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Top-k Elephant Flows
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Abstract—Finding top-k elephant flows is a critical task in net-
work traffic measurement, with many applications in congestion
control, anomaly detection and traffic engineering. As the line
rates keep increasing in today’s networks, designing accurate
and fast algorithms for online identification of elephant flows
becomes more and more challenging. The prior algorithms are
seriously limited in achieving accuracy under the constraints of
heavy traffic and small on-chip memory in use. We observe that
the basic strategies adopted by these algorithms either require
significant space overhead to measure the sizes of all flows or
incur significant inaccuracy when deciding which flows to keep
track of. In this paper, we adopt a new strategy, called count-with-
exponential-decay, to achieve space-accuracy balance by actively
removing small flows through decaying, while minimizing the
impact on large flows, so as to achieve high precision in finding
top-k elephant flows. Moreover, the proposed algorithm called
HeavyKeeper incurs small, constant processing overhead per
packet and thus supports high line rates. Experimental results
show that HeavyKeeper algorithm achieves 99.99% precision
with a small memory size, and reduces the error by around 3
orders of magnitude on average compared to the state-of-the-art.

Index Terms—HeavyKeeper, Top-k, Sketch, Network measure-
ments, Elephant flow

I. INTRODUCTION

A. Background and Motivation

Finding the largest k flows, also referred to as the top-

k elephant flows, is a fundamental network management

function, where a flow’s ID is usually defined as a combination

of certain packet header fields, such as source IP address,

destination IP address, source port, destination port, and pro-

tocol type, and the size of a flow is defined as the number

of packets of the flow. Elephant flows contribute a large

portion of network traffic. Many management applications can

benefit from a function that can find them efficiently, such as

congestion control by dynamically scheduling elephant flows

[2], network capacity planning [3], anomaly detection [4], and

caching of forwarding table entries [5]. Such a function not

only is important in networking measurements [6]–[15], but

also has applications beyond networking in areas such as data

mining [16]–[18], information retrieval [19], databases [20],

and security [21].
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In real network traffic, it is well known that the distribution

of flow sizes (the number of packets in a flow), is highly

skewed [22]–[29], i.e., the majority are mouse flows, while

the minority are elephant flows. Most flows are small while a

few flows are very large. The small flows are usually called

mouse flows, while the large ones are called elephant flows.

Finding the top-k elephant flows (or top-k flows for short) in

high-speed networks is a challenging task [30]. Extremely high

line rates of modern networks make it practically impossible

to accurately track the information of all flows. Consequently,

approximate methods have been proposed in the literature and

gained wide acceptance [24], [31]–[37]. In order to keep up

with the line rates, these algorithms are expected to use on-

chip memory such as SRAM whose latency is around 1ns [38],

[39], in contrast to a latency of around 50ns when off-chip

DRAM is used [39]. However, on-chip memory is small.

Adding to the challenge, it is highly desirable to keep per-

packet processing overhead small and constant, which helps

pipelining.

Traditional solutions to finding the top-k flows follow

two basic strategies: count-all and admit-all-count-some. The

count-all strategy relies on a sketch (e.g., CM sketch [24])

to measure the sizes of all flows, while using a min-heap to

keep track of the top-k flows. For each incoming packet, it

records the packet in the sketch and retrieves from the sketch

an estimate n̂i for the size of the flow fi that the packet

belongs to. If n̂i is larger than the smallest flow size in the

min-heap, it replaces the smallest flow in the heap by flow fi.
As a large sketch is needed to count all flows, these solutions

are not memory efficient.

The admit-all-count-some strategy is adopted by Fre-

quent [40], Lossy Counting [34], Space-Saving [32] and CSS

[31]. These algorithms are similar to each other. To save

memory, Space-Saving only maintains a data structure called

Stream-Summary to count only some flows (e.g., m flows).

Each new flow will be inserted into the summary, replacing

the smallest existing flow. The initial size of the new flow is

set as n̂min + 1, where n̂min is the size of the smallest flow

in the summary. By keeping m flows in the summary, the

algorithm will report the largest k flows among them, where

m > k. It assumes every new incoming flow is an elephant

flow, and expels the smallest one in the summary to make

room for the new one. But most flows are mouse flows. Such

an assumption causes significant error, especially under tight

memory (for a limited value of m).

In addition to the above two categories of algorithms for

finding top-k flows, there are many recent works [41]–[44]

introducing a lot of new strategies, and we divide them as the



third category. The Elastic sketch uses votes to decide whether

a flow should be recorded or evicted; HeavyGuardian uses

the strategy of exponential decay to address five typical mea-

surement tasks; Cold Filter uses a two-layer filter to prevent

mouse flows from entering some data structures (e.g., Space-

Saving, the CM sketch); and Counter Tree uses the strategy

of two-dimensional counter sharing and derives mathematical

formulas to estimate flow sizes.

B. Our Proposed Solution

In this paper, we propose a new algorithm, HeavyKeeper,

which uses the similar strategy introduced from [42], called

count-with-exponential-decay. It keeps all elephant flows while

drastically reducing space wasted on mouse flows. Heavy-

Guardian can handle five different tasks, but not including top-

k elephant flows detection, while the algorithm we proposed

just focuses on finding top-k elephant flows. HeavyKeeper

uses multiple arrays, and thus can scale well while Heavy-

Guardian cannot.

Unlike count-all, our strategy only keeps track of a small

number of flows. Unlike admit-all-count-some, we do not

automatically admit new flows into our data structure and the

vast majority of mouse flows will be by-passed. For a small

number of mouse flows that do enter our data structure, they

will decay away to make room for true elephants. The decay

is not uniform for the flows in our data structure. The design

of exponential decay is biased against small flows, and it has

a smaller impact on larger flows. This design works extremely

well with real traffic traces under small memory.

II. PRELIMINARIES

A. Problem Statement

Simply speaking, finding top-k flows refers to finding the

largest k flows. Let P = P1,P2, · · · ,PN be a network stream

with N packets. Each packet Pl (1 6 l 6 N ) belongs to a

flow fi, where fi ∈ F = {f1, f2, · · · , fM} and F is the set of

flows. Let ni be the real flow size of flow fi in P . We order

all flows (f1, f2, · · · , fM ) so that n1 > n2 > · · · > nM .

Given an integer k and a network stream P , the output of

top-k is a list of k flows from F with the largest flow sizes,

i.e., f1, f2, · · · , fk.

B. Prior Art and Limitations

The count-all strategy: As mentioned above, the count-all

strategy uses sketches (such as the CM sketch [24] or the

Count sketch [33]) to record the sizes of all flows, and uses a

min-heap to keep track of the top-k flows, including the flow

IDs and their flow sizes. Take the CM sketch as an example.

It records packets in a CM sketch, consisting of a pool of

counters. For each arrival packet, it hashes the packet’s flow

ID f to d counters and increases these d counters by one. The

smallest value of the d counters is used as the estimated size

of the flow, which is used to update the min-heap.

The problem is that all flows are pseudo-randomly mapped

to the same pool of counters through hashing. Each counter

may be shared by multiple flows, and thus record the sum of

sizes of all these flows. Consequently, a small flow may be

treated as an elephant flow if all its d counters are shared with

real elephant flows.

The admit-all-count-some strategy: As mentioned above,

quite a few algorithms use the admit-all-count-some strategy,

including Frequent [40], Lossy counting [34], and Space-

Saving [32].Take Space-Saving as an example. It counts only

the sizes of some flows in a data structure called Stream-

Summary, which incurs O(1) overhead to search a flow or

update the smallest flow. For each arrival packet, if its flow

ID is not in the summary, the flow will be admitted into the

summary, replacing the smallest existing flow. The new flow’s

initial size is set to n̂min+1, where n̂min is the smallest flow

size in the summary before replacement. A recent work CSS

[31] is proposed based on Space-Saving. It inherits the above

strategy, but redesigns the data structure of Stream-Summary

by using TinyTable [45] to reduce memory usage.

The strategy of admit-all-count-some is to admit all new

flows while expelling the smallest existing ones from the

summary. To give new flows a chance to stay in the summary,

their initial flow sizes are set as n̂min + 1. Such a strategy

drastically over-estimates sizes of flows, and we show an

example here. Assume n̂min = 10, 000 and the summary is

already full. Given a new flow, it will directly replace the

flow with the smallest size in the summary and set its size

to be 10, 001. If this new flow is a mouse flow, it is largely

over-estimated. Therefore, numerous mouse flows will cause

significant over-estimation errors.

III. THE DESIGN OF HEAVYKEEPER

In this section, we present the data structure and algorithm

of our HeavyKeeper, and show how to find the top-k flows.

A. Rationale

We aim to use a small hash table to store all elephant flows.

As there are a great number of flows, each bucket of the hash

table will be mapped by many flows, and we aim to store only

the largest flow with its size, which cannot be achieved with

no error when using small memory. Therefore, we leverage

a probabilistic method called exponential-weakening decay.

Specifically, when the incoming flow is not found in the

hashed bucket, we decay the flow size with a probability,

which exponentially decreases as the flow size increases. If

the flow size is decayed to 0, it replaces the original flow with

the new flow. In this way, mouse flows can easily be decayed

to 0, while elephant flows can easily keep stable in the bucket.

There are two shortcomings: 1) With a small probability we

elect the wrong flow as the largest flow; 2) The reported flow

size might be under-estimated because of the decay operations.

To address these problems, we use multiple hash tables with

different hash functions. An elephant flow could be stored

in multiple hash tables, we choose the recorded largest size,

minimizing the error of flow sizes.

B. The HeavyKeeper Structure

As shown in Figure 1, HeavyKeeper is comprised of d
arrays, and each array is comprised of w buckets. Each bucket
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Fig. 1. The data structure of HeavyKeeper.

consists of two fields: a fingerprint field and a counter field.1

For convenience, we use Aj [t] to represent the tth bucket in

the jth array, and use Aj [t].FP and Aj [t].C to represent its

fingerprint field and counter field, respectively. Arrays A1...Ad

are associated with hash functions h1(.)...hd(.), respectively.

These d hash functions h1(.)...hd(.) need to be 2-way inde-

pendent.

Insertion: Initially, all fingerprint fields are null, and all

counter fields are 0. For each incoming packet Pl belonging

to flow fi, HeavyKeeper computes the d hash functions, and

maps fi to d buckets Aj [hj(fi)] (1 6 j 6 d) (one bucket in

each array), which we call d mapped buckets for convenience.

As shown in Figure 2, for each mapped bucket, HeavyKeeper

applies different strategies for the following three cases:

C-1

𝑓3ℎ𝑖(𝑓3) Case 1:    if C=0
C=C+1=1

Case 2:    if C>0 && FP=F3

C=C+1

Case 3:    if C>0 && FP ≠ F3

C=C-1 with  prob.=b-C

C+1F

1F

CFP
FP

Fig. 2. The main insertion cases of HeavyKeeper. Note: 1) F3 is the fingerprint
of flow f3. 2) b > 1 and b ≈ 1 (e.g., b = 1.08). 3) In Case 3, when C is
decayed to 0, the fingerprint field will be replaced by F3, and then counter
C is set to 1.

Case 1: When Aj [hj(fi)].C = 0. It means that no flow

has been mapped to this bucket, then HeavyKeeper sets

Aj [hj(fi)].FP = Fi and Aj [hj(fi)].C = 1, where Fi

represents the fingerprint of fi.
Case 2: When Aj [hj(fi)].C > 0 and Aj [hj(fi)].FP = Fi.

It means Aj [hj(fi)].C is possibly the estimated size of fi. In

this case, HeavyKeeper increments Aj [hj(fi)].C by 1.

Case 3: When Aj [hj(fi)].C > 0 and Aj [hj(fi)].FP 6= Fi.

It means that Aj [hj(fi)].C is not the estimated size of

fi. In here, HeavyKeeper applies the exponential-weakening

decay strategy to this bucket: it decays Aj [hj(fi)].C by 1

with a probability Pdecay . After decay, if Aj [hj(fi)].C =
0, HeavyKeeper replaces Aj [hj(fi)].FP with Fi, and sets

Aj [hj(fi)].C to 1. Therefore, as long as flows are mapped

to a bucket, its counter field will never be 0.

1The fingerprint of a flow is a hash value generated by a certain function
(for example, if we use hf (.) as the fingerprint hash function, the fingerprint
of flow fj is hf (fj)). Although there can be hash collisions among flows,
the probability is quite small. For example, if we set the fingerprint size to 16
bits, and there are 10000 buckets in the array, the probability of fingerprint
collisions is 1.52 ∗ 10−3.

Note that at any time the values of counters are non-

negative, since decay only happens in Case 3 and Case 3

happens only when the value of the counter is larger than 0.

And in Case 3, when a counter is decayed to zero, the new

flow is inserted to this bucket and the counter is set to be 1

immediately.

Query: To query the size of a flow fi, HeavyKeeper first

computes the d hash functions to get d buckets Aj [hj(fi)]
(1 6 j 6 d). Among the d mapped buckets, it chooses

those buckets whose fingerprint fields are equal to Fi. It

then reports the maximum counter field of those buckets, i.e.,

max16j6d{Aj [hj(fi)].C} where Aj [hj(fi)].FP = Fi.

For convenience, for those d mapped buckets of fi, if

Aj [hj(fi)].FP = Fi, we say that fi is held at bucket

Aj [hj(fi)]. Ignoring the limited impact of fingerprint colli-

sions, we prove that the reported size for each flow is equal

to or smaller than the real flow size in Section B. If a flow is

held at no mapped bucket, it reports that it is a mouse flow.

If a flow is held at multiple buckets, HeavyKeeper reports the

maximum counter field.

Decay probability:

The key problem is how to choose a function to calculate

the probability. Based on our experimental results on real and

synthetic datasets, we find that as long as the parameters are

set reasonably, functions satisfying the following condition all

have a good performance: the larger the value in the current

counter field is, the smaller the probability is. We finally

choose the exponential function

Pdecay = b−C (b > 1)

where C is the value in the current counter field and b (b > 1
and b ≈ 1, e.g., b = 1.08) is a predefined exponential

base number. This is because the function has the following

properties. 1) As the value increases, the rate of probability

reduction gradually increases and maps to [0,1]. 2) When the

value is large enough (e.g., 50), the probability is close to 0,

so we can regard the probability as 0, so as to accelerate the

throughput of our algorithm. 3) When the value is small (e.g.,

3), the recorded flow can hardly be an elephant flow, and at the

same time the probability is close to 1, which exactly matches

this condition.

Indeed, there are many other functions, which have a good

performance, such as C−b, eC

1+eC
, etc. We have conducted

experiments to compare those functions, and the experimental

results show that the performances are similar with different

decay functions.

Therefore, the larger size a flow has, the harder it is to decay

its size. For elephant flows, it is held at several buckets, and the

corresponding counter fields are incremented regularly, while

decayed with a very small probability. Therefore, the error rate

for estimated sizes of elephant flows is very small.

Note: Our data structure of d arrays and d 2-way independent

hash functions may show some similarity with that of CM

[24]. But similarity stops there. CM records the sizes of all

flows; we record the sizes of a small number of flows. CM

does not store flow IDs; we do. CM stores information of each

flow in d counters; we keep each flow mostly in one bucket,

while d-hashing helps find an empty bucket. CM does not have



to worry about the issue of kicking out existing flows to make

room for new ones, which is what our exponential delay does.

Example: As shown in Figure 1, given an incoming packet

P5 belonging to flow f3, we compute the d hash functions

to obtain one bucket in each array. In the mapped bucket of

the first array, the fingerprint field is not equal to F3 and the

counter field is 21, thus we decay the counter field from 21

to 20 with a probability of 1.08−21 (assume b = 1.08). In the

second mapped bucket, the fingerprint field is not F3 either,

and with a probability of 1.08−1, we decay the counter field

from 1 to 0. If the counter field is decayed to 0, we set the

fingerprint field to F3, and set the counter field to 1. In the

last mapped bucket, the fingerprint field is F3, we increment

the counter field from 7 to 8.

Analysis: HeavyKeeper uses fingerprint to identify and keep

elephant flows. If a mouse flow with a small flow size is held

at a bucket, it will be replaced by other flows mapped to

this bucket soon, because each flow mapped to this bucket

with a different fingerprint will decay the counter field with a

high probability (b−C → 1 when C is small). If an elephant

flow is held at a bucket, the corresponding counter field can

easily be incremented to a large value since elephant flows

have many incoming packets. Moreover, the decay probability

becomes very small (b−C → 0 when C is large) as the counter

field increases to a large value. Therefore, mouse flows can

hardly be held in HeavyKeeper for a long time, and thus

have a large probability to be passers-by of HeavyKeeper.

However, elephant flows can keep stable in HeavyKeeper, and

the estimated sizes of elephant flows are accurate.

C. Basic Version for Finding Top-k Elephant Flows

To find top-k elephant flows, our basic version just uses a

HeavyKeeper and a min-heap. The min-heap is used to store

the IDs and sizes of top-k flows. For each incoming packet

Pl belonging to flow fi, we first insert it into HeavyKeeper.

Suppose that HeavyKeeper reports the size of fi as n̂i. If fi is

already in the min-heap, we update its estimated flow size with

max(n̂i,min heap[fi]), where min heap[fi] is the recorded

size of fi in min-heap. Otherwise, if n̂i is larger than the

smallest flow size which is in the root node of the min-heap,

we expel the root node from the min-heap, and insert fi with

n̂i into the min-heap. To query top-k flows, we simply report

the k flows in the min-heap with their estimated flow sizes.

Note that in our implementation, we use Stream-Summary

instead of min-heap, as the function of min-heap and Stream-

Summary is similar, and Stream-Summary can achieve O(1)

update complexity. For better understanding, we use min-heap

to explain in our paper.

D. Optimizations

In this section, we propose further optimization methods to

avoid accidental errors and improve speed. For convenience,

we use nmin to denote the minimal flow size in the min-heap.

Optimization I: Fingerprint Collisions Detection.

Problem: Assume that there is a bucket in HeavyKeeper where

flow fi is held, and a mouse flow fj mapped to the same

bucket has the same fingerprint as fi, i.e., Fi = Fj due to hash

collisions. Then, the mouse flow fj is also held at this bucket,

and its estimated size is drastically over-estimated. In the worst

case, if flow fj has a fingerprint collision in all d arrays, the

mouse flow fj will probably be inserted into the min-heap.

It can hardly be expelled due to its drastically over-estimated

size. One effective solution is to store the entire IDs of flows

instead of using fingerprints, which can definitely avoid hash

collisions. However, in real data streams, the number of bits

of a flow’s ID is usually very large (e.g., more than 100 bits in

5-tuple), leading to a waste of memory. Indeed, the better the

memory efficiency is, the higher the accuracy of algorithms

will be. Our design goal is to find a solution to alleviate

hash collisions without increasing the number of recorded

bits. Therefore, our solution is to store fingerprints instead

of entire IDs. In order to reduce the impact of hash collisions,

we propose a solution based on the following Theorem.

Theorem 1. When there is no fingerprint collision, after a

flow fi is inserted into HeavyKeeper, if its estimated size n̂i

is larger than nmin (recall that we use nmin to denote the

minimal flow size in the min-heap), then we must have

n̂i = nmin + 1

The proof of this Theorem is not hard to derive and we skip

it due to space limitations.

Solution: Based on Theorem 1, if fi is not in the min-

heap but n̂i > nmin + 1, then fi is a mouse flow whose

size is drastically over-estimated due to fingerprint collision.

Therefore, we should not insert fi into the min-heap in this

case.

Optimization II: Selective Increment.

Problem: If a flow fi is not in the min-heap, then the estimated

flow size should be no larger than nmin. However, due to

fingerprint collisions, there could be some mapped buckets of

flow fi where the fingerprint field is Fi and the counter field

is larger than nmin. In this case, flow fi is not the flow that

is held at this bucket, and thus increasing the corresponding

counter field can only incur extra error.

Solution: In this case, instead of incrementing or decaying

the corresponding counter field, we make no change.

E. Hardware Parallel Version

Based on the basic version, we propose a new version using

the above two optimization methods. It is called Hardware

Parallel version (Parallel version for short) because

for each insertion, the operation in each array can be im-

plemented in parallel on hardware platforms (e.g., FPGA,

ASIC, or P4Switch). We will propose a more accurate ver-

sion (named Software Minimum version, Minimum

version for short in Section IV) at the cost of sacrificing

the parallel property. The insertion and query processes of

the Parallel version of our algorithm are presented as follows

(see pseudo-code in Appendix A Algorithm 1 of our technical

report [46]).

Insertion: All counters and fingerprints in HeavyKeeper and

the min-heap are initialized to 0. For each incoming packet Pl

belonging to flow fi, these are the following three steps for

each insertion:

Step 1: We check whether flow fi is already monitored by

the min-heap, which is shown in line 1-3 in Appendix A



Algorithm 1. We use a boolean variable flag to represent

the result.

Step 2: We insert fi into HeavyKeeper, which is shown in line

4-22 in Appendix A Algorithm 1. According to Optimization

II, for each mapped bucket, if the fingerprint field is equal to

Fi, we increment the counter field only when flag = true or

C < nmin, where C is the original value in the counter field.

Step 3: We get an estimated size n̂i of flow fi from Heavy-

Keeper, which is shown in line 23-27 in Appendix A Algo-

rithm 1. According to Optimization I, if flag is true, we

update the estimated size of flow fi in the min-heap with n̂i.

If flag is false, we insert flow fi into the min-heap with

n̂i in only two cases: 1) the number of flows that are in the

min-heap is less than k; 2) n̂i = nmin + 1.

Query top-k flows: It reports the k flows recorded in the

min-heap and their estimated flow sizes.

Analysis: Since HeavyKeeper achieves very small error rate

on the flow size estimation of elephant flows, it can sig-

nificantly reduce the error in finding top-k elephant flows.

Furthermore, the first two optimizations reduce the impact of

fingerprint collisions, and enhance the precision of finding top-

k elephant flows and their flow size estimation.

F. Limitations and A Solution

As mentioned before, when the exponential-weakening de-

cay is performed on a bucket, if its counter value is large

enough (e.g., 50), the probability of reducing its value is close

to 0. Therefore, in the worst case, when a new flow arrives, if

all values of its mapped d counters are large enough, it could

never be inserted into some buckets. In fact, this limitation

means that the current memory size is too tight to record top-

k elephant flows. To address this problem, we propose to use

an extra global counter to record how many times this situation

happens. As long as the value of the extra counter is larger than

a predefined threshold, we add a new array, i.e., the d + 1th

array. In this way, the new flow will have a chance to record

its information.

Besides, our proposed algorithm cannot handle other flow

measurement tasks (e.g., flow size estimation, entropy detec-

tion) and cannot support weighted updates. However, thanks to

the fact that HeavyKeeper is designed mainly to handle top-k
flows detection, it achieves higher accuracy than other related

algorithms, which will be detailed in Section VI-E.

IV. SOFTWARE MINIMUM VERSION

In the above section, we describe the Hardware Parallel

Version of HeavyKeeper, in which all the d arrays can be

inserted or queried in parallel. We observe that its accuracy

can be further improved by sacrificing the parallel property.

In this section, we propose the Software Minimum Version to

further enhance the accuracy.

A. Problem

We observe that it is unnecessary to decay all the mapped

counters in the basic version. Specifically, when inserting an

incoming packet Pl belonging to flow fi, HeavyKeeper com-

putes d hash functions and maps fi to d buckets Aj [hj(fi)]
(1 6 j 6 d) (one bucket in each array). For each bucket,

HeavyKeeper applies different strategies for three differ-

ent cases. We focus on the third case below. In Case 3,

Aj [hj(fi)].C > 0 and Aj [hj(fi)].FP 6= Fi, HeavyKeeper

decays Aj [hj(fi)].C by 1 with a probability Pdecay , and

after decay, if Aj [hj(fi)].C = 0, HeavyKeeper replaces

Aj [hj(fi)].FP with Fi, and sets Aj [hj(fi)].C to 1. However,

for a bucket Ak[hk(fi)] (1 6 k 6 d) in HeavyKeeper where

an elephant flow fi is held, if another flow fj is mapped to the

same bucket due to hash collisions, i.e., fi 6= fj and Fi = Fj ,

then Ak[hk(fi)] is decayed by 1 with a probability Pdecay , but

such decay is not always necessary and could be harmful for

the following reasons.

First, if fj is a mouse flow which only has a few packets, the

elephant flow fi can hardly be replaced by it, but fi’s counter

field is possibly decayed for a few times (e.g., decayed from

1000 to 999). Such decay can hardly cause a replacement, but

at the same time, it makes fi’s recorded flow size in this bucket

less than its real flow size, which will degrade the accuracy

of queries.

Second, if fj is an elephant flow which has a large number

of packets, whether Ak[hk(fi)].C will be decayed to 0 and

Ak[hk(fi)].FP will be replaced with Fj depends on the

following packets of fi and fj . In such a contest of the two

elephant flows, the counter in this bucket may be decayed

many times. There are two results. 1) If fi wins and keeps

held in this bucket, i.e., Ak[hk(fi)].C never reaches 0, then

Ak[hk(fi)].C will be much less than the real flow size of

fi. When querying the size of flow fi, HeavyKeeper reports

the maximum counter field of all the mapped buckets. As an

elephant flow, fi is likely to be kept in several buckets, and

the counter fields in other buckets may well be larger than

Ak[hk(fi)].C, so Ak[hk(fi)].C makes no contribution to the

accuracy of queries. 2) If fj wins and replaces fi in the bucket

Ak[hk(fi)], after replacement, the counter starts from 1, so

Ak[hk(fi)].C is much less than the real flow size of fj . Also,

this counter makes no contribution to the query results of flow

fj . In summary, it is unnecessary and unhelpful to decay large

counters.

It is possible that fi will always occupy a bucket if we do

not perform any decay on it. In the worst case, if fi is not

an elephant flow, this strategy will make new flows not have

a choice to be inserted into that bucket. In other words, this

method is not friendly to late-arrival elephant flows. However,

this situation happens only when for a new flow, all values of

its mapped d counters are very large. As mentioned in Section

IV-C, we can use an extra counter and automatically add a new

array to avoid this situation.

B. Solution: Minimum Decay

To address the above problem, we propose a solution, and

the key technique is called “Minimum Decay”. Its key idea is

that we choose to decay the smallest one instead of decaying

all the mapped counters. Below we show the details of our

solution. For each incoming packet Pl belonging to flow fi,
HeavyKeeper computes d hash functions and maps fi to d
buckets Aj [hj(fi)] (1 6 j 6 d) (one bucket in each array).

For the d mapped buckets, suppose Fi is the fingerprint of fi.
There are three situations.



Situation 1: If one of the d mapped buckets has the same

fingerprint as Fi, we just increment the corresponding counter

by 1.

Situation 2: If all d mapped buckets do not have the finger-

print Fi, but one or more of the mapped buckets are empty.

In this situation, we just insert fi into the first empty bucket.

Situation 3: If all d mapped buckets are full and do not have

the fingerprint Fi. In this situation, we choose the smallest

counter among the mapped bucket, and then perform the decay

operation. If there is more than one smallest counter, we only

choose the first one to decay.

Note that for each insertion, we only update one mapped

bucket, and do nothing for other mapped buckets.

𝑃3 belongs to flow 𝑓3 :  situation 1𝑃4 belongs to flow 𝑓4 :  situation 2𝑃6 belongs to flow 𝑓6 :  situation 3
FP: fingerprint field C: counter field

𝑑 arraysF2 7 …𝑛𝑢𝑙𝑙 0 F8 12 F7 35……𝑃4

𝑤 buckets

F 3 …𝑛𝑢𝑙𝑙 0 F2 14 F5 15

𝑛𝑢𝑙𝑙 0 …F9 6 F5 22 F1 10

𝑃6

𝑃3

+1 F ,   1  

-1  

Fig. 3. Examples of the insertion of Parallel version.

Examples: Figure 3 shows three incoming packets corre-

sponding to the three situations, respectively. Given each

incoming packet, we compute the d hash functions to obtain

one bucket in each array. We only show the first, second and

last array for convenience. For packet P3 belonging to flow

f3, the first mapped bucket holds the same fingerprint as f3
(F3), so this is the above Situation 1. Thus we increment the

counter field from 3 to 4. For packet P4 belonging to flow f4,

none of the d mapped buckets holds the fingerprint F4, but

there are two empty buckets, so this is Situation 2. We insert

flow f4 into the mapped bucket in the first array. We set its

fingerprint field to F4 and its counter field to 1. For packet P6

belonging to flow f6, none of the d mapped buckets holds the

fingerprint F6 and none of them is full, so this is Situation 3.

The counter field in the last mapped bucket is the smallest,

so we decay it by 1 with a probability of 1.08−10, and do

nothing to the other mapped buckets.

C. Hardware Minimum Version for Finding Top-k Flow

Based on the Hardware Parallel version, we propose the

Software Minimum version (Minimum version for short) using

the above minimum decay technique. The insertion and query

processes of our Minimum version of our algorithm are

presented as follows. Due to space limitation, we present the

pseudo-code in the Appendix of our technical report [46].

Insertion: All counters and fingerprints in HeavyKeeper and

the min-heap are initialized to 0. For each incoming packet

Pl belonging to flow fi, there are the following five steps for

each insertion:

Step 1: We check whether flow fi is already monitored by the

min-heap, denoted by a bloolean variable flag.

Step 2: We check whether there is a mapped bucket holding

the same fingerprint as Fi. If there is and the corresponding

bucket could be updated (flag = true or the value of counter

is less than nmin), we increment the corresponding counter

filed by 1, and then go to step 5; otherwise, we go to step 3.

Step 3: We check whether there is a mapped bucket that is

empty. If there is, we insert this packet into the first empty

bucket and then go to step 5; otherwise, we go to step 4.

Step 4: We choose the bucket with the smallest counter field

among the d mapped buckets and decay it with a certain

probability. If there is more than one such bucket, we only

decay the first one.

Step 5: Step 5 is similar to step 3 of Parallel version of

HeavyKeeper. We get an estimated size n̂i of flow fi from

HeavyKeeper. If flag is true, we update the estimated size

of flow fi in the min-heap with n̂i. If flag is false, we insert

flow fi into the min-heap with n̂i in only two cases: 1) the

number of flows that are in the min-heap is less than k; 2)

n̂i = nmin + 1.

Query top-k flows: We report the k flows recorded in the

min-heap and their estimated flow sizes.

Analysis: The Parallel version of HeavyKeeper achieves fast

processing speed and small error rate in finding top-k elephant

flows. Based on the Parallel version, the Minimum version

further improves the accuracy. Specifically, when inserting a

packet, the Minimum version only needs to change at most one

bucket, thus it avoids unnecessary and unhelpful decay. Our

experimental results (see Figure 23, 26 and 29) verify that the

accuracy is significantly improved when using the Minimum

Decay technique.

V. MATHEMATICAL ANALYSIS

In this section, we first claim that there is no over-estimation

of HeavyKeeper, and then derive the formula of error bound

in the Minimum version of HeavyKeeper. Note that we also

derived the formula of error bound in the basic version of .

Due to space limitation, we provide the derivation process of

the basic version in the Appendix of our technical report [46].

A. Claim of No Over-estimation Error of HeavyKeeper

Theorem 2. In the Minimum version, let ni(t) be the real size

of flow fi at time t, and let Aj [hj(fi)](t).C be the counter

field of the mapped bucket of flow fi in the jth array at time

t. If there is no fingerprint collision, then

∀j, t, Aj [hj(fi)](t).C 6 ni(t)

Proof. It is not hard to prove this theorem. Due to space

limitation, we provide the proof in the Appendix of our

technical report [46].

B. Error Bound of the Minimum Version of HeavyKeeper

Theorem 3. Assume that there is no fingerprint collision and

once the fingerprint of an elephant flow is inserted into its

mapped bucket, it is held there all the time. For any ǫ > 0,

assume an elephant flow fi with size ni is held in the bucket,

we have

Pr{ni − n̂i > ⌈ǫN⌉} 6
γ

ǫwni(b− 1)
(1)



where w is the width of each array, b the exponential base,

and γ the proportion of mouse flows in all flows.

Proof. For convenience, we use N to denote the total number

of packets, M to denote the number of different flows and d
to denote the number of arrays. Let’s focus on the jth array.

Flow fi is correctly reported, so at the end, the fingerprint of

flow fi is held in the hj(fi)
th bucket of the jth array. Let

Ii,j,i′ be a binary random variable, defined as

Ii,j,i′ =

{

0 (fi = fi′) ∨ (hj(fi) 6= hj(fi′))

1 (fi 6= fi′) ∧ (hj(fi) = hj(fi′))
(2)

Ii,j,i′ = 1 iff different flows fi and fi′ are held at the same

bucket in the jth array. We use the three situations the same

as Section IV-B. We define binary random variable Yi(1 6

i 6 M) as:

Yi =

{

0 ∃1 6 j 6 d, s.t. ∀1 6 k 6 M, Ii,j,k = 0
1 else

(3)

As mentioned in Subsection III-B, d hash functions

h1(.)...hd(.) are 2-way independent, and the following proof

is based on this condition.

For each flow fi, if in the d mapped buckets, there is at

least one bucket with no hash collision, Yi = 0. Otherwise,

in each of these d mapped buckets, ∃ a flow fj(fi 6= fj) that

is also mapped to this bucket, then Yi = 1. So if Yi = 0,

for any incoming packet P belonging to fi, Situation 3 can

never happen. Now let’s calculate E(Yi), the probability that

in each of the d arrays, there are hash collisions in the bucket

to which flow fi is mapped. In a given bucket, the probability

that a flow is mapped here is 1
w

, so in a bucket to which fi
is mapped, the probability that no other flow is mapped here

is (1 − 1
w
)M−1. And in a given array, the probability that

hash collision happens in the bucket to which fi is mapped is

(1− (1− 1
w
)M−1), thus,

E(Yi) =

[

1− (1−
1

w
)M−1

]d

(4)

We define random variable Xi,j as:

Xi,j =
M
∑

i′=1

Ii,j,i′ni′Yi (5)

Among the flows held in the same bucket as flow fi, except

for flow fi itself, some flows are unlikely to cause Situation

3, thus unlikely to decay the counter field of this bucket, and

others are likely to. Xi,j represents the sum of the sizes of the

latter kind of flows.

For each incoming packet, if it belongs to flow fi, the

counter field is incremented by 1; if not, the counter field

is not changed or decayed. Thus we have

ni −Xi,j 6 Aj [hj(fi)].C 6 ni (6)

Note that Aj [hj(fi)].C is the counter value at the query time.

Specifically, if for all packets that do not belong to flow fi,
Situation 3 happens, and when they are being processed, this

counter field is the smallest one in all d mapped buckets, and

they all decay the counter field, then Aj [hj(fi)].C = ni −

Xi,j . If all such packets do not decay the counter field, then

Aj [hj(fi)].C = ni. Then we define random variable Pi,j,l as

the probability that the lth packet decays the counter field,

therefore,

Aj [hj(fi)].C = ni −

Xi,j
∑

l=1

Pi,j,l (7)

For any ǫ > 0, we have the following formula based on the

Markov inequality.

Pr{Aj [hj(fi)].C 6 ni − ǫN}

= Pr{ni −

Xi,j
∑

l=1

Pi,j,l 6 ni − ǫN}

= Pr{

Xi,j
∑

l=1

Pi,j,l > ǫN} 6
E(
∑Xi,j

l=1 Pi,j,l)

ǫN

(8)

Now let’s focus on E(
∑Xi,j

l=1 Pi,j,l). Recall that in real
network traffic, most flows are small, called mouse flows,

while a few flows are very large, called elephant flows. Assume

that all packets are uniformly distributed. Since we assume

that the fingerprint of an elephant flow is held at its mapped

bucket since inserted [47], [48], if the lth packet belongs to

an elephant flow, Situation 3 cannot happen at this moment.

That is, if the lth packet is to decay the given counter field,

it must be a mouse flow and this counter field is the smallest

in all d mapped buckets’ counter fields.

Recall that Aj [hj(fi)].C is the counter value at the query

time. We assume that before the query time, when a flow

arrives, the counter value is uniformly distributed within the

range [1, Aj [hj(fi)].C], so the probability that the counter size

is equal to any integer within this range is 1/Aj [hj(fi)].C.

In addition, the decay happens on condition that 1) the new

flow is a mouse flow, whose probability is γ; 2) Situation 3

happens and 3) this counter is the first smallest counter. The

probability of 2) and 3) is no larger than 1. For any C which

satisfies 1 ≤ C ≤ ni−E(
∑Xi,j

l=1 Pi,j,l), we have the following

formula:

Pr{Pi,j,l =
1

bC
} ≤

γ

Aj [hj(fi)].C

=
γ

ni − E(
∑Xi,j

l=1 Pi,j,l)

(9)

Let β be ni − E(
∑Xi,j

l=1 Pi,j,l). As a result,

E(

Xi,j
∑

l=1

Pi,j,l) =

E(Xi,j)
∑

l=1

E(Pi,j,l)

6 E(Xi,j)

β
∑

C=1

γ

bC

1

β
=

γE(Xi,j)

β
·

β
∑

C=1

1

bC

=
γE(Xi,j)

β
·

1
b

[

1− ( 1
b
)β
]

1− 1
b

6
γE(Xi,j)

[

1− ( 1
b
)ni
]

ni(b− 1)
(10)

Furthermore, for E(Xi,j), based on Equation 4 and 5,



E(Xi,j) = E

(

M
∑

i′=1

Ii,j,i′ni′Yi

)

6

M
∑

i′=1

ni′E(Ii,j,i′)E(Yi)

=
N

w

[

1−

(

1−
1

w

)M−1
]d

(11)

Therefore, based on Equation 10,

E(

Xi,j
∑

l=1

Pi,j,l) 6
γN

[

1− ( 1
b
)ni
]

wni(b− 1)

[

1−

(

1−
1

w

)M−1
]d

6
γN

wni(b− 1)

[

1−

(

1−
1

w

)M−1
]d

(12)

Then, based on Equation 8,

Pr{Aj [hj(fi)].C 6 ni − ǫN} 6
E(
∑Xi,j

l=1 Pi,j,l)

ǫN

6
γN

ǫNwni(b− 1)

[

1−

(

1−
1

w

)M−1
]d

=
γ

ǫwni(b− 1)

[

1−

(

1−
1

w

)M−1
]d

(13)

For an elephant flow fi, ni is very large, so we have

Pr{ni − n̂i > ⌈ǫN⌉} 6 Pr{n̂i 6 ni − ǫN}

6
γ

ǫwni(b− 1)

[

1−

(

1−
1

w

)M−1
]d

6
γ

ǫwni(b− 1)

(

1− e
1−M

w

)d

Since w and d are much smaller than M , we have 1− δ <
(1 − e

1−M
w )d < 1, where δ is a very small positive number.

Therefore, we have

Pr{ni − n̂i > ⌈ǫN⌉} 6
γ

ǫwni(b− 1)

Theorem holds.

Theorem 3 is based on an assumption that for an elephant

flow, since it is inserted into a bucket, it would be held there

all the time. However, if an elephant flow with extremely large

size, say 1020, arrives so late that all of its mapped buckets

have been filled with other elephant flows with size 1000,

it seems impossible to record this flow accurately. This case

happens mainly because the current memory size is too small

to record elephant flows. Specifically, for an elephant flow fi,
there are the following three situations. 1) This elephant flow

fi arrives early and there are still some empty buckets among

its mapped buckets. In this case, fi is inserted into the empty

buckets. fi can hardly be replaced by other flows due to its

high frequency, so in Theorem 3 we assume that such kind

of flows are held in the buckets since they are inserted, and

we derive mathematical proofs for them in Theorem 3. 2) The

elephant flow fi arrives late but among its d mapped buckets,

the smallest counter field is quite small. This means that the

flow held in the bucket with the smallest counter field is a

mouse flow, which is easy to be replaced by fi very soon.

After fi is inserted into this bucket, fi can hardly be replaced

due to its high frequency. Similar to the first case, Theorem

3 can also be applied to this case. 3) The elephant flow fi
arrives late, and all of its d mapped buckets have large counter

fields, which means fi can hardly be inserted into any one of

the buckets. Actually, this case typically means the current

memory size is too small. Therefore, Theorem 3 only focuses

on the first and second cases. For the third case, more memory

is needed and we cannot derive any mathematical proofs.

In order to deal with this limitation that elephant flows

arriving late are at a disadvantage, we can use the method

mentioned in Section III-F. We can use an extra global counter

to record how many times a flow’s d mapped counters are all

large counters. If this extra counter value exceeds the prede-

fined threshold, we add a new array into the HeavyKeeper to

make room for the new flow.

In addition, we can observe that in the process of derivation,

only Pi,j,l is related to the probability decay function. When

we choose another decay function, we can derive the formula

of Pi,j,l in a similar way.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

Platform: Our experiments are run on a server with dual 6-

core CPUs (24 threads, Intel Xeon CPU E5-2620 @2 GHz)

and 62 GB total system memory. Each core has two L1 caches

with 32KB memory (one instruction cache and one data cache)

and one 256KB L2 cache. All cores share one 15MB L3 cache.

Dataset:

1) Campus dataset: This dataset is comprised of IP packets

captured from the network of our campus. We rely on the

usual definition of a flow, through its 5-tuple, i.e., source IP

address, destination IP address, source port, destination port,

and protocol type. There are 10M packets in total, belonging

to 1M flows.

2) CAIDA dataset: The second dataset is a CAIDA

Anonymized Internet Trace from 2016 [49], made of

anonymized IP packets. Each flow in this dataset is identified

by the source and destination IP address. We use the first 10M.
2 packets, belonging to about 4.2M flows.

3) Synthetic datasets: We generate 10 different synthetic

datasets according to a Zipf [50] distribution with different

skewness (from 0.6 to 3.0)3 Each dataset is comprised of

32M packets, belonging to 1 ∼ 10M flows depending on the

skewness. Each packet is 4 bytes long. The code of the dataset

generator is the one from Web Polygraph [51].

Implementation: The implementation of two versions of

HeavyKeeper is done in C++. We also implemented in C++ the

other related algorithms including Space-Saving (SS), Lossy

2In network-wide measurement, sketches in different switches are often
periodically sent to a collector for timely network traffic analysis. Each period
is often small, for example, 10M packets, so we use 10-32M long packet
traces.

3Assume there is a stream which has M distinct flows and let N be the
total number of flows. Let fi be the frequency of the ith flow. The skewness

γ of this stream refers to fi =
N

iγδ(γ)
, where δ(γ) =

∑M
j=1

1
jγ

.
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counting (LC), and the CM sketch4 The source code of CSS

was provided by its author [31], and is written in Java. It is

much slower than Space-Saving written in C++. Therefore,

we do not include CSS in our speed experiments. For Space-

Saving, Lossy counting, and CSS, the number of buckets m
is determined by the memory size, which is usually much

larger than k. When querying top-k flows, they report the

largest k flows of them. For CM sketch, the size of the

heap is k, the number of arrays is 3, and the width of each

array is determined by the memory size. In our algorithm,

the number of buckets m in Stream-Summary is equal to k,

and HeavyKeeper occupies the rest memory size. Here we set

d = 2, and w depends on the memory size. Both the fingerprint

field and the counter field are 16-bit long. For experiments on

throughput, we ignore operations on the min-heap for the CM

sketch, because we can only record flows whose estimated size

is larger than a pre-defined threshold.
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Fig. 10. Precision vs. memory.

B. Metrics

Precision: Precision is defined as C
k

. Only C flows belong to

the real top-k flows.

Average Relative Error (ARE): ARE is defined as
1
|Ψ |

∑

fi∈Ψ
|n̂i−ni|

ni
, where Ψ is estimated set of top-k flows, n̂i

is the estimated size of flow fi, and ni is the real size of flow

fi. ARE evaluates the error rate reported by the algorithm.

Average Absolute Error (AAE): AAE is defined as
1
|Ψ |

∑

fi∈Ψ |n̂i − ni|, similarly to ARE.

Throughput: We perform insertions of all packets, record the

total time used, and calculate the throughput. The throughput

4There is an open source library [52] that implements Lossy Counting,
the CM Sketch, Space Saving, and others. Because the format of packets is
different from our datasets, we implemented these algorithms by ourselves.

is defined as N
T

, where N is the total number of packets, and

T is the total measured time. We use Million of insertions per

second (Mps) to measure the throughput.

C. Experiments on Precision

To achieve a head-to-head comparison, we use the same

memory size for each algorithm, and use Hardware Parallel

Version as our default version of HeavyKeeper. We perform

the experiments for varying memory size and k on the campus

and CAIDA datasets, and varying skewness on the synthetic

datasets. For experiments of varying memory size, we set k =
100, and vary the memory from 10 to 50KB. For experiments

of varying k, we set the memory size to 100KB, and vary

k from 200 to 1000. For experiments of varying skewness,

we set the memory size to 100KB, set k = 1000, and vary

skewness from 0.6 to 3.0.

Precision vs. memory size: For the campus dataset, when

memory size is 10KB (see Figure 4), the precision of Space-

Saving, Lossy counting, CSS, and CM sketch is respectively

10%, 11%, 19%, and 41%, while the one of HeavyKeeper is

82%. For the CAIDA dataset (see Figure 5), we find that the

precision of HeavyKeeper reaches 99.99% when memory size

is larger than 20KB, while for Space-Saving, Lossy counting,

CSS, and CM sketch, precision is respectively 18%, 33%,

34%, and 89% when memory size is 50KB.

Precision vs. k: As shown in Figure 6, for the campus

dataset, as k becomes larger, the precision of HeavyKeeper

stays high, while it degrades for other algorithms. Specifically,

the precision of HeavyKeeper is always higher than 95.9%,

while that of Space-Saving, Lossy counting, CSS, and CM

sketch reaches 32.7%, 44.1%, 50.1%, and 77.9% respectively

when k = 1000. For the CAIDA dataset (Figure 7), we find

that the precision of HeavyKeeper is always above 94%, while

for Space-Saving, Lossy counting, CSS, and CM sketch, it is

26.6%, 37.1%, 44%, and 70% respectively when k = 1000.

Precision vs. skewness: As shown in Figure 8, the precision

of HeavyKeeper reaches 99.99%. For all considered values of

skewness, the precision of HeavyKeeper does not go below

94.9%, while the highest precision for Space-Saving, Lossy

counting, CSS, and CM sketch is 46.8%, 41.3%, 74.5%, and

85.7%, respectively.
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Fig. 14. ARE vs. skewness (Synthetic).
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Fig. 15. AAE vs. memory size (Campus).
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Fig. 16. AAE vs. memory size (CAIDA).
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Fig. 19. AAE vs. skewness (Synthetic).

D. Experiments on AAE and ARE

In this section, we focus on the ARE and the AAE of the

estimated frequency of reported top-k flows. We also conduct

experiments with varying memory size, k, and skewness. The

parameter settings are the same as in Section VI-C.

ARE vs. memory size: As shown in Figure 9, for the campus

dataset, we find that the ARE of HeavyKeeper is smaller than

0.01 when memory size is larger than 20KB, while for Space-

Saving, Lossy counting, CSS, and CM sketch, it is larger

than 100. For the CAIDA dataset (see Figure 11), we find

that the ARE of HeavyKeeper is between 21119 and 1190365

times smaller than the one of Space-Saving, between 2955

and 456275 times smaller than the one of Lossy counting,

between 950 and 154047 times smaller than the one of CSS,

and between 238 and 656145 times smaller than the one of

CM sketch.

ARE vs. k: As shown in Figure 12, for the campus dataset,

we find that the ARE of HeavyKeeper is between 25579 and

56791 times smaller than the one of Space-Saving, between

852 and 9312 times smaller than the one of Lossy counting,

between 142 and 3132 times smaller than the one of CSS,

and between 293 and 20370 times smaller than the of of CM

sketch. For the CAIDA dataset (see Figure 13), we find that

the ARE of HeavyKeeper is between 4506 and 121912 times

smaller than the one of Space-Saving, between 383 and 23666

times smaller than the one of Lossy counting, between 137 and

8816 times smaller than the one of CSS, and between 66 and

27290 times smaller than the one of CM sketch.

ARE vs. skewness: As shown in Figure 14, for all considered

values of skewness, we find that the ARE of HeavyKeeper is

between 15566 and 27829 times smaller than that of Space-

Saving, between 11915 and 41575 times smaller than that of

Lossy counting, between 2174 and 6099 times smaller than

that of CSS, and between 3819 and 10080 times smaller than

that of CM sketch.

AAE vs. memory size: As shown in Figure 15, for the campus

dataset, we find that the AAE of HeavyKeeper is between 433

and 3013 times smaller than that of Space-Saving, between

267 and 1221 times smaller than that of Lossy counting,

between 200 and 758 times smaller than that of CSS, and

between 155 and 428 times smaller than that of CM sketch.

For the CAIDA dataset (see Figure 16), we find that the AAE

of HeavyKeeper is between 697 and 1810 times smaller than

that of Space-Saving, between 421 and 928 times smaller than

that Lossy counting, between 289 and 647 times smaller than

the one of CSS, and between 86 and 284 times smaller than

that of CM sketch.

AAE vs. k: As shown in Figure 17, for the campus dataset,

we find that the AAE of HeavyKeeper is between 271 and

1382 times smaller than that of Space-Saving, between 142

and 346 times smaller than that of Lossy counting, between

93 and 196 times smaller than that of CSS, and between 74

and 318 times smaller than that of CM sketch. For CAIDA

dataset (see Figure 18), we find that the AAE of HeavyKeeper

is between 206 and 694 times smaller than that of Space-

Saving, between 118 and 329 times smaller than that of Lossy

counting, between 73 and 199 times smaller than that of CSS,

and between 67 and 121 times smaller than that of CM sketch.

AAE vs. skewness: From Figure 19, we find that the AAE

of HeavyKeeper is between 137 and 209 times smaller than

that of Space-Saving, between 96 and 355 times smaller than

that of Lossy counting, between 28 and 55 times smaller than

that of CSS, and between 45 and 73 times smaller than that

of CM sketch.
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Fig. 20. Precision vs. memory size.
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Fig. 21. ARE vs. memory size.
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Fig. 22. AAE vs. memory size.
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Fig. 23. Precision vs. memory size.
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Fig. 24. ARE vs. memory size.
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Fig. 25. AAE vs. memory size.
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Fig. 26. Precision vs. k.
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Fig. 27. ARE vs. k.
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Fig. 28. AAE vs. k.
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Fig. 29. Precision vs. skewness.
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Fig. 30. ARE vs. skewness.
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Fig. 31. AAE vs. skewness.

E. Compare with Recent Works

In this section, we compare our algorithm with recent

works. First we show the differences between HeavyKeeper

and HeavyGuardian. Then we compare our HeavyKeeper with

the Elastic sketch, Counter Tree and Cold Filter. For the Elastic

sketch and Cold Filter, the source codes are from their authors

[41], [43]. We use Cold Filter with Space Saving to evaluate

its performance, because the performance of Cold Filter with

Space Saving is the best in that paper. For Counter Tree,

we use the formulas derived from its author [44] to estimate

frequencies of flows. We only report results for the campus

dataset by varying the memory size. Here we set k = 100 and

vary memory size from 10KB to 50KB.

As mentioned before in Section I-A, HeavyGuardian can

also find items with large frequencies, but we do not compare

our HeavyKeeper with HeavyGuardian, due to the following

three differences. 1) These two algorithms have different fo-

cuses. HeavyGuardian focuses on generality. It can handle five

different tasks: frequency estimation, heavy hitter detection,

heavy change detection, frequency distribution estimation, and

entropy estimation. But it was not applied to find top-k
elephant flows. Our HeavyKeeper is designed to only find

top-k elephant flows accurately. 2) HeavyGuardian is the

first algorithm that supports real-time entropy estimation, but

HeavyKeeper cannot handle real-time entropy estimation. 3)

HeavyGuardian has the above advantages at the cost of being

applicable for software platforms only, i.e., it cannot be im-

plemented on hardware platforms. While in our HeavyKeeper

for Hardware Parallel version, the operation in each array can

be implemented in parallel on hardware platforms. Therefore,

we do not compare our algorithm with HeavyGuardian. We

compare HeavyKeper with the Elastic sketch, Counter Tree

and Cold Filter, which is detailed as follows.

Measuring precision: As shown in Figure 20, the precision of

HeavyKeeper is much better than Counter Tree and Cold Filter.

Next we explain the reason of the performance difference

between our algorithm and others. For Counter Tree, it uses

formulas to estimate frequencies of flows, which might cause

large error. For Cold Filter, its key data structure is Space

Saving [29], whose performance is worse than HeavyKeeper,

and the cold filter takes up a certain amount of memory.

For the Elastic sketch, it is a general data structures, while

HeavyKeeper just focuses on finding top-k elephant flows.

That is why HeavyKeeper is slightly better than the Elastic

sketch.

Measuring ARE: As shown in Figure 21, the ARE of Heavy-

Keeper is the smallest compared with other recent works.

Specifically, when the memory size is 10KB, the ARE of

Counter Tree, Cold Filter and the Elastic sketch are 103.2,

103.6 and 10−0.9, respectively, while that of HeavyKeeper



is smaller than 10−1.8. This indicates HeavyKeeper could

handle the situation in tight memory much better than other

algorithms.

Measuring AAE: As shown in Figure 22, the AAE of Heavy-

Keeper is the smallest compared with other recent works.

Specifically, when the memory size is 10KB, the AAE of

Counter Tree, Cold Filter and the Elastic sketch are 103.4,

104 and 102.1, respectively, while that of HeavyKeeper is

smaller than 101.9. As the memory size increases, the AAE

of our algorithm is always the smallest compared with other

algorithms.

F. Performance on Very Big Dataset

We also conduct experiments on very big datasets. We

set k = 1000 and the memory size to 100KB. For every

10M packets, we report top-k elephant flows and evaluate the

precision by comparing with real top-k elephant flows. As

shown in Figure 32, as the total number of packets increases,

the precision slightly reduces. However, we can obverse that

the precision still reaches a high value when the total number

of packets is 108.

G. Hardware Parallel Version vs. Software Minimum Version

In this section, we compare Hardware Parallel Version with

Software Minimum Version. We conduct experiments with

varying memory size, k, and skewness. Due to the high

accuracy of our algorithm, we set the smaller memory size

to show the difference of performance between two versions

clearly. Specifically, for experiments of varying memory size,

we set k = 100, and vary the memory size from 6KB to

10KB; for experiments of varying k, we set the memory size to

30KB, and vary k from 100 to 500; for experiments of varying

skewness, we set the memory size to 10KB and k = 100. Since

the results are similar on CAIDA and campus datasets, we just

show the performance of two versions on campus dataset.

Varying memory size: As shown in Figure 23, when memory

size is 5KB or 6KB, the precision of Hardware Parallel Version

is only 2%, and the reason behind is that there are only a

few buckets, which cannot record all the largest k flows. On

the other hand, the precision of Software Minimum Version

achieves 38% and 70% when memory size is 5KB and 6KB,

respectively, and the reason behind is that each flow has

no duplicate when it is inserted into the hash table, and

therefore the Software Minimum Version saves memory more

efficiently. As shown in Figure 24 and 25, we find that the

ARE and AAE of Software Minimum Version are smaller than

those of Hardware Parallel Version.

Varying k: As shown in Figure 26, as k increases, the

precision of Hardware Parallel Version decreases from 100%

to 13%, while the Software Minimum Version still achieves

60% precision when k = 1000. As shown in Figure 27 and

28, we find that the ARE and AAE of Software Minimum

Version are smaller than those of Hardware Parallel Version.

Varying skewness: As shown in Figure 29-31, for all consid-

ered values of skewness, the precision of Software Minimum

Version is always larger than that of Hardware Parallel Version,

and the ARE and AAE of Software Minimum Version are

always smaller than those of Hardware Parallel Version.
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H. Experiments on Throughput

We now turn to the throughput of the algorithms. We only

report results for the campus dataset due to space limitations.

We set k = 100, and vary memory size from 10KB to

50KB. Since our server of running experiments is much older

than most of the current ones, the throughput of experimental

results might be slightly lower than the results in other papers.

Throughput vs. memory size: As shown in Figure 33, we

find that the throughput of HeavyKeeper is always higher

than other algorithms, and the throughput of HeavyKeeper

of Hardware Parallel Version is slightly higher than the

Software Minimum Version. Indeed, the average throughput

of HeavyKeeper of Hardware Parallel Version and Software

Minimum Version is 15.52Mps, 15.27Mps, respectively, while

it is 12.15Mps, 11.34Mps, and 12.72Mps for Space-Saving,

Lossy counting, and CM sketch. These results show that

HeavyKeeper not only is more accurate than previous work,

but also achieves higher throughput as well.

VII. OPEN VSWITCH DEPLOYMENT

In this section, we implement our HeavyKeeper algorithm

on a software switch platform: Open vSwitch (OVS). We will

present details of our implementation and experimental results

to show the performance running on Open vSwitch.

A. OVS Implementation

The OVS implementation of our HeavyKeeper algorithm

consists of three components: 1) the modified OVS datapath,

2) the shared memory buffering flow IDs, and 3) the user-

space program of HeavyKeeper processing flow IDs. For each

incoming packet, it will be first inserted into the OVS datapath

for forwarding. Besides, we modify the source codes of OVS

datapath to parse the flow ID of the incoming packet, and then

insert its flow ID into the shared memory (the shared memory

is created initially). Finally, the user-space program will read

the flow IDs from the shared memory, and process them as

incoming packets.

B. OVS Evaluation

We use synthetic trace to conduct experiments in OVS

with 4 threads and 40G link min-size packets to evaluate the

throughput of HeavyKeeper and other algorithms. In order



to improve the performance of OVS, we integrate OVS with

DPDK (Data Plane Development Kit). DPDK implements the

datapath entirely in the user-space, and thus it eliminates the

overhead of a context switch and memory copies between user-

space and kernel-space. Besides, we also show the throughput

of OVS without using any algorithm to show the impact of

algorithms. We set the memory size to 50KB.
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Fig. 34. Throughput on OVS platform.

As shown in Figure 34, the throughput of HeavyKeeper is

near the original throughput of OVS. Specifically, the through-

put of the original OVS is 19.22Mps, and that of HeavyKeeper

of Hardware Parallel Version and Software Minimum Version

is 18.03Mps, 17.62Mps, respectively. However, the through-

put of CM sketch, Space-Saving, and Lossy Counting is

14.14Mps, 13.80Mps, and 12.64Mps, respectively. The results

show that our HeavyKeeper algorithm has little impact to

the performance of OVS, while other algorithms decrease the

throughput significantly.

VIII. CONCLUSION

Finding the top-k elephant flows is a critical task for

network traffic measurement. Existing algorithms for finding

top-k flows cannot achieve high precision when traffic speed

is high and memory usage is small. In this paper, we propose

a novel data structure, called HeavyKeeper, which achieves a

much higher precision on top-k queries and a much lower

error rate on flow size estimation, compared to previous

algorithms. The key idea of HeavyKeeper is that it intelligently

omits mouse flows, and focuses on recording the information

of elephant flows by using the exponential-weakening decay

strategy. Our evaluation confirms that HeavyKeeper achieves

99.99% precision for finding the top-k elephant flows, while

also achieving a reduction in the error rate of the estimated

flow size by about 3 orders of magnitude compared to the

state-of-the-art algorithms. We have released the source code

of HeavyKeeper and all related algorithms at GitHub [46].
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APPENDIX

In this appendix, we first present the pseudo-codes of

HeavyKeeper in the Parallel version and Minimum version,

second we prove that there is no over-estimation, and finally

we derive the formula of error bound of HeavyKeeper in the

basic version.

A. Pseudo-codes

Algorithm 1 and 2 show the insertion process of the Parallel

version and Minimum version, respectively.

Algorithm 1: Insertion process for finding top-k flows

(Parallel version).

Input: A packet Pl belonging to flow fi
1 flag ← false;

2 if fi ∈ min heap then

3 flag ← true;

4 HeavyK V ← 0;

5 for j ← 1 to d do

6 C ← Aj [hj(fi)].C;

7 if C = 0 then

8 Aj [hj(fi)].FP ← Fi;

9 Aj [hj(fi)].C ← 1;

10 HeavyK V ← max(HeavyK V, 1);

11 else if Aj [hj(fi)].FP = Fi then

12 if flag = true or C < min heap.nmin then

13 Aj [hj(fi)].C ++;

14 HeavyK V ←
max(HeavyK V,Aj [hj(fi)].C);

15 else if rand() < b−C then

16 Aj [hj(fi)].C −−;

17 if Aj [hj(fi)].C = 0 then

18 Aj [hj(fi)].FP ← Fi;

19 Aj [hj(fi)].C ← 1;

20 HeavyK V ← max(HeavyK V, 1);

21 if flag = true then

22 min heap[fi]← max(HeavyK V,min heap[fi]);
23 else

24 if min heap has empty buckets or

HeavyK V − nmin = 1 then

25 min heap.insert(fi);

B. Proof of No Over-estimation Error of HeavyKeeper

Theorem 4. Let ni(t) be the real size of flow fi at time t, and

let Aj [hj(fi)](t).C be the counter field of the mapped bucket

of flow fi in the jth array at time t. If there is no fingerprint

collision, then

∀j, t, Aj [hj(fi)](t).C 6 ni(t) (14)

Proof. When t = 0, no packet maps into this bucket, so

ni(0) = 0 and Aj [hj(fi)](t).C = 0. Therefore, the theorem

holds at time 0. Let’s now prove by induction that the theorem

holds at any time.

Algorithm 2: Insertion process for finding top-k flows

(Minimum version).

Input: A packet Pl belonging to flow fi
1 flag ← false;

2 if fi ∈ min heap then

3 flag ← true;

4 min count← A1[h1(fi)].C;

5 min array ← 1;

6 first empty ← 0;

7 HeavyK V ← 0;

8 add flag ← false;

9 for j ← 1 to d do

10 if Aj [hj(fi)].FP = Fi then

11 if flag = true or Aj [hj(fi)].C <
min heap.nmin then

12 Aj [hj(fi)].C ++;

13 add flag ← true;

14 HeavyK V ← Aj [hj(fi)].C;

15 break;

16 else

17 if Aj [hj(fi)].FP = null and first empty = 0
then

18 first empty ← j;

19 else

20 if Aj [hj(fi)].FP 6= null and
21 Aj [hj(fi)].C < min count then

22 min count← Aj [hj(fi)].C;

23 min array ← j;

24 if add flag = false then

25 if first empty > 0 then

26 Afirst empty[hfirst empty(fi)].FP ← Fi;

27 Afirst empty[hfirst empty(fi)].C ← 1;

28 HeavyK V ← 1;

29 else

30 if rand() < b−C then

31 Amin array[hmin array(fi)].C −−;

32 if Amin array[hmin array(fi)].C = 0 then

33 Amin array[hmin array(fi)].FP ← Fi;

34 Amin array[hmin array(fi)].C ← 1;

35 HeavyK V ← 1;

36 if flag = true then

37 min heap[fi]← max(HeavyK V,min heap[fi]);
38 else

39 if min heap has empty buckets or

HeavyK V − nmin = 1 then

40 min heap.insert(fi);

When t = 0, the theorem holds.

If the theorem holds when t = v, let’s prove that the theorem

also holds when t = v + 1.

For HeavyKeeper in the basic version, there are three cases

when t = v + 1:



Case 1: The new incoming packet is not mapped to bucket

Aj [hj(fi)]. Then ni(v+1) = ni(v) and Aj [hj(fi)](v+1).C =
Aj [hj(fi)](v).C. Therefore, Aj [hj(fi)](v+1).C 6 ni(v+1).
Case 2: The new incoming packet belongs to flow fi.
Then ni(v + 1) = ni(v) + 1 and Aj [hj(fi)](v + 1).C =
Aj [hj(fi)](v).C+1. Therefore, Aj [hj(fi)](v+1).C 6 ni(v+
1).
Case 3: The new incoming packet is mapped to bucket

Aj [hj(fi)] but does not belong to flow fi. Then Aj [hj(fi)](v+
1).C = Aj [hj(fi)](v).C or Aj [hj(fi)](v + 1).C =
Aj [hj(fi)](v).C − 1, and ni(v + 1) = ni(v). Therefore,

Aj [hj(fi)](v + 1).C 6 ni(v + 1).
Therefore, for HeavyKeeper in the basic version, for any

time t,

Aj [hj(fi)](t).C 6 ni(t)

For HeavyKeeper in the minimum version, Case 1 and Case

2 are the same. We just focus on Case 3.

Case 3 in the Minimum Version: The new incoming packet

is mapped to bucket Aj [hj(fi)] but does not belong to flow

fi. Suppose the new packet belongs to flow fj (fi 6= fj).

Among the other d− 1 mapped buckets, if there is an empty

bucket or there is a bucket holding the fingerprint Fj , then

HeavyKeeper does nothing to this bucket holding fi. Thus,

Aj [hj(fi)](v+1).C = Aj [hj(fi)](v).C. If there is not, Heavy-

Keeper decays this bucket with a certain probability if and only

if its counter is the first smallest among the counters of the d
mapped buckets. Thus Aj [hj(fi)](v+1).C = Aj [hj(fi)](v).C
or Aj [hj(fi)](v + 1).C = Aj [hj(fi)](v).C − 1.

Therefore, Aj [hj(fi)](v + 1).C 6 ni(v + 1) holds in the

minimum version.

C. Error Bound of the Basic Version of HeavyKeeper

Definition A.1. Given a small positive number ǫ, Pr{ni −
n̂i > ⌈ǫN⌉} (ni > n̂i) represents the probability that the

error of the estimated flow size ni − n̂i is larger than ǫN . If

Pr{ni − n̂i > ⌈ǫN⌉} 6 δ, the algorithm is said to achieve

(ǫ,δ)-counting.

(ǫ,δ)-counting is a metric to evaluate the error rate of

the algorithm. Here HeavyKeeper is proved to achieve (ǫ,δ)-

counting, showing that HeavyKeeper achieves a low error rate

in estimating the sizes of top-k flows.

Theorem 5. Let’s assume that there is no fingerprint collision

and once the fingerprint of an elephant flow is inserted into

its mapped bucket, it is held there all the time. Let’s focus

on one single array of HeavyKeeper. Given a small positive

number ǫ, and an elephant flow fi whose size is ni is held at

that bucket,

Pr{ni − n̂i > ⌈ǫN⌉} 6
1

ǫwni(b− 1)
(15)

where w is the width of each array, N the total number of

packets, and b the exponential base, M the total number of

different flows.

Proof. Let’s focus on the jth array. Flow fi is correctly

reported, so at the end, the fingerprint of flow fi is held in the

hj(fi)
th bucket of the jth array. Let Ii,j,i′ be a binary random

variable, defined as

Ii,j,i′ =

{

0 (fi = fi′) ∨ (hj(fi) 6= hj(fi′))

1 (fi 6= fi′) ∧ (hj(fi) = hj(fi′))
(16)

Ii,j,i′ = 1 iff different flows fi and fi′ are held at the same

bucket in the jth array. We define random variable Xi,j as:

Xi,j =

M
∑

i′=1

Ii,j,i′ni′ (17)

Xi,j represents the sum of the sizes of the flows held at the

same bucket as flow fi, except for the size of flow fi itself.

Assume that for each incoming packet, if it belongs to flow

fi, the counter field is incremented by 1; if not, the counter

field is decayed with a certain probability. We have

ni −Xi,j 6 Aj [hj(fi)].C 6 ni (18)

Specifically, if all packets that do not belong to flow fi decay

the counter field, then Aj [hj(fi)].C = ni − Xi,j . If those

packets do not decay the counter field, then Aj [hj(fi)].C =
ni. Let’s define another random variable Pi,j,l. Among the

Xi,j packets defined above, Pi,j,l is defined as the probability

that the lth packet decays the counter field. Therefore,

Aj [hj(fi)].C = ni −

Xi,j
∑

l=1

Pi,j,l (19)

Given a small positive number ǫ, the following formula

based on the Markov inequality holds

Pr{Aj [hj(fi)].C 6 ni − ǫN}

= Pr{ni −

Xi,j
∑

l=1

Pi,j,l 6 ni − ǫN}

= Pr{

Xi,j
∑

l=1

Pi,j,l > ǫN} 6
E(
∑Xi,j

l=1 Pi,j,l)

ǫN

(20)

Now let’s focus on E(
∑Xi,j

l=1 Pi,j,l). Assume that all packets

are uniformly distributed, for ∀C satisfying 1 6 C 6 ni −
E(
∑Xi,j

l=1 Pi,j,l), we have the following formula:

Pr{Pi,j,l =
1

bC
} =

1

Aj [hj(fi)].C
=

1

ni − E(
∑Xi,j

l=1 Pi,j,l)
(21)

Let β be ni − E(
∑Xi,j

l=1 Pi,j,l) for convenience. As a result,

E(

Xi,j
∑

l=1

Pi,j,l) =

E(Xi,j)
∑

l=1

E(Pi,j,l)

= E(Xi,j)

β
∑

C=1

1

bC

1

β
=

E(Xi,j)

β
·

β
∑

C=1

1

bC

=
E(Xi,j)

β
·

1
b
(1− ( 1

b
)β)

1− 1
b

6
E(Xi,j)

nib
·
1− ( 1

b
)ni

1− 1
b

=
E(Xi,j)(1− ( 1

b
)ni)

ni(b− 1)
(22)



Furthermore, for E(Xi,j), based on Equation 17,

E(Xi,j) = E(

M
∑

i′=1

Ii,j,i′ni′) 6

M
∑

i′=1

ni′E(Ii,j,i′) =
N

w

(23)

Therefore, based on Equation 22,

E(

Xi,j
∑

l=1

Pi,j,l) 6
N(1− ( 1

b
)ni)

wni(b− 1)
6

N

wni(b− 1)
(24)

then

Pr{Aj [hj(fi)].C 6 ni − ǫN} 6
E(
∑Xi,j

l=1 Pi,j,l)

ǫN

6
N

ǫNwni(b− 1)
=

1

ǫwni(b− 1)

Note that for an elephant flow fi, ni is very large, and

( 1
b
)ni ≈ 0. The estimated size of fi is the maximum value

of Aj [hj(fi)].C, so we have

Pr{ni − n̂i > ⌈ǫN⌉} 6 Pr{n̂i 6 ni − ǫN} 6
1

ǫwni(b− 1)
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Fig. 35. Theoretical bound and em-
pirical probability of HeavyKeeper
(ǫ = 2−16).
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Fig. 36. Theoretical bound and em-
pirical probability of HeavyKeeper
(ǫ = 2−17).

To validate the correctness of this error bound, we conduct

experiments on the dataset mentioned in Section VI-A. Here,

we let N = 107, ǫ = 2−16 and 2−17, and vary memory size

from 20KB to 100KB. As shown in Figure 35 and Figure 36,

the empirical probability of the basic version of HeavyKeeper

is always lower than the theoretical probability bound, con-

firming the correctness of Theorem 5. Moreover, for the CSS

algorithm, achieving such a (ǫ,δ)-counting requires at least

O(ǫ−1) buckets (i.e., m = O(ǫ−1)), which requires a memory

size much larger than 100KB. Therefore, HeavyKeeper is

much more memory efficient than CSS.
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