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1 Introduction

In a series of recent papers following [1] it has been realized that (all known) multi-loop

n-particle scattering amplitudes of planar N = 4 super-Yang-Mills (SYM) theory pos-

sess special properties that are intimately connected to mathematical structures known as

cluster algebras. The most basic aspect of this connection is that amplitudes are linear

combinations of generalized polylogarithm functions whose symbol arguments are cluster

coordinates on the Gr(4, n) Grassmannian cluster algebra.1

1This aspect is the focus of our paper, but other connections have been observed for particular ampli-

tudes. For example, there is a tight connection between the cobracket of motivic 2-loop MHV amplitudes

and the Poisson structure on the underlying cluster algebra, which has been explored in [1, 3, 4].
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This connection between scattering amplitudes and cluster algebras is undoubtedly

related to a similar cluster structure that has been observed at the level of integrands

in [2], though the precise connection has yet to be made. Nevertheless, the observed

cluster structure of integrated amplitudes has already helped to facilitate the computation

of new expressions for various quantities associated to amplitudes (see for example [3–

7]). In parallel, work by Dixon, Drummond, and collaborators has resulted in spectacular

progress in determining 6-particle amplitudes via a bootstrap approach (see [8–12], or the

review [13]) utilizing input from the OPE of null Wilson loops (see for example [14–19]).

Typically, results in SYM theory take the form of colossal linear combinations of gener-

alized polylogarithm functions. These special functions satisfy a huge number of functional

identities: shuffle identities, stuffle identities, the Abel identity, the trilogarithm identity

of [1], and many others. These make generalized polylogarithms notoriously difficult to

work with. Moreover, with so many identities, there are a multitude of possible ways to

write the same formula. In general there is no “best” way to write a given expression, nor

is it even clear how one ought to define “best” — perhaps the shortest expression, or one

where certain physical or mathematical properties are manifest.

Large progress towards finding canonical bases for generalized polylogarithms has been

made by Brown in [20] (see also [21] for some applications) and employed by Dixon et al.

in their 6-particle bootstrap program. In this paper we demonstrate a natural way to

“clusterize” Brown’s basis of polylogarithm functions. Namely, we show how to generate,

at any weight, a basis of generalized polylogarithm functions whose symbols are mani-

festly expressible in terms of cluster coordinates on the An cluster algebra. We call these

“hedgehog” bases because they are naturally associated to certain spiny structures in the

An exchange graph. Hedgehog bases provide an almost canonical way to write expressions

for 6-particle MHV and NMHV amplitudes, presumably at any loop order. Compared

to using other bases that have been considered in the literature, hedgehog bases have the

theoretically-pleasing advantage of making some of the cluster structure of such amplitudes

manifest, as well as the practical benefit of allowing notably shorter expressions. The lat-

ter feature echoes a common theme in the amplitudes program: identifying underlying

mathematical structure and improving computational efficiency go hand in hand.

Section 2 briefly reviews the necessary mathematical technology of polylogarithms,

cluster algebras, and scattering amplitudes. Section 3 introduces the idea of a “hedgehog”

for a cluster algebra, and sketches the rigorous proof (with details relegated to an appendix)

that they can be fashioned into a basis for polylogarithms. Section 4 presents, as an

application of this technology, a construction of a hedgehog-basis representation for the

the 2-loop 6-particle NMHV amplitude.2

2 Review

Polylogarithms and cluster algebras are each subjects unto themselves. Thus this section

is not an all-encompassing review, but rather a brief reminder of some of the mathematical

technology needed for the rest of the paper, together with citations where the curious

2Our result is included as an ancillary file with the arXiv submission.
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reader may find additional details. We also review the relevant aspects of the connection

between Grassmannian cluster algebras and scattering amplitudes in SYM theory.

2.1 Generalized polylogarithms

Polylogarithms are a broad class of special functions that generalize the logarithm. More

details on the material in this section may be found in the recent review [22].

Recall that the ordinary logarithm can be written as log z =
∫ z
0
dt
t . Generalizing this to

an iterated integral of the type first studied systematically by Chen [23] gives the weight-k

Goncharov polylogarithm [24]:

G(a1, . . . , ak; z) =

∫ z

0

dt

t− a1
G(a2, . . . , ak; t) , G(z) = 1 , (2.1)

with the special case

G(0, . . . , 0︸ ︷︷ ︸
k

; z) =
1

k!
logk z . (2.2)

In general, a1, . . . , ak are valued in the complex numbers with z ∈ C \ {a1, . . . , ak}, and

one should specify a contour of integration. We will see that for scattering amplitudes

in a certain domain these variables are all real-valued, and there is a natural ordering

which allows one to take the “naive” contour straight along the real axis. A large class

of L-loop amplitudes in SYM theory, including at least all MHV and NMHV amplitudes,

are expected to be expressible as linear combinations of weight-2L polylogarithms. The

classical polylogarithms Lik(z) = −G(0, . . . , 0︸ ︷︷ ︸
k−1

, 1; z) form a strict subset of the Goncharov

polylogarithms.

As mentioned in the introduction, the bane of working with polylogarithms is the

numerous functional identities they obey. Perhaps the most important of these is the

shuffle identity. The product of two polylogarithms can be written as

G(a1, . . . , an; z)G(an+1, . . . , an+m; z) =
∑

σ∈Sn,m

G(aσ(1), . . . , aσ(n+m); z) (2.3)

where Sn,m is the set of (n,m)-shuffles, i.e. permutations σ of length n+m such that

σ−1(1) < σ−1(2) < · · · < σ−1(n) and σ−1(n+ 1) < σ−1(n+ 2) < · · · < σ−1(n+m) .

(2.4)

The name comes from riffle shuffling a deck of cards; shuffling two stacks of cards together

interweaves them while leaving each stack in the same order.

Each polylogarithm has an associated object called its symbol (see for example [25, 26],

and the review [27]). The symbol is a useful tool for converting the functional identities

of polylogarithms into linear algebra, obviating many thorny problems. The symbol of

a Goncharov polylogarithm admits a nice graphical interpretation as a sum over plane

trivalent trees [28], and is given explicitly by the recursive formula

S
(
G(ak, . . . , a1; ak+1)

)
=

k∑
i=1

S
(
G(ak, . . . , âi, . . . , a1; ak+1)

)
⊗ (ai − ai+1)

− S
(
G(ak, . . . , âi, . . . , a1; ak+1)

)
⊗ (ai − ai−1) .

(2.5)
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Figure 1. (a) The initial seed for the A3 algebra. (b) The result of mutating on the vertex x2.

Here âi denotes that the argument is omitted, and it is also understood that any term with

0 as a symbol entry (which can happen if some adjacent a’s are equal) should simply be

omitted. Symbols behave as if there were implicit “d log’s” in front of each term: just as

d log 1 = 0 and d log φ1φ2 = d log φ1 + d log φ2, symbols obey (· · · ⊗ 1⊗ · · · ) = 0 and

(α⊗ φ1φ2 ⊗ β) = (α⊗ φ1 ⊗ β) + (α⊗ φ2 ⊗ β) . (2.6)

The collection of φi which appear in the symbol of a given function is called its symbol

alphabet.

2.2 Cluster algebras

Cluster algebras are a relatively new area of mathematics, introduced in 2002 by Fomin

and Zelevinsky in [29, 30]. This section quickly reviews some salient facts about cluster

algebras; the reader may consult [31, 32] for additional mathematical background and [1]

for the amplitude perspective. A cluster algebra starts with a seed — a quiver where each

vertex is labeled with a cluster variable (also called a cluster coordinate).3 See figure 1(a)

for an example of a seed.

A cluster algebra is generated from an initial seed through an iterative process. An

operation called mutation on a vertex generates a new seed and new cluster variables,

according to the formula given in eq. (B.2) (or see [33]). For example, mutating on the

middle vertex on figure 1(a) gives figure 1(b) with the new cluster variables x′1 = x1(1+x2)

and x′3 = x2x3
1+x2

. Mutation is an involution, so applying the same mutation twice does

nothing. The cluster algebra is the algebra generated by the set of all cluster variables

which arise from repeatedly mutating the initial seed. Under certain conditions on the

initial quiver, all possible repeated mutations will yield only finitely many seeds. Such

cluster algebras are said to be of finite type.

A natural domain for a cluster algebra is the positive domain, where all cluster variables

take positive real values. This property is preserved under mutation: if all variables in a

given seed are positive-valued, then all possible cluster variables on the same algebra are

also positive-valued.

The structure of the cluster algebra as a whole can be displayed as an exchange graph,

where each vertex represents a seed, and undirected edges are drawn between seeds linked

by a single mutation. (See figure 2(b).) Because applying a mutation will invert a single

3To be clear, throughout this paper the term “cluster variable” refers to the X -coordinates of Fock and

Goncharov [33], not to cluster A-coordinates.
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Figure 2. (a) The five seeds for the A2 algebra, with each node labeled by its associated cluster

variable. (b) The exchange graph, showing how to move from one seed to another by mutation.

cluster variable xi 7→ 1
xi

, a directed edge of the exchange graph can be associated to a

unique cluster variable xi. The same edge with the opposite direction corresponds to 1/xi.

Later in this paper we will focus on the An family of cluster algebras, which start with

the initial seed

x1 x2 · · · xn

for n ≥ 1. For the special case of An algebras, which are all of finite type, there is a

convenient alternative to representing clusters with quivers. This construction is reviewed

in appendix A.

The A2 algebra, for example, has exactly 5 distinct seeds and 10 cluster variables4

given by

x1 , x2 , x3 =
1 + x2
x1

, x4 =
1 + x1 + x2

x1x2
, x5 =

1 + x1
x2

(2.7)

and their reciprocals. These variables obey the recursive formula

xi+1 =
1 + xi
xi−1

. (2.8)

This paper makes extensive use of the A3 cluster algebra, which starts with the initial

seed in figure 1(a). It has 14 seeds and 30 cluster variables. We take the opportunity to

enumerate in eq. (2.9) 15 of these cluster variables (the other 15 are their reciprocals) in

four ways: (1) in terms of the names vi, x
±
i and ei that these variables have been given in

previous work (see in particular [1, 3]), (2) as rational functions of the variables x1, x2, x3 in

4In this paper, we treat x and 1/x as two separate cluster variables, but they are sometimes conflated

in the literature when it is useful to do so.
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the initial seed, (3) in terms of the {u, v, w, yu, yv, yw} variables used extensively by Dixon

et al. in their study of 6-particle scattering amplitudes in SYM theory, (4) and in terms of

Plücker coordinates on Gr(4, 6) (the connection to Plücker coordinates is explained in the

following subsection)5

v1 =
(1 + x2)(1 + x3 + x2x3 + x1x2x3)

x1x2
=

1− v
v

=
〈1246〉 〈1345〉
〈1234〉 〈1456〉

v2 =
1 + x3
x2x3

=
1− w
w

=
〈1235〉 〈2456〉
〈1256〉 〈2345〉

v3 = (1 + x1)x2 =
1− u
u

=
〈1356〉 〈2346〉
〈1236〉 〈3456〉

x+1 =
1

x3
=

√
vyuyvyw
uw

=
〈1456〉 〈2356〉
〈1256〉 〈3456〉

x+2 =
1 + x2 + x1x2

x1
=

√
wyuyvyw

uv
=
〈1346〉 〈2345〉
〈1234〉 〈3456〉

x+3 =
1 + x3 + x2x3

x1x2x3
=

√
uyuyvyw
vw

=
〈1236〉 〈1245〉
〈1234〉 〈1256〉

x−1 = x1 =

√
v

uwyuyvyw
=
〈1234〉 〈2356〉
〈1236〉 〈2345〉

x−2 = (1 + x2 + x1x2)x3 =

√
w

uvyuyvyw
=
〈1256〉 〈1346〉
〈1236〉 〈1456〉

x−3 =
1 + x3 + x2x3

x2
=

√
u

vwyuyvyw
=
〈1245〉 〈3456〉
〈1456〉 〈2345〉

e1 =
1 + x3 + x2x3 + x1x2x3

(1 + x1)x2
=

√
(1− v)u

v(1− u)yuyv
=
〈1246〉 〈3456〉
〈1456〉 〈2346〉

e2 =
1

(1 + x2)x3
=

√
v(1− w)yvyw

(1− v)w
=
〈1235〉 〈1456〉
〈1256〉 〈1345〉

e3 =
(1 + x1)x2x3

1 + x3
=

√
w(1− u)

(1− w)uyuyw
=
〈1256〉 〈2346〉
〈1236〉 〈2456〉

e4 =
1 + x2
x1x2

=

√
(1− v)uyuyv
v(1− u)

=
〈1236〉 〈1345〉
〈1234〉 〈1356〉

e5 =
x1(1 + x3)

1 + x3 + x2x3 + x1x2x3
=

√
v(1− w)

(1− v)wyvyw
=
〈1234〉 〈2456〉
〈1246〉 〈2345〉

e6 = x2 =

√
w(1− u)yuyw

(1− w)u
=
〈1356〉 〈2345〉
〈1235〉 〈3456〉

(2.9)

2.3 Scattering amplitudes and Grassmannian cluster algebras

The connection between scattering amplitudes in SYM theory and cluster algebras was

first made in [1] and further explored in [3, 4, 34, 35]. The basic fact that allows for such

5The A3 algebra has several seeds of the form shown in figure 1(a). We caution that the definition of

x1, x2 and x3 in eq. (2.9) reflects a convention chosen in [3] which differs from the particular x1, x2 and x3

assigned to the initial seed in [31].
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a connection is that the kinematic domain for n-particle scattering in SYM theory, called

Confn(P3), has, according to [33], the structure of a cluster Poisson variety associated to

the Gr(4, n) Grassmannian cluster algebra. This fact is special to SYM theory in four

dimensions because it relies on the dual conformal symmetry of the theory, discovered

in [36–41].

An ordered scattering amplitude of n massless particles is a function of n null vectors

in Minkowski space that sum up to zero due to energy-momentum conservation. Using

the momentum twistor variables of Hodges [42], the space of such configurations can be

realized as n ordered points in P3, or concretely as a 4×n matrix [Z1Z2 · · ·Zn] where each

column Zi is a four-component homogeneous coordinate on P3. In this presentation, dual

conformal symmetry, which must leave all amplitudes invariant, acts as left-multiplication

by SL(4,C). Passing to the quotient space we get a birational isomorphism (which means

a bijection for generic points)

Gr(4, n)/(C∗)n−1 ∼−→ Confn(P3) . (2.10)

Thus, scattering amplitudes can be (essentially) regarded as complex-valued functions

on Grassmannians, making it natural to use the SL(4,C) invariant Plücker coordinates

〈ijk`〉 = det[ZiZjZkZ`], which are well-defined complex-valued functions on Gr(4, n). How-

ever, since the Z’s are homogeneous coordinates, it is necessary to use ratios of Plücker

coordinates (or, more generally, ratios of homogeneous polynomials of Plücker coordinates),

with the same Z’s appearing in the numerator and denominator, such as

〈5713〉 〈5624〉
〈4512〉 〈3567〉

, (2.11)

to get well-defined coordinates on Gr(4, n)/(C∗)n−1. Scattering amplitudes in SYM theory

are naturally written as functions of such cross-ratios.

This is where cluster algebras enter: the Plücker coordinates of any Grassmannian

form a cluster algebra [43], and the quotient Confn(P3) has the structure of a cluster

Poisson variety [33], with cluster coordinates given by certain very special cross-ratios of

the abovementioned type.6 The physics interest in such cluster algebras stems from the

fact that all known multi-loop amplitudes that have been explicitly computed to date in

SYM theory (including [1, 9–12, 26, 44–47]) are generalized polylogarithms whose symbol

alphabets are subsets of cluster coordinates on this Gr(4, n) cluster algebra.7 The An family

of cluster algebras reviewed in section 2.2 corresponds to the Grassmannian Gr(2, n + 3),

which overlaps with the sequence of algebras relevant to scattering amplitudes in the case

A3
∼= Gr(2, 6) ∼= Gr(4, 6) relevant to 6-particle amplitudes.

2.4 The cluster bootstrap

The main problem we address in this paper is simple to state: given a cluster algebra A,

with a set of cluster coordinates XA, we would like to write down a basis for weight-k

6The positive domain for the Gr(4, n) algebra is defined by 〈ijk`〉 > 0 ∀1 ≤ i < j < k < ` ≤ n.
7A number of results in two-dimensional kinematics including [48–52] provide partial evidence in support

this assertion, though the full Gr(4, n) structure necessarily collapses in two-dimensional kinematics. This

has been studied in [34].
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polylogarithm functions whose symbols may be written in the alphabet XA. We call such

functions “cluster polylogarithm functions” or simply cluster functions8 on A.

To be explicit, let us note that A2 cluster functions, for example, are those which can

be written in the symbol alphabet consisting of the five xi shown in eq. (2.7). Thanks to

eq. (2.6), we can equivalently consider the A2 symbol alphabet to be the set

{x1, x2, 1 + x1, 1 + x2, 1 + x1 + x2} (2.12)

since each of the five xi may be (uniquely) expressed as products of powers of elements of

this set. For A3 only 9 of the 30 cluster variables are multiplicatively independent, and it

is evident from eq. (2.9) that the A3 symbol alphabet may be taken as the set

{x1, x2, x3, 1+x1, 1+x2, 1+x3, 1+x2+x1x2, 1+x3+x2x3, 1+x3+x2x3+x1x2x3} . (2.13)

Closely related symbol alphabets have appeared elsewhere, notably in Brown’s work

on polylogarithm functions on the moduli space M0,m of m marked points on the Riemann

sphere [20]. For example, for the case m = 6, Brown’s polylogarithms are based on the

symbol alphabet

{c1, c2, c3, 1− c1, 1− c2, 1− c3, 1− c1c2, 1− c2c3, 1− c1c2c3} (2.14)

in cubical coordinates9 or

{t1, t2, t3, 1− t1, 1− t2, 1− t3, t3 − t1, t3 − t1, t3 − t2} (2.15)

in simplicial coordinates. Neither alphabet is multiplicatively equivalent to eq. (2.13), but

their relation will be uncovered in the following section. In fact, one way to express the

central result of our paper is to say that we demonstrate how to construct explicit changes

of variables between those of [20] on M0,n+3 and the An cluster X -coordinates, for any n,

which render the corresponding symbol alphabets multiplicatively equivalent.

Let us conclude our review by briefly recalling that for finite symbol alphabets this

problem admits a conceptually straightforward, if computationally intensive, brute force so-

lution. If the symbol alphabet for A has s multiplicatively independent letters {φ1, . . . , φs},
then the symbol of any weight-k cluster function may be expressed as a unique vector (with

rational components) in the sk dimensional vector space Vk spanned by basis elements

φi1 ⊗ · · ·⊗φik . Going the other way around, any vector in Vk which satisfies a set of linear

integrability conditions (see for example [25]) corresponds to (the symbol of) some cluster

function. Therefore, the problem of finding a basis for the (symbols of) weight-k cluster

functions on A is the same as that finding a basis for the nullspace of a certain linear

operator on Vk.
8Functions of this type were called “cluster A-functions” in [3] to distinguish them from a smaller set of

functions with more special properties called “cluster X -functions”, but we do not explore these additional

properties here.
9These cubical coordinates were called xi in [20], but we use ci in eq. (2.14) to distinguish them from

our xi cluster coordinates.
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The efficiency of this approach can be considerably enhanced by recycling lower-weight

information at higher weight, and by exploiting the Hopf algebra structure of polyloga-

rithms (discovered in [28], and nicely reviewed for a physics audience in [53]).10 Collec-

tively these “bootstrap” techniques have been implemented systematically by Dixon and

collaborators for the 6-particle case (associated to the Gr(4, 6) ∼= A3 cluster algebra) to

great effect in [10–12]. A slightly modified “weight-skipping” bootstrap based on a symbol

alphabet of Gr(4, 7) cluster coordinates allowed for the calculation of the symbol of the

3-loop 7-particle MHV amplitude in [7].

Finally, we note a fact we will use later: the classical polylogarithm functions Lik (and

products thereof) are known to span the space of all polylogarithm functions of weight

k ≤ 3, so it is trivial to write down a (vastly overcomplete) set of irreducible cluster

functions at weights k = 1, 2, 3:

log(XA) , Li2(−XA) , Li3(−XA) ∪ Li3(1 + XA) . (2.16)

The problem we address in this paper is that of finding bases for all weights, not just

overcomplete sets of cluster functions.

3 Hedgehog bases

We tackle the problem of constructing bases of cluster functions in three steps. (1) First we

discuss the set of Goncharov polylogarithms whose symbols may be written in the alphabet

of cluster coordinates. (2) Next, we review the form a generating set should have, based

on work of Brown [20] and Drummond [54]. (3) Lastly, we define “hedgehogs” and prove

that they provide bases for the space of An cluster functions.

3.1 Good arguments for Goncharov polylogarithms

To construct suitable collections of functions there is no need to reinvent the wheel. We

may attempt to solve this problem by using a nice set of polylogarithm functions we already

have at our disposal: the Goncharov polylogarithms defined in eq. (2.1). Then it remains

only to decide what kinds of variables we should allow as the arguments a1, . . . , ak; z.

Let us write Gk[Q] to denote the set of weight-k Goncharov polylogarithms whose

arguments are drawn from some set Q:

Gk[Q] = {G(q1, . . . , qk; q0) : qi ∈ Q} . (3.1)

It is evident from eq. (2.5) that functions in Gk[Q] have symbol entries of the form qi
as well as qi − qj , for qi, qj ∈ Q. We may try to follow the path of least resistance by

considering what happens when Q is chosen simply to be some subset of XA. Actually,

although this doesn’t matter at the level of symbols, for later convenience it will be better to

consider subsets of −XA since this will help to naturally provide Goncharov polylogarithms

that are manifestly free of branch cuts in the positive domain. (Henceforth we shall use

10The Hopf algebra structure makes SYM theory an ideal setting in which to study motivic amplitudes,

as proposed a decade ago in [28] (see in particular section 7).
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xi ∈ XA to denote cluster coordinates and qi = −xi to denote negative cluster coordinates.)

Unfortunately, for two generic qi, qj ∈ −XA, there is nothing particularly nice about the

quantity qi − qj ; it may not even have definite sign in the positive domain, in which case

it should never appear in the symbol of a cluster function.

One approach to construct bases of cluster functions would use special linear combi-

nations of Goncharov polylogarithms for which all “bad” letters cancel out at the level of

symbols. Several examples of such functions have been studied in the literature. For the

particular case of A = A3, Dixon et al. have constructed Goncharov polylogarithm repre-

sentations for bases of “hexagon functions” through weight at least 8. These are cluster

functions satisfying an additional important physical constraint (the first-entry condition),

which we do not address here. The construction of these bases, and several impressive

applications to 6-particle scattering amplitudes in SYM theory, are discussed in [9–13].

Also, the “cluster X -functions” studied in [3, 6] for more general algebras can be expressed

as suitable linear combinations of Goncharov polylogarithms with all “bad” symbol entries

cancelling out. These functions also play a prominent role in SYM theory: in particular, it

appears from the result of [4] that all 2-loop MHV amplitudes can be expressed in terms

of classical polylogarithms and the single non-classical cluster function K2,2 defined in [6].

In the present paper, we would like to explore a different approach to cluster functions.

We explore the possibility of constructing Goncharov polylogarithms at any weight which

are manifestly free of any “bad” letters, rather than having to rely on solving a (potentially

computationally-challenging) linear algebra problem to ensure their cancellation. In light

of the factorization property reviewed in eq. (2.6), it is evident that this will be the case if

we can choose the set Q so that qi−qj factors into a product of powers of cluster coordinates

for all qi, qj ∈ Q. To be precise, let us define the multiplicative span of XA to be the set

MA =

{
±
∏
i

xni
i : xi ∈ XA and ni ∈ Z

}
. (3.2)

(If A is an infinite algebra, then only finitely many of the ni may be nonzero.) We say that

a set Q splits over XA if qi − qj ∈MA for all qi 6= qj ∈ Q.

Then it is evident that Gk[Q] is a set of cluster functions on A whenever Q ⊆ −XA
splits over XA. In fact, for any such Q we can get additional cluster functions “for free” by

considering the enlarged set Gk[{0, 1} ∪ Q]. The inclusion of 0 is trivial, and 1 is allowed

because of the property that q−1 = 1 +x ∈MA for all q ∈ −XA. A proof of this property,

which played an important role in [1, 4, 6], is presented in appendix B.

We can conclude that

If Q ⊆−XA splits over XA, then Gk[{0, 1}∪Q] is a set of cluster functions on A.

Of course, additional functions of weight k may be constructed by taking products of

functions of lower weight.

It may be helpful to visualize sets of cluster coordinates satisfying the required property

with the assistance of what we call a factorization graph. For a given algebra A, the

factorization graph contains one vertex for each cluster coordinate x ∈ XA and two vertices
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x1

1
x3

x5
1
x2

x4

1
x1

x3

1
x5

x2

1
x4

Figure 3. The factorization graph for A2. Each vertex is one of the 10 cluster coordinates on

the A2 cluster algebra (see eq. (2.7)), and two vertices xi, xj are connected by an edge if xi − xj
factors into a product of cluster coordinates. Each of the 10 pairs of connected vertices, for example

{1/x2, x5}, is a 2-clique.

1/x−1

x+2

1/x−3

x+1

1/x−2

x+3

1/e5

e6

1/e1

e2

1/e3

e4

v2

1/v3

v1

Figure 4. The factorization graph for A3. Each vertex represents one of the 30 cluster coordinates

on the A3 cluster algebra, although to avoid clutter only 15 of the coordinates are labeled; the other

15 are reciprocals of the ones shown. Two vertices xi, xj are connected by an edge if xi−xj ∈MA3 .

The six circles each pass through 10 vertices and indicate an A2 subalgebra, as shown in figure 3.

There are 12 subgraphs with the topology of a triangle, 6 around the outer edge and 6 around the

inner edge; these are the 12 3-cliques.

xi, xj are connected if xi − xj ∈ MA. The factorization graphs for the A2 and A3 cluster

algebras are shown in figures 3 and 4.

In mathematics, a complete subgraph (that is, a collection of vertices such that each

pair is connected by an edge) is known as a clique (or an n-clique, if it has n vertices). It

is evident from figures 3 and 4 that A2 has 10 2-cliques and no higher cliques, while A3

has 60 2-cliques, 12 3-cliques, and no higher cliques. Also note that the A3 factorization
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graph is composed of 6 intersecting copies of the A2 factorization graph. Therefore we can

rephrase the above conclusion by saying that

Cliques give cluster functions.

If −Q ⊆ XA is a clique of the factorization graph of A, then Gk[{0, 1} ∪ Q] is

a set of cluster functions on A.

Since ordering will play a crucial role in what follows, this is the perfect opportunity

for us to note the convenient fact that if Q ⊆ −XA splits over XA, then there is a natural

ordering on Q. Recalling that cluster coordinates are positive-valued everywhere in the

interior of the positive domain, possibly taking value 0 or +∞ only on the boundary of

that domain, it is evident that for every pair qi 6= qj ∈ Q, the difference qi− qj ∈MA takes

uniform sign inside the positive domain. Therefore, for each pair either qi < qj or vice

versa, so the natural ordering on Q is simply the true numerical order q1 < q2 < · · · < qn
of these coordinates in the positive domain. It will be convenient to choose the ordering on

the set {0, 1} ∪Q to be 0, 1, q1, . . . , qn, even though this is not the true numerical ordering

of these quantities (since the q’s are negative in the positive domain).

3.2 Bases of cluster functions

So far, we have seen that elements of the set Gk[{0, 1} ∪ Q] are cluster functions on A,

i.e. have symbols which can be written in the symbol alphabet XA of cluster coordinates

on A, whenever −Q is a clique for the factorization graph of A. We now want a basis for

A•(An), the space of cluster functions on An. Let’s first consider a simple case. Suppose

we are only interested in the space of polylogarithms with a fixed last argument:

G[S; z] =

∞⊕
k=1

spanGk[S; z] where Gk[S; z] = {G(s1, . . . , sk; z) : si ∈ S} (3.3)

where “span” denotes the vector space of Q-linear combinations of the indicated functions.

We use the notation G to carefully distinguish Gk[S; z], which is a set of weight-k functions,

from G[S; z], which is a vector space of functions of any weight.

Although G[S; z] is a vector space, because of eq. (2.3) it is more useful to consider

it as a shuffle algebra. When dealing with such functions, it is more natural not to look

for a vector space basis, but rather to find a minimal generating set for the algebra, such

that each element of G[S; z] has a unique expression as a linear combination of products of

elements of the minimal generating set.

For this, we use Radford’s theorem (see [55]), which provides a minimal generating set

for any free shuffle algebra in terms of Lyndon words. A Lyndon word of length k on an

ordered set S is a sequence of k elements of S which is strictly smaller than all of its cyclic

permutations with respect to the lexicographic order of Sk. (Several explicit examples will

be presented in section 4.1.) Let Lyndonk(S) denote Lyndon words of length k on S. It is

a consequence of Radford’s theorem that G[S; z] has a minimal generating set⋃
k∈N

Gk[Lyndonk(S); z] . (3.4)
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How can we use (3.4) to generate cluster functions? The answer to this question11

is provided by Brown’s extensive study of polylogarithms on the moduli spaces M0,n+3
12

in [20] (see also [21] for some applications). The results of [20] were presented in various

useful coordinate systems on M0,n+3. One key result was that (essentially) the space of

Goncharov polylogarithms on M0,n+3 is the tensor product of n spaces of polylogarithms

with fixed last arguments in a certain ordered set of variables S. The analysis in the

previous subsection has revealed that choosing S to be a clique Q along with {0, 1} makes

manifest the An cluster structure of these functions. And, by eq. (3.4), we have a generating

set for each of those n spaces of polylogarithms. Combining these observations we arrive at:

For An, each n-clique gives a generating set for all cluster functions.

If −Q ⊆ XAn is an n-clique of the factorization graph of the An cluster algebra

with an ordering Q = {q1 < q2 < · · · < qn}, then

⋃
k∈N

n⋃
i=1

Gk[Lyndonk{0, 1, q1, . . . , qi−1}; qi] (3.5)

is a minimal generating set for A•(An), the space of cluster functions on An.

A vector space basis for A•(An) is given by all possible products of elements of

the set (3.5).

We call the basis generated by eq. (3.5) a hedgehog basis for reasons that will become

clear in the next section. A very nice feature of this basis is that, thanks to the natural

ordering q1 < q2 < · · · < qk < 0 on the set Q discussed above, it is manifest from eq. (2.1)

that each G function in eq. (3.5) is free of branch cuts everywhere in the interior of the

positive domain, with possible branch cuts only on its boundary — with one important

exception that we should note. The exception is that at weight 1, instead of G(0; qi) we

should use the function

G(0;−qi) = log(−qi) . (3.6)

The feature of being free of branch cuts in the positive domain is a necessary feature for

these functions to be useful in describing scattering amplitudes, but the analytic constraints

on amplitudes are far stronger still: they must be singularity-free everywhere inside the

larger Euclidean domain, with branch points allowed only on boundaries corresponding to

multi-particle production thresholds. It is an outstanding problem of great importance to

find an explicit basis for the subspace of cluster functions spanned by functions satisfying

these tighter analytic constraints.

3.3 The hedgehog theorem for An

We have now reduced the problem of finding a basis for cluster functions on An to that of

finding cliques Q of size n. In this section we show that there are precisely two such cliques

11We are grateful to J. Drummond for carefully explaining the application of Brown’s results to the

construction of functional bases.
12This is the space of configurations of n + 3 distinct, ordered points on the Riemann sphere.
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Figure 5. The A3 algebra has six distinct hedgehogs (and six anti-hedgehogs). This figure shows

the exchange graph for A3, with one of its six pentagonal A2 subalgebras highlighted. The “spines”

of this X (A3, A2) hedgehog are the red edges connecting this A2 to the rest of A3. Specifically, this

X (A3, A2) is the set of 3 XA3 cluster coordinates associated to these 5 outward directed red edges.

for each An−1 subalgebra of An. This correspondence can be visualized, at the level of the

exchange graph, by collections of cluster variables that we call hedgehogs.

Let us start by defining hedgehogs. Suppose A is a cluster algebra of rank r and B is

a subalgebra of rank r − 1. The exchange graph of A is an r-regular graph (each vertex

has valence r), and the exchange graph for B is an embedded (r − 1)-regular subgraph.

Therefore, each vertex of B is incident to r − 1 edges leading to other vertices of B and

to one edge leading to a vertex of A \ B. In other words, each vertex of B has an edge

which goes “out of” B and “into” A \ B. Recall from section 2.2 that a directed edge of

the exchange graph can be associated with a cluster coordinate x ∈ XA. Let the hedgehog

X (A,B) ⊆ XA be the set of cluster coordinates associated to the edges going out of B into

A \ B.

Example hedgehogs for X (A2, A1) and X (A3, A2) are shown in figures 6(a) and 5

respectively. As can be seen from the pictures, the edge variables in the set X (A,B) radiate

outwards — just like the spines of a hedgehog. We might also consider the set of cluster

coordinates associated to inward directed edges, which just gives the “anti-hedgehog”

X−1(A,B) = {1/x : x ∈ X (A,B)} . (3.7)

We are now in a position to state the main result of this paper:

The hedgehog theorem for An: hedgehogs are n-cliques.

Let X (An, An−1) be any hedgehog (or anti-hedgehog). Then Q=−X (An, An−1)

is an n-clique of the factorization graph for An. In particular, eq. (3.5) generates

a basis for the set of all cluster functions on An.

The details of the proof of this theorem are presented in appendix D, using the machin-

ery of triangulations reviewed in appendix A. Here we will be content to use the notation

of the latter appendix to provide explicit formulas for all An−1 hedgehogs of An, and to

check that they are cliques.

Let us note that the symbol alphabet of the cluster functions generated by eq. (3.5),

which consists of letters of the form qi, 1−qi, or qi−qi, has exactly the same form as that of
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the polylogarithm functions studied by Brown [20] in what he calls simplicial coordinates,

ti. We are therefore able to conclude that the two sets of functions can be related to each

other by the identification ti = −qi = xi between simplicial coordinates ti on M0,n+3 and

the cluster coordinates xi of any hedgehog X (An, An−1) or anti-hedgehog X−1(An, An−1).
As reviewed in appendix A, there are precisely 2

(
n+3
4

)
cluster variables on An (counting

x and 1/x separately); half of these can be enumerated explicitly as cross-ratios

r(i, j, k, `) =
〈ij〉 〈k`〉
〈jk〉 〈i`〉

, 1 ≤ i < j < k < ` ≤ n+ 3 (3.8)

of n + 3 points in P1, while the other half are their reciprocals 1/r(i, j, k, `) = r(j, k, `, i).

The Gr(2, n) Plücker coordinates 〈ij〉 used here may be related, in the case n = 3, to the

Gr(4, n) coordinates used in section 2 by

〈ij〉 =
1

4!
εijk`mn 〈k`mn〉 . (3.9)

The An cluster algebra has n+3 subalgebras of type An−1, so there are n+3 hedgehogs.

In appendix D we show that these hedgehogs are given by sets of the form{
r(k, k + 1, k + 2, i) : i 6∈ {k, k + 1, k + 2}

}
(3.10)

where k + 1 and k + 2 are taken mod n. It is easy to verify that these are n-cliques by

taking two variables r(k, k + 1, k + 2, i), r(k, k + 1, k + 2, j) in this hedgehog and looking

at their difference,

r(k, k + 1, k + 2, i)− r(k, k + 1, k + 2, j)

=
〈k(k + 1)〉

〈(k + 1)(k + 2)〉 〈ki〉 〈kj〉
(
〈(k + 2)i〉 〈kj〉 − 〈(k + 2)j〉 〈ki〉

)
=

〈k(k + 1)〉
〈(k + 1)(k + 2)〉 〈ki〉 〈kj〉

〈k(k + 2)〉 〈ji〉

= r(k, k + 1, k + 2, i)r(k, k + 2, i, j) ∈MAn

(3.11)

where the second equality is from a Plücker relation.

To summarize, for the An cluster algebras, hedgehogs are cliques of size n. There

are n + 3 hedgehogs, and n + 3 anti-hedgehogs, related by the dihedral symmetry of the

n + 3-gon. This provides, via eq. (3.5) and the hedgehog theorem, 2(n + 3) distinct, but

equivalent, bases for cluster functions on An.

3.4 Comments on other algebras

Our problem was to write down a basis of cluster functions on a cluster algebra A, and

for A = An we have found that eq. (3.5) gives such a basis whenever −Q is a hedgehog

(or anti-hedgehog) in An. The algebras of most relevance to SYM theory, however, are

the Gr(4, n) algebras (see [1]). Happily the one overlapping case A3 = Gr(2, 6) = Gr(4, 6)

underlies the structure of 6-particle scattering amplitudes. We present an application of

our results to this case in the following section.
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For more general algebras A, the definition of hedgehog given above still makes sense,

but it doesn’t appear to be useful. In particular, it is straightforward to check, for example,

that there is no A3 ⊂ D4, nor A5 ⊂ E6, such that X (D4, A3) or X (E6, A5) are cliques.

For such hedgehogs, a set of functions of the type shown in eqs. (3.1) or (3.5) are still

perfectly fine sets of polylogarithm functions, but they are not cluster functions: their

symbols contain non-cluster coordinates as entries.

One could, of course, look at smaller hedgehogs, associated to An ⊂ A subalgebras,

which are known to be cliques due to the hedgehog theorem. For example, D4 has 12 dis-

tinct A3 subalgebras, each of which has 6 A2 subalgebras, so in all there exist 72 Q(A3, A2)

hedgehogs sitting inside D4. However it is easy to check that no individual hedgehog fur-

nishes enough functions to provide a basis for all cluster functions on D4. We know this

because we can compare with the dimension of the spanning sets for weight ≤ 3 described

in eq. (2.16). The same comment holds for E6, which has seven A5 subalgebras, each of

which in turn has eight A4 subalgebras, for a total of 56 X (A5, A4) hedgehogs. On the other

hand, at least for the D4 case we have checked that the union of all cluster functions over

these various hedgehogs provides a vastly overcomplete set of cluster functions at weight

≤ 3, but we do not have a collection of hedgehogs which exactly spans to provide a basis. It

may be that, just as eq. (3.5) gives a basis for cluster functions on An ∼= Gr(2, n) by gluing

together sets of the form (3.4) in a certain pattern, some different pattern of gluing might

work for other algebras including the cases Gr(4, n) of relevance to scattering amplitudes.

4 An application to the 2-loop 6-particle NMHV amplitude

All evidence available to date (including [1, 9–12, 26, 44, 45]) supports the hypothesis that

all 6-particle scattering amplitudes in SYM theory can be expressed in terms of cluster

functions on the A3 cluster algebra. As an application of the hedgehog theorem, we discuss

in this section how to express the 2-loop 6-particle NMHV amplitude in a hedgehog basis.

This amplitude was originally computed in [9] and written (see eq. (2.27) of that paper) as

[12345](V + Ṽ ) + cyclic, where [12345] is an R-invariant and X ≡ 8(V + Ṽ ) is a weight-4

polylogarithm function. The exercise of rewriting X in a hedgehog basis has some practical

benefit in that it produces a formula which is notably shorter than results previously

available in the literature. But from our perspective a greater benefit of working with a

hedgehog basis is that it makes some of the cluster structure of the amplitude manifest.

To highlight this point, let us note that in the presentation of [9], the amplitude X

is written as a linear combination of various generalized polylogarithm functions whose

symbols may be written in the 10-letter alphabet

{u, v, w, 1− u, 1− v, 1− w, yu, yv, yw, 1− yuyvyw} . (4.1)

The relation between these variables and ours may be read off from eq. (2.9). The tenth

letter 1 − yuyvyw is not “clustery” — that is, it cannot be expressed as a product of A3

cluster coordinates, so it should never appear in the symbol of anything we would call a

cluster function. Indeed the full amplitude (like all 6-particle amplitudes) has the property

that when all of the individual contributing polylogarithm functions are added up, this
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tenth letter cancels out of the symbol of the full amplitude. This is suggestive: if all these

terms cancel out in the end, it seems desirable to express the amplitude in such a way that

they never arise in the first place. This is exactly what an A3 hedgehog basis does.

4.1 The hedgehog basis for A3

Let’s look at the hedgehog basis more concretely in the A3 case. For n = 3, eq. (3.5) tells

us that we can list basis elements for A3 cluster functions by enumerating Lyndon words

on the sets {0, 1}, {0, 1, q1}, and {0, 1, q1, q2}.
At weight 1 there are respectively 2, 3, 4 Lyndon words on these three sets, which

together provide the 9 weight-1 functions in the A3 basis:

{G(0;−q1), G(1; q1),

G(0;−q2), G(1; q2), G(q1; q2), (4.2)

G(0;−q3), G(1; q3), G(q1; q3), G(q2; q3)} .

(Here we recall that the three G(0; z) functions are to be treated as explained in eq. (3.6).)

At weight 2 there are respectively 1, 3, 6 Lyndon words on the three sets, which together

provide the 10 pure weight-2 functions:

{G(0, 1; q1),

G(0, 1; q2), G(0, q1; q2), G(1, q1; q2), (4.3)

G(0, 1; q3), G(0, q1; q3), G(0, q2; q3), G(1, q1; q3), G(1, q2; q3), G(q1, q2; q3)} .

An additional 45 functions of weight 2 may be obtained by taking products of pairs of the

weight-1 functions shown in eq. (4.2), so the total space of weight-2 functions on A3 has

dimension 55.

It is a simple exercise to continue enumerating Lyndon words in this manner to higher

weight. We find a total of 285 functions of weight 3 and 1351 functions of weight 4, which

is as far as we need to go for the purpose of expressing the 2-loop amplitude X. Symbols

of functions in this hedgehog basis can be expressed in the 9-letter “q” alphabet

{q1, q2, q3, 1− q1, 1− q2, 1− q3, q1 − q2, q2 − q3, q1 − q3} (4.4)

where −Q = {−q1,−q2,−q3} is any 3-clique of the A3 factorization graph.

4.2 Hedgehogs for A3

According to the hedgehog theorem, cliques for A3 are given precisely by hedgehogs (or

anti-hedgehogs), which are in one-to-one correspondence with A2 ⊂ A3 subalgebras. The

hedgehogs for A3 are triples of cluster coordinates associated with triangulations of a

hexagon. In terms of the variables defined in eq. (2.9), the six hedgehogs are:

Hedgehogs for A3 =
{
{1/x−3 , 1/e1, x

+
1 }, {1/x

+
1 , 1/e2, x

−
2 }, {1/x

−
2 , 1/e3, x

+
3 },

{1/x+3 , 1/e4, x
−
1 }, {1/x

−
1 , 1/e5, x

+
2 }, {1/x

+
2 , 1/e6, x

−
3 }
}
. (4.5)
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Each triple {x1, x2, x3} here is listed in numerically increasing order in the positive domain

(this can done consistently, see section 3.1), and we recall that for each hedgehog {x1, x2, x3}
there is a corresponding anti-hedgehog {1/x3, 1/x2, 1/x1}. These are highlighted in red

and blue, respectively, in figure 4. Altogether, the twelve triples are related by dihedral

transformations of the hexagon, or equivalently by dihedral transformations of the six

scattering particles. Of course, the factorization and exchange graphs in figures 4 and 5

manifest this symmetry as well.

At this point, expressing the NMHV amplitude in such a hedgehog basis is an exercise

in linear algebra. Since all 12 (anti-)hedgehogs give equivalent bases, we chose the basis

from {1/x+3 , e3, x
−
2 } which provides the shortest representation of the pure weight 4 terms.

That means we use the basis explained in the previous subsection with the ordered set

Q = {q1, q2, q3} = {−x−2 ,−e3,−1/x+3 }

=

{
− (1 + x2 + x1x2)x3,−

(1 + x1)x2x3
1 + x3

,− x1x2x3
1 + x3 + x2x3

}
=

{
−
√

w

uvyuyvyw
,−

√
w(1− u)

(1− w)uyuyw
,−
√

vw

uyuyvyw

}
.

(4.6)

A simple calculation using the second line quickly reveals that the difference of each pair

lies in the multiplicative span of the symbol letters shown in eq. (2.13), and also that they

are listed in increasing numerical order in the positive domain. These properties are less

apparent from the third line.

Each of the first 9 terms of the “y” alphabet can be written as a product of elements

of the “q” alphabet so, by means of the symbol rule (2.6), the NMHV amplitude X can be

written in the “q” alphabet. Each element of the hedgehog basis can be expressed in the

same alphabet and, because the symbol map is linear, the symbol of the amplitude can be

written as a linear combination of the symbols of the basis vectors. To find the coefficients

of this linear combination, it is convenient to work in the ambient 94 dimensional space of

length 4 symbols in the “q” alphabet. The symbols of the hedgehog basis vectors, together

with the amplitude, constitute 1352 linear combinations in this larger space with one linear

relation. Calculating the null space of the 1352× 94 matrix with the linear algebra library

SparseSuite gives the appropriate linear combination. To summarize, the result of this

calculation is a particular linear combination of 376 elements of the weight-4 hedgehog

basis whose symbol matches that of the amplitude X exactly. To find a representation for

the full amplitude we turn in the next section to the problem of fixing terms of the form

(transcendental numerical coefficient) × (functions of weight less than four).

4.3 Fixing beyond-the-symbol terms

If the symbols of two functions are equal, then the functions are equal, modulo “beyond-

the-symbol” terms of lower weight. So this 376-term expression is the highest-weight part

of the NMHV amplitude. A priori, we might expect up to 65 possible terms of lower weight.

These include 55 weight-2 functions times ζ(2), 9 weight-1 functions times ζ(3), and one

overall additive constant proportional to ζ(4). The coefficients of these 65 terms can be fixed
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by numerically evaluating the amplitude and our 376-term highest-weight expression at 65

random points in the positive domain and performing a row reduction. All the coefficients

turn out to be rational numbers with small denominators. Our final result13 is a 416-term

expression for the 2-loop, 6-particle NMHV amplitude X. The validity of our ansatz, and

solution, for the lower-weight terms has been stringently tested by comparing our result to

the known expression at high precision for additional random kinematic points.14

5 Outlook

Hedgehog bases give a natural way to express 6-particle amplitudes, since they make man-

ifest that these amplitudes have symbols which can be expressed in terms of A3 cluster

coordinates. In practice, this may translate into more “compact” representations of ampli-

tudes than might be otherwise achieved. It should be stressed again that this the hedgehog

basis is a true basis for cluster functions, with no functional or linear relations between its

elements.

However, hedgehog bases are clearly not the ultimate solution for representing scatter-

ing amplitudes. The most important reason is that amplitudes satisfy a stringent analytic

constraint on the possible locations of their branch points, which translates into a condition

that allows only certain letters to appear in the first entry of their symbols. For example,

6-particle amplitudes may only have the letters {u, v, w} in the first entry of their symbols,

whereas all nine letters of the A3 symbol alphabet appear as first entries in the hedge-

hog basis. It would be extremely interesting, as well as of great practical utility, to see if

there is a natural way to construct bases of cluster functions manifesting this additional

property. It would also be very interesting, both mathematically and physically, to find an

appropriate extension of the hedgehog theorem to algebras other than An.
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A Triangulations and An cluster algebras

Here we review from [30] the fact that in the special case case of An cluster algebras there

is a convenient alternative to representing clusters with quivers: each cluster can instead

13Our result is included as an ancillary file with the arXiv submission.
14We are grateful to L.J. Dixon and A. McLeod for kindly providing an independent audit of our result

in this manner.
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be associated with a triangulation of an (n + 3)-sided polygon. Beginning with a labeled

(n+ 3)-gon, a triangulation is obtained by repeatedly adding non-crossing internal chords

ik between nonadjacent vertices i, k until no further chords can be added. There are always

n chords in a triangulation. For example, the five chords in a particular triangulation of

an octagon are shown here:

i

k

Cluster coordinates are associated with these chords. Specifically, the chord ik shared

between two triangles ijk and ikl is associated with the cluster variable15

r(j, k, `, i) =
1

r(i, j, k, `)
:=
〈jk〉 〈i`〉
〈ij〉 〈k`〉

, (A.1)

where 〈ij〉 denotes the Plücker coordinate of two points zi, zj in P1.

lk

j i

lk

j i

In this representation, mutations are associated with chord-flips. To perform a chord-

flip on r(i, j, k, `), remove the chord ik and add the chord jl. It is easy to see that the

resulting variable r(j, k, `, i) is indeed equal to 1/r(i, j, k, `); adjacent chords (those which

lie on the same triangle) take the place of adjacent nodes in a quiver.

The added convenience of using triangulations over quivers comes from the fact that

every triangulation is associated with a single cluster whose variables can be found explicitly

via the formula above. Using this explicit formula, one can determine many useful facts

about An: it’s order is the Catalan number Cn+1, there are 2
(
n+3
4

)
cluster variables, and

those variables are r(i, j, k, `) for cyclically ordered i, j, k, `.

Triangulations also make it easy to enumerate and analyze subalgebras. Consider the

case n = 5. Clusters of A5 correspond to triangulations of a labeled octagon. Selecting the

vertices 1, 3, 4, 7, and 8, we can form a pentagon within our octagon:

2

5

6

1

3
4

7
8

15Here we use an inverse convention compared to [43] and parts of [1].
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Some triangulations of the octagon contain all of the edges of the pentagon as chords

(13, 34, 47, 48, 81). The subtriangulation obtained by discarding everything outside the

pentagon is associated with a cluster of A2. By flipping only the chords lying strictly within

the pentagon, we can obtain other A2 clusters, until we have an entire A2 subalgebra:

By flipping the chords lying strictly outside the pentagon, or choosing a different pentagon

to begin with, we can obtain different A2 subalgebras. Note that the different subalgebras

sharing the same pentagonal boundary must all have the same set of cluster variables;

therefore, if we consider two subalgebras “equivalent” when they have the same variables;

there are exactly
(
8
5

)
= 56 nonequivalent A2 subalgebras of A5.

This generalizes nicely: the clusters of Am subalgebras of An correspond to (m + 3)-

vertex subtriangulations of (n+ 3)-gon triangulations. Up to equivalence, there are
(
n+3
m+3

)
of these.

B A theorem on 1 + X coordinates

In this appendix we prove that for all cluster coordinates x, the quantity 1 + x can be

expressed as a product of cluster coordinates on the same algebra.

To be precise: suppose C is a cluster algebra of A,D, or E type whose quivers are

connected with more than one node. Suppose XC is its set of cluster coordinates. Then if

xi ∈ XC ,

1 + xi =
∏
xj∈X

x
nj

j (B.1)

for some nj ∈ {−1, 0, 1}.
The proof of this statement is straightforward. Pick some quiver of C that contains

xi. By connectedness, there exists some xk connected to it. One of the properties of an

A,D or E-type cluster algebra is that |Bij | ≤ 1 for all i, j. In particular, Bik ∈ {−1, 0, 1}.
Recall the mutation rule for cluster coordinates:

x′k = µi(xk) =

{
x−1i i = k

xk
(
1 + xsgnBik

i

)Bik i 6= k .
(B.2)

If Bik = 1, then

x′k = xk(1 + x1i )
1 =⇒ 1 + xi =

x′k
xk

. (B.3)

Otherwise, Bik = −1, in which case

x′k = xk(1 + x−1i )−1 = xk

(
xi

1 + xi

)
=⇒ 1 + xi =

xixk
x′k

. (B.4)
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Since xi and xk are connected, Bik 6= 0, so this is exhaustive. Thus 1 + xi factors as a

product of cluster coordinates.

Connectedness of a quiver is preserved by mutation, so if the initial quiver is connected,

all quivers of an algebra are connected. Note also that the algebra A1 as well as its derived

algebras such as A1 × A2 have disconnected quivers, hence expressions of the form 1 + x

do not necessarily factor in this case.

Let us note here that a sort of converse statement, which has been stated and used for

example in [1, 4, 5], remains a conjecture: if a and b are two elements of the multiplicative

span MA for some cluster algebra A, and if b = a + 1, then precisely one element of the

set {a,−1− a,−1− 1/a} is a cluster coordinate.

C A cluster parameterization of 6-particle kinematics

We include here a parameterization of the positive domain of 6-particle scattering kine-

matics, in terms of momentum twistors, that we have found useful:

Z =


−1 0 0 0 1 1 + x1
0 1 0 0 1 + x2 1 + x2 + x1x2
0 0 −1 0 1 + x3 + x2x3 1 + x3 + x2x3 + x1x2x3
0 0 0 1 1 1

 . (C.1)

It is easily checked that this lies in the positive domain (that is, all minors 〈ijkl〉 > 0 when

i < j < k < l) whenever x1, x2, x3 > 0, and that when plugged into the last column of

eq. (2.9), it precisely reproduces the second column.

D Hedgehogs are cliques for An cluster algebras

Here we provide the details of the proof of the hedgehog theorem presented in section 3.3.

First consider the case n = 2. The general case can be reduced to the n = 2 case, so it is

worth doing in detail.

As reviewed in section 2.2, the mutation relations for A ∼= A2 give ten cluster coordi-

nates {x1, 1
x1
, . . . , x5,

1
x5
} related by

xi+1 =
1 + xi
xi−1

. (D.1)

For B ∼= A1 let us choose the subalgebra with coordinates {xi, 1
xi
}. So the relevant hedgehog

is X (A,B) = {xi+1,
1

xi−1
}. Pictorially, the hedgehog consists of the red and blue edges in

the exchange graph shown in figure 6(a).

This is a clique because

xi+1 −
1

xi−1
=

1 + xi
xi−1

− 1

xi−1
=

xi
xi+1

∈MA . (D.2)

Recasting this in terms of polygon triangulation is very illuminating. Recall that A2 can

be described in terms of pentagon triangulations. The red dashed lines in figure 6(b) are
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1
xi−1

xi

xi+1

(a)

xi

1
xi−1

xi+1

(b)

Figure 6. (a) The exchange graph for A2, with the two vertices on the bottom row constituting an

A1 subalgebra. The hedgehog X (A2, A1) contains the two cluster variables 1/xi−1, xi+1 associated

to the edges emanating away from the subalgebra. (b) The same exchange graph, but with each

vertex showing the associated pentagon triangulation.

the chords that change as the red edge is traversed, and similarly for the blue. What we

have shown then is that the difference between the cluster coordinates for the red and blue

edges can be written in terms of products of cluster coordinates.

Now for the general case consider a (n+ 3)-gon. Choose three adjacent vertices k, k+

1, k+ 2 and draw the chord k(k + 2). This chord separates a triangle from an (n+ 2)-gon.

The variable associated with this chord depends only on the triangles containing it, and

not on the rest of the triangulation. The triangle on one side of the chord will always have

the vertices k, k + 1, k + 2. The other triangle will have vertices k, k + 2, i, where i is any

of the n remaining vertices:

k
k + 1

k + 2 k
k + 1

k + 2

i

k
k + 1

k + 2

i

Therefore, there are n cluster variables that can be associated with k(k + 2). These n

variables are given by {
r(i, k, k + 1, k + 2) : i /∈ {k, k + 1, k + 2}

}
. (D.3)

Consider the subalgebra B ∼= An−1 associated with the (n + 2)-gon that excludes vertex

(k+ 1). Any triangulation containing k(k + 2) will contain a triangulation of this polygon,

and hence will be associated with a cluster in B. However, flipping k(k + 2) will yield

a triangulation that is not in B; therefore, the set of cluster variables associated with

k(k + 2) is a hedgehog of An! Because there are n+ 3 choices for k, all hedgehogs can be

so obtained, and all will be of cardinality n.
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k
k + 1

k + 2

i

j

(a)

k
k + 1

k + 2

i

j

(b)

k
k + 1

k + 2

i

j

(c)

k
k + 1

k + 2

i

j

(d)

Figure 7. Partial triangulations of n-gons with an An hedgehog (red and blue edges). Notice

that (b) and (d) reduce to the A2 case of figure 6(b).

We can also obtain the anti-hedgehogs, which are associated with the result of any

chord-flip of k(k + 2): {
r(k, k + 1, k + 2, i) : i /∈ {k, k + 1, k + 2}

}
. (D.4)

Take xi, xj to be two arbitrary elements of the hedgehog, with (i, j, k) cyclically or-

dered. Then the mutation xi 7→ 1/xi corresponds to flipping k(k + 2) to (k + 1)i and

xj 7→ 1/xj corresponds to flipping k(k + 2) to (k + 1)j. These are indicated in figure 7

in (c) and (a) respectively.

Any other sub-triangulation of the gray region of (a) preserves xj , so in particular one

can choose the sub-triangulation with the pentagon {k, k + 1, k + 2, i, j}, shown in (b).

Similarly, one can go from (c) to (d) and xi will still be accessible by the red chord flip.

But now notice that this is exactly the situation from the A2 case! There is an embedded

pentagon with exactly the same triangulations that appeared above. Therefore xi − xj
factors as a product of cluster coordinates, i.e. xi − xj ∈ MAn . We can also show this

algebraically, making use of a Plücker relation, as displayed in eq. (3.11).
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