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Abstract

A musician’s spontaneous rate of movement, called spontaneous motor tempo (SMT), can

be measured while spontaneously playing a simple melody. Data shows that the SMT influ-

ences the musician’s tempo and synchronization. In this study we present a model that cap-

tures these phenomena. We review the results from three previously-published studies: solo

musical performance with a pacing metronome tempo that is different from the SMT, solo

musical performance without a metronome at a tempo that is faster or slower than the SMT,

and duet musical performance between musicians with matching or mismatching SMTs.

These studies showed, respectively, that the asynchrony between the pacing metronome

and the musician’s tempo grew as a function of the difference between the metronome

tempo and the musician’s SMT, musicians drifted away from the initial tempo toward the

SMT, and the absolute asynchronies were smaller if musicians had matching SMTs. We

hypothesize that the SMT constantly acts as a pulling force affecting musical actions at a

tempo different from a musician’s SMT. To test our hypothesis, we developed a model con-

sisting of a non-linear oscillator with Hebbian tempo learning and a pulling force to the mod-

el’s spontaneous frequency. While the model’s spontaneous frequency emulates the SMT,

elastic Hebbian learning allows for frequency learning to match a stimulus’ frequency. To test

our hypothesis, we first fit model parameters to match the data in the first of the three studies

and asked whether this same model would explain the data the remaining two studies with-

out further tuning. Results showed that the model’s dynamics allowed it to explain all three

experiments with the same set of parameters. Our theory offers a dynamical-systems expla-

nation of how an individual’s SMT affects synchronization in realistic music performance set-

tings, and the model also enables predictions about performance settings not yet tested.
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Author summary

Individuals can keep a musical tempo on their own or timed by another individual or a

metronome. Experiments show that individuals show a specific spontaneous rate of peri-

odic action, for example walking, blinking, or singing. Moreover, in a simple metronome

synchronization task, an individual’s spontaneous rate determines that the individual will

tend to anticipate a metronome that is slower, and lag a metronome that is faster.

Researchers have hypothesized the mechanisms explaining how spontaneous rates affect

synchronization, but no hypothesis can account for all observations yet. Our hypothesis is

that individuals rely on adaptive frequency learning during synchronization tasks to adapt

the rate of their movements and match another individual’s actions or metronome tempo.

Adaptive frequency learning also explains why an individual’s spontaneous rate persists

after carrying out a musical synchronization task. We define a new model with adaptive

frequency learning and use it to simulate existing empirical data. Not only can our model

explain the empirical data, but it can also make testable predictions. Our results support

the theory that the brain’s endogenous rhythms give rise to spontaneous rates of move-

ment, and that learning dynamics interact with such brain rhythms to allow for flexible

synchronization.

Introduction

Humans can effortlessly sing or walk showing a spontaneous singing tempo or walking pace.

In everyday life, however, they also synchronize with external signals, like singing with a pre-

recorded song or marching in a parade with other individuals. Humans can adapt the fre-

quency of their actions to align with a common tempo kept by others. This requires percep-

tion-action coordination (PAC) [1], involving communication between the brain’s sensory

and motor areas [2]. Nonetheless, how an individual’s spontaneous rate of action affects PAC

is still an open question [3].

Before reviewing previous research, we wish to clarify some terminology. In the existing lit-

erature, stimulus timing (i.e. a metronome) is described in terms of inter-onset-intervals

(IOIs) measured in (milli)seconds. Similarly, “musical tempo” is sometimes described as the

time between beats, or the inter-beat interval (IBI). In contrast, in the music literature the

“tempo” is a rate (bpm: beats per minute), or frequency, not a time period. The relationship

between a frequency f (Hz or cycles per second) and a time period T (seconds) is f ¼ 1

T.

Because we will present a model with an explicit frequency term, when we talk about the SMT

(spontaneous motor tempo) and the SPR (spontaneous performance rate) we will use units of

Hz. On the other hand, when we talk about the SMP (spontaneous motor period) and the

spontaneous performance period (SPP) we will use units of milliseconds. We hope that by

acknowledging these historical misnomers we can avoid confusion when trying to understand

our model. Table 1 shows a summary of the terms with corresponding abbreviations and units.

The SMT can be measured by asking an individual to spontaneously tap or play a simple

melody. It tends to be faster in early childhood compared to adulthood [4] and slower in adult

musicians (* 2.5 Hz on average) compared to non-musicians (* 3.3 Hz on average) [5, 6].

The mean asynchrony (MA) can be measured in a synchronization task with a metronome

where the average time difference between an individual’s actions and the metronome is calcu-

lated [7, 8]. Recent studies have investigated how the SMT and the MA are related. In one

study, musicians performed a melody while synchronizing with a metronome faster or slower
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than their SMT. Results showed that the MA grew as a function of the difference between the

metronome tempo and the musician’s SMT. The MA tended to be positive (musicians lagged)

when metronome was faster than the SMT, and negative (musicians anticipated) when the

metronome was slower than the SMT. Another study looked at musicians performing a mel-

ody without a metronome, starting at a tempo different to the SMT. Results showed a tendency

to slowly drift back to the SMT [3], an observation also reported in other studies [4, 9]. A dif-

ferent study looked at duet musical performances where pairs of musicians had matching or

mismatching SMTs. Matching duets showed smaller MAs compared to mismatching duets.

Each musician’s SMT was remeasured after the performance, revealing that the duet synchro-

nization task did not alter each musician’s SMT [10].

These studies highlight the relationship between the SMT, and the MA. However, currently

there only exist models that independently explain the underlying mechanisms of SMT and the

MA. The SMT has been hypothesized to originate from central pattern generators in the ner-

vous system [5, 11–13] and motor resonance governed by anatomical properties like body and

limb length [14]. The MA has been explained via delayed recurrent feedback in central-periph-

eral communication between the auditory and motor systems [15–17] and under- or over-esti-

mation of IOI lengths [18]. A potential way to jointly explain the SMT and the MA could be

with non-linear oscillators. While the SMT is equivalent to an oscillator’s natural frequency [4,

19, 20], the MA is analogous to the phase difference between an oscillator and a sinusoidal stim-

ulus once they have reached steady-state phase-locked synchronization. This difference shrinks

as the oscillator’s natural frequency and the stimulus frequency become closer [21, 22]. More-

over, if the stimulus ceases the oscillator will return to its natural frequency [21, 22].

This study presents a model able to explain behavioral data that relates the SMT and MA. We

use the normal form of an Andronov-Hopf bifurcation [23] as described by Large et al. [24]:

t _z ¼ zðaþ i2pþ bjzj2Þ þ xðtÞ; ð1Þ

where z is the complex-valued state of a non-linear oscillator, α and β control its dynamics,

t ¼ 1

f determines its rate (f is frequency in Hz), and x(t) is an external stimulus (Large et al.

also included a β2 parameter that controls higher-order non-linear activity but we do not use

it in the present study [24]). Our model hypothesizes that the SMT originates from central

pattern generators [11, 25] and is simulated by Eq 1, which we use in one of its parameter

regimes (the supercritical branch of Hopf) due to its limit-cycle properties [24]. However,

since Eq 1 can only synchronize with stimulus frequencies close to f, its ability to explain

both the SMT and the MA is limited [21, 22]. This is clearly distinct from the synchroniza-

tion abilities of humans, who can synchronize with stimuli tempi that are relatively far away

from their SMT [25]. To address this issue we equip Eq 1 with a frequency learning rule.

Table 1. Terminology for periodic phenomena.

Term abbreviation Units

frequency f Hertz (Hz)

Musical tempo N/A beats per minute (BPM)

Inter-onter interval IOI (milli)seconds

Inter-beat interval IBI (milli)seconds

Spontaneous motor period SMP (milli)seconds

Spontaneous performance period SPP (milli)seconds

Spontaneous motor tempo SMT Hz

Spontaneous performance rate SPR Hz

https://doi.org/10.1371/journal.pcbi.1011154.t001
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The SMT could be described as an attractor state that pulls human adaptive synchroniza-

tion to a rate of activity for optimal energy use [4, 25, 26]. Righetti et al. described dynamic
Hebbian learning, allowing an oscillator to adapt its frequency and match a frequency compo-

nent present in a stimulus [27]. Consistent with Righetti et al. [28] we call this mechanism

“Hebbian learning” due to its similarities with correlation-based adaptation in neural net-

works, but we acknowledge that the timescale of dynamic Hebbian learning is much faster than

the slow and long-term changes usually associated with “Hebbian learning”. However, unlike

humans [25], Righetti’s oscillators do not return to the initial spontaneous frequency after

stimulation ceases. This issue has been addressed by other modeling studies that added elastic-

ity to frequency and phase adaptation models [29–31]. For the specific case of the Andronov-

Hopf bifurcation, Lambert et al. added linear elasticity [31] to Righetti’s equation, resulting in

adaptive frequency learning with a constant pull to a rate of activity ω0:

_o ¼ �
λ1

jzj
xðtÞ sin ðffzÞ �

λ2

jzj
o � o0

o0

� �

; ð2Þ

where _o ¼ 2p _f (in radians per second), ω0 is a fixed “spontaneous frequency” that can simu-

late the SMT, λ1 is the frequency learning rate, and λ2 is the elasticity strength pulling ω to ω0.

Combined, Eqs 1 and 2 result in an oscillator that can learn the stimulus frequency, but with a

force constantly pulling to an otherwise “spontaneous frequency” of activity.

We propose ASHLE (Adaptive Synchronization with Hebbian Learning and Elasticity), a

model that builds upon Eqs 1 and 2 to explain the underlying neural mechanisms relating the

SMT and the MA (ASHLE is mathematically described in the methods section). ASHLE uses

two oscillators, “sensory” and “motor”, each simulating the excitatory-inhibitory neural

dynamics in sensorimotor networks [13, 24]. While the “sensory” oscillator simulates entrain-

ment of auditory-premotor networks [32–35], the “motor” one simulates entrainment of

motor networks and actions in PAC [36–38]. In ASHLE, a stimulus can drive and entrain the

“sensory” oscillator, which in turn entrains the “motor” one. ASHLE models the SMT as origi-

nating from central pattern generators that act as an attractor state for neural and behavioral

activity [12]. Therefore, the “motor” oscillator is constantly pulled to a fixed frequency term

that simulates the SMT, resulting in an MA between ASHLE’s “motor” oscillator and the stim-

ulus. Behavioral data shows that humans can synchronize with an ongoing stimulus [25], but

that they have a tendency to slowly return to their SMT [3]. ASHLE simulates these two time-

scales by strongly pulling the “motor” oscillator to the SMT, and weakly pulling the “sensory”

oscillator to the instantaneous frequency of the “motor” oscillator. These mechanism are the

reason why ASHLE uses two oscillators in the first place, because without it the timescales

observed in human data would not be possible (see results for experiment 2 and its parameter

analysis in the methods section).

Table 2 presents an overview of the most important ASHLE parameters. ASHLE’s oscilla-

tors share α and β to show spontaneous limit-cycle activity. They also share the frequency

learning rate λ1, which controls the dynamic Hebbian learning allowing the “sensory” and

“motor” oscillators to entrain with a stimulus. fm, the dynamic frequency of the “motor” oscil-

lator, is pulled to a spontaneous rate of activity f0 with a λ2 strength. In contrast, fs, the dynamic

frequency of the “sensory” oscillator, is weakly pulled, with strength γ, to fm.

In this study we use ASHLE to simulate the dynamics of the MA and the SMT. Fig 1

describes the three previously-published behavioral tasks that we simulate [3, 10, 25]. If ASHLE

can explain these dynamics, it would be the first dynamical systems model that systematically

captures the relationship between the SMT and the MA as observed in behavioral data. Our

results also include simulations that yield predictions that can be tested empirically in future
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behavioral studies. It is worth noting that ASHLE only simulates the musical beat in a musical

performance and not any other spectral features like pitch, harmony or melody content.

Experiment 1: Solo music performance with a metronome tempo

different than the SMT

Results

We simulated the solo task by Scheurich et al. [25] consisting of performance of a simple mel-

ody paced by a metronome (Fig 1A). Their experiment had four different experimental condi-

tions: metronome period 30% shorter, 15% shorter, 15% longer, and 30% longer than the

musician’s SMP. Fig 2A shows the asynchrony (specifically the “mean adjusted asynchrony”,

see methods section for details) between musician and metronome, which was positive (nega-

tive) when the metronome period was shorter (longer) than the musician’s SMP. The asyn-

chrony grows as a function of the difference between SMP and metronome period.

A complex-valued sinusoidal stimulus x = exp(i2π fxt) simulated the metronome (fx is the

stimulus frequency in Hz). We hypothesized that ASHLE’s frequency learning, controlled by

λ1, will allow its “sensory” and “motor” oscillators to synchronize with an arbitrary stimulus

period. We also expected to see an asynchrony between ASHLE’s “motor” oscillator and the

stimulus due to λ2 pulling the “motor” oscillator to f0. We simulated 20 different ASHLE mod-

els, each with a unique f0 value that matched a musician’s SMT, as measured by Scheurich

et al. [25]. Fig 2B shows that ASHLE can explain the behavioral data, and shaded bars show

ASHLE’s prediction for the same group of musicians performing with metronome periods

45% shorter or longer than their individual SMP. Fig 2C also makes behavioral predictions, by

breaking down how different ASHLE models with different f0 synchronize with a metronome

period that is 45%, 30%, and 15% shorter or longer than the period of f0.

Discussion

Fig 2B showed that our model captures the synchronization dynamics observed in Fig 2A. Spe-

cifically, when synchronizing with stimuli slower than f0, ASHLE showed a negative MA, and

a positive MA when synchronizing with stimuli faster than f0. This is explained by the asym-

metry of entrained fs and fm around f0, and the elastic pull of fm to f0 by λ2. In other words,

while ASHLE can entrain with the stimulus, the MA results from the pull that makes fm always

be “shy” from perfectly matching fx, the stimulus frequency. It is interesting to note that a

closer look at Fig 2A reveals mean adjusted asynchrony magnitudes that are slightly asymmet-

ric between faster and slower stimuli, which implies frequency scaling of PAC. ASHLE has

explicit mechanisms that allow it to explain this asymmetry. First, ASHLE has frequency-scal-

ing (see Eqs 3b and 3d) previously used on Andronov-Hopf oscillator models [21, 24]. Second,

ASHLE’s elastic pull is an exponential function (see Eq 3d). This means that when synchroniz-

ing with faster stimuli the pull to its spontaneous frequency is exponentially larger compared

Table 2. ASHLE parameters and function.

Parameter Function Value

α bifuraction parameter 1

β non-linear damping -1

λ1 dynamic Hebbian learning 4

λ2 Elastic pull to f0 2

γ Weak elastic pull to fm 0.02

f0 ASHLE’s spontaneous frequency matches human data

https://doi.org/10.1371/journal.pcbi.1011154.t002
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Fig 1. Illustration of the musical tasks and corresponding simulation experiments. (A) The task simulated in experiment 1, in which a

musician plays a simple melody with a metronome (top). Illustration of our simulation, in which ASHLE synchronizes with a sinusoidal

stimulus (bottom). (B) The task simulated in experiment 2, in which a musician plays a simple melody, without a metronome (top). This

specific example shows a performance tempo that periodically became slower due to the musician’s tendency to return to the SMT.

Illustration of our simulation, in which ASHLE oscillates without a sinusoidal stimulus and returns to its f0 (bottom). (C) The task

stimulated in experiment 3, in which pairs of musicians played a simple melody together after hearing four pacing metronome clicks (top).

Illustration of our simulation, in which two ASHLE models synchronize with four cycles of a pacing sinusoidal stimulus (greyed-out blue

and red lines), and then stimulate each other without the sinusoidal stimulus (solid blue and red lines) (bottom).

https://doi.org/10.1371/journal.pcbi.1011154.g001
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to synchronization with slower stimuli. Together, these two mechanisms cause higher fs and fm
values to amplify the learning rate (λ1) and the elastic force (λ2), and lower fs and fm values to

shrink them.

ASHLE also made testable predictions shown in Fig 2B and 2C. While Fig 2B contains pre-

dictions if the same group of musicians were to carry out the task synchronizing with a metro-

nome period 45% shorter or longer than the SMP, Fig 2C contains predictions at the

individual musician level, simulating the mean adjusted asynchronies that musicians with dif-

ferent SMP would produce when performing a melody with various metronome tempi faster

or slower than their SMT. These predictions can be empirically tested to further validate

ASHLE’s behavior or better tune its parameters.

Experiment 2: Unpaced solo performance with a starting tempo

different than the SMT

Results

Experiment 1 showed that ASHLE can explain the MA as captured by Scheurich et al. [25]. In

this second experiment, we used ASHLE to simulate the data by Zamm et al. [3], who studied

what happens when musicians perform a simple melody unpaced, but starting at a tempo dif-

ferent than the SMT (Fig 1B). They tested four experimental conditions: starting performance

tempo fast, faster, slow, and slower than the SMT. Fig 3A shows their results, which for each

Fig 2. Simulation of the MA between a musician’s beat and a metronome beat with a period shorter or longer than the musician’s SMP during

solo musical performance. (A) The mean adjusted asynchrony (and standard error; N = 20) between the musician beat and metronome beat during

performance of a simple melody in four conditions: metronome period 30% shorter (F30), 15% shorter (F15), 15% longer (S15), and 30% longer (S30)

compared to the musician SMP. The x-axis shows “F” and “S” labels as originally used by Scheurich et al. [25] to describe a “faster” and “slower”

metronome compared to the SMT. (B) Our simulation results showing the mean adjusted asynchrony (and standard error; N = 20) between ASHLE

and a sinusoidal stimulus in six conditions: stimulus period 45% shorter (F45), 30% shorter (F30), 15% shorter (F15), 15% longer (S15), 30% longer

(S30), and 45% longer (S45) than the period of ASHLE’s f0. The shaded bars represent predicted measurements for data that has not been collected yet

from musicians. (C) Mean adjusted asynchrony predictions when ASHLE models with different f0 periods synchronize with a stimulus period that is

45% shorter (F45), 30% shorter (F30), 15% shorter (F15), 15% longer (S15), 30% longer (S30), or 45% longer (S45).

https://doi.org/10.1371/journal.pcbi.1011154.g002
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condition is the average of the slope (specifically the “mean adjusted slope”, see methods sec-

tion for details) across musicians. Their data shows that when musicians started at a tempo

faster than the SMT the mean adjusted slope was positive (musicians slowed down; consecu-

tive IBIs became longer), and when musicians started at a tempo slower than the SMT the

mean adjusted slope was negative (musicians sped up; consecutive IBIs became smaller). In

general, musicians showed a tendency to return to their SMT [3].

We used the same set of ASHLE parameter values as in experiment 1. The only differences

were that stimulus was nullified, ASHLE’s f0 was dictated by a different set of human SMTs,

and initial conditions for fs(0) = fm(0) matched human data by Zamm et al. [3]. We hypothe-

sized that the “motor” oscillator will show a tendency to return to ASHLE’s f0 as a result of two

mechanisms: λ2 pulling to fm to f0, and γ pulling fs to fm. Fig 3B shows that ASHLE can explain

the human data observed in Fig 3A. Additionally, this experiment also yielded predictions of

human behavior not yet tested shown in Fig 3C.

Discussion

Our model was also able to simulate the human data by Zamm et al. [3] where musicians per-

formed a melody without a metronome. ASHLE’s approximation of the data is not perfect but,

keeping in mind that the parameters λ1 and λ2 were optimized with the data in experiment 1,

it is close. Hence, results also show the generalization of ASHLE across different datasets and

tasks. Since there was no stimulus in this second experiment (F = 0), γ = 0.02 was optimized to

control how quickly ASHLE returns to its f0.

Experiment 2 highlights potential mechanisms that explain how the SMT influences tempo

maintenance by a musician during a solo performance. The small γ value is explained by the

behavioral data in Fig 3A, showing that musicians tended to very slowly return to their SMT.

In other words, γ represents a musician’s slow tendency to return to their SMT in the absence

of stimulation. We predict that non-musicians will show a faster tendency to return to their

SMT since musical training prepares musicians to maintain an arbitrary tempo throughout a

Fig 3. Simulation of the slope between consecutive IBIs when an unpaced musician performs a melody starting at a tempo that is different than

the SMT. (A) The mean adjusted slope of consecutive IBIs (and standard error; N = 24) when solo musicians perform a simple melody starting a tempo

that is fast, faster, slow, or slower compared to their SMT. (B) Our simulations showing the mean adjusted slope of consecutive IBIs (and standard

error; N = 23) when ASHLE oscillates, without a stimulus, starting at a frequency that is fast, faster, slow, or slower compared to its f0. (C) Adjusted

slope predictions when different ASHLE models with different f0 oscillate without stimulation, starting with a period that is 45% shorter (F45), 30%

shorter (F30), 15% shorter (F15), 15% longer (S15), 30% longer (S30), or 45% longer (S45) compared its to the period of its f0. For consistency with

predictions made in experiment 1, here we also use the F and S on the x-axis.

https://doi.org/10.1371/journal.pcbi.1011154.g003

PLOS COMPUTATIONAL BIOLOGY A model explaining the role of endogenous rhythms in musical action

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011154 June 7, 2023 8 / 23

https://doi.org/10.1371/journal.pcbi.1011154.g003
https://doi.org/10.1371/journal.pcbi.1011154


musical performance [39, 40]. Future experiments could control ASHLE’s γ to explain non-

musician data.

ASHLE also made testable predictions shown in Fig 3C at the individual musician level

when performing a melody starting at various tempi that are faster or slower than the SMP.

These predictions can be empirically tested to further validate ASHLE’s dynamics.

Experiment 3: Duet musical performance between musicians with

matching or mismatching SMTs

Results

Experiments 1 and 2 showed that the same ASHLE model can simulate two tasks carried out

by solo musicians. In this third experiment, we used ASHLE to simulate another task by

Zamm et al. [10] showing how musician duets perform a simple melody four consecutive

times (Fig 1C). Musician duets were separated into two experimental groups: pairs with

matching SMTs and pairs with mismatching SMTs. Fig 4A shows their results, which con-

sisted of the mean absolute asynchrony between the beats of the two performing musicians in

each experimental group, separately for each of the four melody repetitions. Their results show

that the mean absolute asynchrony was smaller between musician duets with matching SMTs.

In this third experiment we also used the same ASHLE parameters as in experiments 1 and

2. However, pairs of ASHLE models are weakly coupled serving as input to each other. We

also we added Gaussian noise to the “motor” oscillator to better match the magnitudes and

variances in absolute asynchrony observed in the behavioral data (see model optimization in

the methods section). We hypothesized that pairs of ASHLEs will be able to synchronize due

to frequency learning. However, the pull of fm to f0 will result in asynchrony, which we expect

to be smaller between ASHLE pairs with similar f0. We simulated this task using 20 pairs of

ASHLE models with f0 that matched the 40 musician SMTs measured by Zamm et al. [10]. Fig

4B shows the mean absolute asynchrony observed in our simulations for the same

Fig 4. Simulation of the mean absolute asynchrony between two musicians with matching or mismatching SMTs during duet musical

performance. (A) The mean absolute asynchrony (and standard error; N = 10 per experimental group) between two musicians with matching or

mismatching SMTs during performance of a simple melody four consecutive times. (B) Our simulation results showing the mean absolute asynchrony

between two synchronizing ASHLE models with f0 values that are close or far from each other. (C) Mean absolute asynchrony predictions when

different ASHLE models (with different f0 periods) synchronize with another ASHLE model with a f0 period that is 220ms shorter, 110ms shorter, 10ms

shorter, 10ms longer, 110ms longer, and 220ms longer.

https://doi.org/10.1371/journal.pcbi.1011154.g004
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experimental groups and melody repetitions tested by Zamm et al. [10]. Our results are similar

to the human data. Additionally, Fig 4C shows musician data predictions by simulating

ASHLE duets where one’s f0 has a period that is 220ms shorter, 110ms shorter, 10ms shorter,

10ms longer, 110ms longer, and 220ms longer than the other. Results in Fig 4C systematically

describe how the mean absolute asynchrony between musician pairs grows as a function of the

difference between their SMTs.

Discussion

ASHLE was also able to simulate duet performances (Fig 4A and 4B). To capture the data of

experiment 3, it was necessary to add noise to ASHLE’s motor oscillator (see model optimiza-

tion in the methods section). Without it, ASHLE showed the same qualitative pattern of

results, but with a larger difference in magnitude between experimental groups (see Fig 5).

When noise was added, ASHLE showed a mean absolute asynchrony around 15ms and 20ms

for the duets with matching and mismatching SMTs, respectively. Moreover, the observed

standard error in our simulations is similar to the one observed in the human data. This makes

sense as the musical performance task has multiple sources of variability, including: two per-

forming musicians receiving feedback from each other, each with variable behavior that will

influence the resulting absolute asynchrony between the two.

Fig 5. Simulation without noise of the mean absolute asynchrony between two musicians with matching or mismatching

SMTs during duet musical performance. Our simulation results showing the mean absolute asynchrony between two

synchronizing ASHLE models with matching or mismatching f0, but no noise added to Eq 3c. The resulting mean absolute

asynchronies in this simulation without noise are much smaller compared to the musician data results in Fig 4A. The added

noise in Eq 4 improves the model’s results, which are shown in Fig 4B.

https://doi.org/10.1371/journal.pcbi.1011154.g005
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To simulate this musical duet task, we also needed smaller connection strength between

pairs of ASHLE models (see model optimization in the methods section). This difference is

due to the nature of the stimulus. Sinusoidal stimulation of a Hopf oscillator yields stability

regimes with phase-locking that widen as a function of stronger forcing [21]. In contrast, two

interacting dynamical systems benefit from weaker coupling to exploit emergent resonance

higher-order terms (only up to quadratic in ASHLE’s case) [21–23].

ASHLE also made testable predictions about how musician duets would perform in new

experimental manipulations. Fig 4C shows that the mean absolute asynchrony between the

two musicians will generally vary as a function of the difference between the musician’s SMTs,

and also as a function of the specific SMT value in either of the two musicians. These predic-

tions can also be empirically tested to further validate ASHLE.

General discussion

We have presented ASHLE, a model able to simulate human synchronization dynamics.

ASHLE can explain how a musican’s SMT results in asynchronies with a pacing metronome

during a simple melody performance task (Fig 2). It can also explain the rate of tempo change

when a solo musician performs a simple melody without a metronome (Fig 3). Two ASHLE

models can also be coupled to explain the asynchrony between two musician performing a

melody as a duet (Fig 4). ASHLE’s adaptive frequency learning mechanism allows it to general-

ize across these different tasks while allowing for testable predictions of human data not yet

collected (Figs 2B, 2C, 3C and 4C).

ASHLE’s elastic frequency learning captures diverse synchronization

dynamics

Experiments 1 and 3 showed that the asynchrony between ASHLE and stimulus is the result of

the pull of fm to f0. Experiment 2 showed that, in the absence of a stimulus, ASHLE can start

oscillating at a rate higher or slower than its f0, but that the same elastic pull progressively

causes it to return to f0 via the slow tendency of fs to converge with fm. ASHLE’s behavior is

consistent with theoretical accounts highlighting that a dynamical system’s natural frequency

(i.e. ASHLE’s f0) is the optimal state for synchronization, even if the system can synchronize at

other frequencies [25, 41–43].

An interesting question is where in the brain these mechanisms of adaptive frequency

learning and elasticity occur. ASHLE is a working hypothesis of neuroscientific mechanisms

underlying PAC. There exist theories that explain the human SMT as originating from central

pattern generators [11–13, 25] and ASHLE’s f0 is a parameter and attractor state consistent

with this theory. Additionally, research indicates that cortical and subcortical sensorimotor

networks synchronize neural activity that reflects the rhythms of a periodic stimulus and PAC

[34, 36, 38, 44]. ASHLE’s oscillators show sustained oscillatory activity to simulate entrainment

in sensorimotor brain areas when processing a periodic stimulus of an arbitrary frequency

[33–35, 45]. Moreover, ASHLE’s “sensory” and “motor” oscillators show activity synchronized

with a stimulus, thus simulating neural entrainment to the musical beat [36]. We also consider

the peaks of the “motor” oscillator as an indicator of entrained peripheral effectors (i.e., a fin-

ger playing a piano) during a musical performance task. In summary, stimuli entrain ASHLE’s

“sensory” oscillator that simulates sensory and premotor neural dynamics. This in turn

entrains the “motor” oscillator that simulates motor network dynamics and the transformation

into motor commands.

While no consensus exists yet about the interplay of the SMT in PAC, ASHLE is a working

model of these hypotheses with mechanisms that explain how a constant pull to the rate of
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activity of a central pattern generator affects adaptive PAC. Similar models with period and

phase correction mechanisms have also been characterized for their flexible and multi-stable

phase-locking dynamics [29, 30, 46, 47], and together with ASHLE support our hypothesis of

the underlying elastic frequency learning dynamics of PAC.

ASHLE’s relation to models of the negative mean asynchrony

Our study is part of a larger effort to characterize human PAC dynamics. The mean asyn-

chrony has been of particular interest for existing models of PAC [15, 16, 47, 48]. It has been

shown to be negative for stimulus with IOIs greater than 300ms but smaller than 2000ms [49],

growing as a function of IOI duration. This phenomenon is known as the negative mean asyn-

chrony (NMA). For IOIs smaller than 300ms, the MA has been reported to be absent or

slightly positive [48, 50], indicating that 300ms is the transition point for MA to go from nega-

tive to positive values. Existing modeling work has largely explained the NMA independent of

the SMT, with models proposing that the NMA is the result of adaptive synchronization by

means of phase and period correction rules at phenomenological [51] and neuromechanistic

levels [47, 52]. Other models follow the strong anticipation hypothesis [15], explaining that the

NMA results from delayed neural communication in the sensorimotor system [16].

While ASHLE showed both positive and negative asynchronies, its parameters were opti-

mized to simulate the “mean adjusted asynchrony” reported in the behavioral data of Scheur-

ich et al. [25]. Therefore, what seems to be an NMA in Fig 2A (negative-valued bars) is in

reality something else and ASHLE cannot be considered to be an NMA model. A future direc-

tion could be to add delayed-feedback to ASHLE’s oscillators and frequency adaptation rules

to allow it to explain the NMA while also accounting for the SMT. We also invite human

researchers to collect and report both the SMT and the NMA of individual participants in

future behavioral studies.

ASHLE’s potential to simulate non-musician data and its current lack of

variability

Behavioral data shows that musical expertise affects the MA, with musicians showing overall

smaller MAs compared to non-musicians [25, 53]. While we optimized ASHLE to explain

musician data, its parameters can be controlled to account for non-musician behavior. First,

we determined ASHLE’s spontaneous frequency using individual musicians’ SMTs. To simu-

late non-musician data one would only need to change these values to match a non-musician

population. Larger MAs by non-musicians [25, 53] also imply a stronger pull to their SMT,

which would translate into ASHLE’s parameters λ2 and γ being larger than the ones we found.

While ASHLE was able to simulate the musician data in experiments 1 and 2, it does so by

reaching a steady-state with little or zero variability (see the variance of Figs 2B and 3B). This

was a limitation to perfectly simulate the behavioral results since standard errors were overall

smaller in ASHLE’s simulations compared to the behavioral data. In empirical studies of PAC

by either musicians or non-musicians there exist two sources of variability: (1) variability

within each particiant’s behavior across time and (2) variability between the behavior of differ-

ent particiant. In its current form ASHLE only allowed us to simulate the first one, using dif-

ferent ASHLE models with different spontaneous frequency values. Future research could add

gaussian noise to ASHLE’s activity and characterize its ability to better approximate the vari-

ance associated with human data. Our study includes an early attempt of this by adding noise

to ASHLE’s “motor” oscillator in experiment 3.
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ASHLE’s relation to gradient frequency neural network models

ASHLE builds upon the work by Large et al. [24] and Lambert et al. [31], who proposed Gradi-

ent Frequency Neural Networks (GFNNs). Lambert et al. [31] used a bank of oscillators but, in

contrast with Large et al. [24], each oscillator had the ability to adapt its frequency to resonate

with a dynamic stimulus (musical rhythms in their case). Lambert et al. also used an elasticity

term to pull each oscillator to a fixed central frequency and ensure that oscillators did not over-

lap in frequency with each other. This allowed them to synchronize their network similarly to

Large et al. [24] but using significantly less oscillators.

ASHLE is different in many ways. First, its elastic frequency learning is used to simulate

synchronization tasks where asynchronies were observed and explained as a function of the

SMT. Second, ASHLE works at the level of synchronization with a musical beat (most music

has a beat around� 1.5 Hz), a specificity that allows ASHLE to directly process a stimulus

using its “sensory” oscillator. Third, ASHLE’s rates of activity in its “sensory” and “motor”

oscillators are centered around the SMT (� 2.5Hz) and overlap with the delta band of neural

oscillation, which has been hypothesized to be critical for the processing of musical rhythms

[54]. Therefore, ASHLE is a minimal model that is specific to simulate behavioral. Future

research could look into making ASHLE’s more general. We hypothesize, for example, that it

will be possible to use a network of oscillators with elastic frequency learning to extract the

beat information directly from a “raw” musical signal. If such oscillators are centered around

integer ratios of the SMT, the overall oscillatory activity will reflect synchronization with the

stimulus but with a constant pull to the SMT.

Conclusion and outlook

We have presented a versatile model of human behavior during a musical beat synchronization

task. ASHLE was able to explain empirical data from three different human studies, and

related human behavior with endogenous rhythms like the SMT. Future work could test

whether ASHLE’s adaptive frequency learning and synchronization allow it to track semi-peri-

odic signals, such as speech envelopes. Furthermore, ASHLE could be used not just to simulate

and make testable predictions of human behavior, but also as a tool with which humans can

interact in experimental, musical, and therapy settings. ASHLE advances our understanding

about how sensory-motor entrainment to stimulus frequencies interacts with the constraints

of endogenous rhythms (i.e. the SMT) hypothesized to originate from central pattern

generators.

Methods

The ASHLE model

Eqs 3a, 3b, 3c and 3d show the ASHLE model:

1

fs
_zs ¼ zsðaþ i2pþ bjzsj

2
Þ þ xðtÞ ð3aÞ

_f s ¼ fs λ1 sinð�x � �sÞ � g exp
fs � fm
fm

� �

� 1

� �� �

ð3bÞ

1

fm
_zm ¼ zmðaþ i2pþ bjzmj

2
Þ þ exp ði�sÞ ð3cÞ
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_f m ¼ fm λ1 sinð�s � �mÞ � λ2 exp
fm � f0

f0

� �

� 1

� �� �

ð3dÞ

Eqs 3a and 3c are oscillators like the one in Eq 1. Eqs 3a and 3b have a subscript s that

stands for “sensory”, while Eqs 3c and 3d have a subscript m that stands for “motor”. ϕ
stands for the instantaneous phase of the stimulus (ϕx), “sensory” (ϕs) and “motor” (ϕm)

oscillators. In all simulations we run in this study α = 1 and β = −1 so that the intrinsic

dynamics of Eqs 3a and 3c are a limit-cycle. In the absence of stimulus (i.e., when F = 0),

Eqs 3a and 3c will show spontaneous and perpetual oscillation [21]. These limit-cycle prop-

erties could be achieved with other oscillators. In fact a phase-only (no amplitude term)

oscillator could have been used. However, we select Eq 1 due to its neural underpinnings of

excitatory-inhibitory oscillation in cortical and subcortical networks [21, 24, 36, 55]. Eqs 3b

and 3d are the frequency learning equations for Eqs 3a and 3c, respectively. Eq 3b has a

learning term λ1 sin(ϕx − ϕs) and a slow term � g exp fs � fm
fm

� �
� 1

� �
. The first one learns the

frequency of the external stimulus x(t), while the second is optimized to weakly pull fs to fm.

This weak pull is important when F = 0, allowing Eq 3b to slowly forget an entrained fre-

quency (see parameter analysis in the next subsection). Eq 3d entrains to match the fre-

quency of Eq 3b, but λ2 is optimized to strongly pull fm to f0, which is ASHLE’s spontaneous

rate of activity.

Parameter analysis

Previous studies have investigated how Eq 3a synchronizes with a periodic external stimulus in

a phase-locked fashion [21]. We focus on analyzing how adaptive and elastic frequency learn-

ing, controlled by parameters λ1 and λ2, affects synchronization with a periodic stimulus. The

dynamics of γ will be analyzed in the methods subsection of its relevant experiment (experi-

ment 2).

We set ASHLE’s spontaneous frequency f0 = 2.5 because the average musician SMP is

around 400ms in previous behavioral studies (f0 ¼ 1000ms
400ms ¼ 2:5Hz) [3, 10, 25]. We analyzed

how λ1 and λ2 affect the phase-locked asynchrony between the stimulus x(t) and ASHLE’s zm
when the stimulus period is 45% shorter (fx ¼ 1000ms

0:55�400ms) and 45% longer (fx ¼ 1000ms
1:45�400ms) than

ASHLE’s f0 period. We ran fifty-second-long simulations, each with a unique value for λ1 and

λ2, and x(t) = exp(i2π fxt), where fx is the stimulus frequency in Hz and t is time. Initial condi-

tions were zs(0) = zm(0) = 0.001 + i0, and fs(0) = fm(0) = f0. γ = 0 because we do not want to

study the effect of this small parameter in this first analysis. After each simulation finished, we

found the location (in milliseconds) of all peaks in the real part x(t) and zm (Fig 6A). Then, we

subtracted the location of the peaks of x(t) from the location of the peaks of zm and averaged

the result to obtain the mean asynchrony in milliseconds. If x(t) and zm showed a different

number of peaks, that indicated that phase-locked synchronization did not occur between the

two. Fig 6B and 6C show the result of this analysis, with black cells incidating that phase-

locked synchronization does not occur for certain combinations of λ1 and λ2. Not surprisingly,

when λ1 = 0, phase-locked synchronization is never possible. This makes sense since λ1 is the

frequency learning rate that allows ASHLE to adapt its frequency. When λ1 = 0, phase-locked

synchronization can only occur between ASHLE and a stimulus with a frequency that is close

to ASHLE’s f0 [21]. This analysis also revealed that as the value of λ2 becomes larger, phase-

locked synchronization may not be observed because ASHLE’s fm is strongly pulled to the

spontaneous frequency f0. The size of the asynchrony is modulated by λ1 and λ2. As λ1
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becomes larger, the asynchrony tends to decrease and is sometimes close to zero when λ2 = 0.

The opposite occurs when λ2 grows. This observation reveals that λ1 and λ2 work in opposing

directions. While λ1 changes the model’s frequency to match the stimulus frequency, λ2 pulls

ASHLE’s to f0. Moreover, as ASHLE’s frequency deviates from f0, λ2 acts with more strength,

while the strength of λ1 is not directly affected by the difference between f0 and ASHLE’s fre-

quency. Additionally, when synchronization is observed between ASHLE and the stimulus x
(t), the sign of the asynchrony between zm and x(t) is affected by whether x(t) is faster or slower

than ASHLE’s f0, with a tendency be positive (lagging) and negative (anticipating),

respectively.

Experiment 1: Solo music performance with a metronome tempo different

than the SMT

Behavioral data for simulation. In the task by Scheurich et al. [25], 20 musicians individ-

ually performed a simple melody while synchronizing with a metronome in four experimental

conditions: metronome period 30% shorter, 15% shorter, 15% longer, and 30% longer than

their SMP. For each metronome rate, participants performed the melody (“Mary had a little

lamb”) four consecutive times (32 beats per repetition, 128 beats total). Experimenters mea-

sured the mean adjusted asynchrony between the participant beats and the metronome clicks

during the middle two melody repetitions (64 beats total). The mean adjusted asynchrony is

the MA observed when the musician performs with a metronome tempo different than the

musician’s SMT, minus the MA observed when the musician performs with a metronome that

matches the SMT. Scheurich et al. [25] used the mean adjusted asynchrony instead of the MA

to assume in their analysis that no MA exists between the musician and the metronome that

matches the SMT. Fig 2A shows the behavioral data with the mean adjusted asynchrony (aver-

age and standard error) observed across all 20 musicians for each experimental metronome

tempo condition. Their results showed that the mean adjusted asynchrony had a tendency to

be positive when synchronizing with a metronome faster than the SMT (musician actions

Fig 6. The asynchrony between ASHLE and a sinusoid with period 45% shorter or longer than its spontaneous frequency, as a function of frequency learning

and elasticity parameters. (A) Illustration of the asynchrony between ASHLE’s zm and the sinusoidal stimulus. (B) The asynchrony in milliseconds between ASHLE

and a sinusoidal stimulus with a period 45% shorter than ASHLE’s spontaneous frequency, and its change as a function of λ1 and λ2. (C) The same analysis but for a

sinusoidal stimulus with a period 45% longer than ASHLE’s spontaneous frequency. Black cells indicate λ1 and λ2 value pairs for simulations where ASHLE could not

synchronize.

https://doi.org/10.1371/journal.pcbi.1011154.g006
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lagging the metronome), and negative when synchronizing with a metronome slower than the

SMT (musicians actions anticipating the metronome). Additionally, the mean adjusted asyn-

chrony grew as a function of the difference between musician SMT and experimental metro-

nome tempo.

Setup, procedures and measurements. To obtain the musicians SMPs, we overlaid a

grid over figure 4 from the paper by Scheurich et al. [25], which showed each musician’s

measured SMP (in their original paper, the authors call the SMP as the “SPR”). This allowed

us to precisely digitize each musician’s SMP from the original publication. We simulated 20

different ASHLE models, all with the same parameter values (see model optimization below)

except for f0, which had a period that matched the SMP of a different musician. In all simula-

tions, initial conditions were zs(0) = zm(0) = 0.001 + i0, fs(0) = fm(0) = f0 (f0 ¼ 1000ms
SMPms). Follow-

ing the procedure in the musician experiment, each ASHLE synchronized during 128 cycles

with a pacing complex-valued sinusoidal stimulus x(t) = exp(i2π fxt) where fx had a period

either 30% shorter (fx ¼ 1000ms
0:7�SMPms), 15% shorter (fx ¼ 1000ms

0:85�SMPms), 15% longer (fx ¼ 1000ms
1:15�SMPms),

or 30% longer (fx ¼ 1000ms
1:3�SMPms) than ASHLE’s f0 period. We also simulated how ASHLE would

synchronize with a stimulus period 45% shorter (fx ¼ 1000ms
0:55�SMPms) or 45% longer

(fx ¼ 1000ms
1:45�SMPms) in order to make predictions about how musicians would perform in those

additional experimental conditions. After each simulation, we identified the location (in mil-

liseconds) of local maxima in the real part of ASHLE’s zm and the sinusoidal stimulus. Then,

in each simulation we identified the middle 64 peaks for ASHLE and the stimulus and sub-

tracted the location of stimulus peaks from ASHLE peaks to obtain the asynchrony. Averag-

ing these asynchronies in each simulation resulted in the MA for a specific simulation. To

obtain the mean adjusted asynchrony, from each MA obtained in the experimental condi-

tions, we subtracted the MA observed when ASHLE synchronized with a sinusoid with a fre-

quency that matched ASHLE’s f0 (fs = f0; after accounting for numerical error we observed

that ASHLE had an asynchrony of virtually zero in this condition). We averaged the mean

adjusted asynchronies observed across the 20 ASHLE models to obtain the plot in Fig 2B.

We also simulated how different ASHLE models with specific f0 periods (linearly spaced

between 350ms and 650ms) would carry out this task when synchronizing with a stimulus

period that is 45% shorter (fx ¼ 1000ms
0:55�SMPms), 30% shorter (fx ¼ 1000ms

0:7�SMPms), 15% shorter

(fx ¼ 1000ms
0:85�SMPms), 15% longer (fx ¼ 1000ms

1:15�SMPms), 30% longer (fx ¼ 1000ms
1:3�SMPms), or 45% longer

(fx ¼ 1000ms
1:45�SMPms) than ASHLE’s f0 period. Fig 2C shows the results of these simulations, which

are predictions of musician data that could be collected to test the accuracy of predictions

made by ASHLE.

Model optimization. We identified the set of ASHLE parameters that result in asynchro-

nies observed in the data by Scheurich et al. [25]. We ran simulations where ASHLE was

stimulated by a different stimulus frequency to measure the MA between an ASHLE model

with an f0 = 2.5 (same as our original parameter analysis shown in Fig 6B and 6C) and a sinu-

soidal stimulus x(t) = exp(i2π fxt) with six potential period lengths: 45% shorter

(fx ¼ 1000ms
0:55�400ms), 30% shorter (fx ¼ 1000ms

0:70�400ms), 15% shorter (fx ¼ 1000ms
0:85�400ms), 15% longer

(fx ¼ 1000ms
1:15�400ms), 30% longer (fx ¼ 1000ms

1:30�400ms), and 45% longer (fx ¼ 1000ms
1:45�400ms). The parameter

analysis in the previous section releaved that values for λ1 between 3 and 5, and λ2 between 1

and 3 could result in MA values in the range of the mean adjusted asynchrony observed in

the study by Scheurich et al. [25] (Fig 6B and 6C). In this analysis we refine our search for λ1

and λ2 in this range of values. Subplots in Fig 7 show the asynchrony between zm and x(t) for

a different stimulus frequency and a pair of parameter values of λ1 and λ2. This analysis

revealed that the values of λ1 = 4 and λ2 = 2 result in the range of MA values observed in

humans.
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Experiment 2: Unpaced solo music performance with a starting tempo

different than the SMT

Behavioral data for simulation. In the task by Zamm et al. [3], 24 musicians individually

performed a simple melody without listening to a metronome. First they performed the mel-

ody at their SMT, and in four other experimental conditions they performed starting at four

other spontaneous tempi: fast and slow with respect to SMT, and even faster and slower with

respect to the SMT. For each spontaneous initial tempo, musicians performed the melody

Fig 7. The asynchrony between ASHLE and a sinusoid faster or slower than ASHLE’s f0 as a function of a narrower range of values for the

frequency learning and elasticity parameters. Each cell shows the MA between ASHLE and a sinusoidal stimulus with a period 45% shorter, 30%

shorter, 15% shorter, 15% longer, 30% longer, and 45% longer than ASHLE’s f0 ¼ 1000ms
400ms period, for a pair of values for λ1 and λ2. The pair of λ1 = 4 and

λ2 = 2 yield MA values similar to the ones that Scheurich et al. [25] observed in musicians synchronizing with a metronome period 30% shorter, 15%

shorter, 15% longer, and 30% longer than the musician’s SMP.

https://doi.org/10.1371/journal.pcbi.1011154.g007
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(“Frere Jaques”) four consecutive times (32 beats per repetition, 128 beats total). Experiment-

ers measured the IBI across each musician’s entire performance and carried out a linear regres-

sion to obtain a slope, which indicated the rate of change across IBIs. Fig 3A shows the

behavioral data with the average slope across participants in each initial tempo condition.

Results showed that the slope had a tendency to be positive when performances started a spon-

taneous tempo faster than the SMT (IBIs becoming longer as the performances progressed),

and negative when performances started at a spontaneous tempo slower than the SMT (IBIs

becoming shorter as the performance progressed).

Setup, procedures and measurements. To obtain the musicians’ SMP, we overlaid a grid

over Figure 1 from the paper by Zamm et al. [3], which showed each musician’s measured

SMP (in their original paper, the authors call the SMP as the “SPR”). We also overlaid a grid

over Figure 2 (right top panel) from the same paper by Zamm et al. to obtain each musician’s

initial rates of performance that were fast, slow, faster, and slower with respect to their SMT.

This allowed us to precisely recover each musician’s rates of performances reported in the

original study. Using the musicians’ SMT and initial performance tempo values, we simulated

23 different ASHLE models, each with 5 different initial conditions fs(0) = fm(0): (1) matching

a musician’s SMT, (2) “fast” or (3) “slow” compared to the SMT, and (4) “faster” and (5)

“slower” than the SMT (115 total simulations). We did not simulate the participant with the

SMP of 665ms because their “fast” spontaneous tempo was significantly faster than the rest of

the participants’ “fast” tempi. ASHLE was not able to show stable activity as a result of this

tempo difference. In all simulations in this experiment there was no stimulus (F = 0). Other

than f0 and the initial conditions for fs(0) = fm(0), all simulations shared the same parameter

values (see model optimization below). After each simulation, we identified the location (in

milliseconds) of local maxima in the real part of ASHLE’s zm. Then, we measured the differ-

ence between consecutive peaks to analyze how IBIs change over the course of a simulation.

For each simulation we carried out a linear regression over the IBIs to obtain a slope value.

Consistent with the methods in the human experiment to obtain the adjusted slope, the slope

of each simulation in the control condition where fs(0) = fm(0) = f0 was subtracted from the

slope obtained in the experimental conditions (fs(0) = fm(0) 6¼ f0). After accounting for numer-

ical error we observed that ASHLE had slope of virtually zero when fs(0) = fm(0) = f0. We aver-

aged adjusted slopes across ASHLE models to obtain the plot in Fig 3B. We also simulated

how different ASHLE models with specific f0 values (with period lengths linearly spaced

between 350ms and 650ms) would carry out this task when the initial conditions for fs(0) =

fm(0) were a period 45% shorter (fsð0Þ ¼ fmð0Þ ¼ 1000ms
0:55�SMPms), 30% shorter

(fsð0Þ ¼ fmð0Þ ¼ 1000ms
0:70�SMPms), 15% shorter (fsð0Þ ¼ fmð0Þ ¼ 1000ms

0:85�SMPms), 15% longer

(fsð0Þ ¼ fmð0Þ ¼ 1000ms
1:15�SMPms), 30% longer (fsð0Þ ¼ fmð0Þ ¼ 1000ms

1:3�SMPms), and 45% longer

(fsð0Þ ¼ fmð0Þ ¼ 1000ms
1:45�SMPms) than ASHLE’s f0 period. Fig 3C shows the results of these simula-

tions, which are predictions of musician data that could be collected to test the accuracy of pre-

dictions made by ASHLE.

Model optimization. We identified the parameter γ that results in ASHLE’s return to f0
when there is no stimulus present (F = 0) and the initial values of fs(0) = fm(0) 6¼ f0. To optimize

ASHLE we use the same setup as in our original parameter analysis with the exception that ini-

tial conditions for fs(0) and fm(0) were set to one of four different values: period 45% shorter

(fsð0Þ ¼ fmð0Þ ¼ 1000ms
0:55�400ms), 30% shorter (fsð0Þ ¼ fmð0Þ ¼ 1000ms

0:70�400ms), 15% shorter

(fsð0Þ ¼ fmð0Þ ¼ 1000ms
0:85�400ms), 15% longer (fsð0Þ ¼ fmð0Þ ¼ 1000ms

1:15�400ms), 30% longer

(fsð0Þ ¼ fmð0Þ ¼ 1000ms
1:30�400ms), and 45% longer (fsð0Þ ¼ fmð0Þ ¼ 1000ms

1:45�400ms) than ASHLE’s f0 period.

In all simulations there was no external stimulus (i.e., F = 0). We analyzed the behavior of

ASHLE for γ values of 0.01, 0.02, 0.04, 0.08. In each simulation, ASHLE oscillated for 50
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seconds with initial conditions zs(0) = zm(0) = 0.001+ i0. Next, we found the location (in milli-

seconds) of the local maxima in the real-part of the oscillatory activity of zm. Then we found

the difference between consecutive local maxima to obtain a sequence of IBIs. We calculated

the linear regression between consecutive IBIs to obtain the resulting slope. Each line in Fig

8A shows the slopes obtained with different γ values and different initial conditions for fs(0)

and fm(0). This analysis revealed that a value around γ = 0.02 will match the range of slope val-

ues observed in human data.

Finally, to determine if ASHLE really needs two oscillators, we also ran this analysis with an

alternative single-oscillator model that consists of ASHLE’s Eqs 3a and 3b where fm is substi-

tuted by f0. Fig 8B shows the resulting slope values, revealing an order of magnitude increase

in slope values. Such a single-oscillator model would need separate tuning and switching of the

parameter pulling the oscillator to f0 to be able to explain the data in experiments 1 and 2.

ASHLE, in contrast, natively shows two different time-scales depending on whether it is being

stimulated or not, allowing it to explain both experiment 1 and 2 without the need for switch-

ing or tuning its parameters.

Experiment 3: Duet musical performance between musicians with

matching or mismatching SMTs

Behavioral data for simulation. In another experiment, Zamm et al. [10] measured the

SMP of 40 musicians and formed duets in two experimental groups: matching SMPs (<10ms

IBI difference) and mismatching SMPs (>110ms IBI difference). There were 10 unique musi-

cian duets in each experimental group. Musician pairs were instructed to perform a simple

unfamiliar melody together (16 beats in length), repeating the melody four consecutive times

Fig 8. ASHLE slope values as a function of γ and initial frequency in the absence of a stimulus. (A) The effect of the γ parameter on the slope values

between consecutive period lengths when ASHLE oscillates without a pacing stimulus, starting at a frequency that has a period 45% shorter

(fsð0Þ ¼ fmð0Þ ¼ 1000ms
0:55�400ms), 30% shorter (fsð0Þ ¼ fmð0Þ ¼ 1000ms

0:70�400ms), 15% shorter (fsð0Þ ¼ fmð0Þ ¼ 1000ms
0:85�400ms), 15% longer (fsð0Þ ¼ fmð0Þ ¼ 1000ms

1:15�400ms), 30%

longer (fsð0Þ ¼ fmð0Þ ¼ 1000ms
1:30�400ms), and 45% longer (fsð0Þ ¼ fmð0Þ ¼ 1000ms

1:45�400ms) than ASHLE’s f0 period. (B) the same simulations but with an alternative

single-oscillator model, showing a one-order-of-magnitude increase in the slope values.

https://doi.org/10.1371/journal.pcbi.1011154.g008
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(64 beats total). When pairs of musicians performed the task, they first heard four metronome

beats (400ms IOI) that established the common tempo. Experimenters measured the absolute

asynchrony between each pair of synchronizing musicians throughout the entire performance.

Because the same melody was repeated four times, they measured each melody repetition sepa-

rately. Fig 4A shows their behavioral data. The mean absolute asynchrony between duets of

musicians was larger when their SMPs did not match compared to when they matched.

Setup, procedures and measurements. To obtain the musicians’ SMPs, we overlaid a grid

over Figure 1 from their paper [10], which showed each musician’s measured SMP (in their

original paper, the authors call the SMP as the “SPR”). This allowed us to precisely recover

each musician’s SMP. We simulated 20 pairs of ASHLE models (10 pairs with similar natural

frequencies and 10 pairs with dissimilar natural frequencies) synchronizing during 64 cycles.

All simulations shared the same parameter values and initial conditions used in our experi-

ment 1, except for the coupling strength between synchronizing ASHLE models (see model

optimization in the next paragraph) and f0, which had a period that matched the SMP of a

musician in the study. At the beginning of the simulation, two ASHLE models were stimulated

by a complex-valued sinusoid x(t) = exp(i2π fxt) with a period of 400ms (fx = 2.5). After these

four cycles of sinusoidal stimulation, the stimulus stopped and the two ASHLE models stimu-

lated each other with their respective zm. That is, in each duet simulation, after four cycles of

sinusoidal stimulation, the input to the ASHLE No.1 was Fzzm2
and the input to ASHLE No.2

was Fzzm1
, where Fz is the forcing strength between ASHLE models. After each simulation, we

identified the location (in milliseconds) of local maxima in the real part of each ASHLE’s zm.

Then, we measured the absolute asynchrony between the two synchronizing ASHLE model’s

zm, obtaining 64 absolute asynchronies for each simulation. We divided these in four subsec-

tions (16 absolute asynchronies each) to simulate the four melody repetitions that pairs of

musicians carried out, resulting in Fig 4B. We also simulated how different ASHLE models

(with f0 periods linearly spaced between 350ms and 650ms) would carry out this task when

synchronizing for 16 cycles with another ASHLE model with an f0 period difference of -220ms,

-110ms, -10ms, 10ms, 110ms, and 220ms. Fig 4C shows these simulations, which are predic-

tions of data that could be collected to test the accuracy of predictions made by ASHLE.

Model optimization. There were two kinds of stimulation in this third experiment. Dur-

ing the first four cycles, similar to experiment 1, ASHLE was simulated by a sinusoid x(t) = F
exp(i2π fxt) with a force F = 1 and fx = 2.5. During the next 64 cycles, two ASHLE models syn-

chronized with each other, so the input to the first ASHLE model is the second ASHLE model’s

Fzzm2
and the input to the second ASHLE model was the first ASHLE model’s Fzzm1

. We found

that using an Fz = 1 resulted in a lack of phase-locked synchronization between the two

ASHLE, suggesting that Fz = 1 is too large and causes unstable dynamics between the two inter-

acting ASHLE models. To improve stability, we reduced the value of Fz until we observed stable

synchronization between all pairs of ASHLE models that we want to simulate, with the optimal

Fz = 0.01. However, we also noted that the mean absolute asynchrony was considerably smaller

between pairs of ASHLE models with similar f0 compared to the results for musician duets with

matching SMTs. We believe that this difference was due to the lack of noise in our model. To

improve our simulations we added gaussian noise to ASHLE’s zm turning Eq 3c into:

1

fm
_zm ¼ zm aþ i2pþ bjzmj

2
� �

þ expðiffzsÞ þN ðm; s2Þ; ð4Þ

where μ = 0 is the mean and σ = 10 is the standard deviation of a normal distribution. Fig 4B

shows the results obtained after we added the noise, which better approximate the behavioral

data.
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