δm2
hH (along with the mixed

field renormalization δZhH , cf. table 3) are the only different ingredients between these

four schemes, they are ultimately responsible for the finite {nlgs}-dependent remainders in

δΓ1-loop in the latter two schemes — and linked to them, of the uncancelled UV poles. We

emphasize as well that these concomitant UV divergences vanish for {nlgs} = 0 and hence

do not feature in the customary ’t Hooft-Feynman gauge, where the results in all schemes

are UV finite. Finally, let us also notice that, given the relation between the mixed mass

counterterm and the mixing angle via eq. (3.24), a gauge-independent δm2
hH supports a

more physical interpretation of the mixing angle, viz. as value that could be extracted from

e.g. a deviation in the LHC Higgs signal strengths or, alternatively, an excess which points

to the direct production of the heavy scalar.10

For practical purposes, therefore, the proven robustness of the improved OS scheme

(giving in all cases UV-finite, {nlgs}-independent, and numerically stable renormalized

one-loop amplitudes) justifies its use as default scheme choice in our numerical analysis

hereafter. Moreover, the excellent agreement between the δΓ1-loop results for the different

schemes in the linear ’t Hooft-Feynman gauge — as explicitly shown further down — give

convincing arguments that also the schemes where the mixed mass counterterm is gauge

10Similar lines of argument are used in the context of the renormalization of the tan β parameter in the

MSSM, cf. e.g. table 2 in ref. [17].
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δm2
hH |∞ {nlgs} = 0 {nlgs} = 10 δm2

hH |fin {nlgs} = 0 {nlgs} = 10

Minimal field −5.80× 102 −9.44× 102 Minimal field +5.72× 103 +8.48× 103

OS −5.80× 102 −9.44× 102 OS +5.75× 103 +8.80× 103

Mixed MS/OS −5.80× 102 −5.80× 102 Mixed MS/OS −2.48× 102 −2.48× 102

Improved OS −5.80× 102 −5.80× 102 Improved OS +5.72× 103 +5.72× 103

Table 5. Dependence on the gauge-fixing parameters of the mixed mass counterterm δm2
hH (in

GeV2) within the different renormalization schemes introduced in section 3.3.6. The model pa-

rameters are fixed as in eq. (5.5). For the (scale dependent) minimal field scheme we set the

renormalization scale at µ2
R = (m2

h +m2
H)/2.

dependent render reliable results — at least as long as the linear ’t Hooft-Feynman gauge

is used and, in the case of the minimal field scheme the renormalization scale is chosen in

the ballpark of the relevant physical scales. This is again in line with analogue situations

such as e.g. the squark sector of the MSSM [18, 121, 122].

5.3 High-mass region

In table 6 we evaluate ΓLO
H→hh and ΓNLO

H→hh for representative parameter choices and different

renormalization schemes. The relative one-loop EW corrections are given in both the αem-

parametrization and the GF -parametrization introduced in section 4. Our results show

decay rates that strongly vary with the relevant parameters of the model. The heavy-to-

light Higgs decay width significantly depends on the decaying Higgs mass mH , changing

by two orders of magnitude when sweeping the range mH = 300 . . . 700GeV. For heavy

Higgs masses close to the di-Higgs threshold, the partial Higgs widths lie in the ballpark

of O(0.01–0.1)GeV. These results depend as well on the mixing angle, and change by

roughly one order of magnitude from small (viz. sinα ≃ 0.1) to moderate mixing angles

(viz. sinα ≃ 0.3). For larger heavy Higgs masses, the ΓNLO
H→hh values may rise up to

the few GeV level. The mild numerical discrepancies between the different schemes are

indicative of small theoretical uncertainties in the ’t Hooft-Feynman gauge. For a more

general gauge-fixing choice, though, the minimal field and on-shell schemes are no longer

reliable, in view of their proven gauge-dependent nature. It is also worth noticing that the

radiative corrections in the GF -parametrization (δGF
) are generically smaller than in the

αem-parametrization. The reason is twofold: i) part of the NLO EW corrections in the

latter case (δα) are contained in the ∆r parameter, and hence already embedded into the

GF -scheme LO calculation (cf. eq. (5.3)). Consequently, the quantum effects encoded by

∆r do not belong to δGF
; ii) for phenomenologically relevant scenarios, ∆r is dominated

by purely SM effects, for which ∆SM > 0 [98, 103–107], and thereby δα > δGF
, given the

relation between both (5.4).

The analysis is complemented in figure 4 with a thorough survey of the parameter space

dependencies. The NLO results are calculated in the improved OS scheme. The shaded

regions are ruled out by different theoretical and experimental constraints on the model:

i) the ranges mH > 840GeV (left panel) and tan β < 1.27 (right panel) are excluded
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mH [GeV] sinα ΓLO
α (H → hh) [GeV] ΓNLO

α (H → hh) [GeV] δα [%] δGF
[%]

tanβ = 5

300

0.1 4.374×10−2

OS 4.516×10−2 3.250 3.130

Improved OS 4.509×10−2 3.106 2.990

Minimal field 4.544×10−2 3.895 3.751

0.2 0.171

OS 0.177 3.371 3.248

Improved OS 0.177 3.218 3.100

Minimal field 0.178 4.033 3.886

0.3 0.362

OS 0.375 3.583 3.455

Improved OS 0.374 3.400 3.278

Minimal field 0.377 4.281 4.127

500

0.1 0.221

OS 0.234 5.667 5.456

Improved OS 0.233 5.438 5.236

Minimal field 0.237 6.989 6.730

0.2 0.868

OS 0.920 5.980 5.761

Improved OS 0.917 5.728 5.518

Minimal field 0.932 7.441 7.168

0.3 1.831

OS 1.951 6.566 6.329

Improved OS 1.945 6.237 6.012

Minimal field 1.983 8.294 7.995

700

0.1 0.586

OS 0.597 1.948 1.876

Improved OS 0.601 2.569 2.473

Minimal field 0.598 2.009 1.935

0.2 2.296

OS 2.355 2.583 2.489

Improved OS 2.369 3.188 3.071

Minimal field 2.366 3.056 2.944

0.3 4.845

OS 5.026 3.742 3.606

Improved OS 5.056 4.353 4.195

Minimal field 5.082 4.893 4.716

Table 6. Heavy-to-light Higgs decay width ΓH→hh at LO and NLO EW accuracy, for representative

parameter choices and different renormalization schemes, in the high-mass region. The total decay

widths are obtained in the αem-parametrization, as defined in eqs. (4.7), while the relative one-

loop EW effects are quantified in both the αem-parametrization and the GF -parametrization, cf.

eq. (5.4). For the (scale-dependent) minimal field scheme, the renormalization scale is fixed to the

geometrical average mass µ2
R = p2

∗
= (m2

h + m2
H)/2. The input value for tan β is linked to the

singlet vev through vs = (
√
2GF )

−1/2 tanβ.

by perturbativity ii) | sinα| > 0.31 (central panel, green shading) is incompatible with

electroweak constraints from the mW measurement; finally, the central range | sinα| < 0.06

(central panel, orange shading) is incompatible with vacuum stability.

Most features observed in figure 4 can be readily traced back to the LO dynamics which

governs the decay process. The two key players, as alluded to above, are the trilinear Higgs

self-coupling λHhh and the characteristic 1 → 2 kinematics. The former is responsible for

the quadratic growth ΓH→hh ∼ O(m2
H) (cf. eq. (A.2)), which overcomes the phase space

suppression at m2
H ≫ m2

h, and explains the power-like increase as a function of mH (left
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Figure 4. Heavy-to-light Higgs decay width ΓH→hh in the high-mass region. The results are shown

at LO (dashed, red) and NLO (full, blue) as a function of the relevant parameters of the model.

The lower subpannels show the relative one-loop EW correction in the αem-parametrization (4.7).

Renormalization is performed in the improved on-shell scheme. The shaded regions are excluded

by constraints (see the text for more details).

panel in figure 4). The NLO-corrected result with respect to the mixing angle mimics the

LO result, with the expected nodes in the decoupling limits | sinα| = 0 or 1 as well as for

tanβ = − tanα (cf. the central panel of figure 4).

Unlike the stark changes observed for the decay width, the relative one-loop EW correc-

tions are much more stable, positive, and of the order of few percent. Differences between

the αem-parametrization and the GF -parametrization, as well as between the different

renormalization schemes, are mild and remain typically below the percent level.

The slight kink in δα for mH ≃ 350GeV (left panel, figure 4) reflects the top-quark

threshold. The finite correction δα ∼ 3% for sinα → 0 (cf. the lower subpanel of figure 4,

center) follows from the fact that both ΓLO
H→hh and ΓNLO

H→hh tend to zero in this limit, while

its ratio remains roughly constant. The unphysical large effects at sin α . −0.9 are due to

the LO node in the limit tanα → − tanβ, for which λHhh = 0. The pronounced NLO slope

at low tan β is ultimately due to the exchange of virtual Higgs bosons, and constitutes a

telltale imprint of the singlet model dynamics at the one-loop level. While the fermion

and the gauge boson-mediated contributions are all controlled by (globally rescaled) gauge

couplings, the size of the Higgs-mediated loops is governed by the Higgs self-couplings.

These are strongly enhanced for tan β ≪ 1, specially the Higgs boson two-point graphs,

which depend on them quadratically. For low enough tan β values, e.g. typically tan β . 0.3

and for mH & 300GeV, the relative yield δα exceeds ∼ 50%, indicating that the process

becomes effectively loop-induced. Such sizable loop effects are nonetheless hampered in

practice, owing to the unitarity and perturbativity bounds which severely constrain the

phenomenologically viable low-tan β range. The limit tan β ≪ 1 corresponds in fact to

the onset of a strongly-coupled regime, in which at least one of the scalar self-couplings

becomes non-perturbative, cf. also the discussion in section 2.6.

Complementary vistas to the H → hh landscape are displayed in figure 5. Here we

show the relative one-loop effects δα (4.7) as density contours in the sinα − tanβ plane.

The yellow contour separates the allowed and excluded regions in the parameter space.
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Figure 5. Relative one-loop EW corrections in the αem-parametrization (4.7), projected on the

sinα − tanβ plane for exemplary heavy Higgs masses in the high-mass region. The white voids

correspond to regions with δα & 100 %. Renormalization is performed in the improved on-shell

scheme. The yellow contour separates the allowed and excluded regions in the parameter space.
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Figure 6. Heavy Higgs branching ratios (in %) as a function of the heavy Higgs mass in the high-

mass region. The mixing angle and tan β values are fixed in each panel such that they maximize the

H → hh branching ratio at LO for a given heavy Higgs mass of 400 (left), 600 (center) and 800GeV

(right) [90]. Decay modes into light fermions and loop-induced decays into gauge bosons lie below

O(0.1)% and are not shown. The lower subpanels show the relative one-loop EW correction (αem

parametrization (4.7)) to ΓLO
H→hh for the same parameter variations. The shaded (green) area in

the left plot is ruled out by the W-mass measurement. Excluded regions in the central and right

panels (in yellow) are incompatible with perturbativity and mW .

Only the horizontal fringes enclosed by the contour are compatible with all constraints

on the model. The white voids stand for values of δα & 100% and correspond to regions

where δα is no longer a meaningful measure of the relative quantum effects, while it instead

indicates that the decay process becomes loop-induced. We find this situation: i) along

the strip tanα ≃ − tanβ, due to the suppressed tree-level couplings; and ii) for tan β < 1,

due to the cot β-enhanced Higgs-mediated loops.

The impact of heavy-to-light Higgs decays on the decay pattern of the heavy Higgs

state is portrayed in figure 6. The branching ratios for the leading decay channels are

represented as a function of the heavy Higgs mass. The mixing angle and tan β values are

fixed in each panel such that they maximize the H → hh branching ratio for a given heavy
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Figure 7. NLO decay width ΓNLO
H→hh as a function of the renormalization scale in the high-mass

region, for exemplary heavy Higgs masses, mixing angles, and tan β choices. The scale-dependent

predictions for the minimal field scheme are represented by the solid (magenta) lines. The scale-

independent reference value (dotted, red lines) we obtain in the improved OS scheme. Parameter

space constraints are not shown.

Higgs mass [90], as explicitly indicated in the figure. In this plot, we show the partial decay

widths to SM fields by rescaling the SM predictions [44], while for the H → hh we use

the LO result.11 As well known, bosonic modes dominate the Higgs boson decays at high

masses [7–9]. We find a rather featureless profile, with WW being the leading mode and

with roughly no changes over the whole mass range. Only the decays into top-quark pairs

are also competitive, and attain up to BR ∼ O(10)%. The remaining fermionic channels,

as well as the loop-induced γγ, γZ and gg modes, stagnate at the O(0.1)% level or below

and are not shown. In the lower subpanels we show the relative one-loop EW correction

to the heavy-to-light Higgs decay width for the same parameter variation.

Finally, in figure 7 we analyse how ΓNLO
H→hh varies with the renormalization scale in

the (scale-dependent) minimal field scheme, as introduced in eq. (3.30). We compare the

minimal field to the (scale-independent) improved OS scheme, which we show as reference

value. For tan β = 5, ΓNLO
H→hh flattens not far from the geometrical average mass scale

µ2
R ≃ p2∗ = (m2

h + m2
H)/2. Precisely around this value, both the minimal field and the

11A global study including all Higgs decays in the singlet model to state-of-the-art accuracy lies beyond

the scope of the present study and will be discussed in a forthcoming publication [131].
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improved OS predictions tend to converge, suggesting that µ2
R = p2∗ in eq. (3.30) is indeed

a convenient scale choice for the former. Moreover, the very stable NLO predictions around

this scale, added up to the mild changes with the different renormalization schemes shown

in table 6, indicate a small theoretical uncertainty.

Much steeper scale variations arise instead in the tan β < 1 region. Here, the ΓNLO
H→hh

predictions become unstable, especially for heavy Higgs masses. Such instability may

be once more traced back to the Higgs-mediated scalar two-point graphs: these become

overly large owing to the enhanced Higgs self-couplings, and artificially dominate the scale

dependence in these regions. Such a stark scale dependence is simply the reflect of the poor

perturbative behavior of the model in the vicinity of a strongly-coupled regime λ ∼ O(4π),

which obviously translates into a huge theoretical uncertainty.

5.4 Low-mass region

Assuming now mH = 125.09GeV and a free light Higgs mass mh, direct LEP and LHC

mass bounds, and most remarkably the measured LHC Higgs signal strengths, narrow the

viable sinα region down to a slim fringe | sinα| . 1. Constraints become particularly tight

in the region of interest mH > 2mh, given the limited tolerable room for deviations in

the total SM-like Higgs width when additional decay modes feature. State-of-the-art LHC

constraints on the total Higgs width place an upper limit of Γh ≤ 22MeV [132, 133]. For

definiteness, we hereafter adopt the fiducial choice sinα = 0.998 [21].

In figure 8 we examine the parameter space dependence of ΓH→hh in this scenario.

Complementarily, in table 7 we provide precise predictions for specific parameter space

points, while comparing again the different renormalization schemes. In figure 9 we analyse

the mh−tanβ interplay by showing the total NLO amplitude ΓNLO
H→hh (4.4) and the relative

NLO correction δα (4.7) in the form of two-dimensional density maps.

The obtained ΓNLO
H→hh values span two orders of magnitude, ranging from O(10−3)

down to O(10−5)GeV as we navigate throughout the different parameter space regions.

This sharp variation is again connected to the behavior of the leading-order coupling λHhh:

whilst it tends to zero in the limit sinα → 1, it can yet contribute if the cot β-enhanced

terms are large enough. Either way, let us once more recall that a significant patch of the

low-tan β range is in practice precluded by the different constraints on the model (see e.g.

the top panels of figure 8 and figure 9). In particular, the shaded regions at small tan β

and low Higgs masses are incompatible with the LHC Higgs signal strength measurements.

Another salient feature is the steep rise of the quantum corrections at low tan β (see the top

panels of figure 8): these are positive, tend to increase with the light Higgs mass, and may

surmount the O(50%) level. Aside from the discussed Higgs-mediated loop enhancements,

additional mechanisms reinforce this behavior in this case: i) the suppressed tree-level decay

amplitude, due to the lesser phase space available, the closer we move to the kinematical

threshold; ii) the vicinity of the di-Higgs loop threshold, which invigorates the light Higgs-

mediated loops even further. For tan β > 1 the corrections are instead moderate and

negative, becoming even more so for very light mh values. The latter effect may be traced

back to the fermionic (viz. the top-mediated) three-point loops, which are in this case the

dominant source of quantum corrections and present a trademark logarithmic dependence

∼ log(m2
t /m

2
h).
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Figure 8. Heavy-to-light Higgs boson width ΓH→hh in the low-mass region. The results are shown

at LO (dashed, red) and NLO (full, blue) as a function of the relevant parameters of the model.

The mixing angle is fixed to sinα = 0.998 in all cases. The lower subpanels show the relative

EW one-loop correction in the αem-parametrization (4.7). Renormalization is performed in the

improved on-shell scheme. The shaded areas in the low tan β and mh ranges are ruled out by the

LHC Higgs signal strength measurements.

The scale dependence of the NLO results in this low-mass region is analysed in figure 10.

The ΓNLO
H→hh predictions obtained in the improved OS and the minimal field schemes schemes

agree very well in the ballpark of the geometric average mass µ2
R = p2∗ = (m2

h+m2
H)/2, and

the latter barely varies with the scale. The very stable slope even in the tan β < 1 region,

which is in contrast to the strong scale dependence in the high-mass region, is explained

by the much lower scales µ2
R ≃ p2∗ involved in this case, for which the finite Higgs-mediated

contributions to the Higgs field two-point functions are much smaller.

In figure 11 we recast the above analysis in terms of the heavy Higgs branching ratios.

We track down their behavior as a function tan β for exemplary light Higgs masses and

fiducial mixing sinα = 0.998. From values of tan β . 1 onwards, the obtained decay

pattern approaches that of a purely SM-like Higgs boson. The dominant mode is bb̄, while

the di-Higgs final state is hampered due to the tiny tree-level coupling λHhh ∼ cα. In this

case, the H → hh mode carries not more than a few percent of the total budget — on

equal footing with the loop-induced decay H → gg. If we instead move towards lower tan β

values, the cot β-enhanced terms overcome in part the sinα → 1 suppression and promote

H → hh again to a chief role.
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Figure 9. Loop-corrected partial H → hh width (left panel) and relative one-loop EW corrections

δα in the αem-parametrization (4.7), projected on the mh − tanβ plane in the low-mass region.

The mixing angle is fixed to the fiducial choice sinα = 0.998. Renormalization is performed in

the improved on-shell scheme. The regions on the left and below the red contour are excluded by

constraints. The strong exclusion in the low mass region follows from direct LEP searches [134].
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Figure 10. NLO decay width ΓNLO
H→hh as a function of the renormalization scale in the low-

mass region, for exemplary heavy Higgs masses and tan β values. The mixing angle is fixed to

sinα = 0.998. The scale-dependent predictions for the minimal field scheme are represented by the

solid (magenta) lines. The scale-independent reference value (dotted, red lines) we obtain in the

improved OS scheme. Parameter space constraints are not shown.

5.5 Maximal branching ratios

So far we have discussed the general behavior of the NLO EW corrections to the heavy-to-

light Higgs decay width along the relevant parameter space directions sin α, tanβ, mh/H .

Before closing, we focus on the series of benchmarks with maximal tree-level heavy-to-

light Higgs branching ratio proposed in [90]. These are defined as a function of the heavy

Higgs through the parameter choices quoted in tables 8, for the high and the low mass

regions respectively. In these regimes, the decays of the heavy Higgs state provide a parti-

cularly interesting phenomenological ground for studying finite width effects and lineshape

modifications in the production of a heavy scalar resonance, cf. e.g. [135–140].12

12See also e.g. ref. [53] in the context of Higgs pair production.
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mH [GeV] ΓLO
α (H → hh) [GeV] ΓNLO

α (H → hh) [GeV] δα [%] δGF
[%]

tanβ = 0.5, sinα = 0.998

10 5.496×10−3

OS 5.416×10−3 -1.458 -1.456

Improved OS 5.415×10−3 -1.480 -1.479

Minimal field 5.414×10−3 -1.489 -1.488

30 5.920×10−3

OS 5.841×10−3 -1.345 -1.344

Improved OS 5.844×10−3 -1.289 -1.288

Minimal field 5.844×10−3 -1.281 -1.280

60 3.267×10−3

OS 3.333×10−3 2.019 2.017

Improved OS 3.323×10−3 1.733 1.731

Minimal field 3.331×10−3 1.952 1.949

tanβ = 5, sinα = 0.998

10 8.881×10−5

OS 7.966×10−5 -10.310 -10.216

Improved OS 7.967×10−5 -10.296 -10.202

Minimal field 7.958×10−5 -10.394 -10.300

30 9.567×10−5

OS 8.686×10−5 -9.212 -9.128

Improved OS 8.687×10−5 -9.201 -9.118

Minimal field 8.680×10−5 -9.279 -9.195

60 5.279×10−5

OS 4.931×10−5 -6.589 -6.529

Improved OS 4.932×10−5 -6.584 -6.525

Minimal field 4.929×10−5 -6.627 -6.567

Table 7. Heavy-to-light Higgs decay width ΓH→hh at LO and NLO EW accuracy for representative

parameter choices and renormalization schemes in the low-mass region. The total decay widths

are obtained in the αem-parametrization, as defined in eqs. (4.7), while the relative one-loop EW

effects are quantified in both the α-parametrization and the GF -parametrization, cf. eq. (5.4). For

the (scale-dependent) minimal field scheme, the renormalization scale is fixed to the geometrical

average mass µ2
R = p2

∗
= (m2

h + m2
H)/2. The input value for tan β is linked to the singlet vev

through vs = (
√
2GF )

−1/2 tanβ.
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Figure 11. Heavy Higgs branching ratios (in %) as a function of tan β in the low-mass region. The

results are shown for representative light Higgs mass values, with fiducial mixing angle sin α = 0.998.

The whole parameter space region shown in the left panel is excluded by perturbative unitarity.
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high mass region low mass region

mH [GeV] | sinα|max BRH→hh
max tanβ mh[GeV] | sinα|min BRH→hh

max tanβ

BHM1 300 0.31 0.34 3.71 BLM1 60 0.9997 0.26 0.29

BHM2 400 0.27 0.32 1.72 BLM2 50 0.9998 0.26 0.31

BHM3 500 0.24 0.27 2.17 BLM3 40 0.9998 0.26 0.32

BHM4 600 0.23 0.25 2.70 BLM4 30 0.9998 0.26 0.32

BHM5 700 0.21 0.24 3.23 BLM5 20 0.9998 0.26 0.31

BHM6 800 0.21 0.23 4.00 BLM6 10 0.9998 0.26 0.30

Table 8. Maximal branching ratios for the heavy-to-light Higgs decay mode H → hh in the

high-mass (left) and low-mass regions (right) as proposed in refs. [90, 91]; the results quoted here

are obtained in the setup of the mentioned references, evaluating Γ(H → hh) at LO in the GF -

parametrization. Note that the maximal branching ratios are determined for a maximal mixing, to

ensure a large production rate. In this case, the lower limit of tan β is mainly determined by the

requirement of perturbativity for λ2, cf. the extensive discussion in [20]. The same strategy was

followed for the low-mass region, where again for fixed sinα values the minimal value of tan β is

determined. Here, the lower limit on tan β stems from the signal strength fit.

ΓLO
H→hh ΓNLO

H→hh δα [%] δGF
[%] bb̄ tt̄ WW ZZ gg hh ΓH

BHM1 0.399 0.413 3.411 3.291 0.04 < 0.01 46.35 20.56 0.04 33.02 1.210

BHM2 0.963 1.026 6.485 6.272 0.01 10.19 40.07 18.52 0.06 31.15 3.092

BHM3 1.383 1.463 5.803 5.604 0.01 14.19 40.36 19.29 0.04 26.09 5.299

BHM4 2.067 2.161 4.520 4.361 0.01 12.82 42.35 20.64 0.03 24.11 8.574

BHM5 2.637 2.717 3.027 2.918 < 0.01 10.61 44.37 21.91 0.02 23.11 11.413

BHM6 3.798 3.867 1.826 1.759 < 0.01 8.57 46.29 23.07 0.02 22.07 17.204

Table 9. Heavy-to-light Higgs decay width ΓH→hh at LO and NLO EW accuracy for the maximal

branching fraction scenarios in the high-mass region given in table 8. The relative one-loop EW

effects are quantified in both the αem-parametrization and the GF -parametrization, as defined

in eqs. (4.7)–(5.4). Renormalization is performed in the improved on-shell scheme. In the right

columns we document the branching ratios (in %) for the leading Higgs decay channels and the

total Higgs width. Like in figures 6 and 11, all partial decay widths to SM fields are evaluated

by rescaling the SM predictions [44], while for H → hh we use the LO result evaluated in the

αem-parametrization. All partial widths are given in GeV.

Numerical predictions for ΓLO
H→hh and ΓNLO

H→hh, together with the relative one-loop cor-

rection in the two parametrizations δαem
and δGF (5.4) are provided in tables 9 and 10,

for the high and low mass regions respectively. Complementarily, we list down the corre-

sponding branching fractions for the additional decay modes (barring those channels below

0.01%). Let us recall that for the latter we use the rescaled partial widths from [44], while

forH → hh we quote the LO result in the αem-parametrization, in line with figures 6 and 11.
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ΓLO
H→hh ΓNLO

H→hh δα [%] δGF
[%] bb̄ γγ WW ZZ gg hh ΓH

BLM1 1.426 1.536 7.765 7.763 42.65 0.17 16.04 1.97 6.34 25.90 5.506

BLM2 1.439 1.472 2.305 2.304 42.55 0.17 16.00 1.97 6.33 26.07 5.520

BLM3 1.423 1.432 0.586 0.586 42.67 0.17 16.05 1.97 6.35 25.86 5.504

BLM4 1.419 1.415 -0.272 -0.272 42.71 0.17 16.06 1.97 6.35 25.80 5.500

BLM5 1.431 1.425 -0.445 -0.445 42.61 0.17 16.02 1.97 6.34 25.96 5.512

BLM6 1.427 1.421 -0.438 -0.438 42.64 0.17 16.04 1.97 6.34 25.91 5.508

Table 10. As in table 9 for the low-mass region. Notice that in this case all partial widths are

given in MeV.

6 Summary

Heavy-to-light Higgs decays H → hh are of undisputed relevance in the phenomenological

characterization of extended Higgs sectors. When kinematically accessible, these may con-

tribute to, and in some scenarios even dominate, the heavy Higgs lineshape, while at the

same time they significantly modify its decay pattern with respect to the SM picture. On

the other hand, both the tree-level and the leading one-loop contributions to this process

are governed by the scalar self-interactions, which makes this decay a unique handle on the

architecture of the scalar potential.

While electroweak corrections to the Higgs self-couplings have been the subject of de-

dicated analyses in the 2HDM [141–143], the NMSSM [144] or the Inert Doublet model [145],

a corresponding study for the singlet extension was lacking. Extending upon previous

work [19], we have presented herewith a detailed analysis of the heavy-to-light Higgs de-

cays at NLO electroweak accuracy. To renormalize the singlet-extended Higgs sector we

have proposed four renormalization schemes: i) a minimal field setup; ii) a traditional on-

shell prescription; iii) a mixed MS/on-shell scheme; and iv) an improved on-shell scheme.

Using the general non-linear gauge-fixing of Sloops, we have discussed in detail the gauge

independence of the different renormalization setups. We have found that, while the mini-

mal field and on-shell approaches still lead to a residual dependence on the non-linear gauge

fixing parameters, the mixed MS/OS and improved OS schemes render gauge independent

one-loop predictions for physical observables. Furthermore, the improved OS scheme is

numerically stable in all regions of the parameter space. We therefore advocate for the

use of this scheme to investigate the phenomenology of singlet extensions of the SM at

higher orders.

We have applied the above schemes to compute the corresponding heavy-to-light Higgs

decay widths ΓH→hh including one-loop electroweak corrections. We have performed a

comprehensive phenomenological analysis, with a separate study of two possible realizations

of the model: a high-mass and a low-mass region, in which the additional scalar field

corresponds to a heavy (resp. a light) companion of the SM-like Higgs boson.

The phenomenological implications of our study can be summarized as follows:

• The heavy-to-light Higgs decay width at LO is governed by two competing mech-

anisms: i) the Higgs self-coupling strength λHhh; ii) the one-to-two body decay
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kinematics. We pinpoint a strongly varying width with the relevant model para-

meters. Overall, ΓH→hh may attain up to O(1)GeV for heavy Higgs masses above

mH ∼ 500GeV.

• Aside from the tan β < 1 region, the relative one-loop effects are mild and show

tempered variations over the parameter space. In the high-mass region, electroweak

corrections are positive, loosely variable, and stagnate in the ballpark of few percent.

In the low-mass region, mainly for tan β > 1 and small mh values, these may be

pulled down to δα ∼ −10%.

• For certain parameter choices, the H → hh decay becomes effectively loop-induced:

i) along the tree-level nodes where the LO contribution vanishes; ii) at low tan β,

where the cot β-enhancements lead to increased scalar self-couplings, and thereby to

large Higgs-mediated loop graphs. In practice, though, these sizable quantum effects

are precluded once the constraints on the model are taken into account.

• Let alone extreme parameter space corners, the NLO predictions are robust under

changes of renormalization schemes and renormalization scale choices, as indicative

of a small theoretical uncertainty.

Having constructed a complete renormalization scheme for the Higgs sector, the path

ahead is clear for further analyses on the topic. On the one hand, it will be interesting to

further explore the role of the quantum effects on the Higgs self-couplings themselves, and

whether these may have relevant implications e.g. for collider searches or in electroweak

baryogenesis. On the other hand, the complete renormalization of the Higgs sector paves

the way towards characterizing the singlet model phenomenology at one-loop electroweak

accuracy, including all Higgs production modes and decay channels, and exploiting the rich

possibilities of off-shell effects. Work in this direction is underway [131].
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A Analytical details

A.1 Feynman rules

For a sake of completeness, we collect the relevant Feynman rules for the three-point

and four-point scalar field self-interactions in the singlet model. The complete set of

Feynman rules has been arranged in the form of a FeynArts model file [127], which

we have obtained via two independent implementations using FeynRules [129] and

Sloops [15–18]. Here we give the results in the ’t Hooft-Feynman gauge. The shorthand

notation sθ ≡ sin(θ), cθ ≡ cos(θ) tθ ≡ tan(θ) is employed throughout.
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• Trilinear self-couplings at tree-level :

λhhh = −3i
(

2c3αλ1v + cαs
2
αλ3v − c2αsαλ3vs − 2s3αλ2vs

)

= −3im2
h

v
(c3α − s3αt

−1
β ) (A.1)

λHhh = −i
(

6c2αsαλ1v − 2c2αsαλ3v + s3αλ3v + c3αλ3vs − 2cαs
2
αλ3vs + 6cαs

2
αλ2vs

)

= − is2α
v

[

m2
h +

m2
H

2

]

(cα + sαt
−1
β ) (A.2)

λHHh = −i
(

6cαs
2
αλ1v − 2cαs

2
αλ3v + c3αλ3v − s3αλ3vs + 2c2αsαλ3vs − 6c2αsαλ2vs

)

=
is2α
v

[

m2
h

2
+m2

H

]

(−sα + cαt
−1
β ) (A.3)

λHHH = −3im2
H

v
(c3αt

−1
β + s3α). (A.4)

• Higgs-Goldstone boson three-point couplings :

λhG0G0 = λHG+G− = (−i)m2
hcα/v; λHG0G0 = λHG+G− = (−i)m2

Hsα/v. (A.5)

• Higgs quartic couplings :

λhhhh = − 3i

v2
[m2

hc
6
α +m2

Hc4αs
2
α − 2(m2

h −m2
H)c3αt

−1
β s3α +m2

Hc2αs
4
αt

−2
β +m2

ht
−2
β s6α] (A.6)

λHhhh =
3i

8v2s2β
s2αsα+β [(3m

2
h +m2

H)sα−β + (m2
H −m2

h)s3α+β ] (A.7)

λHHhh = − i

16v2s2β
s2α[6(m

2
h +m2

H)s2α − (m2
h −m2

H)(s2β + 3s4α+2β)] (A.8)

λHHHh =
i

8v2s2β
s2αcα+β [(m

2
h + 3m2

H)cα−β + (m2
H −m2

h)c3α+β ] (A.9)

λHHHH = − 3i

v2
[m2

Hc6αt
−2
β +m2

hc
4
αs

2
αt

−2
β − 2(m2

h −m2
H)c3αt

−1
β s3α +m2

hc
2
αs

4
α +m2

Hs6α]

(A.10)

• Higgs-Goldstone four-point couplings :

λhhG0G0 = λhhG+G− =
−i

v2
cα[m

2
hc

3
α +m2

Hs2αcα + (m2
H −m2

h)s
3
αt

−1
β ] (A.11)

λHHG0G0 = λHHG+G− =
−i

v2
sα[m

2
hc

2
αsα +m2

Hs3α + (m2
H −m2

h)c
3
αt

−1
β ] (A.12)

(A.13)

A.2 Trilinear Higgs counterterm

The coefficients entering the trilinear Higgs coupling counterterm δλH→hh in eq. (4.6) yield

cHhh
1 =

s2αsα+β

vsβ
; cHhh

2 =
s2αsα+β

2vsβ
; cHhh

3 = −sβ+3α − 5sβ−α

4vsβ

cHhh
4 =

3s2α(c
2
α − s2αt

−2
β )

2v2
cHhh
5 =

3c2αs
2
α

s2βv
2
; cHhh

6 = −s2α
v

[

m2
h +

m2
H

2

]

cα. (A.14)
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[112] J. Guasch, J. Solà and W. Hollik, Yukawa coupling corrections to scalar quark decays, Phys.

Lett. B 437 (1998) 88 [hep-ph/9802329] [INSPIRE].

[113] H. Eberl, S. Kraml and W. Majerotto, Yukawa coupling corrections to stop, sbottom and

stau production in e+e− annihilation, JHEP 05 (1999) 016 [hep-ph/9903413] [INSPIRE].

– 46 –

http://dx.doi.org/10.1103/PhysRevD.81.033003
http://dx.doi.org/10.1103/PhysRevD.81.033003
http://arxiv.org/abs/0908.2898
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.2898
http://dx.doi.org/10.1016/S0550-3213(02)00538-2
http://arxiv.org/abs/hep-ph/0204350
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0204350
http://dx.doi.org/10.1103/PhysRevD.22.971
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D22,971"
http://dx.doi.org/10.1002/prop.19860341102
http://dx.doi.org/10.1002/prop.19860341102
http://inspirehep.net/search?p=find+J+"Fortsch.Phys.,34,687"
http://dx.doi.org/10.1002/prop.2190380302
http://inspirehep.net/search?p=find+J+"Fortsch.Phys.,38,165"
http://dx.doi.org/10.1002/prop.2190410402
http://arxiv.org/abs/0709.1075
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1075
http://dx.doi.org/10.1016/S0370-2693(98)00503-6
http://arxiv.org/abs/hep-ph/9803313
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9803313
http://dx.doi.org/10.1103/PhysRevD.69.093003
http://arxiv.org/abs/hep-ph/0312250
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0312250
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+"Chin.Phys.,C38,090001"
http://dx.doi.org/10.1088/0954-3899/29/1/314
http://inspirehep.net/search?p=find+J+"J.Phys.,G29,131"
http://dx.doi.org/10.1088/1742-6596/53/1/002
http://inspirehep.net/search?p=find+J+"J.Phys.Conf.Ser.,53,7"
http://dx.doi.org/10.1016/0550-3213(89)90483-5
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B322,1"
http://dx.doi.org/10.1007/JHEP07(2013)132
http://arxiv.org/abs/1305.1548
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1548
http://dx.doi.org/10.1103/PhysRevD.84.034030
http://arxiv.org/abs/0901.2065
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.2065
http://dx.doi.org/10.1103/PhysRevD.66.095014
http://arxiv.org/abs/hep-ph/0205281
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0205281
http://dx.doi.org/10.1016/S0370-2693(98)00898-3
http://dx.doi.org/10.1016/S0370-2693(98)00898-3
http://arxiv.org/abs/hep-ph/9802329
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9802329
http://dx.doi.org/10.1088/1126-6708/1999/05/016
http://arxiv.org/abs/hep-ph/9903413
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9903413


J
H
E
P
0
2
(
2
0
1
6
)
1
4
7
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