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HECKE ALGEBRAS AND CHARACTERS

OF PARABOLIC TYPE OF FINITE GROUPS

WITH (B, N)-PAIRS

by C. W. GURTIS, N. IWAHORI, and R. KILMOYER (1)

INTRODUCTION

The purpose of this paper is to discuss the structure of the Hecke algebras (or

centralizer rings) H(G, P) of a finite group G with a (B, N)-pair, with respect to an

arbitrary parabolic subgroup P of G, and to discuss the irreducible complex characters

of G corresponding to one-dimensional representations of H(G, P), in the sense of

Gurtis-Fossum [6]. These characters are constituents of the permutation character ij,

where B is a Borel subgroup of G, and in some cases all irreducible constituents of i§

are of this type. Such characters, which are precisely those which appear with multi-

plicity one in some permutation character i^, where P is a parabolic subgroup of G,

are called characters of parabolic type.

Here is a survey of the contents of the paper. The first section contains the

known results on the properties of a basis ofH(G, B) corresponding to the double cosets

relative to B, and the introduction of the generic ring of Tits corresponding to the

Goxeter system (W, R) of the (B, N)-pair of G. In § 2, the Hecke algebras H(G, Gj)

corresponding to arbitrary parabolic subgroups Gj, with JcR, are studied by means

of suitable generic rings, and it is proved that for all JcR, H(;(G, Gj)^ Hc(W, Wj),

where W is the Weyl group, and Wj the parabolic subgroup of W defined by the subset J

of the set of distinguished generators R, and C the complex field. A criterion for commu-

tativity of H(G, Gj) in terms of the distinguished double coset representatives of Wj

in W is obtained in § 3. These results were announced by Iwahori [12].

In § 4, characters of parabolic type are introduced, and formulas for their degrees

and primitive idempotents in the group algebra CG affording them are given, following

(1) The work of Curtis and Iwahori was supported in part by Air Force Office of Scientific Research grant
AF-AFOSR-1468-68, and Curtis' also in part by a grant from the National Science Foundation.
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82 C. W. C U R T I S , N. I W A H O R I A N D R. K I L M O Y E R

Gurtis-Fossum [6]. Further discussion of these characters depends on the concept of

a system {G{q)} of finite groups with (B, N)-pairs, all with the same Goxeter system,

and parametrized by some infinite set of prime powers {^}. All the Chevalley groups

and twisted types belong to such systems. Generic rings corresponding to parabolic

subgroups {Gj(<7),JcR} of groups G(q) in the system are defined, which are algebras

over the polynomial ring Q \u\ of polynomials in one variable with rational coefficients.

Generic idempotents are constructed in these generic rings, which specialize to primiiive

idempotents affording characters of parabolic type, of groups {G{q)} in the system.

For each linear representation cpofa generic ring, for some J C R, in an algebraic closure K

of K==Q^), a generic degree d^, belonging to K, is defined, with the property that all

degrees of characters of parabolic type, corresponding to the representation <p, of

groups {G(y)} in the system, are obtained by specializing d^. In particular, if 9 is a

rational character, taking values in Q,[u] on the basis elements of the generic ring, then

the generic degree d^e(^[u]. When this occurs, the degree of the corresponding cha-

racter of G(^), for each q, is a polynomial in q with rational coefficients.

In §§ 6 and 7, further remarks on rationality of characters of generic rings are

given, along with methods to determine which characters of groups in the system {G(q)}

are of parabolic type in terms of the Weyl group.

In § 8, the irreducible representations of a generic ring corresponding to a Goxeter

system of dihedral type are constructed explicitly. It is then shown how to construct,

for every finite irreducible Coxeter system (W, R), irreducible representations of the

generic ring of (W, R) corresponding to the reflection representation of W, and its

exterior powers (Kilmoyer [13]). If (G, B, N, R) is a finite group with a (B, N)-pair

of type (W, R), then the characters of G corresponding to the reflection representation

of W and its exterior powers are shown to be distinct, and of parabolic type. Explicit

formulas for the generic degrees of the irreducible characters corresponding to the

reflection representation of all known systems of groups with (B, N)-pairs are given
in § 9-

In § 10 the one-dimensional representations of the Hecke algebras H(G, B) are

discussed, and explicit formulas for the corresponding generic degrees are given for all

known systems of groups with (B, N)-pairs.

i. Finite groups with (B, N)-pairs and Hecke algebras corresponding to Borel

Subgroups.

This section is a summary of known results, originally proved by Iwahori,

Matsumoto, and Tits. All are either proved or appear as exercises in Bourbaki [3],

and we shall not attempt to give the original source of each result.

We shall be concerned with finite groups with (B, N) -pairs (or Tits systems) (G, B, N, R).

Then H =B n N is a normal subgroup of N, and the Weyl group W== N/H of G admits
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HECKE ALGEBRAS AND CHARACTERS OF PARABOLIC TYPE OF FINITE GROUPS 83

a Coxeter system (W, R), with set of distinguished generators R. This means that W has

a presentation with a set of generators R and defining relations

( 1 . 1 )
r2^!, reR

( r J•••)^=(J r•••)n^ r,^eR,r+^

where [ah. . .)^ denotes a product of alternating a's and 6's with m factors, and n^ is
the order of rs in W.

There is a bijection between the double cosets B\G/B and the elements weW,

given by w\->Kw^, and resulting in the Bruhat decomposition of G

(1 .2) G= U BwB.
wew

More generally, let JcR; then J determines ^parabolic subgroup Gj==BWjB, where

Wj=<J>, and for J,J'cR, there is a bijection between Wj\W/Wj, and Gj\G/Gj,

given by 3h>B3B, 3eWj\W/Wj., of which the Bruhat decomposition is a special
case.

Definition (1.3). — Let A: be a field of characteristic zero, and let P be a subgroup

of a finite group G. Let ^ = = [ P [ ~ 1 S x be the idempotent in the group algebra kG

affording the i-representation of P. The Hecke algebra H^(G, P) is defined to be the
subalgebra ofA:G given by e(kG)e.

The importance of the Hecke algebra, from our point of view, is that it is isomorphic

in a natural way with the centrali^er ring B.om^{kGe, kGe) of the left AG-module kGe,

which affords the induced representation i^, where ip is the i-representation of P.

It is easy to check that the " characteristic functions " S x on the double
xeQ

cosets ©eP\G/P form a basis for the Hecke algebra H^(G, P). It will be convenient

to refer to the standard basis of H^(G, P) as the elements

^m^' Qepwp-
The constants of structure {^ee'e"} given by

a/ V „ ft"
3 ==^CQQ,Q,^

Q"

are all integers (for the standard basis).

The structure of the Hecke algebra H^(G, B) of a finite group with a (B, N)-pair,

with respect to a Borel subgroup B, was worked out by Iwahori [n] (for the Chevalley

groups) and Matsumoto [17] in general. Letting {o^, weW) denote the standard
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84 C. W. C U R T I S , N. I W A H O R I A N D R. K I L M O Y E R

basis, indexed via the Bruhat decomposition (1.2) by the elements of the Weyl group,

the multiplication in H^(G, B) is determined by the formulas

^^=0^, reR, weW, l(rw)>f[w),

a,a^==^a^+(^-1)^, reR, weVf, l{rw)<l[w),
(1.4)

where the {^, reR} are the index parameters^ given by

(1.5) ^r=[B: (BnrBr)]==ind72,, Tz.eBrBnN.

From (1.4) it was proved by Iwahori and Matsumoto that H^(G, B) has a presentation

with generators {oc^., reR} and relations

(1.6)
a^^+^r-Qa,, reR,

(^a,. . .)^=(a,a,. . .)^, r, ^eR, r+^

where ^ = oq == [ B |~'1 S ^ is the identity element in H^(G, B), the {^} are given by ( i . 5),
x G B

and the {n^} by ( i . i).

In order to compare the Hecke algebras H^(G, B) with the group algebra A:W,

Tits introduced the generic ring A corresponding to the Coxeter system (W, R), as follows.

Let {iiy, reR.] be indeterminates over k, chosen so that ^==^ if and only if r and s

are conjugate in W. Let 0 be the polynomial ring k [u^; r e R], and let K be the quotient

field of D. Then there exists an associative D-algebra A, with identity, with a free

basis {a^, w eW} over 0, and multiplication determined by the formulas, for reR, w eW,

(1.7)
ara»=a^, t(rw)>t{w)

a,a^,==u,a^+(u,-i)a^,, l(rw)<t{w).

As in the case of the Hecke algebras, the generic ring A has a presentation with gene-

rators {a,, reR} and relations

(1.8)
^=^,i+(^r—1)^ reR,

{a,a,.. .)^=(^,. . .)^. r
.
 JeR

. ^^

with n^ as in ( i . i).

Now let L be any field, and let f : 0->L be a homomorphism. Then L becomes

an (L, 0)-bimodule via (X, X', x) \-> XX'/(A:), X,X'eL, ^e0. Thus we can form the

specialised algebra A^ ^ = L ® ̂  A. Then A^ ̂  is an algebra over L with basis { a^ = i ® ̂ },

whose constants of structure are obtained by applying f to the constants of structure

of A. On the other hand, L can be viewed as an (0,0)-bimodule, and A^ ^ as an algebra

over 0, where A:a==/(^)a, xe!D, aeA^.. Then f can be extended to a homomorphism

ofO-algebras y:A->Ay.L, such that f[a^) == a^ for all weW.
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HECKE ALGEBRAS AND CHARACTERS OF PARABOLIC TYPE OF FINITE GROUPS 85

Some specialized algebras of A are especially noteworthy. Letting f^ : 0 ->k be

defined by To (^.)== i for all reR, one has

(i.9) A^^W.

Now let f:!D->k be defined by f{Uy)==qy, reR, where the {^} are the index para-

meters (1.5). Then

(i. 10) A,^H,(G,B).

We conclude this preliminary section with a basic theorem, due to Tits. We

first define, for a separable algebra S over a field K, the numerical invariants of S to be

the integers {yzj such that

S1 ̂  © M^(K) (direct sum),

where the M^(K) are total matrix algebras over K, an algebraic closure of K.

Theorem ( 1 . 1 1 ) . — Let A be an associative algebra over an integral domain 0 with

quotient field K, such that A has a finite basis over 0. Let L be a field, and y:D-^L a

homomorphism. Let A^L==L®^A be the specialised algebra^ and suppose that A^ is a sepa-

rable algebra over L. Then AK is separable over K, and the algebras AK and A^ ̂  have the same

numerical invariants.

For the benefit of the reader who wants to avoid doing exercise 26, p. 56 of

Bourbaki [3], and because we shall need to use the details of the proof later, we refer

to a proof of this theorem in Steinberg's notes ([20], Lemma 85, p. 249).

From this theorem, together with (1.9) and ( i . 10)3 we deduce that the algebras kW

and H^(G, B) have the same numerical invariants, and are isomorphic ifk is algebraically

closed.

2. Hecke algebras corresponding to parabolic subgroups.

The main result of this section is the following theorem which was announced

by Iwahori [12].

Theorem (2.1). — Let k be afield of characteristic ^ero, and let G be a finite group with a

(B,N)-j^zr, with Coxeter system (W, R). Let JcR, and let Wj==<J>, Gj==BWjB.

Then the Hecke algebras H^(G, Gj) and H^(W, Wj) have the same numerical invariants, and

are isomorphic if k is algebraically closed.

Because of the interpretation of Hecke algebras as centralizer rings of induced

permutation representations, this theorem implies the following result.

Corollary (2.2). — Let {G, W,J} be as in Theorem (2 .1) , and let k be a splitting field

of characteristic wo for G and for W. Let

I^ :=IG+^l+•..+^,

and i^=iw+^i+.. .4-^,
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where the {^} and {xj are distinct irreducible characters. Then s==t, and for a suitable rearran-

gement^ we have m^==n^ i.^^^.

Before giving the proof of Theorem (2.1), we require some lemmas. We assume

throughout that A; is a field of characteristic zero.

Lemma (2.3). — Let G be a finite groups and let S and T be subgroups such that G>S>T.

Let T\G/T={©J^, and let {6j^ be the standard basis of H^G, T). Let S\G/S={3j^M-

For each double coset 3^, let ^= S 6^. Then the {S^eM form a basis of H^(G, S).
^^(A

The proof is immediate, since each ^ is a multiple of a standard basis element

ofH,(G,S).

Now let (W, R) be as in Theorem (2 .1 )3 and let 0 = k [Uy; r e R], and A the generic

ring with basis {^J, associated with (W, R), and defined in § i. For JcR, let

Wj\W/Wj={3,}^,

and for each double coset 3^, set

Sx= 2 ^ xeA-wes^

Finally, set e== S a,,,.
wewj w

We shall prove that the {^} form a basis of an 0-subalgebra of A which has as specia-

lizations the algebras H^(G, Gj) and H^(W, Wj). As a first step, we have the following

result.

Lemma (2.4). — Let S be a non-empty subset of W such that Wj 3=3. Put ^ = 2 a^.

Then a^=u^ for all r e j .
w £ S

Proof. — For each rej, there exists a partition

W=W+(r)uW_(r),

where W+(r)=={weW; l(rw)>£{w)}, W_(r)=={^eW : l(rw)<f{w)}. An element we"W

belongs to W^. (r) if and only if w does not have a reduced expression from R starting

with r. Therefore

rW+(r)==W_(r).

The set 3 also has a partition

3=3^(r)u3_(r),

where 3+(r)==W+(r) n 3, 3_(r)=W_(r) n3, and

(2.5) r3+(r)=3_(r), rej.

Putting ^== S a^, ^"= S ^, and using (1.7) and (2.5), we obtain
w e 3+(r) w G 3_(r)

<^'=r,

^"=^'+(^-i)r.
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HECKE ALGEBRAS AND CHARACTERS OF PARABOLIC TYPE OF FINITE GROUPS 87

Since ^=S'+S", it follows that

a^=a^+a^==u^

as required.

Corollary (a. 6). — For all XeA and rej,

^r^^r^r^A-

Lemma (2.7). — TA^ .̂njly a unique homomorphism of 0-algebras v : A->-0 ^^A

^^ v(^)==^ y^r reR a^ v(i)=i.

Proof. — Because A has the presentation (1.8), it is sufficient to prove that v

preserves the defining relations. The only one that is not obviously preserved is

{ar^'")nrs=^asar"')nrs^

in case n^ is odd. But in that case, r and s are conjugate in W, and Uy==Ug, so that the

relation is satisfied after v is applied. This completes the proof.

The next result is an exercise in Bourbaki ([3], Ex. 3, p. 37) and will be used

in the proof of Theorem (2.1) and in § 3.

Lemma (2.8). — Let J,J'cR. There exists a unique element uf of minimal length

in Wj^Wj.. This element is characterised by the condition that f(w^w*)==l{w^)-\-l(w*) and

f(w*w^)==f{w*)-{-f{w^) for all z^eWj, z^eWj.. In particular, by letting J or J' be empty,

it follows that a coset VfjW (for example) contains a unique element w* of minimal length, which

is such that £{ww*)=£{w)+l(uf) for all weWj.

Lemma (2.9). — Let N==Max^(w). Then E==v(s) is a monic polynomial in 0

of total degree N. In particular E 4= o.

We can now prove the important result that the {S^; XeA} form a basis for a

subalgebra of A.

Lemma (2.10). — The elements {^; XeA} form a basis for an Q-sub algebra H(R,J)

of A. An element aeA belongs to H(R,J) if and only if ea=ae=}La.

Proof. — We first prove that for all weWj and XeA,

( 2 . 1 1 ) ^x-^J^.

Let w=r^...r^ r^e], be a reduced expression. Then ^==^ . . .^ , and by

Lemma (2.4), we have

^=^)- • •^)Sx=^J^-

From (2.11) it follows that if a e SD^, then ea = ae == Ea.
A

In order to prove the Lemma, it is sufficient to prove that, conversely, if

go === as = Efl, then aeTiD^. Put a==Tix^, x^eO, and for rej, put
A w

fl'== S A: ^ , a"= S x^.
wew+(r) w w wew_(r) w w

87
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Since za = Ea, and ^ s = ̂  s by (2.11), we have

^£fl===^Ea==^Ea, rej

and, upon cancelling E (because A is a free module over an integral domain) we have

(2-1^) a^a==u^a, re].

Now, from rW+(r)=W_(r), it follows that

^'^.^(/-^^.e^)^^

and ^^^^u^+^-i)^)

-^Le^^^+^-^Le^)^^-

From (2.12), we get a^a'-\-a")=u^a'-^a"), and comparison with the equations above
implies that

x^=x^ ^eW,_(r)uW+(r).

Therefore x^=x^ for all weW and rej. Similarly x^=x^ for weW and rej,

and it follows that a is a linear combination of the {^; XeA}. This completes the proof
of the Lemma.

Proof of Theorem (2.1). — We shall apply the deformation theorem (1.11) to the

0-algebra H(R, J). Let /: 0 ->k be an epimorphism. Then H(R, J) is an 0-subalgebra

of A with a basis over D consisting of the elements {^; \ e A}. Since/is an epimorphism,

yW^J)) is a A:-subalgebra of A^j, with A;-basis {/(Sx);XeA}, and it is clear that

yW^J^^R.J)^ as A;-algebras. Now let /o:0-^A; be the map defined by

/o^r)^1? r6R- Since A^^^KW by (1.10), an application of Lemma (2.3) with

G^W, S->Wj, T-^{i}, shows that H(R,J)^^^H,(W,Wj). Now let /: 0 ->k be

defined by f(u,)=q,, reR. Then A^H^(G,B) by (1.10). We can now apply

Lemma (2.3) with G->G, S-^Gj, T->B. Then H(R,J)^^ is isomorphic to the

subalgebra of H^(G, B) generated by f(^)== S a^,, for XeA, and {aj is the standard
w £ S ^

basis of H^(G, B). From the Bruhat decomposition it follows that/(^) is the sum of the

standard basis elements whose double cosets lie in BS^BeGj\G/Gj. By Lemma (2.3),

H(R,J)^fc^H^(G, Gj). An application of Theorem (1.11) completes the proof.

3. Commutativity of Hecke algebras corresponding to parabolic subgroups.

As an application of the results in § 2, we give a criterion, in terms of properties

of Weyl groups, for the Hecke algebras H^(G, Gj) to be commutative. This condition

is equivalent to the statement that the absolutely irreducible characters ^ appearing

in i^j all appear with multiplicity one.
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HECKE ALGEBRAS AND CHARACTERS OF PARABOLIC TYPE OF FINITE GROUPS 89

Before proceeding, we first establish some notations. Let J,J'cR. By

Lemma (2.8), there exists a set W^ j, of elements uf such that each uf is the unique

element of minimal length in the double coset WjZ^Wj. containing it. An element

z^eW^j, if and only if ^(rw*)^/(^) for all rej and ^V)^(z^) for all r'ej'.

Theorem (3.1). — Let k be afield of characteristic ^ero. The following conditions concerning

a finite group with a (B, 'N)-pair (G, B, N, R), and a parabolic subgroup Gj, for some JcR,
are equivalent.

(i) The Hecke algebra H (̂G, Gj) is commutative.

(ii) Each absolutely irreducible character ^ appearing in i^ has multiplicity one

M.)-!.

(iii) Each double coset QeGj\G/Gj has the property that ©==©-1.

(iv)-(vi) Same as (i)-(iii) for H^W, Wj), components ?:ei^, and double cosets

SeWj\W/Wj.

(vii) Each element of W^ j is an involution.

Proof. — Statements (i)-(iii) are equivalent to (iv)-(vi) respectively, by

Theorem (2.1) and Corollary (2.2) and the Bruhat decomposition, and we shall

now prove the equivalence of (iv)-(vi). (iv) and (v) are well known to be equivalent,

and the implication (vi) => (iv) is also known. In more detail the antiautomorphism

Sx^^S^w""1 of AW restricts to an antiautomorphism of H^(W, Wj) which maps a

standard basis element ^ corresponding to SeWj\W/Wj onto the standard basis

element associated with S~1. Statement (vi) implies that this antiautomorphism is

the identity on H^(W, Wj), and hence H^(W, Wj) is commutative.

We next prove that (iv) and (v) imply (vi). For this purpose we use the fact

that there exists a mapping c which assigns to each complex character t^ofa finite group G
an integer c{'Q such that

a) c^+^)=c^)+c^).

b) ^), for an irreducible character ^, is either i, — i or o according as ̂  is afforded

by a real matrix representation of the group, or ^==^ but ^ is not afforded by a real

representation, or ^4=S (here $ is the complex conjugate of ^).

The function c was shown by Frobenius and Schur to be

c^=——^W.
[U- I^GG

(See Feit [9], § 3.) For another definition of c, see Mackey [i6], p. 389.

The next result needed for the proof is the result due to Frame [10] (see also
Mackey [i6], p. 396) that for a permutation representation i^,

c ) c{i^)= number of double cosets QeP\G/P such that ©==©-1.

The final ingredient needed for the proof is the fact that for all irreducible complex
characters ^ of a Coxeter group W,

89

12



90 C. W. C U R T I S , N. I W A H O R I A N D R. K I L M O Y E R

d) ^)=I.

This is the result of, first, the fact that the characters of a Coxeter group are all

real valued, and second, the deeper result (see Benard [i] for the cases Eg, Ey, Eg and

a survey of the investigations of different classes of Coxeter groups) that all the irreducible

characters of finite Goxeter groups have Schur indices equal to one.

Now assume (v), that H^(W, Wj) is commutative. By (v), i^ = iw+^i+ • • • +^-i,
where the ^ are distinct absolutely irreducible characters, and ^=|Wj\W/Wj|.
Applying a ) , b) and d ) we have

cW=t

which by Frame's result c ) is the number of self-inverse double cosets. Combining the
results, we have (vi).

Finally, the equivalence of (vi) and (vii) is proved as follows. The implication

(vii)^(vi) is clear. Assume (vi), and let ^eW^j. Since Wj^Wj^WjZ^Wj)-1,

(w^eWj^Wj. But ^(w*)~~
l
)=^w*), and by the uniqueness of the element of

minimal length in Wj^Wj stated in Lemma (2.8), it follows that w*=(w*)-1. This
completes the proof of the Theorem.

Examples. — Using Theorem (3.1), it can be proved that the Hecke algebras

H(G, Gj) corresponding to maximal parabolic subgroups are all commutative, in case

the Weyl group is of type A^ (^i), B^ (^2), G^ (^2) or D^. This result is not

true for D^, however. Letting the elements ofR be numbered according to the Dynkin
diagram

^° 4

i 2 3 ^-o 5

for J=R—{ r3}3 W^j contains an element which is not an involution, namely

r3r2rlr4r3r5r2r3•

A similar example exists for type F4.

We shall give a brief outline of the method used to determine the double coset
structure Wj\W/Wj., in these and other examples.

Starting from a Goxeter system (W, R), and a subset JcR, we let 0. denote the

left coset space W/Wj. If peQ. denotes the left coset Wj, then W acts as a transitive

permutation group on Q, in such a way that the stabilizer ofp is Wj.

Any set on which W acts transitively, containing a point p for which the stabilizer
is Wj, can be identified with 0..

We associate a graph F with the pair (W, Q) as follows:

(i) the vertices of F are exactly the points of Q., and

(ii) if ^eQ, q^eQ,, reR satisfy

rq^q^ and q^q^,
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HECKE ALGEBRAS AND CHARACTERS OF PARABOLIC TYPE OF FINITE GROUPS 91

then the two vertices ^, q^ are connected by an edge marked by r:

0——————————0

?1 ?2

When this is the case, we say that q^ is adjacent to q^ in the graph F.

Also we define a map

X : Q-^o, i, 2, ...}

as follows: X(j^)=o; if qeO,—{?}, then X(y) is the smallest positive integer k such that

there exists a sequence q^, q^, . . ., q^ of points of Q, satisfying

P=9o, ?==^

q^ is adjacent to q^^ (2=0, i, . . ., k—i). \{q) is called the distance of </ from p.

Now let K be a subset of R. In order to describe the double coset space

Q^ j ==WK\W/WJ in a pictorial way, we can use the partition of vertices of F into

W^-orbits. One has then the following facts.

1. Remove all the edges in F of the form o———o ( reR—K) . Then one obtains

a subgraph I\ of F. Furthermore there is a bijection of the double coset space Q^ j

onto the set F^ of connected components of the graph F^ as follows:

^K,J^^K.

W^wWji-^the connected component of F^ containing wp.

In fact, two points q^, q^ of Q are in the same W^-orbit if and only if there exists

a sequence r^y . . ., r^ of elements in K such that r^. . 'r^=q<^. However this means

that <7i and q^ belong to the same connected component of F^.

2. For a point q^wp of £1, \{q) is given by

\(q)=='M.mf(wG\
'•^ oeWj v / ?

where /'(r) is the length of reW with respect to R.

This is seen by recalling the definition of/^r).

3. Let A be a connected component of F^ and let X be the set of vertices in A.

Then there is a unique point ^eX such that

xw=^x(j/).

Furthermore, if x==r^... r^p, m==X(^), ^eR, ..., r^eR, then r^g... r^==w is
the unique element in the double coset W^Wj for which the length relative to R is the

smallest.

Taking 2. into account, this is shown by Lemma (2.8).
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IfW^ and Wj are both finite groups, then there is a unique point ^;eX such that

X(^=^axX(^)

and a similar statement as above is also true.

In the following examples, we consider the case of a Weyl group W. Let

{oci, . . ., o^} be a set of simple roots in some ordering of roots. Denote by w^ the

reflection w^ associated with a,. Then R=={^ ...,z^} generates W and (W, R)
is a Coxeter system.

Example 1. — (W, R) is of type (€5)

a! 02 ^3

ti=the set of all short roots;

p ==the dominant short root;

J =={w^ w^ w^ w,}==R-{w^}

r:

=o (Dynkin diagram)
^

By computing the connected components. of F^ for K==[w^, w^, ̂ 3, wJ, one

has | WK\W/WJ | = 3. Furthermore, for each connected component of F^, one has the

following representative point minimizing the distance from the point p:

p, w^w^w^p, w^w^w^w^w^w^p.

Hence WK\W/WJ is represented by

I, W^W^W^, W^W^W^W^W^W^W^.

Example 2. — (W, S) is of type (Eg)

0———

a!

c

———0——————(„

ag 03 ocg

3 OC4

———0

^
J=={^2, ^3? ^45 Wg, Z£;6)

"-^ '"'̂ '̂̂
^^
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(Q may be taken to be the set of weights in the fundamental irreducible

representation of the complex simple Lie algebra (Eg) with the highest weight

A
!
 =

 o (4^1 + 5^ + 6oc3 + S^ + 4°^ + sag).)

A graph F can then be constructed as in Example i. Setting K ==J, the resulting

graph Fj has 3 connected components.

Hence [Wj\W/Wj|=3 and Wj\W/Wj is represented by

I, ^2? W^W^W^W^W^W^.

Since these three elements are all involutive, the Hecke algebra H(W, Wj) is commutative

(by Theorem (3.1)).

4. Irreducible characters of parabolic type.

The results on the structure of the Hecke algebras H^(G, Gj) in §§ 2 and 3,

together with the methods of Curtis and Fossum [6], suggest an investigation of the

following type of character.

Definition (4.1). — Let G be a finite group with a (B, N)-pair, and let A: be a splitting

field for G, of characteristic zero. An irreducible character ^ of G afforded by an

irreducible A;G-module is said to be of parabolic type provided that there exists a parabolic

subgroup P of G (depending on ^) such that (^, i^)=i. Similarly, a character ^ of

a Coxeter group (W, R) is of parabolic type if for some JcR, (^, i^j)=i.

By Frobenius reciprocity, if^ is of parabolic type, (^, i|)>o, where B is the Borel

subgroup of G. An unsolved problem is whether all irreducible characters ^ such

that (^, i^)>o, are of parabolic type. By Theorem (7.2) below, this problem is

equivalent to the corresponding problem for the Weyl group W of G.

The distinctive feature of characters of parabolic type is that their calculation

involves only the determination of the one-dimensional representations of the Hecke

algebras of the associated parabolic subgroups (see Theorem (4.4) below).

We begin with some preliminary remarks.

Lemma (4.2). — Let k be a splitting field of characteristic ^ero for a finite group G, and

let P be a subgroup of G. Then k is also a splitting field for the Hecke algebra H (̂G, P).

Proof. — Let e^ be a primitive idempotent in H^(G, P); then since H^(G, P) = ekGe,

with e=\'P\~
l
T^x, and e-^e==ee^=e^y

^H,(G,P)^=^G^.

Therefore e^ is a primitive idempotent in AG, and since A; is a splitting field for G,

e^kGe^=ke-^, This implies that k is also a splitting field for H^(G, P), and the Lemma

is proved.
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Lemma (4.3) (Curtis-Fossum [6], Theorem (1.1)). — Let G be a finite group with

a (B, ~N)-pair, and let k be a splitting field for G of characteristic ^ero. Let ^ be a character of

parabolic type, such that (^, i^)==i, for a parabolic subgroup P. Then ^[H^(G, P) is a one-

dimensional representation of H^(G, P), and conversely, every one-dimensional representation

ofH^G, P) is the restriction to H^(G, P) of a unique character of parabolic type ^ associated with P.

It is now necessary to recall some notations used in Gurtis-Fossum [6]. Let P be

a parabolic subgroup of G, and let P\G/P=={BS^B}^^, where Wj\W/Wj={3j^,.

Let {^}^^ be the standard basis ofH^(G, P), and for each X, let ̂  denote the standard

basis element corresponding to the double coset (BE^B)"1. For each XeAp, let

yz^eBS^B, and set

mdn^==[P:(Pnn^Pn^],

(or indpT^); then | P^P | == \ P | ind n^.

Theorem (4.4). — Let P be a parabolic subgroup of a finite group G with a (B, V)-pair,

and let k be a splitting field a/characteristic ^erofor G. Let <p : H^(G, P) ->k be a one-dimensional

representation of the Hecke algebra, with associated character of parabolic type ^, according to

Lemma (4.3). Then the following statements are valid.

(i) ? : ( i )=[G:P]{ S (ind^)-1^)^)}-1,
A(=Ap

(ii) b=W [G:P]-1 S (ind^)-1^-?),)^
A£Ap

is a primitive idempotent in kG affording the character ^.

(iii) Let C be a conjugacy class in G, and let g e (£. Then

W) = I GG(^)| , S (ind ̂ -^(^^y^K) { S (ind ̂ -^(^^^(T),)}-1,
X G Ap X G Ap

wA^ Yx( (£)=lpl - l |flnBsxB], XeAp.

Proof. — The first two statements are proved in Gurtis and Fossum [6]

(Corollary (2.5) and Theorem (3.1)). The third follows from (i), (ii) and the following

result of Littlewood [15]:

Lemma (4.5). — Let e= S \gg be an idempotent in the group algebra kG of a finite
g EG

group G over a splitting field k of characteristic ^ero, such that kGe is a minimal left ideal affording

the character ^ ofG. Let £ be a conjugacy class in G, and let geVi. Then

^)=|CMIJ_,V

This completes the proof of the Theorem.

A similar theorem holds for characters of parabolic type of Goxeter groups.

Examples (4.6). — The simplest examples of characters of parabolic type come

from the one-dimensional representations of the Hecke algebra of the parabolic group B
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itself. A one-dimensional representation (p of H^(G, B) must preserve the defining

relations (1.6), and it follows that

cp(a,)==^, or — i .

Using the fact that 9(oc^)=cp(aJ, for r, jeR, in case r and s are conjugate in W, it is

possible to determine all these homomorphisms (see Iwahori [n], p. 235, for the case

of the Ghevalley groups). There are two or four such representations according as the

irreducible Weyl group W has two or four one-dimensional representations. In this

section we discuss two of the representations 9, called Ind and (T, together with the

corresponding characters of parabolic type. A full discussion of all one-dimensional

representations ofH^(G, B) is given in § 10.

a) The homomorphism Ind is defined by Ind(aJ==ind ̂ , ^eB^B. It is the

restriction to H^(G, B) of the homomorphism of kG-^k afforded by the trivial represen-

tation IQ of G, and from Theorem (4.4), it follows that the corresponding character

of parabolic type is I Q ,

b ) The homomorphism a is defined by the formulas ^(aj^—i/^, weW.

The corresponding character of parabolic type is the Steinberg character ^ (Gurtis [5])

of G. Using (i) of the Theorem, we have

x(i)=ind^=[B : (Bn^BO]

where WQ is the unique element in W of maximal length. For a saturated (B, N)-pair

(Bourbaki [3], Ex. 5, p. 47), we have ind^=[B:H], from Richen [18]. This

proof of the formula ^(i)==[B :H] is independent of Solomon's theorem, used in

Gurtis [5], that the representation sgn of W given by sgn{w) == {—1)^ can be
expressed as

sgn=S (-i)l̂ .
J ^ K

From (ii) of the Theorem, we obtain for the idempotent b^ affording ^,

b
 X( I ) 2 (-^(w)
x [G :B]wew ind7^ aw<

5. Generic idempotents and degrees for characters of parabolic type.

The known finite groups of Lie type all occur in families, having the same Weyl

group, and parametrized by a set of prime powers. We first axiomatize this situation,

and then proceed to derive formulas for generic idempotents and degrees associated with

all characters of parabolic type of the groups in a family.

Definition (5.1). — A system y of (B, N) -pairs of type (W, R) consists of a Coxeter

system (W, R), an infinite set V^ of prime powers q, called characteristic powers, a set of
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positive integers {^;reR}, and for each ^e^^, a finite group G==G(y) with a

(B, N)-pair having (W, R) as its Coxeter system, such that the following conditions are

satisfied:

(i) Cy=Cg, for r, .yeR, if r and s are conjugate in W;

(ii) for each group G==G{q)ey, the index parameters (see (1.5)) are given

by ^==^5 for reR.

Examples. — Each Ghevalley group associated with a finite field of q elements,

with Coxeter system (W, R), belongs to a system of type (W, R), in which the set ^€8^

of characteristic powers q is the set of all prime powers q. In this case the index

parameters q^ are all q.

Examples of systems for which the parameters Cy are not all equal to one are

furnished by the twisted groups ofSteinberg, Suzuki, and Ree (see Steinberg [20], § n).

The set of characteristic powers of the system of twisted groups of Suzuki or Ree consist

of powers of a fixed prime number.

Lemma (5.2). — Let y be a system of type (W, R). For each group G{q)ey, and

each element weW, let w=r^...r^ be a reduced expression of w from R. Then for ^eB^B,

ind^^^--^.

Proof, — From Example (4.6) a), the mapping a^h-^indg^ is a homomorphism

H^(G,B)->A: for any field k of characteristic zero. From (1.4), w==r^...r^ implies

that a^,==a,. . . . <x.y , and the lemma follows, since ind^y == ^cr, reR.

Let y be a system of type (W, R), and let A: be a field of characteristic zero.

Let D==k[u] be the polynomial ring in one variable over k, with quotient field K.

Then there exists an algebra A(u) over 0, with a basis {^, weW}, and a unique asso-

ciative multiplication satisfying

^ ̂  f{rw)>f{w)
( 5 ' 3 ) araw~~ ^^+(^-1)^, l[rw)<l[w).

Moreover, this algebra has a presentation with generators {<2y; reR} and relations as

in (i .8). (See [3], p. 55, Ex. 23; the algebra A{u) is simply the specialized algebra A^. ^

of the generic ring A defined in § i, ( i . 7), for the specialization/such that u^-^u^, reR.)

The algebra A{u) will be called the generic ring of the system e97. For (70 A;, we shall denote

by A(q) the specialized algebra A(^)^ for the specialization /: u->q. Then we have

(5.4) A(^H,(G(^),B(y)), qe<g^

A(i)^A;W.

More generally, let JcR, and let Wj\W/Wj={3^; XeA}. From § 2, there exists

a homomorphism v : A->0 such that v^^::^^, reR. Letting s== S (2y,, E==v(s),
wCWj

there exists an 0-subalgebra H(R,J;«) of A{u) with a basis {i^.XeA}, whose
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elements ^ are characterized by the condition ^£==£^==E^. Finally, for qek, letting

H(R,J;(7)==H(R,J$M)^ for the specialization u->q, we have from § 2,

(5.5) H(R,J; <^H,(G(<7), G^)), ^<^

H(R,J;i)^H,(W,Wj).

We are now in a position to state the following result.

Proposition (5.6). — Let y be a system of type (W, R), with generic ring A{u). Let K

and k denote algebraic closures of K and k respectively^ and O* the integral closure of D in K.

Suppose the subalgebra H^R.J;^ of A^u^ has a one-dimensional representation 9. Then

cp(^)e0* for all ^eH(R, J; u). Letting f: u->q denote a specialisation of'0, for qe^^u[i^,

there exists a homomorphism f* :0*-^A: extending f. Then 9^:/(^) -^^(^(S))? for ^eH(R,J; u),

defines a one-dimensional representation of H^R.J;^. Moreover every one-dimensional repre-

sentation of a specialised algebra H(R,J; q)k, for qe^^u{i^ is obtained in this way from

some one-dimensional representation 9 o/^H(R,J; u) and some extension f* of f to O*.

Proof. — The fact that cp(^)e0* follows from a familiar argument concerning

group characters (see Gurtis-Reiner [7], p. 235) since H(R,J;^) has a basis whose

constants of structure belong to 0, and if y : H(R,J; u)->K. is a one-dimensional

representation, (p(s)=f=o since s is a multiple by E=t=o of the identity element in

H(R,J$ ^K. The existence of an extension/* of/is proved in Bourbaki [2] (chap. 5,

§ 2, no. i, Cor. 4 to Th. i). The existence of the representations cpy is clear from the

definition. Finally, let qe^^u{i}. By (5.5), the specialized algebra H(R,J;^) is

separable. By the deformation Theorem ( i . 11), the algebras H(R, J; ̂  and H(R,J; q)
k

have the same numerical invariants. It follows that 9+y' implies 9y=t=cp^ and that

every one-dimensional representation ofH(R,J$ q)
k is obtained in the manner we have

described. This completes the proof.

Theorem (5.7). — Let y be a system of type (W, R), and let A;, K be as in Proposition (5.6).

Let JcR, and let 9 be an arbitrary one-dimensional representation o/'H(R,J; ̂ ^ Let

^S^^^^^

where for XeA, ^ is the basis element of H(R,J; u) corresponding to the double coset S^1.

Then

?(^)+o

and (p^p)"1^^^ is a central primitive idempotent in H^R,^^ such that ^=9(^)^5

for ^eH(R,J; u). Let the generic degree associated with (p be defined by

(5.8) ^-y^)-1 2 v(aj.
W £ W

Now let ye^^u^i}, let f:Q->k be the specialisation u->q, and let f* be an extension of f

to O*. Then <p(^)~1 and d^ belong to the specialisation ring off*, so thatf*[e^) andf*{d^) are

97
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defined. Moreover^ f*{e'^) is a primitive idempotent in kG{q) or A:W affording the character of

parabolic type ^ associated with cpp and f*{dy)==^{i).

We first remark that from Proposition (5.6), each one-dimensional representation cp

of H(R,J;M) determines a one-dimensional representation ^ of H(R,J;^) for

each qe^u{i}. Since (5.5) asserts that H(R,J;^Hfe(G,Gj) or H^W, Wj),

Theorem (4.4), together with the remark at the end of the proof, imply that there do

exist characters of parabolic type associated with all the specialized homomorphisms cp^..

The proof of the theorem depends on the following lemmas.

Lemma (5.9). — Assume the notation of the theorem. Let f : u->q be a specialisation^

for some qe^SP^ let G denote G(y), and let the subgroups B and Gj be taken relative to G. Then

/(E)=[Gj:B] and /(v(^))-(ind^^)/(E),

where ^eBS^B. Similarly^ if fo is the specialisation u->i, then

/o(E)=|Wj| and /o(v(^))=(md^^)/o(E),
where w^eS^.

Proof. — We have, from § 2,

s= S ^, ^= S ^, S.eWAW/Wj,
wGWj w£a^

and E==v(s). Then from the definition ofv and Lemma (5.2), we have, for ^eB^B

/(E)= 2-ind^, ./M^))- SindB^.
wGWj w(=a^

The Bruhat Theorem (1.2) implies that

/(E)[B|=|Gj|; /(v(^))|B]=|B3,Bl.

Similarly, , /o(E)=]Wj| ; /oM^))- |3J.

This completes the proof of the Lemma.

Lemma (5.10). — Define a bilinear form < , > on H(R,J; u)^, whose value at (^, ^/),

for ^, ^'eH(R,J; u), is the coefficient ofe in the expansion of the product ̂ ' in terms of the basis

{^; XeA}. Then {^; XeA} and {^(^)~1^} are ^ua^ bases with respect to the form, and the

form is symmetric.

Proof. — Let

^ =S^^, ^,.e0, X, X', X"eA.
A

Then ^SA^^A'n if Si^2-
For the purposes of this proof let X be defined by 3^=S^1. The relations

^A'l-—8^^^0

are polynomial equations in u, and are satisfied provided we can prove

(5 .xi) /(^i)-S^/(v(^))=o, X, X'eA,

for all specializations f : u->q, q^SP, since ^^ is an infinite set. The same argument

will prove that the form is symmetric. Letting 7^ denote the standard basis element
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in H^(G, Gj) corresponding to S^, we have f(^\)==[Gj : B]-/]^, for XeA. It follows

that if v
fl^'^^vv'^"

are the structure equations in H^(G, Gj), then by (5.9),

/(^'^-/(E)^.

It is known that for a Hecke algebra H^(G, P), with standard basis {7]^}, with

P\G/P={©J,eA, that

^'i-^indp^==o, X, X'eA, ^e©x

(see, for example, the computation in Gurtis-Fossum [6], p. 404). By this fact and (5.9),

it follows that the equations (5.11) are satisfied. This completes the proof.

Corollary (5.12). — H(R,J; u)^ is a semi-simple symmetric algebra, with identity E^s,

and dual basis {^}, {v(^)~_1^}-

Proof. — H(R,J : ̂ K is semi-simple because it has separable specializations, and

hence is actually separable. The form defined in Lemma (5.10) is symmetric, associative

and non-degenerate, so that H(R,J;^) is symmetric (see Curtis-Reiner [7], p. 440).

Lemma (5.13). — Let S be a semi-simple symmetric algebra over afield K, with dual

bases {aj and {&J with respect to a symmetric associative scalar product. Let <p : S-^-K be a

one-dimensional representation. Then ^p==S<p(^)^=|=o, (p(^p)=t=o, and (p(^)~1^ is a central

idempotent in S affording the representation 9.

Proof. — Using the dual bases (see Curtis-Reiner [7], p. 441) it follows that for

all JGO, ,.„ — . y — ( a t ^ e
•^cp — "cp" — Tv-' /^cp-

In particular ^,==<p(^p)^. Therefore e^ is central, =|=o, and <p(^p)+o since a semi-

simple algebra contains no non-zero nilpotent elements in the center. This completes

the proof of the Lemma.

Proof of Theorem (5.7). — For the proof we let f denote a specialization u->q,

for qe^^y and^o t
^

e specialization u->i. We first recall, from Theorem (4.4) and

the corresponding result for W, that if ^, ^o are t^ characters of parabolic type of G

and W, respectively, associated with 9, then

W -[G : Gj]{ S (ind^^)-^^^)^^^)}-1,
A ̂  -A.

and W = [W : Wj]{^(ind^ w,)-1^)^)}-1

where w^eS^ and {•y^} is the standard basis of H^(W, Wj). We have, by (5.9) and

the proof of (5.10),

/'(y(^))= S /(^)-W(^)W/(^))
X G A

=/(E) ̂  (ind^^'^^xW'^

;:(h
xeA

and /o•(¥(^))=/o(E)^,(md^^)-l^(^)y^7)OJ,
A ̂  -/\
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where we have extended/* and/o* to their specialization rings (Zariski-Samuel [21], p. 2).

These expressions are both +0 because of the above formulas for the degrees ^( i ) and ^o(1)-

Therefore 9(^)=t=o, and (p(^)~1 belongs to the specialization rings of/and^. The

fact that/* (rf^) gives the degrees now follows from the facts that S /(v (aj) //(E) == [G: Gj]

and ^/o(v(^)//o(E)=[W : Wj].

The statement that (p(^)~\ is a central primitive idempotent affording cp follows

from Lemma (5.10) (and its corollary) and (5.13).

Finally, for the specializations ofy^)"1^ we have from the above computations,

/^(^(^-^^^{^^(^^^-^.(^^^(^^^^^(ind^^

and /^(^(^-'^-{^(md^^)-^^^)^^^)}-^!:^^^^
A t: -'•*• A £ A

which are primitive idempotents in kG and A;W, respectively, affording ^ and ^o, by

Theorem (4.4). This completes the proof of the Theorem.

6. Rationality of characters of parabolic type.

Any unexplained notations in this section are all taken from § 5. The main purpose

of this section is to show that in case a one-dimensional representation cp ofH(R,J; u)

is rational in the sense that y^^Q.IXh then the generic degree dy is also a polynomial

in u with rational coefficients, and the corresponding characters of parabolic type all

take only rational integral values.

Theorem (6.1). — Let y be a family of (B, N)-pairs of type (W, R), and let k be the

field of rational numbers Q^. Let JcR, and let 9 be a one-dimensional representation

o/H(R,J; u)^ such that 9(^)e0 =Q,M for all XeA. Then the generic degree d^e(^[u].

For every specialisation associated with qe^^u[i}, the character of parabolic type ^ of the

group G{q) {or W if q=i) is afforded by a rational representation of G{q) (or W), and hence

^(^)eZ for all elements g of the group.

Proof. — The formula (5.8) for dy shows that ^eQ^(^). The last part of

Theorem (5.7) implies that d^(q)eZ for all qe^. Since the set %^ is infinite, it

follows that the rational function d^(u) must in fact be a polynomial in u (the relevant

general theorem about rational functions being left as an exercise for the reader).

Since y(^)(=Q,M, <^(/(^))eQ, for all X, and hence the primitive idempotent y^)

affording ^ (see Theorem (5.7)) belongs to QG{q) (or QW, respectively). Then ^ is

afforded by the rational module QG-^)/'18^) (and similarly for W). This completes the
proof.

Theorem (6.2). — Let y be a family of type (W, R) whose set of characteristic powers ̂

contains almost all prime numbers. Let k be the rational field %, let JcR, and let 9 be a one-

dimensional representation o/H(R,J; ^K. A necessary and sufficient condition for (p^x)6 Q.M
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for all \ is that ^(/(Sx))6^ f07' a^ specialised homomorphisms cpp where f : u->q runs through

the specialisations for the prime powers q^^Sft.

Proof. — The necessity of the condition is clear, by the definition of the specialized

homomorphisms ^ in Proposition (5.6). For the sufficiency, we introduce indeter-

minates {X^; XeA} over K, and let

^=SX^, X=(X,)

be a generic element of the algebra H(R,J; ^K(x). Let P(^) be the characteristic poly-

nomial of ^; then P(^)eQ^;X)[q and we have P^^P^)61, with the P,{t) distinct
i

irreducible polynomials in Q/^; X) [t]. Since P(^) is a monic polynomial with coefficients

in Q^; X], it follows that each P^)eQ^; X; t\. Upon extending 9 to H(R,J; uf^,

the linear polynomial ^—<p(E;) divides P(^), and hence divides some P, (t) in K(X)[(].

IfP^(^) has degree one, then (p(S)eQ^; X], and it follows that 9(^)eQ^] for all X,

as required. We now suppose degP^)>i and will derive a contradiction. We

first observe that cp(yeD*[X], where O* is the integral closure of £> in K. Now let

qe^gg^, /the specialization u->q, and extend/to 0*, and to the integral closure ofO[X]

in K(X), which is 0*[X] (see Bourbaki [2], chap. V, Prop. 13). Letting/* be the

specialization extended to (0*[X])[^], we have (^—/'('p^))) I/^P^)), where

/*(9(^))=SX,9,(/(^))E%[X]
A

by the hypothesis of the theorem. Therefore, for every specialization / : u-^q, qe^^,

the specialized polynomial /"(PJ^)) e Q,(X) [t] is reducible in Q/X) [t]. This contradicts

the Hilbert Irreducibility Theorem (see Lang [14], chap. VIII, Cor. 3, p. 148). This

completes the proof of the Theorem.

Corollary (6.3). — If ^(/(Sx))^ /or au ^ and all specialisations f: u->q, with

q^Sft, then ^(/o^x))6^ /or ̂  X, for the specialisation /o : u->i, implying rationality

of the corresponding character of W.

7. Relations with the Weyl group.

We return to the general situation described in § i:

G a finite group with a (B, N)-pair;

(W, R) the Coxeter system of G;

k algebraically closed field of characteristic zero;

0==A;[^;reR] as in § i;

A generic ring of (W, R), over 0;

K quotient field of 0;

K an algebraic closure of K;

O* integral closure of 0 in K.
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Our first result is analogous to Proposition (5.6). Let f:S)-^k be a surjective

homomorphism, such that the specialized algebra A^ is separable, and let f* : 0*->A;

be an extension of /.

Proposition (7.1). — Let ^ be a character of AK afforded by an irreducible A^-module.

Then ^(^JeO*, for all weVf. The linear mapping ^.: A^->A defined by ^/•(^/Q==/*(^(^))

is the character of an irreducible A.. ̂ -module. Every irreducible character of Ay ^ is obtained in

this way.

Proof. — This result is essentially contained in Steinberg's proof ([20], § 14) of the

deformation Theorem ( i . 11). We sketch the steps in the argument, referring the reader

to Steinberg [20] for their proofs. Let {X^,; WE\N\ be indeterminates over K, and

a=^X^
w

a generic element of A^ and P(^) the characteristic polynomial of a. The monic irre-

ducible factors of P(^) correspond, in a bijective fashion, to the irreducible represen-

tations of A1. Moreover if P,(t) is such a factor, P,^) e (0*[X]) [t), where X=(XJ,

and if ^ is the character of the corresponding module, extended to A^^, then ^{a)

is a coefficient ofP^). Moreover, y*(P^)) is an irreducible factor of the characteristic

polynomial of a generic element f(a) of A^, and ±^(/(^)) is the coefficient of the

highest power but one oft iny*(P^)). Since the irreducible factors of the characteristic

polynomial off(a) are all of this form, the result follows.

Using Proposition (7.1), we may speak of characters of A and corresponding

characters of A.., and of corresponding characters of two different separable specializations

of A.

The main result of this section is the following one.

Theorem (7.2). — Let G be a finite group with a (B, V)-pair and (W, R) the Coxeter

system of G. Let k be an algebraically closed field of characteristic ^ero. There is a natural

bijective correspondence ^<-^o between the irreducible k-characters ^ of G such that (^, i^)>o

and the irreducible ^characters ^ of W, satisfying (S^, i^)==(^, i^), for all JcR. In

particular, a character ^ ofG (with (^, i§)>o) is of parabolic type if and only if the corresponding

character of^ W is of parabolic type.

Proof. — There is a natural correspondence described above between the characters

of A^^H^G, B) and those of A^^^KW. The characters ofH^G, B) are restrictions

of characters ^ of G such that (^, i^)^>o, in a bijective fashion, by Theorem (1.1) of

Curtis-Fossum [6]. Before giving the rest of the proof, we require some preliminary

results.

Lemma (7.3). — Keeping the notation as above, let JcR, and let ^ be an irreducible

character of A^ Let s, E===v(c) etc. be as in § 2. Then ^(s)==mE for some non-negative

integer m. Letting f : G->k be a specialisation such that A^ is separable^ and ^ defined as in

Proposition (7 .1 ) , we have ^(/(£))=m/'(E).
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Proof. — From Lemma (2.10), we have £2=E£. It follows that E^s is an idem-

potent, and hence ^(E^s) is a non-negative integer for any character ^ofa representation.

The rest of the lemma is now clear.

The next result is an immediate consequence of the Frobenius Reciprocity Theorem.

Lemma (7.4). — Let P be a subgroup of a finite group G, and k an algebraically closed

field of characteristic ^ero. Let^be ak-characterofG^ and e==\V\~1 S x. Then ^)=(^, i^).

Proof of Theorem (7.2). — Let ^ be a character ofAK as in Lemma (7.3), and let

J C R, and m as in the Lemma. It is sufficient to prove that

a) ifyis the specialization u^->q^ and ^ the character in i^ corresponding to ^,

then m=={^ i^); and

b) iffo is the specialization ^->i, reR, and ^o ^e character ofW corresponding

to ^, then m=(^o, i^).

To prove a), it suffices, by (7.4), to calculate ^(^j), where ej == | Gj
 -1 S x. From

Theorem (1.1) of Gurtis-Fossum [6], we have

(7.5) ^)=^j).

From Lemma (7.3) we have

^(/(c))=<(E),

and by (5.9), /(E)=[Gj : B], while /(s)=:[Gj : B]<?j. Cancelling [Gj : B], we have,

from (7.5), ^j)=77L

To prove^, let 4=|WJ-1^. Then W)=^U and ^(/o(.))=<o(E).

Thenby(5 .9) , /o(E)= |Wj | and^-IWj^. Thus ^W=m and b) is proved.

This completes the proof of the theorem.

8. Representations of the generic ring corresponding to a Coxeter system

of dihedral type.

The purpose of this section is to construct all the irreducible representations of

the generic ring corresponding to a dihedral group. The method was suggested by the

known representation theory of the dihedral group itself. For an application of the

results of this section, see a forthcoming paper by Kilmoyer and Solomon on the Feit-

Higman theorem.

Theorem (8.1). — Let W be a dihedral group of order w having the presentation

W==<r, s; r2==s2==(rs)n=I > and let A be the generic ring of the Coxeter system (W, {r, s})

over 0==Q,[^3 Ug] as in § i. Let K be the quotient field ofD, K an algebraic closure of 'K,

and O* the integral closure of 0 in K. For any c e K let

^[~: :)• s^- -:)•
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Let pe0* be such that ^=u,u,, and p=^ if n is odd, O^27'7, and let c^ d^ be any

elements of K such that
 n

(
8
-

2
) c^ == u, + ̂  + 2p cos 6 .̂.

If n==2m is even, then Pf- has four representations of degree i, Xi==v, Xg^cr, Xg, \ given by

\W
 == ̂  ^l(^) ==^, ^(^r) == - ̂  ^(^) = - I

X3«)=^,, X3(^)=—I, X4(^ , )=—I, ^(^J^^

(2^rf TTZ—i inequivalent irreducible representations TCi, . . ., TT^_^ of degree 2 ^Z^TZ &v

Tr,(^)=R(^.), ^.(^)^S(rf,).

If n==2m+i is odd, then AK has two representations v == \, <j == \, ̂  rf^r^^ i ̂ zy^/z by

\^a,)=u,, \(a,)=u,, \^a,)=—i, ^(^)^_^

and m inequivalent irreducible representations n^, .. ., TT^ of degree 2 ^zz^ by

7T^)=R(^ ^.(^)^S(4).

TA^^ ^r^, up to equivalence, all the irreducible representations of A^

Proo/. — There is nothing to be said about the representations h of degree i since

the relations (1.8) are satisfied with X(^) and X(^) in place of a, and a,. Let 6=6^

c=Cj, d==d^ for o<j<nl2, and R=RM, S=S(rf). It follows from (8.2) that RS

and SR have the same eigenvalues, namely pexp(±z6). Let P be an invertible
2X2 matrix such that

(8.3) P^RSP^D^10
 °\

\ o p^-16;

and let R'-P-^RP, S^P-^P. Suppose that

(8-4) R'-^ ^ a,p ,Y ,8eK.

Taking account of the fact that det R'==det R==—u, one has

(8.5) S=R-D=(-"^:8 M7;P":PV
\ y^p^y -a,-^-*8^

From the fact that Trace R'=M,—I, TraceS'=a,—i it follows that

(8.6) a= (atpsme)-1^^^,-!)^.?^-!)^]

S=-(2^psme)-l[M^-I)+p(^-I),-«].
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Now if n==2m is even, then e^^i, ^=±1, and hence (RSy^SR)^:^.!,

where I is the 2 X 2 identity matrix. On the other hand if n == 2772 +1 is odd, then Uy= u^

and it follows from (8.6) that S^—^a. Thus from (8.5)

S'-^ ^'-W0 s y
But then since ^2w^+ l)^e=I, onehas D^'D-^S', D^R'-STT, (R'S^R'^S'R'^S',

and hence (RS^R^SR^S. Thus in either case the relations (1.8) are satisfied

with R and S in place of ^ and a^. This shows that the representations T .̂ may be

defined as in the statement of the theorem. Let 9^ be the character of T^.. Since

9j(^<Zg)==2p cos 6^, distinct j give rise to distinct 9, and hence to inequivalent represen-

tations TTj. An easy computation shows that TTj is irreducible. The sum of the squares of

the degrees of the representations we have constructed is 4. ^-{-(m—i) .22 =4772 =2n if n

is even, and is 2. ̂ -{-m.2
2
^ 2(2^+1)= 2n if n is odd. Since dim A ==2^ it follows

that A^ is semi-simple, and we have constructed all the irreducible representations

of A^. This completes the proof of the theorem.

Remark (8.7). — The irreducible characters of A determined in theorem (8.1)

are all of parabolic type in the sense that the corresponding irreducible characters of W

are of parabolic type. In fact, it is obvious that the characters X of degree i are of

parabolic type. If 9=9^ is an irreducible character of degree 2, let J=-[rJ,

^J=(I+^.)'~ l(^+^r)• O116 has <p(^)=2, 9(^)=^—i, thus <p(^j)==i and 9 is of

parabolic type (see Lemmas (7.3), (7.4) and the proof of Theorem (7.2)).

9. The reflection representation and its compounds.

Every finite irreducible Coxeter system (W, R) has a natural faithful represen-

tation as a group generated by reflections on a finite dimensional Euclidean vector

space. Moreover, it is known that the exterior powers of this representation are distinct

and irreducible. The main object of this section is to construct the analogues of these

representations for the generic ring of (W, R) and to show that the corresponding irredu-

cible characters are all of the parabolic type.

We use the notation of § i except that our base field k is the field Q, of rational

numbers:
(W, R) = a finite irreducible Goxeter system

^=|R|

Q^== the field of rational numbers

0==Q^;reR] as in § i

K === the quotient field of 0

K == an algebraic closure of K

Q* == the integral closure of £) in K

A==the generic ring of (W, R) over 0 as in § i.
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Let V be an /-dimensional vector space over K having the basis {a^; reR}, and

put M^V^. Let {^ g ; r, J£R} be elements of K such that for all r, jeR one has

cr,r==ur+l

(9-1 ) ^8=^^==° ^^,-=2

——— 271
cr,scs,r==ur+us+2 U,V,COS—— il7Z,,>2.

^s

By Vu^ we mean a fixed square root of u^u^ in O* such that V^^==^==^ if u^==u^

Lemma (9.2). — There exists a nonzero symmetric bilinear form B on M, unique up to

a scalar multiple^ such that

. . , _(«r+l)B(«^)

^^ r-5- B(a,a.) •

Proof. — We argue by induction on the rank of the Coxeter system (W, R). If

| R | = i, the lemma is clear. Suppose | R [ > i and let J be a maximal proper subset

ofR, with the property that the Goxeter graph of (Wj,J) is connected. Let rgeR—J

and assume that (9.3) is satisfied for all r, sej. Since the Coxeter graph of (W, R)

is a tree there exists a unique element SQ ofj such that n^ g >2. Thus we define

B(o^, aJ=B(o^, aj^^+ir^a^, ajc^

(9.4) B(a^, aJ=(^+i)B(a^ aj^

KC^ a,) =B(a,, aj=o, reR, r^-r^s^

For each reR let the linear operator X,. on M be defined by

I \ -^-r , ^ BC^? a)

(9.5) X,.a^^a-(^+i v r? ; a,.
B(a,, a,)

Since a^ is non-isotropic relative to the form B, the space M is the direct sum of the line Koc,.

and the hyperplane M^ orthogonal to Ka^. It is clear from (9.5) that X,. is equal

to —i on Ka^ and is equal to Uy on H^. Since —i and Uy are the only eigenvalues ofX^.,

one sees that

(9-6) X^.I+(^-i)X,.

Lemma (9.7). — Let M^g be the sub space ofM. spanned by a^ and a^; then the restriction

of B to M^ g z'j- nondegenerate.

Proof. — From (9.3) it suffices to observe that the matrix

106



HECKE ALGEBRAS AND CHARACTERS OF PARABOLIC TYPE OF FINITE GROUPS 107

is non-singular. By (9.1) the determinant of this matrix is equal to (^+i)(^-[-i)
if ^ g = = 2 and is equal to

—— ^
UyUg — 2V UyUg COS —— + I

n.. ,

if^,>2.

Proposition (9.8). — There exists a unique representation TT : A^- -> End M such that

7T(^,)=X, for all reR.

Proof. — Let r and s be distinct elements of R. By Lemma (9.7) the space M is

the direct sum of the subspace M^ and its orthogonal complement M^. If aeM1

one has X^.a=^a, Xg.a=^a. Thus the relations (i .8) are satisfied by the restrictions

ofX^ and X, to M^g in place of a, and a,. Now the matrices of the restrictions of X,
and Xg to M.y g in the basis {a^ , ocg} are respectively

/-i ^,A ,̂ o\

Thus by (9.1) and Theorem (8.1) the relations (1.8) are also satisfied by the restrictions

ofX^ and X, to M^ , in place of a, and a,. Hence X^ and X, satisfy the relations (1.8)

in place of a, and a,. This shows that the representation n may be defined as in the
statement of the proposition.

We call n the reflection representation ofA1^ because the specialization Uy—i results

in the natural representation of W as a group generated by reflections. The next

proposition shows that with two exceptions this representation has an 0-form.

Proposition (9.9). — Let {by^ ', r, seR] be elements ofK which satisfy the equations ( 9 .1 )

with b,^ in place of c^,. Then there exist flf.eK, reR, such that if ̂  = d, a,, then the action

of the basis elements {a^} of A on the new basis of M is given by a^^=u^—b^ gO^..

Proof. — Let ^, reR be the elements ofK to be chosen to satisfy the proposition.

Put a;==</,a,. Then a^=u^—d,d,'
l
c^^. Thus it suffices to show that the rf, can

be chosen so that b, ̂ =d,d,'
l
c, ̂ . The fact that this is possible follows by induction

on the rank of (W, R) as in the proof of Lemma (9.2).

Definition (9. lo). — Let N be a K-vector space and p : A1^ -> End N a represen-

tation ofA
K
. Let 0' be a subring of K which contains 0. We say that p has an O'-form

or that p is defined over 0' provided that there exists a basis ofN such that the coefficients

of the matrices of p^J, weVf relative to this basis all lie in £>'.

Corollary (9 .11) . — Let (W, R) be the Coxeter system of a finite irreducible (B, N)-pair.

Put 0'=0|V^] if (W, R) is of type (G^), O'^O^s^] if (W, R) is dihedral of

order 16, and O^O in all other cases. Then the reflection representation TT is defined over 0'.

Proof. — By the theorem of Feit-Higman [8] W is either the Weyl group of a simple

complex Lie algebra or is equal to the dihedral group of order 16. If (W, R) is not of

type (Gg) or dihedral of order 16, then n, ̂ ==1, 2, 3, or 4, for all r, seR.. If (W, R)
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is of type (Gg), ^,=6 for r^s, and if (W, R) is dihedral of order 16, ^=8 for r^s.

For these values o f ^ g equations (9.1) become

cr,r=Ur+l

^s^^r^O? ^s^S

l^r-^ ^s-3

_^r+^ ^r,s=4

-r,s°s,r— ^ , , /——— „
^r+^+V^, ^r,.=6

f^+^+V2^, ^.-S.

Thus the corollary follows from Proposition (9.9).
k
 k

Let AM be the A-fold exterior product of M. We consider AM as a subspace
f.

of the exterior algebra of M. For each reR define the linear operator X^ on AM by

X^A^A . . . A^^-^X^A . . . AX^,).

T,

Proposition (9.12). — There exists a unique representation ^ : A^ -> End(AM) such

that TC^^X^. Moreover in case (W, R) is the Coxeter system of an irreducible (B, N)-j^zr,

the representations ̂  are defined over the same ring extension 0' ofD as the reflection representa-

tion TT (see Corollary (9.11)).

Proof. — Let {^, . . . ,^} be the eigenvalues of X^ counted with multiplicity.

Then the eigenvalues of X^ are {^"^V • • ̂ J where (z\, ̂  . . . ,4 ) runs over

the set of all sequences of positive integers such that i^i<4< . . .<^^. Since the —i

and ^-eigenspaces of X, are i and t — i dimensional respectively it follows that — i

and u, are also the only eigenvalues of X^, the — i eigenspace of X^ being (j^)

dimensional and the ^-eigenspace of X^ being (^) dimensional. In particular,
we have (X^)2 = u,. I + (u, -1 )XW.

It is immediate from the definition that (XWX^•••)^=(XWX^•••)^ because this

relation is satisfied by {X,}. Thus the relations (1.8) are satisfied with X^ and X^

in place of a, and a,. This shows that the representations n^ may be defined as in the

statement of the proposition. By Corollary (9.11) we may choose a basis {jB,; reR}

of M such that X^)=^[B,-^^ for all r,seR and ^eO'. For convenience of

notation let R={ i , 2, ...,/'}. Then the set ^-{^A^A . . . Ap,J forms a basis

of AM, where i ̂  ̂ < ̂ < . . . < ^_< ̂ . Now

X^A. . .^^U^-^U^+b^)^ . . A(^^+^^,)}

fc

=^A. . . AP^+^^-I)^1^^^^^ . . . A^.A. . . AP^,

where the notation j .̂ means that the factor ?,. has been omitted. Since

P.Ap^A. ' . . A^.A. .. Ap^ is either equal to zero or is db an element of^, the represen-

tation TT^ is defined over 0'. This completes the proof of the proposition.
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We call the TT^ {o^k^) the compounds of the reflection representation 7^=7T(1).

Note that T^^V and n^^a, where o-^J^—i)^ for all weW.

Theorem (9.13). — The bilinear form B is nondegenerate. The representations TC^ are

irreducible and pairwise inequivalent.

Proof. — We argue by induction on the rank of (W, R). If [ R [ == i the conclusion

of the theorem is obviously valid. Assume | R[> i, let J be a maximal connected proper

subset of R and put {yo}'^^"!- Let Mj be the subspace of M having the basis

{a^; rej} and let A^ be the subalgebra of A^ generated by {<Zy; rej}. By the induction

assumption the restriction of B to Mj is nondegenerate so that M is the direct sum of

the subspace Mj and its orthogonal complement M} relative to B. M^- is one dimensional

and if oceM^- we have ^y.a=^a for all rej. Now

(9.14) AM^AM^^VM^AMJ-].

k-l k-1

It is clear that A MjAM^ and A Mj are isomorphic as Af-modules. By the induction
k k-l

assumption AMj and A Mj are distinct and irreducible as A^-modules. Thus as an
_ fc k

A^module either AM is irreducible or (9.14) is the decomposition of AM into distinct
k

irreducible A^components. But one can easily see that AMj is not stable under the
k

action ofTc^^). Hence AM is irreducible. The proof of proposition (9.12) shows
k k'

that the dimension of the ^y-eigenspace of ^(^y) is (^1). Thus if AM and AM

are A^isomorphic we must have (0==(^) and (f ~ic
1
) = (f 1c

1
) whence k==k\ The

form B is nondegenerate for if there exists aeM such that B(a, a^)=o for all reR,

then ^.a==^a for all reR which contradicts the irreducibility of M. This completes

the proof of the theorem.

Theorem (9.15). — Let ^
k)

 be the character of TC^ (o^A^). Let JcR, s, E=v(e)

be as in §2 . Then ^(^mE where ^^(l1^11!).

Proof. — Let Mj, A^ be as in the proof of Theorem (9.13). By the proof of

Lemma (7.3) T^E^S is an idempotent. Moreover, it is clear from Lemma (2.10)
k

that T^^) is the projection of AM onto the subspace consisting of all vectors ^ such

that <z.^=v(a)^ for all aeA^. Thus it suffices to prove that the dimension of this

subspace is m. Let N = M j and P==M^-, the orthogonal complement of Mj relative

to the form B. Since B is nondegenerate on NX N5 M=N©P, and thus

(9.16) A M = © ( ( A N ) A ( A ^ P ) ) .
k !L i k~i

A (
i=0

Since P affords [ R — J [ copies of the one-dimensional representation v = = V j of A^ it
i k-i i i

is easily seen that (AN)A( A P) and the direct sum of m^ copies of AN, (AN)^, are
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— i

equivalent as A^-modules, where m,={^Z^). We assert that AN does not contain

an element ^ such that a.^=^{d)^ for all a^A^ if z>o. Indeed, identify J with the

corresponding set of points of the Coxeter graph of (Wj,J) and let J=JiUjgU. . .uj,

be the decomposition of j into pairwise disjoint connected subsets. Then

AMJ=©(XMJA(XM^)A. . .A(^M^),

the summation being extended over all sequences (^, z'g, .... ^) ofnon negative integers
ij

such that z\ + z'g + . . . ̂  = i. Suppose that i; == ̂ A^A . . . A ̂ , (^.eAMjy) is a nonzero
vector. Then

^.S=^ ( f- l )^.^A^.^A...Aa,.^,

for all reR. Thus if a^.^===u^ for all r e ] , it follows from the pairwise orthogonality

of the Mj^. that a^^==u,^ for all re]. But then by Theorem (9.13) we must
k

have ^=o {i^j^t), and hence i==o. Thus the subspace of AM consisting of all

vectors ^ such that a.^=^{a)^ for all aeA^ is just the zeroth summand of (9.16)

which has dimension m^11^111). This completes the proof of the theorem.

Corollary (9.17). — Let (G, B, N, R) be a finite (B, N)-pair whose Coxeter system

is (W, R). Let ^w {respectively ^w) be the irreducible character of G (respectively W) corres-

ponding to 9^ in the sense of Theorem (7.2). Then one has

C9.i3) ( '̂, (ij") '̂, (iwD=('V).

In particular, these characters are all of parabolic type.

Proof. — (9.18) is immediate from Theorems (7.2) and (9.15). To see that the

characters are parabolic type it suffices to take [ J | = = [ R [ —k.

If (G, B, N, R) is a finite (B, N) pair whose Goxeter system is (W, R), we call

^ = ^(1) the reflection character of G. ^ is the irreducible character of G which corres-

ponds to the reflection character (p of the generic ring A1^ of (W, R) in the sense of

Theorem (7.2). We have computed the generic degree dy of the reflection character

by using the fact that 9 is of parabolic type. The details of the method used to obtain

the formula for d^ will appear elsewhere. It turns out that ^ e Q, \u\ for each system y

except when y is of type (F^) in which case d^e(^{^/2u). If G(y)e^, then d^[q) is the

degree of the reflection character of G{q), and fi^(i) is the degree of the reflection

character of the Weyl group of G(y).

It is a curious fact that ifG(y) is an (untwisted) Ghevalley group, and if the Coxeter

graph of the Weyl group W of G{q) is simply laced, then d^(u) = u^-\-u^-\-. . . +^

where {m^y 7^2, . . ., m^ are the exponents ofW.

The following is the list of the generic degrees dy for the various systems y of

(B, N)-pairs. The notations for the groups belonging to the different systems is taken

from Carter [4], p. 239.
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G(g)

A/(<?)

B/(?)

D/(?)

Ee(<?)

E7(<?)

E8(-7)

W

G2(?)

AI/(?2)

AI/ i(?2)

W)

E^?2)

Di(?8)

B^?) (?=

G^)^-

) CHARACTERS OF PARABOLIC TYPE OF FINITE GROUPS

<(«)

M(M/—I)

a—i

M(M/—I)(M/-1+I)

2(M—l)

M(M/—I)(M/-2+I)

(M-l)(M+l)

M(M4+I)(y9-I)

(M-I)

M(M6 +l)(M14—!)

(y2+ l ) (^ l )

U(M10+I)(M21-I)

K6-!

M^+l)2^^!)

2

M(M+I)2(M2+y+I)

6

«S(M2/-I)(^<2/-1+I)

(M+l)^2-!)

^(^-l)^-3^-!)

(M+I)("2-!)

M2(M/-1-I)(M/-1+I)

(M-l)(M+l)

MV+I^+I^+l)

("+!)

y8(a+I)(M6—I)

2(a-i)

22»+l) U2

S2^1) »3

II I

Fl(?) (?=22n+l) ^+I)(J+I)(^+^+^+I)

4(M+V/2^+I)(M3—MV'2M+I)
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10. The one-dimensional representation of the generic ring.

Let (W, R) be a finite irreducible Goxeter system and A the generic ring of (W, R)

over 0 as in § i. We discuss in this section all the one-dimensional representations

of A1^ and give formulas for the generic degrees of these representations.

Lemma (10.1). — Let (W, R) be a Coxeter system and let ^ be the equivalence relation

on R defined by r^ s if and only if there exists a sequence r == 7-3, r^, . . ., r — s of elements of R

such that n^^^is odd {i^i^p—i); then r^s if and only if r is conjugate to s in^N. Moreover,

if t is the number of conjugacy classes of the elements of R in W, then \ W/W | = 2t where W

is the commutator subgroup ofW (see [3], p. 12).

Proof. — Let R^, . . . , R^ be the equivalence classes of R modulo ~. If r, jeR

are such that n, ̂ =2k+i is odd, the equation (rj. . .)^=(jr. . .)^ may be written

in the form {rs^r-^s^rs)
16

. Thus r^s implies that r is conjugate to s in W and conse-

quently t^m. For each i {i^i^m) let

( — i , reR,
( \ i %

(pl r = I ^--D
(+1 ^RZ.

Then one easily sees that (9^)9^). . .)^^=((p^j)^(r). . .)^ so that 9, defines a one-

dimensional representation ofW. Since 9^9^ . . .9^" are distinct (^==0 or i, i^i^m),

it follows that 2^ [W/W'l^s^. Hence t==m and [W/W'^s^ as asserted.

By the preceding lemma the conjugacy classes of the elements of R in W can be

found by examining the Goxeter graph of (W, R). If (W, R) is the Coxeter system

of a finite irreducible (B, N)-pair, there is only one such class if the diagram is simply

laced, while if the diagram is not simply laced there are two such classes corresponding

to the points of Coxeter graph which lie on opposite sides of a multiple bond. Let R^, R^

be the two classes. Put Rg=0 if there is only one such class. Let Uy==u-^ for all reR^

and Uy=u^ for all reRg.

Proposition (10.2). — Let the notation be as above, ff^ ls ^mpty, A1^ has exactly two

representations v and a of degree i. If Rg is nonempty, AK has exactly four representations v, cr,

CTI and 0-2 of degree i. These representations are given by

^r) =^ ^"SR

cr(a,) =—i , reR

^i, reRi

—i , reRg

—i, reRi

(10.3) ^(O-

(5^ar)=\ T»
[u^ reRg.

Proof. — The fact that the representations v, cr, cr^, cr^ exist follows immediately

from Lemma (10.1) together with the generators and relations (1.8). Lemma (10.1)

also implies that the number of representations of W of degree i is equal to 2 or 4
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according to whether Rg is empty or not. But A^ has the same numerical invariants

as QW, the group algebra of W over the rational number field. Hence we have

described all the representations of A1^ of degree i.

Keeping the above notation, let weW and let w=r^... r^ be a reduced
expression for w (f{w) ==p). Define the functions /, and ^ on W by

(10.4) W=\{i\^^P,r^}\

W=\{i\i^i^p,r,eR^}\.

Corollary (10.5). — The integers t^w) and t^w} depend only on w, not on the choice of

reduced expression for w. Moreover, one has:

^=^^4^

(10.6) ^O^-i)^
<•il{a^=u[l(v'\-l}W

^{aJ={-I){^4M.

Proof. — (10.6) is obvious from (10.3) and (10.4). The expressions for ̂  and ^
show that ^(w) and t^(w) do not depend on the choice of reduced expression for w.

For any representation y ofA1^ of degree i, put

(10•7) ^(«i, M2)={^^(<^J-lv(<^J<p(a„-,)}-^^v(a,).

Thus if y is a system of (B, N)-pairs as in Definition (5. i), one has by (5.8) that the

generic degree d^ is given by d^u)=g^,u
c
'), where we have put c^=c,, reRi

and <-2=^, rep;;.

Definition (10.8). — Put P(a,, y,)= S v(aj. We call P the Poincare polynomial
of the Coxeter system (W, R).

 wew

Proposition (10.9). — Let v, c, <^, ̂  be as in (10.3); then one has

g^, Kg) = P(Mi, Kg) /P(M^, Kg) = i

ga{Ul, "2)=P(Ml, "2)/P("r1, ̂ 1)

^,("1, "2)=P("1, "2)/?("!, "2~1)

g^l, "2)=P("1, "2)/P("r1, "2).

Proof. — These formulas follow directly upon substituting (10.6) in (10.7).

We can calculate g^ explicitly from these formulas: Let weW be arbitrary and
let WQ be the unique element of maximal length in W, then /'(^^(n^K,-1)^-^) go
that ^X^)"1^^-!). Thus

^JP("i-1, a2-l)=VK)„s^(^)-l=:^^K»->)=P(^, "2),

and by Proposition (10.9), g^,u^==v{a^). Now one knows [19] that /..(wg)=^A/2

where <?,= |R,|, (==1 ,2 and h is the Goxeter number of (W, R). Thus

ga^U^-M')^.
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We give a list below of d^, d^, dy for each system y of (B, N)-pairs. The deter-

mination of d^ and d^ depends upon knowledge of the Poincare polynomial P. The

calculation of the Poincare polynomial is done using the combinatorial method at the

end of§3. We shall omit the details of this calculation.

A/(<?) ^ ==^+D/2

B/(?) <4 =^2

, »(M/-1+!)(»/+l)

2(M+l)

^(/-i).^/-i^ i)(a/+i)
d -

2(M+I)

D/(?) ^ =^-1'

Ee(?) ^ ="36

E,(y) </, =M63

Es(?) ^ =M120

F4 </o ="24

, ^^V+l)^^!)^^^!)^^!)

8(K+I)2

^==^

G,(<?) ^ =a6

M^+M'+l)

'0=———3———

^=<

A|/(y2) ^ =^+i)

_M4(^-3+I)(Mtf-l+I)(^+l+I)

(M+l)2^^!)

;2/.-6/+4^2/-3^^^/-1^^^2/+1^ ̂

^=M
(a+l)2(»3^^

Al/-l(?2) ^ ^K^-1'

U^^+l)

d. =-
("+!)

^-1)(2/-1)^2/-1^

<=
("Tl)
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D}(?2) d, =M(/-W-2)

^«V-3+I)(»/-2+I)(^/-1+I)(^/+I)

a^+i)2^!)

_y-^+7(;/-3.^i^-2_^^-l.^^_^

< " - a ^ + ^ V + i )

W) ^ ="36

^^V+l)^^!)^^!)^^!)

Z^+I^+I^+I)

, ^ay^-iK^+i) (a6+I)(«9+I)
2(a+l)(^4-l)(»3^i)

D2^) ^ =a12

M^+I)

0- ("2+I)

^( Î)
08- («2+I)

BK?) ^ ="2

Gi(y) ^ =«s

FK?) ^ ="12

^M^+l)^^!)

<" (K+I)("2+I)

^u^t^iyv3^
02 (M+I)(M2+I)
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