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Abstract

Background: The heterokonts are a particularly interesting group of eukaryotic organisms; they

include many key species of planktonic and coastal algae and several important pathogens. To

understand the biology of these organisms, it is necessary to be able to predict the subcellular

localisation of their proteins but this is not straightforward, particularly in photosynthetic

heterokonts which possess a complex chloroplast, acquired as the result of a secondary

endosymbiosis. This is because the bipartite target peptides that deliver proteins to these

chloroplasts can be easily confused with the signal peptides of secreted proteins, causing currently

available algorithms to make erroneous predictions. HECTAR, a subcellular targeting prediction

method which takes into account the specific properties of heterokont proteins, has been

developed to address this problem.

Results: HECTAR is a statistical prediction method designed to assign proteins to five different

categories of subcellular targeting: Signal peptides, type II signal anchors, chloroplast transit

peptides, mitochondrion transit peptides and proteins which do not possess any N-terminal target

peptide. The recognition rate of HECTAR is 96.3%, with Matthews correlation coefficients ranging

from 0.67 to 0.95. The method is based on a hierarchical architecture which implements the divide

and conquer approach to identify the different possible target peptides one at a time. At each node

of the hierarchy, the most relevant outputs of various existing subcellular prediction methods are

combined by a Support Vector Machine.

Conclusion: The HECTAR method is able to predict the subcellular localisation of heterokont

proteins with high accuracy. It also efficiently predicts the subcellular localisation of proteins from

cryptophytes, a group that is phylogenetically close to the heterokonts. A variant of HECTAR,

called HECTARSEC, can be used to identify signal peptide and type II signal anchor sequences in

proteins from any eukaryotic organism. Both HECTAR and HECTARSEC are available as a web

application at the following address: http://www.sb-roscoff.fr/hectar/.

Background
Many cellular processes depend on proteins being tar-
geted to specific subcellular localisations. As a result,

information about the subcellular localisation of a pro-
tein can provide important insights into its function. Con-
versely, knowledge about which proteins are targeted to a
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specific subcellular localisation can lead to a better under-
standing of the functions of a particular compartment of
the cell. This can be particularly interesting in an evolu-
tionary context. For example, mitochondria and chloro-
plasts have evolved from being enslaved organisms,
engulfed by a host cell, to become specialised cellular
compartments integrated into the functioning of the host
cell [1,2]. Identification of proteins that are targeted to
these organelles can provide clues as to how these
organelles evolved.

A large variety of methods have been developed to predict
the subcellular localisation of nuclear encoded proteins.
Pattern recognition methods which have been most
favoured are Hidden Markov Models (HMMs) [3-5], Neu-
ral Networks (NNs) [6-8] and Support Vector Machines
(SVMs) [9-12]. Bayesian methods [13] and fuzzy k-nearest
neighbour algorithms [14], linear discriminant analysis
(LDA) [15], position weight matrices [16] and rule based
systems [17] have also been proposed. All subcellular
localisation prediction methods use various approaches
to interpret the intrinsic information present in protein
sequences. The composition of amino acids within the
polypeptide sequence or the composition of peptide
sequences of fixed length (n-gram) [13,14], sequence pro-
files [10], physio-chemical parameters like hydrophobic-
ity, charged residues and isoelectric points as well as
details about the secondary structure like amphiphilic
alpha helices, membrane regions and the orientation of
N- and C-terminal ends are taken into account
[3,5,15,17].

The majority of subcellular prediction programs search for
N-terminal targeting peptides since these sequences are
common in proteomes [18-20].

The heterokonts are a diverse evolutionary group that
includes diatoms, brown algae, and oomycete plant path-
ogens such as potato late blight [21]. The plastids of the
photosynthetic members of this group are thought to be
derived from a secondary endosymbiotic event involving
a red alga and a eukaryotic heterotroph (Fig. 1). The
enslavement of the endosymbiont involved alterations to
its structure and most of the endosymbiont's genes were
transfered to the host nucleus or lost [22,23]. As a result,
present day heterokonts possess plastids with a complex
structure. These organelles are surrounded by four con-
centric membranes and the nuclear-encoded proteins that
function in these plastids have to be transported into the
organelle through these four membranes. This is medi-
ated by bipartite, N-terminal targeting sequences consist-
ing of a leading signal peptide followed by a chloroplast
transit peptide (Fig. 2). Kilian and Kroth [24] have identi-
fied a conserved motif (ASAFAP) at the cleavage site of the
signal peptide in heterokont plastid targeted proteins.

This motif includes the alanine (A) residues at positions -
1 and -3 relative to the cleavage site that are commonly
found in all signal peptides [25]. The phenylalanine (F)
residue just after the cleavage site is highly conserved, it
occurs in almost all heterokont chloroplast targeted pro-
teins, being only rarely replaced by tryptophan, tyrosine
or leucine [26]. The ASAFAP motif was shown to be essen-
tial for import into the plastid in experiments that
involved transforming the diatom Phaeodactylum tricornu-
tum with constructs encoding modified plastid target pep-
tides fused to green fluorescent proteins (GFP) [24,26].

We show here that the unusual structure of heterokont
plastid targeting sequences causes problems for currently
available subcellular prediction methods that have been
designed to predict the subcellular localisations of pro-
teins from other eukaryotic groups such as animals, fungi
and green plants. To overcome this difficulty, we have cre-
ated a new method that is specifically designed to predict
the subcellular localisation of heterokont proteins.

Results and discussion
Shortcomings of existing prediction tools when applied to 

heterokont chloroplast targeted proteins

To determine how well existing subcellular localisation
prediction methods perform on chloroplast targeted pro-
teins from heterokonts, we submitted 55 experimentally
verified sequences (see Methods for details) to four widely
used subcellular prediction methods: TargetP [8] (v. 1.1),
Predotar [6] (v. 1.03), PredSL [27] (v. 2005) and iPsort
[17] (v. 2002). These methods assign proteins to one of
four different subcellular localisations: the secretory path-
way, based on the presence of a signal peptide, the chlo-
roplast or the mitochondrion, based on the presence of
the respective transit peptides, or to none of these three
localisations, based on the absence of a detectable N-ter-
minal targeting sequence. As expected, these prediction
methods erroneously assigned a significant proportion of
the chloroplast proteins to the secretory pathway (see
Table 1). In addition, Predotar failed to detect the pres-
ence of a target peptide in a significant number of pro-
teins, and some proteins were falsely predicted as being
targeted to the mitochondrion by three of the four meth-
ods. In contrast, we were able to show that the signal pep-
tide component of the bipartite chloroplast targeting
sequences was efficiently recognised by methods that have
been developed to specifically distinguish proteins with
signal peptides (designed for the secretory pathway) from
non-secreted proteins. The four methods tested, Phobius
[3] (v. 1.01), PrediSi [16] (v. 2003) and both the Neural
Network and Hidden Markov Model versions of SignalP
[7] (v. 3.0) (SignalP_NN and SignalP_HMM), identified
the signal peptide component of 55, 48, 53 and 55 of the
55 heterokont chloroplast proteins, respectively. Based on
this result, we decided to create a method that would be
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able to efficiently recognise the bipartite chloroplast tar-
geting sequences of heterokonts by searching for each of
the two components of this structure in a step by step
manner.

A hierarchical procedure to recognise heterokont 

chloroplast targeting sequences

The HEterokont subCellular localisation TARgeting
method (HECTAR) has a hierarchical architecture consist-
ing of three decision modules (Fig. 3). Each module is
dedicated to the identification of one or two specific N-
terminal target peptides. Altogether, four target peptides
can be predicted: signal peptides, type II signal anchors,
chloroplast transit peptides and mitochondrion transit

peptides. The absence of any detectable target peptide rep-
resents a fifth category. The decision module at the root of
HECTAR (the "signal peptide/anchor" module) differs
from the two other modules in that it discriminates
between three categories: N-terminal signal peptides, type
II signal anchors and proteins without either of these tar-
get peptides. Type II signal anchors resemble secretory sig-
nal peptides but have a longer N-terminal hydrophobic
region which is able to span the membrane. Type II signal
anchors are not cleaved. Their function is to anchor pro-
teins in the membrane. The N-terminus of a type II signal
anchor protein is located in the cytoplasm (Nin) whilst the
C-terminus projects into the lumen of the endoplasmic
reticulum or is on the outside of the cell (Cout) [28,29].

Primary and secondary endosymbiosisFigure 1
Primary and secondary endosymbiosis. part A: Primary endosymbiosis is proposed to have involved the capture of a 
cyanobacterium (green elipse) by a eukaryotic heterotroph (red elipse). The cyanobacterium would then have been modified 
during evolution to give rise to a plastid with two surrounding membranes. part B: The secondary endosymbiotic event that 
gave rise to the heterokonts is proposed to have involved the engulfment of a red algae with a chloroplast (green elipse inside 
a red elipse) by a eukaryotic heterotroph (brown elipse). The red alga would have become the heterokont plastid with four 
surrounding membranes.
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The first decision module of HECTAR identifies signal
peptides and type II signal anchors by combining the pre-
dictions of Phobius, PrediSi, SignalP_NN and
SignalP_HMM. HMMTOP [30] (v. 2.1) and TMHMM [4]
(v. 2.0c) can detect the long hydrophobic regions which
characterise signal anchors and were therefore also incor-
porated into the decision process. If HECTAR predicts a
type II signal anchor, the category for this protein has
been found. Otherwise, if a signal peptide is detected, the
protein is further analysed to determine whether the sig-
nal peptide is a component of a chloroplast targeting

sequence. To do this, HECTAR first searches for the ASA-
FAP motif around the predicted signal peptide cleavage
site (see Methods for details). HECTAR then cleaves the
signal peptide based on the signal peptide cleavage site
predicted by Phobius, PrediSi, SignalP_NN and
SignalP_HMM. The truncated protein sequence, lacking
the signal peptide, is then analysed by the "chloroplast
targeted" module which determines whether a chloroplast
transit peptide is present at what is now the N-terminal
end of the protein sequence. The chloroplast targeted
module combines the calculated score for the appearance

Comparison of the chloroplast target peptides of red algae and heterokontsFigure 2
Comparison of the chloroplast target peptides of red algae and heterokonts. part A: To be imported into a red 
algal chloroplast, proteins require only a single N-terminal transit peptide (blue bar). The transit peptide is cleaved when the 
protein passes through the outer chloroplast membrane. The mature protein (yellow) is then transferred into the chloroplast. 
part B: In heterokonts, proteins which are targeted to the chloroplast possess a bipartite target peptide which is made up of 
an N-terminal signal peptide (red) followed by a chloroplast transit peptide (blue). The signal peptide is cleaved when the pro-
tein passes through the outermost of the four heterokont chloroplast membranes. This places the transit peptide at the new 
N-terminus of the protein where it can mediate transfer across the two innermost membranes. The transit peptide is cleaved 
during this second step of the transfer. part C: Sequence logo of the conserved ASAFAP motif surrounding the predicted sig-
nal peptide cleavage site based on 55 chloroplast targeted proteins from heterokonts. The logo was built with WebLogo [53] 
and is based on manually improved alignments of the sequence neighbouring the predicted cleavage site.
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of the ASAFAP motif with the output of the plant versions
of Predotar, iPsort and PredSL. Initially, we also consid-
ered integrating ChloroP [31] (v. 1.1) into this module.
However, this method predicted a chloroplast localisation
for many secreted proteins after the leading signal peptide
had been removed (data not shown). If a chloroplast tran-
sit peptide is detected by the "chloroplast targeted" mod-
ule, the protein is classified as being chloroplastic,
otherwise it is labelled as being part of the secreted path-
way. Going back to the root of the hierarchy, if no signal
peptide/anchor is detected at this level, the protein
sequence is fed to the module that identifies mitochon-
drion targeted proteins. This module combines the pre-
dictions of MitoProt2 [15] (v. 1.101) and the non-plant
versions of TargetP, Predotar, iPsort and PredSL. If a mito-
chondrion targeting sequence is detected, the protein is
classified as mitochondrial, otherwise, it is assigned to the
default category "no N-terminal target peptide", indicat-
ing that it is located in the cytosol or subcellular compart-
ments where protein targeting does not require a N-
terminal target peptide.

Use of support vector machines as an ensemble method for 

detecting target peptides

Since the early sixties, and more precisely since the work
of Bates and Granger [32,33], model combination has
proved to be an efficient alternative to model selection for
a wide range of statistical inference problems. Theory in
the field has made rapid strides, first in the framework of
regression, and more recently in discrimination. The suc-
cess of methods such as bagging [34] and boosting [35] has
highlighted the usefulness of implementing large margin
ensemble methods to improve the performance of weak
classifiers. As mentioned above, programs that predict the
subcellular localisations of proteins are based on different
principles, and therefore provide complementary infor-
mation (i.e., their errors are not too correlated). This is
why HECTAR was designed to combine the output of
selected prediction methods at each node of the hierarchy
(Fig. 3). We chose to use SVMs for this task. This choice
was based on the usefulness of large margin models to
combine classifiers, and on the fact that SVMs have
already proved very efficient to combine prediction meth-

ods in the field of protein sequence processing (see for
instance [36,37]). The "signal peptide/anchor" module
discriminates between three categories. For this module,
the multi-class SVM (M-SVM) of Weston and Watkins was
used [38]. The kernel of the SVMs incorporated in the "sig-
nal peptide/anchor" module and the "mitochondrion tar-
geted" module is a Radial Basis Function (RBF), the one
for the "chloroplast targeted" module is linear. This
choice was based on preliminary test results (data not
shown). For each of the three SVMs, an optimal subset of
the outputs of the base classifiers was selected to consti-
tute the set of predictors. This selection was performed
based on the biological significance of the outputs.

Assessment of the prediction accuracy of HECTAR

A set of reference proteins was established for each of the
five categories of subcellular targeting predicted by HEC-
TAR (see Methods for details). The entire set comprised
441 secretory path proteins, 11 type II signal anchor pro-
teins, 55 heterokont chloroplast targeted proteins, 128
mitochondrion targeted proteins and 1423 nuclear/
cytosolic proteins. A five-fold cross-validation procedure
was applied to this set to assess the prediction accuracy
according to two criteria: the recognition rate and the
Pearson's/Matthews' correlation coefficients (MCC) [39].

In our data set, the proportions of type II signal anchor
proteins, chloroplast targeted proteins and mitochon-
drion targeted proteins are 0.5%, 2.7% and 6.2% respec-
tively. This implies that the training sets of the three SVMs
are highly unbalanced, which could a priori have a nega-
tive influence on the accuracy of the prediction. Based on
this observation, we decided to assess the usefulness of
reducing the number of negative examples in the different
training sets.

To identify the optimal ratios of examples from the largest
categories in the training sets of the three SVMs, we intro-
duced a second level of cross-validation (applied a stacked
generalization procedure [40]). The criterion optimized
was the MCC (in the case of M-SVM we used the sum of
the three coefficients). In these procedures, sampling
without replacement was used to select a number of exam-

Table 1: Analysis of heterokont chloroplast targeted proteins using four currently existing subcellular localisation predicting 

algorithms.

Secretory pathway Chloroplast Mitochondrion No target peptide

TargetP 20 25 6 4

Predotar 35 0 0 20

PredSL 25 26 3 1

iPsort 40 6 9 0

The subcellular localisation predicting algorithms TargetP, Predotar, PredSL and iPsort were used to analyse 55 heterokont chloroplast targeted 
proteins. For TargetP we declared a protein as possessing no N-terminal target peptide if the highest category support probability was less than 
0.32.
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ples from the two larger sets ranging from the number of
examples of the smallest category to its maximum possi-
ble value (i.e., all examples of the large sets being
retained). For each SVM and each value of the ratio, five
different sets of negative examples were sampled. It
appeared that the prediction accuracy was systematically
increasing with the size of the training set. As a conse-

quence, no example was discarded in any of the training
sets of the five-fold cross-validation.

Table 2 presents the confusion matrix resulting from this
procedure. The overall recognition rate exceeds 96.3%,
with Matthews' correlation coefficients equal to 0.94 (sig-
nal peptide possessing proteins), 0.67 (type II signal

Hierarchical architecture of HECTARFigure 3
Hierarchical architecture of HECTAR. Five categories of subcellar targeting can be predicted by the HECTAR method: 
signal peptides, type II signal anchors, chloroplast transit peptides, mitochondrion transit peptides and proteins with no detect-
able N-terminal target peptide. Each decision module (yellow boxes) runs several selected methods (white boxes) to detect 
specific target peptides. Selected outputs from these methods are then submitted to a SVM which combines these predictors 
to determine whether a particular target peptide is present in the sequence being analysed. Protein sequences are first ana-
lysed by the "signal peptide/anchor" module where a multi-class SVM determines whether a signal peptide or a type II signal 
anchor is present. If a signal peptide is detected, this sequence is removed from the N-terminal end of the protein sequence 
and the modified sequence is analysed by the "chloroplast targeted" module which determines whether the signal peptide is fol-
lowed by a chloroplast transit peptide. In this module the result of a search for the ASAFAP motif is included in the decision 
process. If a chloroplast transit peptide is present the protein is classified as chloroplastic, otherwise it is classified as having 
either a signal peptide or a type II signal anchor. When the "signal peptide/anchor" module did not predict either a signal pep-
tide or a type II signal anchor, the protein sequence is analysed by the "mitochondrion targeted" module to determine whether 
a potential mitochondrion target peptide is present. If a mitochondrion target peptide is found, the protein is assigned as being 
targeted to the mitochondrion, otherwise it is classified as having no N-terminal target peptide.
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anchor proteins), 0.82 (chloroplast targeted proteins),
0.83 (mitochondrion targeted proteins) and 0.95
(nuclear/cytosolic proteins).

Additional testing of HECTAR using proteins with known 

subcellular localisations

We established an additional set of proteins whose exper-
imentally-determined subcellular localisations corre-
sponded to one of the five categories predicted by
HECTAR. This data set included one mitochondrion tar-
geted protein, the TIM50 subunit protein from Phytoph-
thora infestans, and a number of proteins of the
cryptophyte Guillardia theta. Cryptophytes are a sister
group to the heterokonts, and they are also believed to be
derived from a secondary endosymbiosis event involving
a red alga [21,22]. Like heterokonts, cryptophytes possess
complex chloroplasts and chloroplast targeting is medi-
ated by a bipartite target peptide consisting of an N-termi-
nal signal peptide followed by a chloroplast transit
peptide. Chryptophyte chloroplast targeting peptides pos-
sess an ASAFAP-like motif (AXAF), with a highly con-
served phenylalanine, at the signal peptide cleavage site
[41]. Ten cryptophyte proteins that have been shown
experimentally to be targeted to different subcellular
localisations were analysed by HECTAR. These included
one cytosolic, three secreted proteins and two categories
of chloroplast targeted proteins. The first were proteins
that are targeted to the interior of the cryptophyte chloro-

plast (three proteins) whereas the second corresponded to
proteins that are targeted to the periplastid space between
the second and third (outermost) chloroplast membranes
(three proteins) [22,42]. Proteins targeted to the peri-
plastid space possess a bipartite target peptide but they do
not have a conserved phenylalanine after the signal pep-
tide cleavage site. It has been demonstrated that this phe-
nylalanine residue is essential for a protein to be
transported further into the chloroplast [41]. Table 3
shows that HECTAR successfully identified the presence
of signal peptides in the proteins that enter the secretory
pathway. It also correctly predicted the subcellular locali-
sation of the mitochondrial proteins, the cytosolic protein
and the proteins that are targeted into the interior of the
cryptophyte chloroplast. The proteins that are targeted to
the periplastid space of the cryptophyte chloroplast were
predicted to be either secreted or chloroplastic. This is not
surprising because HECTAR has not been designed to
identify this class of targeting sequence. This analysis con-
firmed the reliability of the predictions produced by HEC-
TAR and demonstrated that it can also accurately predict
the subcellular localisation of proteins from organisms
such as the cryptophytes that belong to groups other than
the heterokonts but possess complex plastids derived
from a secondary endosymbiosis event.

Table 2: Prediction accuracy of HECTAR.

Signal peptide Type II signal anchor Chloroplast Mitochondrion No target peptide

Signal peptide 428 1 5 1 6

Type II signal anchor 2 8 0 0 1

Chloroplast 10 0 43 0 2

Mitochondrion 8 1 1 103 15

No target peptide 6 3 0 14 1400

Confusion matrix of HECTAR predictions obtained by five-fold cross-validation. Each line represents one specific category of subcellular targeting. 
The columns indicate the categories of subcellular targeting predicted by HECTAR.

Table 3: Test of HECTAR with additional experimentally validated proteins. 

AccNr Gene name Species HECTAR prediction Evidenced localisation

AY751575 TIM50 Phytophthora infestans mitochondrion mitochondrion

AJ937545 cycb Guillardia theta signal peptide secreted

AJ937544 cath G. theta signal peptide secreted

AJ937546 psi G. theta signal peptide secreted

AJ937535 mpheS G. theta chloroplast chloroplast

AF268324 LHCC13 G. theta chloroplast chloroplast

U40032 GapC1 G. theta chloroplast chloroplast

AJ937542 iddi G. theta signal peptide periplastid space

AJ937543 hemE G. theta chloroplast periplastid space

AJ784213 gbss G. theta signal peptide periplastid space

U39873 GapC2 G. theta no target peptide cytosol

HECTAR was applied on eleven proteins with known subcellular localisation.
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Analysis of putative Fucus distichus secreted proteins using 

HECTAR

Belanger et al. [43] used a yeast signal sequence trap (SST)
screen to identify secreted proteins potentially involved in
asymmetric zygote cell growth in the brown alga Fucus dis-
tichus. The putative secreted proteins identified in this
study included several probable chloroplast proteins such
as fucoxanthin a/c-binding binding proteins (FCP) and
the authors suggested that these may have been bona fide
chloroplast proteins that were recognised by the yeast
secretion machinery as secreted proteins due to their N-
terminal signal peptide. To test whether HECTAR could
distinguish between the secreted and the chloroplast pro-
teins in this data set, we selected the protein sequences
that were at least 100 residues long and applied a redun-
dancy reduction (for details see Methods). The remaining
47 F. distichus putative secreted proteins were analysed by
HECTAR. Of the 47 proteins, 45 were predicted to possess
a N-terminal signal peptide (see Table 4). No target pep-
tide was found in two of the proteins (BU037984 and
BU038066). The SST procedure has been shown to select
a small percentage of non-secreted proteins as false posi-
tives [44]. This occurs because these proteins possess a
short region that shares some similarity with signal pep-
tides at their N-terminal end. BU037984 and BU038066
may belong to this category. The analysis by HECTAR sug-
gested that nine of the 45 proteins with a signal peptide
also possessed a chloroplast transit peptide, indicating
that these proteins are targeted to the chloroplast. Com-
parison with the Genbank non-redundant protein data-
base (NR) using BlastP allowed putative functions to be
assigned to 23 of the 47 Fucus proteins (see Table 4).
BlastP searches with the other 24 proteins either returned
matches with proteins of unknown function or did not
find any matches in the database. Additional searches
were carried out against published heterokont genomes,
and using the Pfam database, but no additional func-
tional information was obtained for these proteins (data
not shown). The putative functions of the 23 proteins
which matched proteins with functional information in
the database were consistent with the subcellular localisa-
tions predicted by HECTAR.

HECTARSEC

HECTAR has been designed to predict the subcellular
localisation of heterokont proteins. As a result, it cannot
be used to determine the subcellular localisation of pro-
teins from green plants because their chloroplast targeting
peptides consist of a single unit, the chloroplast transit
peptide. However, because signal peptides and type II sig-
nal anchors have a similar composition in all eukaryotes
[25,28] and HECTAR has been trained on target peptides
from across the eukaryotic tree, the "signal peptide/
anchor" module can be used to identify these two types of
target peptides in a protein from any eukaryotic organism.

We call this version of HECTAR, consisting of only the
"signal peptide/anchor" module, HECTARSEC (Fig. 4). A
five-fold cross-validation of HECTARSEC showed that it
predicted the presence of signal peptides and type II signal
anchors with a high (98.4%) accuracy and that with
MCCs of 0.96 (signal peptide), 0.67 (type II signal
anchor) and 0.96 (no signal peptide or signal anchor) (for
details see Table 5).

Conclusion
To date, complete genome sequences have been pub-
lished for three heterokonts: The diatom Thalassiosira pseu-
donana [45] and two oomycete plant pathogens [46]. In
addition, genome sequencing has been completed or is
nearing completion for several other heterokont species,
including the diatoms Phaeodactylum tricornutum, Fragilar-
iopsis cylindrus and Pseudo-nitzschia, the oomycetes Phy-
tophthora infestans and Phytophthora capsici, the
pelagophyte Aureococcus anophagefferens, the chrysophyte
Ochromonas danica and the brown alga Ectocarpus siliculo-
sus. This rapidly increasing availability of sequence data
for the heterokonts brings with it a need for specialised
bioinformatics tools to identify genes and to make predic-
tions about the characteristics of the encoded proteins.
HECTAR addresses one aspect of this problem, the predic-
tion of the subcellular localisation of heterokont proteins.
We have shown that HECTAR fulfills this function with
high efficiency using cross-validation and by further tests
with additional proteins from several species including
the cryptophyte Guillardia theta and the brown alga Fucus
distichus.

In its present form, HECTAR can discriminate between
four types of target peptides. However, because of its mod-
ular architecture, it could easily be adapted in the future to
identify additional types of target peptides. These could
include sequences that direct proteins to more precisely
defined subcellular compartments (such as the signals
that allow targeting to the chloroplast thylakoid mem-
brane or the mitochondrial matrix, for example) or
regions within the protein sequence such as membrane-
spanning domains or nuclear localisation signals.

Methods
Data sets of proteins with experimentally verified 

subcellular localisations

The protein sequences that were used to train and test
HECTAR were obtained either from Swiss-Prot or by
searching the scientific literature. The latter method was
particularly important for identifying heterokont proteins
because of the small number of sequences that have been
analysed experimentally for this group of organisms. The
Swiss-Prot database (release 54.3) was searched with the
Sequence Retrieval System (SRS version 7.1.3.2) at the EBI
webpage for entries with the comment type (CC) "subcel-
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lular localisation". Proteins that had been marked as lack-
ing their terminal end (non_ter) or the initial methionine
at the N-terminus (init_met) or proteins containing non-
consecutive residues within the sequence (non_cons)
were excluded. We also implemented our own parsers in
Perl to remove any protein that had uncertainties in the
protein sequence (i.e., containing the residues X, B or Z),

the note "CONFLICT" in the feature table entry, "By sim-
ilarity", "Probable" or "Potential" in the "CC SUBCELLU-
LAR LOCATION" or in the target peptide description of
the feature table (FtKey) or multiple possibilities for sub-
cellular localisation. In cases where the subcellular locali-
sation did not agree with the target peptide annotation in
the Swiss-Prot feature table entries, the proteins were also

Table 4: HECTAR analysis of putative secreted proteins from Fucus distichus. 

AccNr HECTAR BlastP against NR BlastP match AccNr E-value

BU037999 signal peptide no hits found

BU038005 signal peptide no hits found

BU038011 signal peptide no hits found

BU038014 signal peptide Archae adhesin-like YP_001273569 6.00E-005

BU038016 signal peptide heat shock cognate 70 ABH09735 2.00E-030

BU038019 signal peptide Bacterial dipeptidase YP_001358201 7.00E-012

BU038023 signal peptide xylosyltransferase XP_001658334 8.00E-010

BU038035 signal peptide Bact. pentapeptide repeat containing YP_001068500 0.014

BU038038 signal peptide copper radical oxidase ABD61575 3.00E-012

BU038040 signal peptide Bact. cyclic nucleotide-binding domain YP_527950 2.00E-003

BU038041 signal peptide predicted protein XP_001769436 4.00E-005

BU038044 signal peptide no hits found

BU038047 signal peptide no hits found

BU038050 signal peptide no hits found

BU038056 signal peptide cysteine protease BAD29957 4.00E-024

BU038058 signal peptide no hits found

BU038063 signal peptide no hits found

BU038071 signal peptide no hits found

BU038074 signal peptide no hits found

BU038076 signal peptide no hits found

BU038079 signal peptide no hits found

BU038082 signal peptide no hits found

BU038085 signal peptide high CO2 inducible periplasmic AAW79380 5.00E-004

BU038087 signal peptide no hits found

BU038091 signal peptide mannuronan C-5-epimerase CAD42950 0.001

BU038093 signal peptide no hits found

BU038094 signal peptide Bact. hypothetical protein YP_525510 0.004

BU038100 signal peptide predicted protein XP_001700285 5.00E-016

BU038108 signal peptide no hits found

BU038114 signal peptide glutathione peroxidase ABN46985 1.00E-024

BU038121 signal peptide Bact. catalase YP_458982 2.00E-015

BU038126 signal peptide no hits found

BU038127 signal peptide no hits found

BU038130 signal peptide cysteine protease ABQ10203 1.00E-004

BU038146 signal peptide no hits found

BU038148 signal peptide FK506-binding EDS41102 7.00E-007

BU037981 chloroplast light harvesting AAG13008 8.00E-062

BU037991 chloroplast heat shock protein 70 AAM94003 1.00E-010

BU038012 chloroplast chloroplast LI818 protein ABD58893 1.00E-010

BU038052 chloroplast GAPDH precursor AAQ13415 3.00E-103

BU038060 chloroplast extrinsic protein in PSII CAH25361 0.016

BU038064 chloroplast chlorophyll a/b-binding AAP79202 1.00E-018

BU038101 chloroplast sirohydrochlorin ferrochelatase NP_564562 4.00E-021

BU038123 chloroplast no hits found

BU038142 chloroplast chloroplast light harvesting ABA55527 6.00E-008

BU037984 no target peptide no hits found

BU038066 no target peptide no hits found

HECTAR was applied on putative secreted Fucus distichus proteins. The localisations predicted by HECTAR as well as the details of BlastP searches 
against the NCBI non-redundant protein database (NR) are listed. Only matches were taken into account with an e-value of less than 0.02.
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removed. Using this general approach, mitochondrial
proteins were retrieved by searching for the subcellular
localisation "mitochondrion" (CC) and for the feature
table entries "TRANSIT" (FtKey) and "mitochondrion"
(FtDescription). Nuclear/cytosolic proteins were recov-
ered by searching for "nucleus" or "cytoplasm" in the CC
field. Secreted proteins were identified by searching for
the feature table key "SIGNAL". After removal of non-
valid proteins as described above, we retained 167 mito-
chondrial targeted, 2330 nuclear/cytosolic and 977

secreted proteins. Searches of the scientific literature con-
centrated on the identification of two classes of protein:
proteins with a type II signal anchor and chloroplast tar-
geted proteins from heterokonts. Proteins with type II sig-
nal anchors were only accepted if they had been shown
experimentally to be anchored in the cell membrane. We
also verified that the N-terminus of the proteins had been
shown to be orientated towards the cytosol (Nin), and the
C-terminus to be located either in the lumen of a subcel-
lular compartment (of the secretory pathway) or on the

Table 5: Prediction accuracy of HECTARSEC. 

Signal peptide Type II signal anchor No signal peptide or anchor

Signal peptide 486 1 9

Type II signal anchor 2 8 1

No signal peptide or anchor 15 4 1532

Confusion matrix of HECTARSEC predictions obtained by five-fold cross-validation. Each line represents one specific category of subcellular 
targeting. The columns indicate the categories of subcellular targeting predicted by HECTARSEC.

Architecture of HECTARSECFigure 4
Architecture of HECTARSEC. HECTARSEC is a variant of HECTAR that is dedicated to identifying signal peptides and type II 
signal anchors in proteins from any eukaryotic organism. This method implements the HECTAR "signal peptide/anchor" mod-
ule.
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outside of the cell (Cout). For the latter, glycosolation of
the C-terminal part of the protein was accepted as evi-
dence of a luminal/extracellular location for this part of
the protein. Proteins with more than one transmembrane
spanning region were eliminated. Eleven type II signal
anchor proteins were found in this way.

To identify experimentally verified heterokont chloroplast
targeted proteins, we searched for evidence based either
on the uptake of GFP or red fluorescent protein (RFP)
fusion proteins into heterokont chloroplasts, on the
import of proteins into canine microsomes (to validate
the N-terminal signal peptide) or on screening of libraries
with antibodies against FCP. For some of the heterokont
chloroplast targeted proteins, conservation of targeting
sequences in a multiple alignment was also accepted as
proof. A collection of 62 manually curated chloroplast
proteins from the diatoms Thalassiosira pseudonana and
Phaeodactylum tricornutum constituted the major part of
the heterokont chloroplast data set. These sequences were
kindly provided by Peter Kroth (University of Konstanz,
Germany). Together with additional chloroplast targeted
proteins from diatoms, brown algae and raphidophytes,
the heterokont chloroplast protein data set totaled 72 pro-
teins.

We implemented a redundancy reduction pipeline to
remove redundant data from the above data sets. For this,
ClustalW was modified so that it provided a pairwise dis-
tance matrix. This information was then fed to an in house
implementation of the Hobohm2 algorithm [47]. The
redundancy reduction was applied individually to each of
the data sets corresponding to the five categories of subcel-
lular targeting. A protein sequence was defined as non-
redundant if its 100 N-terminal residues showed a
sequence identity of less than 35% with the other proteins
of the same reference set. After redundant sequences had
been removed, the final data sets included 128 mitochon-
drial targeted proteins, 1423 nuclear/cytosolic proteins,
441 secreted proteins, 11 type II signal anchor proteins
and 55 heterokont chloroplast targeted proteins.

ASAFAP motif search

To develop a search procedure for the conserved motif
identified in [24], we applied the signal peptide predic-
tion algorithms (SignalP_NN, SignalP_HMM, Phobius
and PrediSi) to the 55 proteins of the heterokont chloro-
plast data set and aligned these proteins at their predicted
signal peptide cleavage sites. In rare cases where the pre-
diction methods did not agree on the cleavage site posi-
tion for an individual protein, we searched the sequence
surrounding the predicted cleavage sites for traces of the
ASAFAP motif and the alignment was then manually
improved with respect to the conserved motif. The Shan-
non entropy [48]Sobs,i was evaluated for each of the six res-

idues neighbouring the signal peptide cleavage site
(positions -3 to +3):

where {aj: 1 ≤ j ≤ 20} is the set of the 20 natural amino
acids and f(xi = aj) is the frequency of amino acid aj at posi-
tion i within the ASAFAP motif with i ∈ {-3, -2, -1, +1, +2,
+3}.

By Schneider [49] the information content Rseq,i which
describes the conservation of the residue at position i of a
protein sequence is:

Rseq,i = Smax - Sobs,i = log2 (20) - Sobs,i,

where Smax is the maximum possible entropy.

To search for the ASAFAP motif, HECTAR scans from the
N-terminal end of a protein sequence as far as the 20 first
residues after the predicted signal peptide cleavage site
using a six-residue sliding window. A score is computed
for each window. This score represents the similarity of
each window content to the consensus motif. For this the
amino acid frequencies and the information content for
each position of the ASAFAP motif retrieved in the above
mentioned procedure are taken into account. It is given
by:

where wk is the content of the six-residue window starting
at position k of the protein sequence. The best score for a
protein is then transmitted to the chloroplast targeting
module of HECTAR where it contributes to the detection
of putative chloroplast targeted proteins.

SVM classifiers

We have seen that HECTAR uses three SVMs as combiners:
a M-SVM and two bi-class SVMs. We used our software,
which implements the M-SVM of Weston and Watkins
and is dedicated to very large data sets [37], to develop all
three machines. This software is available at the following
address: http://www.loria.fr/~guermeur/Dev.tar.gz. This
approach could be used since the M-SVM is identical to
the bi-class SVM when applied to compute dichotomies.
The kernels of the M-SVM ("signal peptide/anchor" mod-
ule) and the bi-class SVM of the "mitochondrion targeted"
module are RBF (Gaussian), whereas the kernel of the bi-
class SVM of the "chloroplast targeted" module is linear.
As a consequence, for the SVMs of the "signal peptide/
anchor" module and the "mitochondrion targeted" mod-

S f x a f x aobs i i j i j

j
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ule, model selection consisted of choosing the bandwidth
of the kernel and the value of the soft margin parameter C,
whereas for the "chloroplast targeted" module SVM, only
the value of C had to be set. To peform this task, we stud-
ied the way guaranteed risks varied as a function of the
values of these hyperparameters. The optimization proce-
dure corresponding to C made use of the algorithm pro-
posed in [50] to fit the entire regularization path. This
allowed us to spare cpu time. In the bi-class case, the guar-
anteed risk used was the standard bound on the expected
risk of kernel machines involving their Rademacher com-
plexity (see [51], Section 3 for details). For the M-SVM, we
used the multi-class extension of this bound established
in Chapter 2 of [52]. Bounds were used for model selec-
tion in place of an additional cross-validation procedure
for two reasons. The first was to keep as many examples as
possible for training, given the fact that the size of some
sets, such as the type II signal anchor proteins, is rather
small. The second reason was to avoid complexifying the
cross-validation procedure implemented to assess the
generalization performance of HECTAR.
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