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We consider a queueing system with r non-identical servers working in parallel, exoge-
nous arrivals into m different job classes, and linear holding costs for each class. Each
arrival requires a single service, which may be provided by any of several different servers
in our general formulation; the service time distribution depends on both the job class being
processed and the server selected. The system manager seeks to minimize holding costs
by dynamically scheduling waiting jobs onto available servers. A linear program involving
only first-moment data (average arrival rates and mean service times) is used to define heavy
traffic for a system of this form, and also to articulate a condition of overlapping server
capabilities which leads to resource pooling in the heavy traffic limit. Assuming that the
latter condition holds, we rescale time and state space in standard fashion, then identify
a Brownian control problem that is the formal heavy traffic limit of our rescaled schedul-
ing problem. Because of the assumed overlap in server capabilities, the limiting Brownian
control problem is effectively one-dimensional, and it admits a pathwise optimal solution.
That is, in the limiting Brownian control problem the multiple servers of our original model
merge to form a single pool of service capacity, and there exists a dynamic control policy
which minimizes cumulative cost incurred up to any time t with probability one. Interpreted
in our original problem context, the Brownian solution suggests the following: virtually all
backlogged work should be held in one particular job class, and all servers can and should
be productively employed except when the total backlog is small. It is conjectured that such
ideal system behavior can be approached using a family of relatively simple scheduling
policies related to the cµ rule.

Keywords: heavy traffic, parallel-server systems, Brownian control problem, resource pool-
ing

1. Introduction

This paper is concerned with dynamic scheduling of stochastic processing systems
that have the following general structure (see figure 1). There are job classes indexed
by i = 1, . . . , m and servers indexed by k = 1, . . . , r. Jobs of each class arrive
from outside the system and require a single service before they depart. Several
different servers may be capable of processing any given job class, and the service
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Figure 1. Example of a parallel-server system.

time distribution depends on both the class being processed and the server selected.
(Here and later, we speak in terms of processing jobs rather than serving customers,
but the terms “server” and “service time” are used in preference to “processor” and
“processing time”.) Thus there are n 6 mr processing activities available to the
system manager, each of which consists of a particular server processing a particular
job class. For each activity j = 1, . . . , n we denote by i(j) the job class processed
in that activity, and by k(j) the server that does the processing. Also, let j(i, k) be
the activity in which server k processes class i (if there is one). Models having the
structure described in this paragraph will be referred to hereafter as parallel-server
systems.

For concreteness, we assume that the system is initially empty, and that services
must be completed without interruption once they have been started, but neither of those
assumptions is really important for the results ultimately obtained. It is convenient to
imagine that jobs reside in buffers dedicated to their respective classes until they are
ready to be processed (buffers are represented by open-ended rectangles in figure 1).
The system manager need not specify which server will process a given job until the
processing is to begin. Finally, holding costs are continuously incurred at a rate of
ci dollars per time unit for each class i job in the system, either waiting or being
served. For future purposes, let us denote by λi the average arrival rate for class i
jobs (i = 1, . . . , m) and by µj the reciprocal of the mean service time for activity j
(j = 1, . . . , n). In the usual way, µj will often be referred to as the “mean service
rate” for activity j.

Roughly speaking, the scheduling problem confronted by the system manager is
one of dynamically allocating jobs to servers so that holding costs are minimized. In
the interest of concreteness, readers may think in terms of minimizing long-run average
cost per time unit, or of minimizing expected cost incurred up to a finite but distant time
horizon, but for reasons explained below, our analysis is actually applicable under any
optimality criterion that involves costs accumulated over relatively long time spans. At



J.M. Harrison, M.J. López / Heavy traffic resource pooling 341

the mechanical level, a scheduling policy must specify, each time a server completes
the processing of a job, which class that server will work on next. Also, each time
a job arrives and finds one or more of its servers idle, the scheduling policy must
specify which server will process that job. Of course, the scheduling policy must be
non-anticipating in the sense that each decision is based solely on information available
at the decision point. In the language of queueing network theory [5,12], the system
manager’s problem involves both routing decisions and sequencing decisions. That is,
decisions must be made as to which job classes will be directed to which servers, and
as to the order in which servers will process jobs from the various buffers. It is the
opportunity for dynamic alternate routing that gives the problem its distinctive flavor.

Even in the simplest case with independent Poisson arrival processes, exponen-
tially distributed service times for all activities, and a long-run average cost criterion,
the dynamic scheduling problem described above defies exact solution. This is a typi-
cal difficulty in the study of stochastic processing networks, and for that reason, authors
often resort to asymptotic analysis, searching for scheduling policies that are asymptot-
ically optimal in the heavy traffic limit. Because routing decisions are endogenous in
our parallel-server model, it is not immediately clear what is meant by “heavy traffic”
in this context, but for that and other purposes we use a general approach developed
by Harrison and Van Mieghem [8,9] based on earlier work of Laws [16]. In their
approach one solves a linear program (LP) called the static allocation problem to de-
termine a traffic intensity parameter for the processing system. When that parameter
is near one, meaning that the load on some set of servers is approximately equal to
their collective capacity, then we say that the system is in heavy traffic.

A general program for developing asymptotically optimal scheduling policies
is laid out in [5]. That program, which has been successful in many contexts [2,10–
12,15–20], can be described broadly as follows. First, following a procedure that is now
more or less standard, one derives a limiting Brownian control problem that plausibly
approximates the original dynamic scheduling problem after appropriate scaling. In
our case that is just a matter of specializing to parallel-server systems more general
derivations described in [8,16]. The limiting Brownian control problem is set in the
context of a “limiting Brownian system model”; hereafter, those two terms will be used
interchangeably, and the word “limiting” will often be dropped to reduce verbiage.

The second step in heavy traffic analysis is to solve the Brownian control prob-
lem, either in explicit mathematical terms or by numerical methods. Because fine
structure is suppressed in the Brownian control problem, it is invariably simpler than
the original problem which it approximates, but still, explicit mathematical solutions
can only be expected in rather special circumstances. Third, one interprets the solu-
tion to the Brownian control problem in the context of the original problem. It is
not always obvious how to do this, in which case some ingenuity must be applied to
develop a proper implementation. Finally, closing the loop, one would like to prove
rigorously that the proposed implementation is asymptotically optimal in the original
problem, meaning that the percentage difference between its objective value and that
under an optimal policy vanishes in the heavy traffic limit. These four steps, and their
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relationship to practical problem solving, will be explained more precisely in section 6
below, after the necessary mathematical framework has been established.

For parallel-server systems in heavy traffic, the second step described above may
not have a favorable outcome. That is, the Brownian control problem may not be one
which admits a simple solution. However, a simple solution is obtainable under an ad-
ditional condition (that is, in addition to the assumption of heavy traffic) which we call
complete resource pooling (or just complete pooling). In physical terms, this condition
requires enough overlap in the capabilities of different servers so that they effectively
form a single resource pool in the heavy traffic limit. In terms of the mathematical
theory developed by Harrison and Van Mieghem [8,9] the complete pooling condition
is expressed as follows: the Brownian control problem has an equivalent workload for-
mulation in which the state of the system at any time t is given by a d-vector; we call
d the effective system dimension, and say that complete pooling occurs when d = 1.
The main result of this paper explains that condition in terms of the original model’s
structure, as follows: d = 1 if and only if all servers communicate in a certain sense
(see section 2). That statement is proved as part of proposition 4, which provides three
equivalent characterizations of complete pooling in parallel-server systems. Part of
proposition 4 was actually proved by Laws [16] for a more general class of stochastic
networks with alternate routing capabilities, but the further restriction to parallel-server
systems allows us to characterize complete pooling in terms that are simple, explicit
and intuitive. More will be said in section 8 about the relationship between our results
and those of Laws [16].

This paper is restricted to heavy traffic analysis of parallel-server systems where
complete pooling occurs, both for reasons of tractability and because complete pooling
is a desirable design feature. (That is, one would always prefer to operate a processing
system with enough overlap in server capabilities to enable complete pooling.) We
find that the limiting Brownian control problem admits a pathwise solution; that is,
because the multiple servers of our original model merge in the heavy traffic limit to
form what is effectively a single pool of processing capacity, there exists a dynamic
scheduling policy in the limiting model that minimizes the instantaneous cost rate
at every point in time with probability one. That policy is obviously optimal in the
limiting Brownian system model, regardless of what time horizon may be chosen and
regardless of whether and how future costs may be discounted. At various points in
this paper it will be called the “optimal Brownian control”, the “pathwise Brownian
solution”, or to minimize the number of words involved, simply the Brownian solution.

Naively interpreted in terms of our original processing system, the Brownian
solution has the following two properties. First, no server is ever idle unless the
system is completely empty, and servers engage only in undominated basic activities
(see section 2). Second, all buffers are empty at all times except the one corresponding
to a lowest-ranking job class, where class rankings are determined by a generalization
of the familiar cµ rule (see section 5). This ideal system behavior cannot be achieved
in the original model, of course, but in future work we hope to show that such behavior
can be approached using a simple type of discrete-review policy (see section 6).
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The remainder of the paper is organized as follows. Section 2 introduces the
static allocation problem as a means of defining heavy traffic, and defines several key
concepts in terms of its optimal solution. This analysis depends heavily on prior work
by Harrison and Van Mieghem [8,9] and we shall conform as closely as possible to
the notation used in [8]. Section 3 spells out the probabilistic assumptions required
in our analysis of parallel-server systems, and also introduces further notation. In
section 4 we consider the Brownian control problem that is obtained as a formal heavy
traffic limit, after suitable scaling, from a parallel-server system with traffic intensity
parameter exactly equal to one. Building on general results developed earlier in [8,9],
we identify the condition that is required for complete pooling in the Brownian control
problem, expressing it in several equivalent forms (see proposition 4). Section 5
describes the pathwise Brownian solution that one obtains with complete pooling.

Section 6 defines the notion of asymptotic optimality that is relevant in our
context, and introduces the family of discrete-review policies to be explored in future
work. Those policies provide a potential means of approaching (as a heavy traffic
limit) the ideal system behavior described by our Brownian solution, and we shall
explain briefly how a system manager might make practical use of our theory.

Section 7 introduces the concept of super-server performance bounds, which
are important in both the mathematical development and the interpretation of our
theory. With regard to interpretation, one can make precise the idea of “heavy traffic
resource pooling” by proving the asymptotic equivalence of a parallel-server system
and a corresponding super-server model; the latter has a single processing resource,
or super-server, whose capabilities combine in some sense the capabilities of all r
servers in the original model. As readers will see in section 7, the super-server model
that corresponds to a general parallel-server system is not as simple or straightforward
as one might hope, and in particular, the best achievable performance in the relevant
super-server model only bounds achievable performance in the original model in an
asymptotic sense.

Finally, section 8 explains how our formal heavy traffic analysis is extended
to parallel-server systems whose traffic intensity parameters are close to one but not
necessarily equal to one. Section 8 also makes connections with the work of Laws [16]
and with recent work by Kushner and Chen [13], which involves a different sort of
heavy traffic limit for parallel-server systems.

At several points in the paper we use the following convention to distinguish
between row vectors and column vectors: a notation like x = (1, 1, 2), where the
elements are separated by commas, means that x is a column vector, whereas a notation
like y = (1 1 2), where the elements are separated only by spaces, means that y is a
row vector.

2. The static allocation problem

The general theory developed in [8] involves an m×n input–output matrix R and
an r×n resource consumption matrix A that contain first-order data about processing
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activities. Recast in language that is natural for the parallel-server model considered
here, the general descriptions of R and A are as follows: Rij is the average rate at
which activity j removes jobs from buffer i, and Akj is the rate at which activity j
consumes the capacity of server k. That is, in the current context one has Ri(j),j = µj
and Rij = 0 otherwise, while Ak(j),j = 1 and Akj = 0 otherwise. For the example
pictured in figure 1, this means that

R =


µ1

µ2 µ7

µ3 µ4 µ8

µ5 µ6


and

A =

 1 1 1
1 1 1

1 1

 .
Together with the m-vector λ of mean arrival rates, these matrices comprise the data of
the static allocation problem, which is now stated as follows: choose an n-dimensional
column vector x and a scalar ρ so as to

minimize ρ (2.1)

subject to Rx = λ, (2.2)

Ax 6 ρe, and (2.3)

x, ρ > 0, (2.4)

where e is an r-vector of ones. The n-vector x may be thought of as a processing
plan, where xj gives the long-run proportion of time that activity j is performed
by its server, and ρ as the long-run utilization of the busiest server. Given these
interpretations, our first constraint (2.2) merely enforces material conservation, while
(2.3) requires that each server’s utilization not exceed that of the busiest server. The
objective is to minimize the maximum server utilization ρ, which motivates both an
even distribution of work among servers and a restriction to the most efficient set of
activities.

Assume throughout the remainder of this section that there is a unique optimal
solution (x∗, ρ∗) for the static allocation problem. (This will be repeated as part of
assumption 1 in section 4.) We shall refer to x∗ as the nominal processing plan:
the activities j for which x∗j > 0 are called basic activities, and the remainder are
called nonbasic activities. Let b denote the number of basic activities. Without loss
of generality, assume that activities indexed by j = 1, . . . , b are the basic ones. For
future purposes it will be convenient to write

R = [H J] and A = [B N ], (2.5)

where H and B each have b columns, corresponding to basic activities.
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The static allocation problem (2.1)–(2.4) can be converted to equality form by
adding non-negative slack variables s1, . . . , sr in the constraints (2.3). When that is
done, it is easy to verify that the m + r rows of the resulting coefficient matrix are
linearly independent, so a basis for the static allocation problem consists of m + r
variables. The unique optimal solution (x∗, ρ∗) is necessarily a basic solution (that is,
an extreme point of the constraint set), and obviously ρ∗ > 0, so there cannot be more
than m+ r − 1 basic activities. That is,

b 6 m+ r − 1. (2.6)

As it happens, attention will be concentrated here on the case b = m+r−1 (see below),
where the optimal solution of the static allocation problem is necessarily nondegenerate.
However, the degenerate case involves a potential terminological confusion that should
be noted: it could then happen that a variable xj which we call “nonbasic” is actually
included in an optimal basis for the LP, but with value x∗j = 0.

For the example pictured in figure 1, let us consider the specific numerical data

λ =
(

1
2 , 1, 2, 3

)
and µ =

(
5
4 , 5

2 , 1, 2, 5, 5
2 , 4, 4

5

)
. (2.7)

With these data, the unique solution of the static allocation problem (2.1)–(2.4) is

x∗ =
(

2
5 , 2

5 , 1
5 , 9

10 , 1
10 , 1, 0, 0

)
and ρ∗ = 1. (2.8)

Readers will note that all three constraints in (2.3) are binding. In other words,
by using activities 1 through 6 in the indicated proportions, the system manager
is just able, keeping all three servers fully occupied, to process jobs of the vari-
ous classes at the required average rates. Any other feasible processing plan, in-
cluding those that use activities 7 or 8, will necessarily exceed the capacity of at
least one server. Thus, in order to avoid precipitous jobcount buildups, a sys-
tem manager would like not only to keep all servers working but also to en-
gage the servers as much as possible in basic activities. Given those restrictions,
and remembering that the holding cost rate may be different for different classes,
it is then natural to ask the following question. Can server work assignments
be dynamically adjusted, relative to the nominal processing plan x∗ in (2.8), so
as to increase some jobcounts but decrease others in an economically favorable
way?

For example, suppose that there is a large initial backlog in buffer 4 but moderate
backlogs in buffers 1 through 3. (Readers may find it helpful to look again at figure 1.)
Further suppose it is deemed desirable to shift the large backlog to buffer 1, perhaps
because it has low holding cost, leaving moderate jobcounts in buffers 2 through 4.
This can be accomplished by having server 2 spend more time on activity 5 (this
drains buffer 4) and less time on activity 4 than indicated in the nominal plan, while
server 1 spends more time on activity 3 (this compensates for the shift of server 2
capacity away from buffer 3) and less time on activity 1 (this will cause the content
of buffer 1 to increase). Thus, even though server 1 cannot serve buffer 4 directly,
all three servers must redistribute effort over the basic activities for which they are
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responsible in order to effect the desired transfer. Of course, the transfer would not
be possible at all if the sets of classes processed by the various servers under our
nominal plan did not overlap to an adequate degree. Such considerations motivate the
following definition.

Definition (Communicating servers). Server k communicates directly with server k′

if there exist basic activities j and j′ such that j = j(i, k) and j′ = j(i, k′) for some
class i. Server k communicates with server k′ if there exist servers k1, . . . , kω such that
k1 = k, kω = k′, and kα communicates directly with kα+1 for all α = 1, . . . , ω − 1.

In our example, servers 1 and 2 communicate directly, and so do servers 2 and 3.
Thus each server communicates with every other one. Communication is an equiva-
lence relation, so the servers can be partitioned into disjoint sets in which each server
communicates only with those servers in its set. There is only one such set in our
example, because all three servers communicate.

Proposition 1. If all servers communicate, then b = m+ r − 1.

Proof. Consider a graph in which nodes represent either servers or job classes, and
arcs represent basic activities. Associating activity j with arc j, server k with node
k, and job class i with node r + i, we connect nodes k(j) and r + i(j) by arc j
(j = 1, . . . , b). This graph contains m + r nodes, and the minimum number of arcs
needed to have a connected graph is m + r − 1. Hence, if b < m + r − 1, then
the graph consists of at least two connected subgraphs that are not connected to one
another. Since each of these subgraphs contains at least one server node (because
otherwise (2.2) would be violated), then not all servers communicate. �

The dual of the static allocation problem is stated as follows: choose (y, z) so
as to

maximize yλ, (2.9)

subject to yR 6 zA, (2.10)

ze 6 1, and (2.11)

z > 0, (2.12)

where y and z are row vectors of dimension m and r, respectively. Because of the
special structure of R and A for our parallel-server system, each constraint in (2.10)
involves a single component of y and a single component of z,

yi(j)µj 6 zk(j) for all j = 1, . . . , n. (2.13)

General interpretations of the dual variables yi and zk have been offered in [8], where
they are respectively denoted as µi and πk. These interpretations will be recapitulated
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in section 7 below. For the example pictured in figure 1, with the numerical data
provided in (2.7), the unique optimal dual solution is

y∗ =
(

1
5

1
10

1
4

1
10

)
and z∗ =

(
1
4

1
2

1
4

)
. (2.14)

Proposition 2. Suppose that the static allocation problem has a unique primal solution
(x∗, ρ∗) and that it satisfies Ax∗ = ρ∗e. Then a potential dual solution (y, z) is optimal
if and only if it satisfies the following four conditions:

yi(j)µj = zk(j) for all j = 1, . . . , b; (2.15)

z1 + · · · + zr = 1; (2.16)

yi(j)µj 6 zk(j) for all j = b+ 1, . . . , n; and (2.17)

z1, . . . , zr > 0. (2.18)

Moreover, there exists an optimal dual solution (y∗, z∗) for which all of the inequalities
in both (2.17) and (2.18) are strict.

Proof. Consider the primal problem (2.1)–(2.4) in equality form, with non-negative
slack variables s1, . . . , sr added to its original decision variables ρ,x1, . . . , xn. The
condition Ax∗ = ρ∗e says that all slack variables have value zero in the optimal
primal solution, which is here assumed unique. A potential dual solution (y, z) is
optimal if and only if it is dual feasible and satisfies complementary slackness. Given
the representation (2.13) of our original dual constraints (2.10), readers can easily
verify that complementary slackness takes the form of conditions (2.15) and (2.16).
The residual requirements for (y, z) to be dual feasible are then (2.17) and (2.18).
The last statement of the proposition is established by specializing a result on “strict
complementary slackness” that appears in [1, Exercise 4.20(b), p. 192]. �

Proposition 3. Given the hypotheses of proposition 2, the following three conditions
are equivalent:

(i) the dual linear program (2.9)–(2.12) has a unique optimal solution (y∗, z∗);

(ii) b = m+ r − 1;

(iii) all servers communicate with one another.

Corollary. Suppose that the equivalent conditions (i)–(iii) hold, in addition to the
hypotheses of proposition 2. Then all variables in the optimal dual solution (y∗, z∗)
are strictly positive, and they satisfy each of the inequalities in (2.17) strictly. Also,
the basis consisting of x1, . . . , xb and ρ remains uniquely optimal in a neighborhood
of λ, and one has Ax∗ = ρ∗e in that neighborhood.

Proof. Proposition 1 shows that (iii) implies (ii). To prove the converse, suppose
that the servers do not all communicate with one another. Then the r servers are



348 J.M. Harrison, M.J. López / Heavy traffic resource pooling

partitioned into q > 2 communicating classes and the m job classes are partitioned
into q corresponding subsets such that only servers from communicating class ` serve
job classes from subset ` under the nominal plan, and servers from that communicating
class do not serve any other job classes under the nominal plan (` = 1, . . . , q). Let r`
be the number of servers in the `th communicating class, let m` be the number of job
classes in the `th subset, and let b` be the number of basic activities j such that k(j)
is a server in the `th communicating class. Generalizing the proof of proposition 1, it
is not difficult to establish that

b` = m` + r` − 1 for ` = 1, . . . , q. (2.19)

(It is crucial to this argument that the static allocation problem has a unique optimal
solution, by assumption, and that it is necessarily a basic solution.) Summing (2.19)
over ` = 1, . . . , q gives b = m+ r − q < m+ r − 1, so (ii) and (iii) are equivalent.

If (ii) holds, then (2.15) and (2.16) together constitute m+r linearly independent
equations (their coefficients are the columns of a basis matrix) in m + r variables,
so they uniquely determine the optimal dual solution (y∗, z∗), establishing that (ii)
implies (i). To complete the proof of proposition 3 we assume that b < m + r − 1,
which is the negation of (ii), and prove that the dual linear program (2.9)–(2.12) has
at least two solutions, which is the negation of (i). It will be convenient to convert the
dual linear program (2.9)–(2.12) to equality form, adding non-negative slack variables
in all n + 1 of the original inequality constraints (2.10)–(2.11); to make connection
with standard LP theory, one can further require that all of the dual decision variables
be non-negative, because the equality constraints (2.2) in our primal problem could
obviously be restated as > inequalities without affecting the optimal solution, and
that change would add constraints y > 0 to the dual problem statement (2.9)–(2.12).
When the dual problem is restated in equality form its coefficient matrix has full row
rank n + 1. We know that the dual problem has at least one basic optimal solution,
and a basic solution has no more than n + 1 positive variables, including slacks.
Now consider the optimal dual solution (y∗, z∗) described in the last sentence of
proposition 2. That solution has a positive slack variable associated with each of the
n−b constraints in (2.17), and because z∗1 , . . . , z∗r are strictly positive as well, it follows
immediately from the complementary slackness condition (2.15) that y∗1 , . . . , y∗m are
strictly positive. Thus, we have a total of m+ r+ (n− b) positive variables, including
slacks. If b < m+ r − 1 then m+ r + (n− b) > n+ 1, so the optimal dual solution
(y∗, z∗) is not a basic solution, implying that the dual problem has multiple optima.

This completes the proof of proposition 3. The first statement of the corollary
is immediate from proposition 2, and the second statement is a direct consequence
of primal and dual nondegeneracy: that is, our unique primal optimum (x∗, ρ∗) is a
nondegenerate basic solution when b = m+r−1, so it remains feasible for sufficiently
small perturbations of the right-hand side vector, and it is uniquely optimal under such
perturbations because the corresponding basic dual solution satisfies all the inequalities
in (2.17)–(2.18) strictly. �
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3. The dynamic scheduling problem

The dynamic scheduling problem for a parallel-server system was explained ver-
bally in section 1. Translating that problem description into precise mathematical terms
is complicated and cumbersome, primarily because of the need to make precise the no-
tion of non-anticipating policies. A complete mathematical description of the dynamic
scheduling problem is not really necessary for our purposes, but to make connection
with the general theory developed in [8] it is necessary to introduce some additional
notation.

The probabilistic primitives in our model are a collection of independent,
m-dimensional stochastic processes F 0,F 1, . . . ,Fn that all have time domain [0, ∞).
Let us denote by F ji the ith component process of F j . One interprets F 0

i (t) as the
number of arrivals into buffer i over the time interval [0, t]. For each j = 1, . . . , n
and i = 1, . . . , m one interprets F ji (t) as the number of departures from buffer i re-
sulting from the first t time units devoted to activity j by its server. Thus, F ji(j) is the

renewal process generated by the i.i.d. service time sequence for activity j, and F ji = 0
otherwise. Rather than imposing assumptions about the fine stochastic structure of the
external arrival process F 0, we just assume directly that it satisfies a functional central
limit theorem, as follows: there exists a strictly positive m-vector λ and an m ×m
covariance matrix Γ0 such that the scaled process

ε
[
F 0(t/ε2)− λt/ε2], t > 0, (3.1)

converges weakly as ε ↓ 0 to a Brownian motion with zero drift and covariance
matrix Γ0. Because the service times for each processing activity are assumed to
be i.i.d., and if we further assume that service times have finite second moments, the
following is immediate from the functional central limit theorem for renewal processes:
for each j = 1, . . . , n let σ2

j be the variance of service times for activity j, let Rj be
the jth column of the m× n matrix R defined in section 2, and let Γj be the m×m
matrix having µ3

jσ
2
j as its i(j)th diagonal element and having all other elements equal

to zero; then the scaled processes

ε
[
F j
(
t/ε2)−Rjt/ε2], t > 0, (3.2)

converge weakly as ε ↓ 0 to a Brownian motion with zero drift and covariance ma-
trix Γj .

As in [5,8], one can describe a dynamic scheduling policy (or just policy, for
short) for the parallel-server system by means of an n-dimensional stochastic process
T = {T (t), t > 0} with components Tj . One interprets Tj(t) as the total time devoted
to activity j by its server over the interval [0, t], and hence the m-dimensional jobcount
process may be defined as

Q(t) = F 0(t)−
n∑
j=1

F j
(
Tj(t)

)
, t > 0. (3.3)
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(As in section 1, we have assumed the system to be initially empty in writing this key
relationship. Our treatment can easily be extended to allow nonzero initial jobcounts,
but doing so adds nothing conceptually and it complicates things slightly.) Of course,
a policy T must satisfy a number of conditions (continuous, nondecreasing, null at
time zero, and more) in order to be admissible, but there is no need to spell out those
conditions here. Given a policy T with jobcount process Q defined by (3.3), and with
c taken to be a row vector, the corresponding cost rate process C = {C(t), t > 0} is
given by

C(t) = cQ(t), t > 0. (3.4)

That is, the quantity C(t) represents the instantaneous cost rate at time t under policy T .
Assuming again that the static allocation problem has a unique solution (x∗, ρ∗)

and given an arbitrary policy T , let us define as in [8] the corresponding n-dimensional
process V = {V (t), t > 0} of deviation controls:

V (t) = x∗t− T (t), t > 0. (3.5)

Also as in [8], we set p = r + n− b and define a p× n matrix K via

K =

[
B N
0 −I

]
, (3.6)

where I is the (n−b)×(n−b) identity matrix, and then define a p-dimensional process

I(t) = KV (t), t > 0. (3.7)

Exactly as in [8], the first r components of the process I are interpreted as cumulative
idleness processes for servers 1, . . . , r, respectively, while the last n− b components
represent cumulative time allocations to nonbasic activities. Thus, all components of
I must be nondecreasing if T is to be an admissible policy.

Finally, in formulating and analyzing the Brownian control problem that approx-
imates our dynamic scheduling problem, we shall speak in terms of scaled processes
Y = {Y (t), t > 0}, Z = {Z(t), t > 0}, U = {U (t), t > 0} and ζ = {ζ(t), t > 0}
that are obtained from V , Q, I and C using a small parameter ε > 0 as follows:

Y (t) = εV
(
t/ε2), (3.8)

Z(t) = εQ
(
t/ε2), (3.9)

U (t) = εI
(
t/ε2), and (3.10)

ζ(t) = εC
(
t/ε2) (3.11)

for t > 0. In defining scaled processes by means of a small parameter ε, we are
following the notational convention used in [8]. In [6] and most other work on heavy
traffic limit theory, the scaling involves a large parameter n, but the two definitional
systems are completely equivalent if one makes the association ε = n−1/2. (In this
paper, of course, the letter n is used with a different meaning.) The essential feature of
the scaling embodied in (3.8)–(3.11) is that large amounts of “real time” or “original
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time” are compressed into moderate amounts of “scaled time”. To be specific, one unit
of scaled time is equivalent to ε−2 units of real time, so this scaling is only appropriate
when time spans of order ε−2 are the relevant ones for purposes of performance
measurement (see section 6 for an example). This focus on relatively long time spans
is a central feature of “heavy traffic limit theory”. As a complement to the time scale
compression by a factor of ε−2, we compress the spatial scales in (3.8)–(3.11) by a
factor of ε−1 in order that quantities of interest remain moderate in absolute magnitude.
As we shall explain in section 8, a meaningful Brownian approximation can only be
obtained under such scaling if the traffic intensity parameter ρ∗ is close to 1, where
“closeness” is measured in terms of the scaling parameter ε.

Readers will note that all of the processes defined in (3.8)–(3.11) depend on the
scaling parameter ε and the policy T with which one starts, but that dependence is
not reflected in our notation. Because we are not concerned with rigorous limit theory
at this stage of the development, it is not necessary to introduce more precise and
elaborate notation.

4. The limiting Brownian control problem

This section focuses on the Brownian control problem that is obtained, following
the general recipe laid out in [5,8], as a formal heavy traffic limit of our dynamic
scheduling problem after appropriate scaling. Following a long-established tradition in
heavy traffic analysis, we shall first discuss the case of a single system whose traffic
intensity parameter, properly defined, is precisely equal to 1, and later generalize the
analysis to a parametric family of models whose traffic intensity parameters approach
1 as a limit. To be more specific, we first consider a single system whose first-order
data satisfy the following condition.

Assumption 1 (Heavy traffic). The data (R,A,λ) of the static allocation problem are
such that

(i) its solution (x∗, ρ∗) is unique;

(ii) ρ∗ = 1; and

(iii) Ax∗ = e.

These are the same conditions used to define heavy traffic in [8], and two points made
in the discussion there deserve at least a brief mention. First, the requirement Ax∗ = e
seems to say that all servers are fully utilized under the nominal processing plan, but
that may simply mean that analysis is restricted to the “bottleneck subnetwork” of
critically loaded servers. That is, the condition Ax∗ = e may be interpreted to mean
that servers which need not be fully utilized to handle the given load have simply been
deleted from our model. Second, it may seem needlessly restrictive to require that the
static allocation problem have a unique solution, but multiple optima lead to Brownian
approximations of a more complicated form than we are prepared to treat.
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Given a single system whose first-order data satisfy assumption 1, and assuming
that the time horizon over which we seek to minimize cost is relatively long, suppose
that the various processes associated with an arbitrary policy T are rescaled as in (3.8)–
(3.11) using a small parameter ε > 0. In [5,8] an informal argument is given to suggest
that as ε ↓ 0, the scaled dynamic scheduling problem is increasingly well approximated
by a simpler dynamic control problem involving an m-dimensional Brownian motion
X = {X(t), t > 0}. To be more specific, X has zero drift, covariance matrix

Γ = Γ0 +
b∑
j=1

x∗jΓ
j, (4.1)

and initial state X(0) = 0. In the limiting Brownian control problem, an admissible
control takes the form of an n-dimensional process Y such that

Y is non-anticipating with respect to X, (4.2)

Z(t) > 0 for all t > 0, and (4.3)

U is nondecreasing with U (0) > 0, where (4.4)

Z(t) = X(t) +RY (t) for all t > 0 and (4.5)

U (t) = KY (t) for all t > 0. (4.6)

In the obvious way, the processes Y , Z and U appearing in this problem statement
represent limits as ε ↓ 0 of scaled processes denoted by the same letters in section 3,
and we associate with each admissible control Y a corresponding (scaled) cost rate
process ζ via

ζ(t) = cZ(t), t > 0. (4.7)

As explained in [8,9], the Brownian system model (4.2)–(4.6) has an “equivalent
workload formulation” in which the state of the system at any time t is described by a
“workload vector” W (t) having dimension d 6 m; we shall occasionally refer to d as
the effective dimension of the original Brownian system model (4.2)–(4.6). Relevant
aspects of the equivalent workload formulation will be reviewed shortly. Our main
result is the following.

Proposition 4 (Complete pooling). Consider the Brownian model (4.2)–(4.6) that is
derived from a parallel-server system whose data (R,A,λ) satisfy assumption 1. Its
equivalent workload formulation has dimension d = 1 if and only if (R,A,λ) further
satisfy the equivalent conditions (i)–(iii) of proposition 3.

Proof. By strong duality, conditions (i) and (ii) of assumption 1 imply that the dual
linear program (2.9)–(2.12) has at least one feasible solution (y`, z`) such that y`λ = 1.
As in [8, section 2], let d be the dimension of the linear space spanned by such
vectors y`. (Again readers are reminded that the dual variables denoted by y and z in
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this paper are denoted in [8] by µ and π, respectively.) The d×m matrix M is then
defined as

M =

y
1

...
yd

 (4.8)

for any linearly independent y1, . . . , yd. It follows from [8, proposition 4] that d = 1 if
and only if the dual linear program (2.9)–(2.12) has a unique optimal solution (y∗, z∗).
Because assumption 1 includes the hypotheses of proposition 2, the desired conclusion
is then immediate from proposition 3. �

To recapitulate, proposition 4 gives a necessary and sufficient condition, involving
first-order system data (R,A,λ), for our limiting Brownian control problem to have
effective dimension d = 1. Let us assume that this condition holds, and as before
denote by (y∗, z∗) the unique optimal dual solution for the static allocation problem.
Adopting the “canonical” representation of workload proposed in [8], the equivalent
workload formulation of (4.2)–(4.6) involves the one-dimensional Brownian motion
ξ = {ξ(t), t > 0} defined by

ξ(t) = y∗X(t), t > 0. (4.9)

Also, for general d the equivalent workload formulation described in [8] involves a
d × p matrix G, so in our case G is just a p-dimensional row vector (recall from
section 3 that p = r+ n− b), and its precise content will be specified below in (5.1)–
(5.3). In the equivalent workload formulation one takes the point of view that a system
manager directly chooses the processes Z and U appearing in (4.2)–(4.6), rather than
choosing the vector Y of scaled deviation controls. To be more precise, an admissible
strategy is defined as a pair (Z, U ) that satisfies the following conditions:

U is non-anticipating with respect to X, (4.10)

Z(t) > 0 for all t > 0, (4.11)

U is nondecreasing with U (0) > 0, and (4.12)

W (t) = ξ(t) +GU (t) for all t > 0, where (4.13)

W (t) = y∗Z(t) for all t > 0. (4.14)

In this equivalent workload formulation the processes Z and U have the same inter-
pretation as before: components of Z represent scaled jobcount processes, or scaled
buffer content processes, for the various job classes; the first r components of U rep-
resent scaled cumulative idleness processes for the various servers; and the last n− b
components of U represent scaled cumulative time allocations to the various nonba-
sic activities. We associate with each admissible strategy (Z, U ) a cumulative cost
process ζ via (4.7). One interprets the constant y∗i as the “workload contribution” of
a class i job, and in (4.14) the (scaled) workload vector W (t) is obtained by summing
over job classes i the (scaled) workload contents y∗iZi(t) in their respective buffers.
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As explained in [8, section 4], the corresponding interpretation of our optimal dual
variable z∗k is the following: it is the average rate at which server k drains workload
from the system when exclusively engaged in basic activities. In these verbal inter-
pretations of the optimal dual variables y∗i and z∗k , the word workload means the time
required to empty all buffers in a fluid analog of our parallel-server system; see [8]
for elaboration and details.

5. Pathwise solutions with complete pooling

Before introducing the pathwise solution of our Brownian control problem, it is
necessary to describe precisely the process

L(t) = GU (t), t > 0, (5.1)

appearing on the right-hand side of (4.13). By combining the definition of G provided
in [8, equation (3.11)] with (2.5), (3.5)–(3.8) and (3.10) above, readers can verify that

L(t) =
r∑

k=1

z∗k Uk(t) +
n−b∑
`=1

g∗b+` Ur+`(t), (5.2)

where

g∗j = z∗k(j) − y∗i(j)µj for j = b+ 1, . . . , n. (5.3)

(Recall that yi and zk are denoted in [8] as µi and πk, respectively.) The corollary
to proposition 3 says that all of the constants z∗k and g∗j appearing in (5.2) are strictly
positive (that is, all components of the p-vector G are strictly positive), so (4.12)
implies that L is nondecreasing with L(0) > 0 under any admissible strategy (Z, U ).

A pathwise solution of (4.10)–(4.14) can now be constructed as follows. First,
define the one-dimensional reflected or regulated Brownian motion W ∗ via

W ∗(t) = ξ(t) + L∗(t), t > 0, (5.4)

where

L∗(t) = − inf
06s6t

ξ(s), t > 0. (5.5)

Then L∗ is continuous and nondecreasing with L∗(0) = 0, and it is well known that

L∗ increases only at times t when W ∗(t) = 0, (5.6)

cf. [4, chapter 2]. From those properties it follows that, for any admissible strategy
(Z, U ), the workload process W defined by (4.14) satisfies W (t) > W ∗(t) for all
t > 0 (thus, W ∗ is a pathwise bound for W ). Thus, recalling the definition (4.7) of
the cost rate process ζ under an admissible strategy (Z, U ), and further defining
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θi =
ci
y∗i

for i = 1, . . . , m, (5.7)

θ∗= min {θ1, . . . , θm}, (5.8)

and

ζ∗(t) = θ∗W ∗(t), t > 0, (5.9)

one has the following:

ζ(t) =
m∑
i=1

ci Zi(t) =
m∑
i=1

θi y
∗
i Zi(t)

> θ∗
m∑
i=1

y∗i Zi(t) = θ∗W (t)

> θ∗W ∗(t) = ζ∗(t) (5.10)

for all t > 0. (Again, this is a pathwise relationship between two stochastic processes ζ
and ζ∗.) To construct an admissible pair (Z∗, U∗) that actually achieves the pathwise
bound ζ∗, let the job classes be numbered so that

θ1 6 · · · 6 θm. (5.11)

One way to achieve the bound (others are possible, as explained below) is by taking

Z∗1 (t) =
1
y∗1
W ∗(t), (5.12)

Z∗2 (t) = · · · = Z∗m(t) = 0, (5.13)

U∗1 (t) =
1
z∗1
L∗(t), and (5.14)

U∗2 (t) = · · · = U∗p (t) = 0 (5.15)

for t > 0. To establish the pathwise optimality of this pair (Z∗, U∗) readers must verify
that it satisfies all of the admissibility conditions (4.10)–(4.14) and that ζ∗ = cZ∗, both
of which are easy to do. Of course, one must use the fact that θ1 = θ∗ by (5.11); if the
first inequality in (5.11) is not strict, then one could substitute for class 1 in (5.12) any
other class i such that θi = θ∗ and the same conclusion would be reached. In similar
fashion, the choice of U∗1 to be the only nonzero component of U∗ is completely
arbitrary: given that all the constants z∗k appearing in (5.2) are strictly positive, one
could substitute for server 1 in (5.14) any other server k ∈ {1, . . . , r}. Furthermore,
because all of the constants g∗j in (5.2) are strictly positive as well, one could choose
the nonzero component of U∗ in 5.14 to be

U∗r+`(t) =
1
g∗b+`

L∗(t), t > 0, (5.16)
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for one particular ` ∈ {1, . . . , n − b} and then take all other components of U∗ to
be zero as in (5.15). Roughly speaking, this would be interpreted as follows. The
system manager, seeing that workload is approaching zero and thus all servers cannot
be kept efficiently employed, would choose not to idle any server, but rather to engage
some server in a nonbasic activity. Because nonbasic activities effectively squander
capacity, workload rises precipitously under Brownian scaling, and so shortly the
system manager can return to a mode in which all servers are fully occupied with
basic activities.

Having specified in (5.12)–(5.15) one particular policy (Z∗, U∗) as a candidate
for optimality, we summarize the arguments above in the following proposition, a more
general version of which was proved by Laws [16].

Proposition 5. Consider the equivalent workload formulation (4.10)–(4.14) of the
Brownian control problem (4.2)–(4.6) that is derived from a parallel-server system
whose data (R,A,λ) satisfy assumption 1. Further, suppose that those data satisfy the
complete pooling condition articulated in propositions 3 and 4. Given the number-
ing convention (5.11), the pair (Z∗,U∗) defined by (5.4)–(5.5) and (5.12)–(5.15) has
associated cost rate process θ∗Z∗ = ζ∗, and thus it is pathwise optimal in the sense
of (5.10).

For an interpretation of all this in terms of our original scheduling problem, or
rather to begin development of an interpretation, we note the following. First, since
U1, . . . , Ur are scaled cumulative idleness processes for the r different servers and the
remaining components of U represent scaled cumulative time allocations to nonbasic
activities, (5.15) says that only server 1 will ever experience idleness, and that only
basic activities will ever be undertaken. Second, (5.14) and (5.6) together say that
server 1 will only experience idleness when the system is completely empty (that is,
when the workload is zero). Finally, (5.11) and (5.12) together say that all backlogged
work is to be held in the form of jobs from that class i which minimizes the index
θi = ci/y

∗
i . This index represents the holding cost incurred (per hour, say) per unit of

work held in buffer i.
It is more or less obvious that no strategy can do better than one which both

achieves the minimal workload process W ∗ and holds all work in that buffer for which
the holding cost per unit of work is minimal; those are the definitive characteristics
of (Z∗, U∗). It is equally obvious that such ideal system behavior, although it is
achievable in the limiting Brownian model, can only be approached in our original
parallel-server system. The question of how to approach that ideal behavior under
heavy traffic conditions will be addressed briefly in the next section.

To show the connection between the classical cµ rule and our ranking (5.11) of
the job classes, let us denote by J the set of all basic activities j for which server 1
is responsible, and by I the set of all job classes i processed in those activities. That
is, J consists of those j ∈ {1, . . . , b} such that k(j) = 1, and I consists of those
i ∈ {1, . . . , m} such that i(j) = i for some j ∈ J . (The focus on server 1 is arbitrary.)
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If i is the class processed by some particular activity j ∈ J , then we have from (2.15)
that y∗i µj = z1 and, hence, θi = ci/y

∗
i = ciµj/z1. That is, ranking classes i ∈ I

according to the index θi is precisely the same, from the perspective of server 1, as
ranking those classes according to the cµ criterion. A similar statement holds for each
of the other servers, of course.

6. Asymptotically optimal scheduling policies

In section 1 a four-step procedure was outlined for heavy traffic analysis of a
dynamic scheduling problem. At this point the first two steps have been completed
for the case of parallel-server systems, given that they satisfy our complete pooling
condition: the associated Brownian control problem was written out in section 4, fol-
lowing the purely formal procedure proposed in [5,8], and a pathwise optimal solution
of that Brownian control problem was derived in section 5. Step three is to inter-
pret the Brownian solution in our original problem context, showing how it can be
approached through a sequence of implementable scheduling policies. Step four is to
prove that, in some appropriate sense, no sequence of admissible scheduling policies
in the original model can “do better than” the Brownian solution, thus establishing
“asymptotic optimality” of the policies identified in step three. Steps three and four
together can be viewed as a confirmation that the purely formal argument used to
justify our “limiting Brownian control problem” was in fact correct. That is, we seek
to confirm that the Brownian solution does correspond to best achievable performance
in our original model, in an appropriate asymptotic sense.

The last two steps of the heavy traffic program for parallel-server systems will not
be undertaken in this paper, but some additional development is appropriate to set the
stage for future work, and to facilitate interpretation of the pathwise optimal Brownian
solution derived in section 5. Consider again the general dynamic scheduling problem
described in section 3, recalling that a scheduling policy takes the form of a nonde-
creasing vector process T = {T (t), t > 0} whose components represent cumulative
time allocations to n different activities that may be undertaken by r different servers.
Given a parallel-server system whose data (R,A,λ) satisfy both assumption 1 and our
complete pooling condition, let T ε be a family of admissible scheduling policies para-
meterized by ε > 0. For each policy in the family, define a scaled jobcount process Zε

and scaled cost rate process ζε via (3.3), (3.4), (3.9) and (3.11), using T ε in place of T .
We conjecture that

lim sup
ε ↓ 0

P
{
ζε(t) 6 x

}
6 P

{
ζ∗(t) 6 x

}
(6.1)

for all t > 0 and all x > 0. This result, if it is true, says that the pathwise optimal
Brownian cost rate process ζ∗ asymptotically dominates, in the sense of stochastic
ordering at every time t, the best achievable scaled cost rate in our original model.
To repeat a point made earlier, the asymptotic mode of analysis under discussion here
(as the scaling parameter ε becomes small) is one that considers ever longer spans of
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time, and that adjusts the spatial scales of all processes in corresponding fashion so
that the quantities of interest remain moderate. The precise restrictions that define an
“admissible policy” T in the parallel-server model have not been spelled out in this
paper, but we conjecture that (6.1) remains valid even when an unrealistically large
class of policies is considered, including policies that look into the future and policies
that may split server effort among several activities simultaneously. More will be said
in the next section about potential means of proving (6.1).

As a companion to the conjectured asymptotic bound (6.1), one would like to
identify a family of implementable policies T ε such that

ζε ⇒ ζ∗ as ε ↓ 0, (6.2)

where⇒ signifies weak convergence (or convergence in distribution) in an appropriate
function space setting. This would mean that, for arbitrary t > 0 and x > 0, the
probability on the left side of (6.1) actually approaches the probability on the right side
as ε ↓ 0. Together, then, (6.1) and (6.2) would justify calling the identified sequence
of policies asymptotically pathwise optimal.

A family of discrete-review policies that are asymptotically optimal in this sense
was constructed in [7] for a simple two-server example (see section 7 below). In
future work that approach will be extended to a more general class of parallel-server
systems, and a brief description of the ideas involved will help readers to interpret the
Brownian solution obtained in section 5. For concreteness, consider the three-server
model described in figure 1; additional numerical data are provided in (2.7), and the
optimal primal and dual solutions for the corresponding static allocation problem are
displayed in (2.8) and (2.14), respectively. Let the vector c of holding cost rates for
the four job classes be

c =
(
1 3

5 2 1
)
. (6.3)

From these we compute the following values for the critical indices θi = ci/y
∗
i de-

fined in (5.7), noting that job classes have been numbered according to this index in
conformance with (5.11):

θ = (5, 6, 8, 10). (6.4)

For each ε > 0 we consider a discrete-review policy whose review periods are of
nominal length `(ε) > 0. Here `(·) is a function that increases without bound as its
argument declines to zero, growing slowly enough to insure that

ε `(ε)→ 0 as ε ↓ 0, (6.5)

but growing fast enough to provide certain large deviation bounds. At the beginning
of each review period the system manager allocates to the three servers some, but
not necessarily all, of the jobs that are then available in the four buffers, and also
specifies which activities are to be used in processing those jobs. The review period
ends when all assigned jobs have been processed by the designated servers or after `(ε)
time units, whichever comes later, and let us suppose that servers simply become idle
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after they have completed their assignments. (This simplifies analysis, and alternative
schemes that come immediately to mind are asymptotically equivalent to this one as
ε ↓ 0 and review periods become long.) Assignments are made in such a way that
no server has an expected total processing time greater than `(ε), and subject to this
constraint, the system manager makes assignments so as to minimize the holding cost
rate associated with unallocated jobs; when it is possible to allocate all jobs on hand
subject to the stated constraint on expected total processing times, the system manager
does so, striving to minimize total idleness of servers 2 and 3 as a secondary objective.

A more general form of policy, described in [7], further allows servers to work
on jobs during the period in which they arrive, but restricts such activity by means of
a vector ϕ = (ϕ1, . . . , ϕm) of threshold parameters. (In [7], this parameter is called
θ, but here it is relabeled to avoid confusion with the vector θ of (5.7) and (6.4).)
In the more general family of policies, server time allocations to different activities
during any given period must be set so that expected ending inventory in each buffer
i = 1, . . . , m is at least ϕi. In our case, only jobs present in the system at the beginning
of a review period are allocated to servers for processing during that period, and so
in effect we have set threshold levels to one period’s worth of expected arrivals, or
ϕ(ε) = `(ε)λ, where the dependence of the threshold levels on ε has been explicitly
indicated.

Using assumption 1, the complete pooling condition, and elementary large devia-
tions theory, it can be shown that the following hold as ε ↓ 0, at least under sufficiently
strong distributional assumptions: the system manager very seldom chooses to use
any nonbasic activities, and very seldom leaves unallocated any of the jobs on hand in
buffers 2 through 4; moreover, the idleness experienced by servers 2 and 3 is negligible
under heavy traffic scaling, and virtually all of the idleness experienced by server 1
occurs in periods when all jobs can be allocated. In each of these statements, phrases
like “very seldom” and “virtually all” mean that the quantity in question approaches
zero or one, as the case may be, under heavy traffic scaling as ε ↓ 0.

Thus one sees that the defining properties of the pathwise Brownian solution
(Z∗,U∗) derived in section 5 are achieved “in the limit” by the sequence of discrete-
review policies described immediately above. It is then at least plausible that the
scaled cost rate processes generated by that sequence of policies would satisfy (6.2).
Of course, the approximating Brownian system model only becomes useful when one
is able to interpret its solution in terms of limits like these, so developing a rigorous
heavy traffic limit theory is a research task of high priority.

To explain in concrete terms the significance of the hypothesized result about
asymptotic optimality of discrete-review policies, consider a single parallel-server sys-
tem satisfying assumption 1. (This means, in particular, that the system has traffic
intensity parameter ρ∗ = 1, but the analysis extends to systems with ρ∗ near 1, as
explained in section 8.) Further suppose that the system manager simply wants to
minimize expected total cost incurred over a finite but long time interval. Denoting
by ε−2 the length of that interval (thus, ε is small), one can define a scaled cost rate
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process ζ for each scheduling policy T as in section 3, and then state the objective as
follows: choose a policy T so as to

minimize E

[ ∫ 1

0
ζ(t) dt

]
. (6.6)

Our theory suggests that for small values of ε (that is, for long time horizons) there
exists a nearly optimal policy within the class of discrete-review policies. The only
free parameter of a discrete-review policy as we have described it here is the length `
of its planning periods, and in a practical application one would undertake a simulation
study to estimate the value of ` which minimizes the performance measure (6.6). Of
course, one can imagine many heuristic variations of the basic discrete-review strategy
that might plausibly give incremental performance improvements. For example, one of
the threshold parameters ϕi described above might be taken strictly smaller than `λi,
allowing some class i jobs to be processed during the period of their arrival if there
is adequate server capacity available. Here again, simulation studies provide the only
obvious means for evaluating and choosing among the alternatives that creative think-
ing may suggest. The important contribution of the theory is to generate a baseline
strategy that is known to be good in an asymptotic sense, from which variants can
be developed and against which alternatives can be compared. This gives structure to
simulation studies that might otherwise resemble groping about in complete darkness.

7. Super-server performance bounds

Consider again the problem of proving (6.2), which shows that the cost rate
process ζ∗ associated with our pathwise Brownian solution (Z∗, U∗) is an asymptotic
bound on achievable performance in the original parallel-server system. In an earlier
paper [7], which analyzed one rather special example of a parallel-server system, that
result was proved in a simple way: it was first shown that achievable performance in
the original model is bounded by achievable performance in a corresponding single-
server model, and then that ζ∗ is an asymptotic bound on the latter. In this section we
first describe the naive extension of that approach to general parallel-server systems,
and then explain why it cannot succeed in general, believing that this discussion will
help to develop readers’ intuition in several regards.

In section 3 we did not write out the constraints that must be satisfied by a vector
process T of cumulative time allocations if it is to represent an admissible strategy.
One such constraint is

A
[
T (t)− T (s)

]
6 (t− s)e for 0 6 s 6 t <∞, (7.1)

where A is the r × n resource consumption matrix specified in section 2 and e is an
r-vector of ones. This says that each server i = 1, . . . , m may allocate no more than
t− s time units to processing activities during the interval [s, t]. The m-dimensional
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Figure 2. A two-server system with Poisson arrivals and deterministic service times.

jobcount process Q under policy T was described by (3.3), which we rewrite here for
easy reference:

Q(t) = F 0(t)−
n∑
j=1

F j
(
Tj(t)

)
, t > 0, (7.2)

where F 0 is a vector process of cumulative arrivals into the various buffers and
F 1, . . . , Fn specify cumulative outputs from the various activities given their cu-
mulative time allocations (see section 3).

Figure 2 pictures the specific parallel-server system that was analyzed in [7]:
this example is distinguished not only by its special structure but also by the special
distributional assumptions described in the caption. With the given data, this model
satisfies not only assumption 1 but also our complete pooling condition: that is, the
two servers communicate, because they both serve class 1 in the nominal processing
plan. Using the data in figure 2, readers can verify that the unique primal and dual
solutions of our static allocation problem (see section 2) are given by

x∗ =
(
1, 3

5 , 2
5

)
, y∗ =

(
2
3

1
3

)
and z∗ =

(
2
3

1
3

)
. (7.3)

The pathwise solution of the limiting Brownian control problem was derived in [7],
and it was shown that the ideal system behavior described by that solution can be
approached in the heavy traffic limit by using discrete-review policies of the kind
described in the previous section.

In [7] the pathwise optimal cost rate process ζ∗ arising in the Brownian system
model was interpreted in terms of a single pooled resource, or super-server, that com-
bines the capabilities of the two servers in figure 2. Naively translated into the general
parallel-server context considered in this paper, and using the notation developed here,
the bounding super-server model is described as follows. First, imagining a single
super-server that is able to undertake all n of the original processing activities, and de-
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noting by T̂ = {T̂ (t), t > 0} the n-dimensional, nondecreasing process of cumulative
time allocations for the super-server, one replaces (7.1) by

e ·
[
T̂ (t)− T̂ (s)

]
6 t− s for 0 6 s 6 t <∞. (7.4)

(As in section 3, an admissible policy T̂ for the super-server must be non-anticipating
in a certain sense and must satisfy other restrictions as well, but those aspects of the
model formulation need not be spelled out here.) Second, for each activity j we define
an “acceleration factor”

aj =
1
z∗k(j)

, j = 1, . . . , n. (7.5)

Finally, (7.2) is replaced by the following definition of the jobcount process Q̂ under
super-server policy T̂ :

Q̂(t) = F 0(t)−
n∑
j=1

F j
(
ajT̂j(t)

)
, t > 0. (7.6)

This means that one unit of super-server effort devoted to activity j produces exactly
the same effect as aj units of effort devoted to that activity by server k(j) in our
original model. To see that optimal performance in the super-server model really
does bound that in our original model, one need only note the following: given any
policy T satisfying (7.1) in the original model, we can define a corresponding super-
server policy T̂ via

T̂j(t) = z∗k(j)Tj(t) for t > 0 and j = 1, . . . , n. (7.7)

Because z∗1 + · · · + z∗r = 1, it follows from (7.1), (7.7) and the definition of A that
(7.4) holds, and the jobcount process Q̂ derived from T̂ via (7.6) is identical to the
jobcount process Q derived from T via (7.2).

Having established that the super-server model bounds our original model, one
now asks whether the two are “asymptotically equivalent” under heavy traffic scaling.
For the two-server example described in figure 2, that equivalence was rigorously
proved in [7], but it depends on the assumption that all service times are deterministic.
(A more general but still restrictive condition which is believed to assure the asymptotic
equivalence of the two models will be stated shortly.) To see that the equivalence is
not general, consider the two-server model described in figure 2, modified (only) in
the following way: when server 1 processes jobs from buffer 1 (this is activity 1), the
service times are exponentially distributed rather than deterministic, but with unit mean
as before. From (7.3) and (7.5), the acceleration factors for the three activities in the
super-server model are found to be a1 = 3

2 , a2 = 3 and a3 = 3, respectively. Looking
only at activities 1 and 2, we then have the following: the super-server may either
process jobs from buffer 1 in deterministic fashion at rate a2µ2 = 3

2 (this is activity 2),
or process them with exponential service times at average rate a1µ1 = 3

2 (this is
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activity 1). The pathwise bound ζ∗ that we derived in section 3 represents a heavy
traffic limit under policies which mix those two modes of processing in proportions
fixed by the nominal processing plan x∗, but here the super-server model has been
defined in such a way that activity 2 (the deterministic mode) can be used exclusively
for the processing of class 1, which reduces variability. Given that capability, and all
the other special features of the two-server example, one can show the following: by
using only activity 2 to process class 1, and always giving priority to class 1 over
class 2, the super-server can achieve a limiting scaled cost rate process ζo that is a
driftless one-dimensional reflected Brownian motion like ζ∗, but which has strictly
smaller variance parameter than does ζ∗. The lower-variance process ζo is strictly
stochastically smaller than ζ∗ at every time t > 0.

In light of this example it is natural to consider parallel-server systems that have
the following special structure. Suppose that the service time distributions for activities
which process any given job class are identical except for activity-specific scale factors.
It might be, for example, that service time distributions for activities associated with
class 1 are all deterministic, regardless of which server undertakes the activity, that
service time distributions associated with class 2 are all exponential, and so forth, but
the mean service time may differ according to which server does the processing. If
a parallel-server system has this special structure, we believe that the Brownian cost
rate process ζ∗ does provide an asymptotic bound on achievable performance in its
naive super-server analog, and thus bounding the original system by that super-server
model is useful for purposes of heavy traffic theory. Proving this proposition does not
appear to be very difficult, in fact, but the task will not be attempted here.

Having argued earlier that ζ∗ does not generally provide an asymptotic bound on
achievable performance in the naive super-server model, we now describe a restricted
version of the super-server model for which that asymptotic bound is generally valid.
For each i = 1, . . . , m let B(i) be the set of all basic activities j ∈ {1, . . . , b} such
that i(j) = i. That is, B(i) consists of those basic activities which process jobs of
class i. Now let

βi =
∑
j∈B(i)

z∗k(j)x
∗
j for i = 1, . . . , m, (7.8)

and

γj =
z∗k(j)x

∗
j

βi
for j ∈ B(i) and i = 1, . . . , m. (7.9)

Thus the constants γj are strictly positive and they sum to one over each of the
sets B(i). Let the super-server model be as described above except that now its time
allocations are restricted by the requirement that (for all t > 0)

T̂j(t) = γjτi(t) for j ∈ B(i) and i = 1, . . . , m, (7.10)

where τi = {τi(t), t > 0} is some nondecreasing process. One interprets τi(t) as
the cumulative time allocated by the super-server to processing class i jobs over the
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interval [0, t], and (7.10) requires that each increment of that cumulative allocation be
divided among the basic activities j ∈ B(i) in the fixed proportions {γj , j ∈ B(i)}.
Hereafter the m-dimensional vector process τ with components τ1, . . . , τm will be
referred to as a class-level time allocation, or class-level strategy, for the super-server.
Of course, (7.4) requires that τ satisfy

e ·
[
τ (t)− τ (s)

]
6 t− s for 0 6 s 6 t <∞, (7.11)

where e is an m-vector of ones. (Again we observe that an admissible class-level
strategy τ must satisfy other constraints as well, but those need not be spelled out
for purposes of this discussion.) Substituting (7.10) into (7.6), one has the following
representation for the super-server jobcount process Q̂ under class-level strategy τ :

Q̂(t) = F 0(t)−
m∑
i=1

F̂ i
(
τi(t)

)
, t > 0, (7.12)

where

F̂ i(t) =
∑
j∈B(i)

F j(ajγjt) for i = 1, . . . ,m. (7.13)

Condition (7.10) says that the super-server is obliged to process class i jobs by means
of a composite basic activity which actually distributes the class-level time allocation
in fixed proportions among basic activities in B(i), and F̂ i = {F̂ i(t), t > 0} is the
cumulative output process achieved when the super-server devotes all of its time to
that composite activity. Recalling from (7.5) that aj = 1/z∗k(j), we have from (7.9)
and (7.13) that

F̂ i(t) =
∑
j∈B(i)

F j
(
β−1
i x∗j t

)
for i = 1, . . . ,m. (7.14)

Denoting by µ̂i the average service rate when all super-server time is devoted to
composite basic activity i, we have from (7.14) that

µ̂i =
∑
j∈B(i)

β−1
i x∗jµj for i = 1, . . . ,m. (7.15)

Of course, our primal constraints (2.2) require that the nominal processing plan x∗

satisfy ∑
j∈B(i)

µjx
∗
j = λi for i = 1, . . . ,m, (7.16)

and (7.15) and (7.16) together give

µ̂i = λiβ
−1
i for i = 1, . . . ,m. (7.17)

Finally, recall from (2.15) that our optimal dual variables (y∗, z∗) satisfy the com-
plementary slackness condition µjy

∗
i(j) = z∗k(j) for j = 1, . . . , b. Substituting that
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relationship into (7.8) and again using (7.16), one has βi = y∗i λi, and thus, (7.17)
reduces to

µ̂i =
1
y∗i

for i = 1, . . . ,m. (7.18)

In the restricted super-server model described immediately above, it is relatively
easy to prove the following: if the classes are ranked in increasing order of the index
ciµ̂i = ci/y

∗
i , and if higher ranked classes are given priority over lower ranked ones,

then the associated cost rate process C(t) = c · Q̂(t) converges weakly after heavy
traffic scaling to our pathwise Brownian solution ζ∗ (see section 5); moreover, if ζ
is the weak limit of the scaled cost rate process under any other policy or family of
policies, then one has ζ(t) > ζ∗(t) for all t > 0 as in (5.10). Unfortunately, it is by no
means obvious that optimal performance in the restricted super-server model dominates
optimal performance in our original parallel-server model, even asymptotically under
heavy traffic scaling. That is, when the super-server is required to process each job
class by means of the composite basic activity described above, it is no longer obvious
that its best achievable performance dominates the best achievable performance in our
original model, although we believe that to be true in the heavy traffic limit.

8. Concluding remarks

Let us consider now the problem of approximating a parallel-server system whose
traffic intensity parameter (see section 2) is near 1 but not exactly equal to 1. In this
discussion we shall first speak in terms of approximating a single given system, spe-
cializing appropriately the more general exposition in [8, section 5], and then describe
the relationship of that approximation to heavy traffic limit theory. To conform with
the notational conventions employed in [8], we shall re-use the letter θ with a new
meaning in this section.

Consider a parallel-server system with first-order data (R,A,λ), also taking as
given a small parameter ε > 0 whose magnitude reflects the time scale that is relevant
for purposes of performance measurement (see section 3). Let us suppose that there
exists a strictly positive m-vector λ∗ such that assumption 1 holds with λ∗ in place of
λ, and which is close to λ in the following sense:

all components of the m-vector θ = ε−1
(
λ− λ∗

)
are moderate in value. (8.1)

This means, among other things, that the static allocation problem with data (R,A,λ∗)
has a unique solution (x∗, ρ∗) and that ρ∗ = 1. Again we call x∗ the nominal processing
plan, observing that it fully allocates all server capacity (that is, Ax∗ = e) and that its
associated vector of average output rates from the various buffers is Rx∗ = λ∗ rather
than Rx∗ = λ. Deviation controls are defined in terms of x∗ via (3.5) under any
given policy, and scaled processes are defined using the given parameter ε via (3.8)–
(3.11). Proceeding exactly as in [6], this leads to an approximating Brownian system
model which is identical to the one specified by (4.2)–(4.6) except that X is now
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an m-dimensional Brownian motion with covariance matrix Γ and with drift vector θ
defined by (8.1). Readers should note that the vector x∗, which is derived from λ∗

rather than λ, plays a central role in calculating data of the Brownian system model,
and that λ comes into play only in computing the drift vector θ via (8.1). Propositions 4
and 5, which give the condition for complete pooling in a Brownian system model and
identify the resulting pathwise solution, respectively, are applied using (R,A,λ∗) rather
than (R,A,λ), because the relevant data of the Brownian model have been computed
from λ∗ rather than λ. (Note that the drift vector of the Brownian motion X plays no
role in either proposition.)

One scenario satisfying the assumptions listed in the previous paragraph, and
probably the only scenario that one need consider from a practical standpoint, is the
following. Suppose that our first-order data (R,A,λ) are such that parts (i) and (iii)
of assumption 1 hold, but the traffic intensity parameter ρ∗ derived from the static
allocation problem is not exactly 1. Then we can simply take λ∗ = λ/ρ∗, and (8.1)
amounts to the requirement that ε−1(1−ρ∗) be of moderate absolute magnitude, which
is a familiar condition from classic heavy traffic theory. In this case, of course, the drift
vector θ in (8.1) is just λ multiplied by the real constant κ = (ρ∗−1)/ερ∗, and it is clear
why |κ| must be moderate if we are to obtain a meaningful Brownian approximation
from the scaling constant ε that is here taken as given: if |κ| is not moderate, then
all components of the drift vector θ will be either very large (positive) or else very
negative, and that extreme drift will overwhelm all other problem elements.

To develop a rigorous heavy traffic limit theory that justifies the approximating
Brownian system model described above, one may hypothesize a family of parallel-
server systems parameterized by ε > 0, in which all problem data other than the
vector λ of average arrival rates are fixed. Translating (8.1) into a formal notion of
a heavy traffic limit, we assume that λε → λ∗ as ε ↓ 0, where λε has the obvious
meaning, λ∗ is a strictly positive vector such that 1 is satisfied with λ∗ in place of λ,
and moreover,

ε−1(λε − λ∗)→ θ as ε ↓ 0, (8.2)

where θ is an m-vector whose components are moderate in absolute magnitude. The
“limiting Brownian system model” for this family of parallel-server systems is as
described above: the underlying Brownian motion X has drift vector θ and all of its
other data are computed using the vector λ∗ of limiting average arrival rates. To prove
the asymptotic optimality of a family of policies parameterized by ε > 0, one may
then seek to prove (6.1) and (6.2), exactly as in the case of a single system with ρ∗ = 1
but with scaling parameter ε ↓ 0. It is this framework that will be used in our future
investigation of discrete-review strategies.

Earlier it was said that part of proposition 4 and all of proposition 5 are spe-
cial cases of results proved by Laws [16]. To be more specific, Laws considered
dynamic control policies, including both routing and sequencing decisions, for a class
of queueing network models that are special in some regards but still much more gen-
eral than parallel-server systems. (Viewed in the context of stochastic network theory,
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the distinguishing feature of a parallel-server system is that the route of each arriv-
ing job consists of just one operation.) He defined heavy traffic for such a network
by means of a linear program that is equivalent to our static allocation problem, and
focused on heavy traffic limits such that a dual linear program equivalent to (2.9)–
(2.12) has a unique solution: in his language this is the case of a heavy traffic limit
with “a single binding generalized cut constraint”. Writing out the natural Brownian
approximation for his dynamic control problem with only heuristic justification, just
as we have done here, he then showed that the Brownian control problem has a one-
dimensional equivalent workload formulation, and he derived the pathwise solution
of that one-dimensional problem. Expressing Laws’ results in the language of this
paper, he proved that condition (i) of propositions 3 and 4 (uniqueness of the optimal
dual solution) implies d = 1 in a much more general setting, and he also proved a
more general version of our proposition 5. Both of those results have been further
generalized in [6,8]. For the special case of parallel-server systems, we have shown in
proposition 4 that the limiting Brownian control problem is essentially one-dimensional
if and only if all servers communicate in the sense of section 2, which is a simple
and intuitive condition for “complete pooling” that seems to have no analog in a gen-
eral network setting. Another benefit of our specialization to parallel-server systems,
which will only be demonstrated in the future study of discrete-review policies that
was previewed in section 6, is that one can identify without great difficulty a concrete
means of approaching, in the heavy traffic limit, the ideal system behavior described
by the pathwise Brownian solution. In contrast, Laws [16] was unable to propose a
means of achieving his pathwise solutions in the more general network context, and
that unsolved problem was highlighted in a subsequent survey paper [12].

A recent paper by Kushner and Chen [13] is devoted to heavy traffic analysis
of parallel-server systems in which each server has a “dedicated” input stream that
demands almost all of its capacity. What gives their problem its flavor is that there
also exist “assignable” input streams which have much lower arrival rates and may
be processed by any of several servers. In the heavy traffic limit where each server
is fully loaded by its own dedicated stream, the assignable streams represent a van-
ishingly small fraction of total input, and yet the way in which they are distributed
among the servers (dynamically, based on observed system status) is still significant
from the standpoint of system performance. The Kushner–Chen heavy traffic regime
is in a sense the diametric opposite of the one on which we focus in this paper,
because the domination of each server by a dedicated input stream eliminates any
possibility of resource pooling in the heavy traffic limit. Kushner and Chen obtain a
limiting Brownian control problem that is unlike those encountered in any prior work
on heavy traffic control problems but which is still amenable to numerical solution
by the Markov chain approximation method [14]. In their setting it is apparently a
straightforward matter to translate optimal Brownian controls (computed numerically)
into implementable strategies for the original queueing system, and the authors are
able to rigorously prove asymptotic optimality of those strategies.
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