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The Hedgehog (Hh) family of proteins control cell
growth, survival, and fate, and pattern almost every as-
pect of the vertebrate body plan. The use of a single mor-
phogen for such a wide variety of functions is possible
because cellular responses to Hh depend on the type of
responding cell, the dose of Hh received, and the time
cells are exposed to Hh. The Hh gradient is shaped by
several proteins that are specifically required for Hh pro-
cessing, secretion, and transport through tissues. The
mechanism of cellular response, in turn, incorporates
multiple feedback loops that fine-tune the level of signal
sensed by the responding cells. Germline mutations that
subtly affect Hh pathway activity are associated with
developmental disorders, whereas somatic mutations ac-
tivating the pathway have been linked to multiple forms
of human cancer. This review focuses broadly on our
current understanding of Hh signaling, from mecha-
nisms of action to cellular and developmental functions.
In addition, we review the role of Hh in the pathogenesis
of human disease and the possibilities for therapeutic
intervention.

The origin of the name Hedgehog derives from the short
and “spiked” phenotype of the cuticle of the Hh mutant
Drosophila larvae. Mutations in the Hh gene were iden-
tified by Nusslein-Volhard and Wieschaus (1980) in their
large-scale screen for mutations that impair or change
the development of the fruit fly larval body plan. Dro-
sophila Hh DNA was cloned in the early 1990s (Lee et al.
1992; Mohler and Vani 1992; Tabata et al. 1992; Tashiro
et al. 1993). In addition to Drosophila, Hh genes have
also been found in a range of other invertebrates includ-
ing Hirudo medicinalis (leech) and Diadema antillarum
(sea urchin) (Chang et al. 1994; Shimeld 1999; Inoue et al.
2002). It is important to note that the model organism
Caenorhabditis elegans (roundworm) has no Hh ortho-
log, even though it has several proteins homologous to
the Hh receptor Ptc (Kuwabara et al. 2000).

Hh orthologs from vertebrates—including Mus mus-
culus (mouse), Danio rerio (zebrafish), and Gallus gallus

(chicken)—were cloned in 1993 (Echelard et al. 1993;
Krauss et al. 1993; Riddle et al. 1993; Chang et al. 1994).
Cloning of the first Rattus rattus (rat) and human Hh
genes were reported shortly thereafter, in 1994 and 1995,
respectively (Roelink et al. 1994; Marigo et al. 1995). The
vertebrate genome duplication (Wada and Makabe 2006)
has resulted in expansion of the Hh genes, which can be
categorized into three subgroups: the Desert Hedgehog
(Dhh), Indian Hedgehog (Ihh), and Sonic Hedgehog (Shh)
groups (Echelard et al. 1993). The Shh and Ihh subgroups
are more closely related to each other than to the Dhh
subgroup, which in turn is closest to Drosophila Hh.
Avians and mammals have one Hh gene in each of the
three subgroups, but due to another whole-genome du-
plication (Jaillon et al. 2004) and further rearrangements,
zebrafish has three extra Hh homologs, one in the Shh
subgroup: tiggywinkle hedgehog (Twhh) (Ekker et al.
1995), and two others in the Ihh group; echidna hedgehog
(Ehh) (Currie and Ingham 1996); and qiqihar hedgehog
(Qhh) (Fig. 1A; Ingham and McMahon 2001).

Components of the Hh signal transduction pathway
have been identified primarily using Drosophila genetics
(for example, see Lee et al. 1992; Alcedo et al. 1996; van
den Heuvel and Ingham 1996; Burke et al. 1999; Cham-
oun et al. 2001; Jacob and Lum 2007b). Mechanisms by
which the Hh signal is transduced has been further char-
acterized using Drosophila and mouse cell culture mod-
els (Fig. 1B,C; e.g., see Kinto et al. 1997; C.H. Chen et al.
1999; Chuang and McMahon 1999; Taipale et al. 2000;
Lum et al. 2003a; Nybakken et al. 2005; Varjosalo et al.
2006). In both vertebrates and invertebrates, binding of
Hh to its receptor Patched (Ptc) activates a signaling cas-
cade that ultimately drives the activation of a zinc-finger
transcription factor (Ci in Drosophila, GLI1–3 in mam-
mals), leading to the expression of specific target genes
(Huangfu and Anderson 2006; Jacob and Lum 2007a; Var-
josalo and Taipale 2007).

Although many of the key components are conserved
in vertebrates, the mammalian Hh signaling pathway is
incompletely understood and harbors some differences
and additional pathway components (see below). It was
long thought that the main difference between Dro-
sophila and mammalian Hh signaling was that mam-
mals had multiple orthologs of many pathway compo-
nents, including Hh, Ptc, and Ci. However, the roles of
mammalian orthologs of two critical components of the
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Drosophila pathway, the protein kinase Fused (Fu) and
the atypical kinesin Costal2 (Cos2), appear not to be con-
served (Chen et al. 2005; Merchant et al. 2005; Svard et

al. 2006; Varjosalo et al. 2006). This suggests that the
mechanisms of Hh signal transduction from the receptor
to the Ci/GLI transcription factors have evolved differ-
entially after separation of the vertebrate and inverte-
brate lineages approximately 1 billion years ago (Hedges
2002; Varjosalo and Taipale 2007).

Developmental functions and expression
of mammalian Hh proteins

The Hh proteins act as morphogens controlling multiple
different developmental processes (Fig. 2). All mamma-
lian Hh proteins are thought to have similar physiologi-
cal effects—the differences in their roles in development
result from diverse pattern of expression (McMahon et
al. 2003; Sagai et al. 2005).

Dhh expression is largely restricted to gonads, includ-
ing sertoli cells of testis and granulosa cells of ovaries
(Bitgood et al. 1996; Yao et al. 2002; Wijgerde et al. 2005).
Consistent with its expression in a very narrow tissue
range, Dhh-deficient mice do not show notable pheno-
types is most tissues and are viable. However, males are
infertile due to complete absence of mature sperm (Bit-
good et al. 1996).

Ihh is specifically expressed in a limited number of
tissues, including primitive endoderm (Dyer et al. 2001),
gut (van den Brink 2007), and prehypertrophic chondro-
cytes in the growth plates of bones (Vortkamp et al.
1996; St-Jacques et al. 1999). Approximately 50% of
Ihh−/− embryos die during early embryogenesis due to
poor development of yolk-sac vasculature. Surviving em-
bryos display cortical bone defects as well as aberrant
chondrocyte development in the long bones (St-Jacques
et al. 1999; Colnot et al. 2005). Homozygous hypomor-
phic mutations of IHH in humans cause acrocapitofemo-
ral dysplasia, a congenital condition characterized by
bone defects and short stature (Hellemans et al. 2003).

Shh is the most broadly expressed mammalian Hh sig-
naling molecule. During early vertebrate embryogenesis,
Shh expressed in midline tissues such as the node, no-
tochord, and floor plate controls patterning of the left–
right and dorso-ventral axes of the embryo (Sampath et
al. 1997; Pagan-Westphal and Tabin 1998; Schilling et al.
1999; Watanabe and Nakamura 2000; Meyer and Roelink
2003). Shh expressed in the zone of polarizing activity
(ZPA) of the limb bud is also critically involved in pat-
terning of the distal elements of the limbs (Riddle et al.
1993; Chang et al. 1994; Johnson et al. 1994; Marti et al.
1995). Later in development, during organogenesis, Shh
is expressed in and affects development of most epithe-
lial tissues (Fig. 2).

Deletion of Shh leads to cyclopia, and defects in ven-
tral neural tube, somite, and foregut patterning. Later
defects include, but are not limited to, severe distal limb
malformation, absence of vertebrae and most of the ribs,
and failure of lung branching (Chiang et al. 1996; Liting-
tung et al. 1998; Pepicelli et al. 1998).

The different Hh ligands often act in the same tissues
during development, and can function partially redun-
dantly (Fig. 2). For example, Shh and Ihh act together in

Figure 1. (A) Phylogram illustrating the evolution of the Hh
proteins. The different Hh proteins were aligned using Prank-
ster (Loytynoja and Goldman 2005). Hh subgroups are indicated
by a color code, as follows: Dhh (blue), Shh (green), and Ihh (red).
(B) The central conserved components of the Hh signaling path-
way and their role in forward signaling. Positively and nega-
tively acting pathway components are in green and red, respec-
tively. Note that most interactions between components are
inhibitory. The conserved kinases involved in regulation of Ci/
GLI processing from activator forms (Ci/GLI-A) to repressor
forms (Ci/GLI-R) are casein kinases (CKs) 1� and 1�, glycogen
synthase kinase-3� (GSK3�), and protein kinase A (PKA). (C)
The four negative (red) and two positive (green) transcriptional
feedback loops of the Hh pathway. Ci/GLI-positive feedback to
itself is mediated by GLI1 in mammals. HIP and FoxA2 are only
found in vertebrates, and Engrailed (En) has been characterized
as a regulator of Hh only in Drosophila. Both Drosophila and
mammalian names of the components are given separated by a
slash.
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early embryonic development, and their combined loss
phenocopies the loss of the Hh receptor component
Smoothened (Smo), leading to early embryonic lethality
due to defects in heart morphogenesis and extraembry-
onic vasculogenesis (Zhang et al. 2001; Astorga and
Carlsson 2007).

Regulatory elements affecting mammalian Hh
expression

Of the mammalian Hh genes, only the mechanisms con-
trolling Shh expression have been studied in detail. The
expression pattern of Shh is the result of the combined
action of multiple enhancer-elements, which act inde-
pendently to control Shh transcription in different tis-
sues and expression domains. Both local-acting and very
distal elements have been identified (Fig. 3).

Two independent enhancers—Shh floor plate en-
hancer 1 (SFPE1) and SFPE2, located at −8 kb and in
intron 2, respectively—act to direct reporter expression
exclusively to the floor plate of the hindbrain and spinal
cord (Epstein et al. 1999). A third element in intron 2,
Shh brain enhancer 1 (SBE1), directs reporter expression
to the ventral midbrain and caudal diencephalon. The
more distal elements SBE2, SBE3, and SBE4, which are
located >400 kb upstream of the Shh transcription start
site (TSS) drive reporter expression in the ventral fore-
brain. The combined activity of these enhancers appears
to cover all regions of Shh transcription along the ante-
rior-posterior axis of the mouse neural tube (Jeong et al.
2006).

The enhancer controlling Shh expression in the ZPA
of limb buds, mammals–fish conserved sequence 1
(MFCS1), is located even further upstream of the start

Figure 2. Shh controls mouse development from an embryo to an adult. (Top) The embryo cartoons show aspects of expression of the
Hh target gene patched (blue) during mouse embryonic development. (Bottom) Bars show approximate embryonic stages when Shh,
Ihh, and/or Dhh (color code in bottom left) control developmental processes in the indicated tissues or cell types. The approximate
embryonic stage is indicated by dpc and Theiler stage (TS) (Theiler 1989). References: the role of Hh in early embryogenesis prior to
TS 15 (Chiang et al. 1996; Zhang et al. 2001; Astorga and Carlsson 2007); limb development (Ahn and Joyner 2004); cranial neural crest
(Jeong et al. 2004); cardiac septation (Goddeeris et al. 2008); gastrointestinal system (Madison et al. 2005); bladder (Haraguchi et al.
2007); lung (White et al. 2007); prostate (Berman et al. 2004); pancreas (Hebrok et al. 2000); testis development (Yao et al. 2002); retina
(Sigulinsky et al. 2008); kidney (Hu et al. 2006); hair (St-Jacques et al. 1998; Jeong et al. 2004); taste buds (Miura et al. 2001); ear
(Riccomagno et al. 2002); ovary (Wijgerde et al. 2005; Pangas 2007); tooth (Cobourne et al. 2001, 2004); bone growth (St-Jacques et al.
1999); cerebellum growth (Hatton et al. 2006; Sillitoe and Joyner 2007).
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site, at −1 Mb in intron 5 of the Lmbr1 gene (Sharpe et al.
1999; Lettice et al. 2003; Sagai et al. 2004). This element
is the only enhancer in Shh that has been analyzed also
by loss-of-function studies (Sagai et al. 2005), which con-
clusively demonstrate that MFCS1 is necessary for Shh
expression in mouse ZPA. Consistently in humans,
germline mutations within the conserved MFCS1 ele-
ment cause congenital limb malformations character-
ized by preaxial polydactyly (Lettice et al. 2003). Inter-
estingly, the MFCS1 sequence is not conserved in limb-
less vertebrates such as snake, limbless lizard, and newt
(Sagai et al. 2005). Although the SBE2–4 and MFCS1 el-
ements are physically far from Shh, the TSS of the region
upstream of Shh contains very few genes, and only one
well-described TSS exists between the MFCS1 and the
TSS of Shh (Fig. 3). Given the diverse expression pattern
of Shh, it is likely that a number of other enhancer-ele-
ments remain to be identified in this “gene-poor” region.

Although many enhancers that drive Shh expression
have been identified, very little is known about the spe-
cific transcription factors that control their activity. The
temporal and spatial expression pattern of FoxA2 sug-
gests that it could induce Shh expression (Chang et al.
1997; Epstein et al. 1999) in the midline. Consistently,
conserved binding sites for FoxA2 and Nkx6 are required
for SFPE2 activity (Jeong and Epstein 2003). The Nkx2.1
homeodomain protein has also been suggested as a likely
candidate regulating Shh expression in ventral forebrain
(Jeong et al. 2006).

No known consensus binding sites for transcription
factors are affected by the mutations in the MFCS1 limb
enhancer, and the mutations are not clustered close to-
gether. However, the severity of the polydactyly pheno-
type correlates negatively with the conservation of
nucleotide at the mutation sites, suggesting that MFCS1

activity is controlled by conserved transcriptional regu-
lators whose DNA-binding specificity is currently not
known.

Hh processing and secretion

After translation, Hh undergoes multiple processing
steps that are required for generation and release of the
active ligand from the producing cell. The mechanisms
involved in Hh processing and secretion are evolution-
arily conserved (see Burke et al. 1999; Amanai and Jiang
2001; Chamoun et al. 2001; Ingham and McMahon 2001;
Caspary et al. 2002; Dai et al. 2002; Ma et al. 2002).

After the signal sequence is removed, the Hh molecule
undergoes a cleavage catalyzed by its own C-terminal
domain that occurs between conserved glycine and cys-
teine residues (Fig. 4; Lee et al. 1994; Porter et al. 1996).
First, the peptide bond between these residues is rear-
ranged to form a thioester. Subsequently, a hydroxyl-
oxygen of cholesterol attacks the carbonyl of the thioes-
ter, displacing the sulfur and cleaving the Hh protein
into two parts, a C-terminal processing domain with no
known signaling activity and an N-terminal Hh signal-
ing domain (HhN) of ∼19 kDa that contains an ester-
linked cholesterol at its C terminus (Porter et al. 1996).
The cholesterol modification results in the association
of HhN with the plasma membrane. Subsequently, a pal-
mitic acid moiety (Pepinsky et al. 1998) that is required
for HhN activity is added to N terminus of Hh by the
acyltransferase Skinny hedgehog (Ski, HHAT in humans)
(Chamoun et al. 2001; Lee et al. 2001; Buglino and Resh
2008). The resulting fully active HhN signaling molecule
is thus modified by cholesterol at its C terminus and
palmitate at its N terminus (Chamoun et al. 2001; Lee

Figure 3. Regulation of mammalian Shh gene expression. (Top) Enhancer-elements driving expression of the mouse Shh gene in
different neural domains (left) and in posterior margin of the embryonic limb buds (right). Approximate expression domains of the
elements are indicated by blue color. Black lines perpendicular to the neural tube indicate zona limitans intrathalamica (ZLI) and
midbrain–hindbrain junction. (Bottom) Known genes in the ∼1 Mb genomic region upstream of the human Shh gene (University of
California at Santa Cruz genome browser, assembly 36). Note that only one transcriptional start site of another gene appears to be
between the most distal conserved Shh enhancer (MFCS1) and the Shh gene itself.
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and Treisman 2001). For clarity, we refer to this protein
as Hh hereafter.

Formation of the Hh gradient

Although Hh is tightly associated with the plasma mem-
brane, it is able to act directly over a long range (Roelink
et al. 1995; Briscoe et al. 2001; Wijgerde et al. 2002). In
both Drosophila and vertebrates, the secretion of Hh
from the producing cell requires the activity of the 12-
span transmembrane protein, Dispatched (Disp). Disp,
like Ptc, belongs to the bacterial RND (Resistance-Nodu-
lation-Division) family of transport proteins. Loss of
Disp leads to accumulation of Hh in the producing cells
and failure of long-range signaling (Burke et al. 1999; Ma
et al. 2002).

Distances over which Hh has been shown to act are
∼50 µm in Drosophila wing imaginal disc and ∼300 µm
in vertebrate limb bud (Zhu and Scott 2004). How Hh
moves over a such a long distance is still not clear, and
could involve passive diffusion, active transport, and/or
transcytosis. Genetic evidence points to a role of heparan
sulfate proteoglycans in this process, as Hh cannot be

transported across a field of cells lacking the heparan
sulfate synthesizing enzymes of the EXT/tout velu (ttv)/
brother of tout velu (botv)/sister of tout velu (sotv) fam-
ily (Bellaiche et al. 1998; Lin et al. 2000; Bornemann et
al. 2004; Han et al. 2004a; Koziel et al. 2004). The sub-
strates of ttv involved in this process appear to be the
glypicans (glycosylphosphatidylinositol-linked HSPGs)
Dally and Dally-like (Han et al. 2004b). Dally and Dally-
like also affect Hh signaling by facilitating binding of Hh
to cell surfaces (Nakato et al. 1995; Lum et al. 2003a;
Han et al. 2004b).

Whether Hh is transported as individual molecules or
assembled into larger particles prior to transport is not
clear. Several lines of evidence support the role of large
lipid/protein particles in long-range Hh transport. First,
Hh staining of receiving cells displays a punctate pattern
(Panakova et al. 2005). In addition, soluble Shh multim-
ers that contain lipids and that have strong signaling
potency have been described in mammalian cells (Zeng
et al. 2001), and it has been reported that Drosophila
Hh is transported in lipoprotein particles (Panakova
et al. 2005; Callejo et al. 2006). Recent genetic evidence
also suggests that Hh may be secreted in two different
forms, the first of which diffuses poorly and acts at a
short range. The second form is “packaged” for long-
range transport, and its formation requires the cytoplas-
mic membrane-scaffolding protein Reggie-1/flotillin-2
(Katanaev et al. 2008).

Multiple studies have analyzed the role of cholesterol
modification in Hh transport in vivo, with conflicting
results suggesting that cholesterol either aids or hinders
Hh transport (for example, see Lewis et al. 2001; Dawber
et al. 2005; Gallet et al. 2006; Li et al. 2006). These stud-
ies are complicated because the protein expression levels
of the different mutant forms of Hh need to be constant
in order to rule out dose effects. In addition, interpreta-
tion of the results is made even more difficult by the fact
that Hh protein lacking cholesterol modification is
soluble, and thus its secretion does not require Dis-
patched and it can escape the producing cell without
being palmitoylated (Mann and Beachy 2004) and could
even become palmitoylated later during transport or at
the receiving cell. Thus, genetic experiments alone can-
not conclusively determine the role of cholesterol modi-
fication in Hh activity and transport. In contrast, analy-
sis of the role of the palmitate modification in Hh trans-
port is more straightforward, as palmitoylation can be
selectively prevented either by mutation of Ski, or mu-
tation of the palmitoylated N-terminal cysteine of the
Hh proteins. Such experiments indicate that palmitoyla-
tion is required for Hh activity in Drosophila (Burke et
al. 1999), and for generation of soluble multimeric Hh
protein complexes and long-range signaling in verte-
brates (Chen et al. 2004).

Several mechanisms are used to control the shape and
size of the Hh gradient (for review, see Teleman et al.
2001). Very high levels of Hh can induce Hh expression
in responding cells both in Drosophila and in mammals
(Tabata et al. 1992; Roelink et al. 1995; Methot and
Basler 1999). This increases the local concentration of

Figure 4. (A) Hedgehog protein maturation. Hh protein under-
goes multiple processing steps: (1) the signal sequence is
cleaved; (2) the C-terminal domain of the Hh polypeptide cata-
lyzes an intramolecular cholesteroyl transfer reaction, resulting
in (3) the formation of a C-terminally cholesterol-modified N-
terminal Hh signaling domain (HhN). This causes association of
HhN with membranes, which facilitates the final modification
step 4, the addition of a palmitic acid moiety to the N terminus
by the acyltransferase Skinny hedgehog, resulting in the forma-
tion of dually modified Hh signaling domain (HhNp).
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Hh near the original source. Hh also induces the expres-
sion of its receptor Ptc, which internalizes Hh and tar-
gets it to the lysosomes for degradation (Chen and Struhl
1996; Incardona et al. 2000; Gallet and Therond 2005).
This negative feedback loop restricts the spreading of the
Hh signal through tissues. Vertebrates also have an ad-
ditional transmembrane protein, Hedgehog-interacting
protein (HIP), which is also induced by Hh signaling and
binds to and further reduces the range of movement of
Hh (Chuang and McMahon 1999; Jeong and McMahon
2005).

Hh signal transduction

Hh receptor

In addition to the glypical dally-like, which acts both in
Hh transport and as an accessory receptor, the binding of
Hh to responding cells is facilitated by the transmem-
brane proteins Cdo and Boc (iHog and boi in Drosophila)
(Lum et al. 2003a; Tenzen et al. 2006; Yao et al. 2006).
These proteins act positively in the pathway, binding to
Hh via conserved fibronectin repeats (Yao et al. 2006)
and increasing Hh association with its signaling receptor
Ptc (Tenzen et al. 2006; Yao et al. 2006). The expression
levels of Cdo and Boc are down-regulated in response to
Hh signaling, resulting in yet another negative feedback
that limits pathway activity (Fig. 1C).

In the absence of Hh ligand, Ptc catalytically inhibits
the activity of the seven-transmembrane-span receptor-
like protein Smo (Taipale et al. 2002). Binding of Hh to
Ptc results in loss of Ptc activity, and consequent acti-
vation of Smo. Smo then transduces the Hh signal to the
cytoplasm (Stone et al. 1996; Taipale et al. 2002). This
general model is based on the genetic observations that
loss of Hh or Smo cause similar phenotypes, and that Ptc
loss results in a phenotype that is similar to strong over-
expression of Hh. Epistasis analyses in turn indicate that
Ptc acts downstream from Hh and upstream of or parallel
to Smo (Ingham et al. 1991; Alcedo et al. 1996; van den
Heuvel and Ingham 1996). Binding of Hh to Ptc, in turn,
was determined using purified Shh and cultured cells
overexpressing Ptc (Stone et al. 1996; Fuse et al. 1999).

By inferring the protein levels of ligand-bound and un-
bound Ptc from gene expression, Casali and Struhl (2004)
suggested that the activity of the pathway depends on
the ratio between these two forms. However, the fact
that increasing the level of Ptc protein decreases cellular
responsiveness to Hh (see Bailey et al. 2002; Taipale et al.
2002) indicates that it is the absolute amount of unli-
ganded Ptc in a cell that controls pathway activity. This
mechanism, together with the induction of Ptc by Hh
results in gradual desensitization of cells to Hh and al-
lows cells to accurately interpret the wide range of Hh
concentrations present in morphogenetic gradients.

In vertebrates, Ptc exists as two isoforms, Ptc and Ptc2.
Mice deficient in Ptc2 are viable, but develop alopecia
and epidermal hypoplasia and have increased tumor in-
cidence in the presence of one mutant allele of Ptc (Lee
et al. 2006; Nieuwenhuis et al. 2006). Loss of Ptc, in turn,

results in complete activation of the Hh pathway (Good-
rich et al. 1997), suggesting that Ptc is the functional
ortholog of Drosophila Ptc. Ptc has been proposed to
function as a permease to affect the transmembrane
movement and/or concentration of small molecules that
then either agonize or antagonize Smo (Taipale et al.
2002). Supporting this hypothesis, Smo activity can be
modulated by many synthetic small molecules (Chen et
al. 2002b; Frank-Kamenetsky et al. 2002) and natural
products, including the steroidal alkaloids cyclopamine
and jervine (Chen et al. 2002a). These compounds were
identified by Keeler and Binns (1966) as active ingredi-
ents in Veratrum californicum, a plant whose ingestion
by sheep led to an outbreak of cyclopia in US midwest in
the 1950s. The clue that these compounds antagonize
Shh signaling came from the observation that the still-
born lambs have a phenotype that is strikingly similar to
that of Shh mutant mouse embryos (Chiang et al. 1996).

The structural similarity between cyclopamine and
sterols (Cooper et al. 1998) suggests that endogenous ste-
rols might regulate Smo activity. This hypothesis is also
supported by genetic evidence, as disruption of embry-
onic cholesterol synthesis leads to developmental mal-
formations that strikingly mimic Hh mutants (Kelley et
al. 1996; Cooper et al. 1998). Oxysterols (Corcoran and
Scott 2006) and vitamin D3 derivatives (Bijlsma et al.
2006) have been suggested to be the endogenous metabo-
lites that modulate Smo activity. Of these, vitamin D3
appears to bind to Smo (Bijlsma et al. 2006) based on its
ability to compete against binding of labeled cyclopa-
mine (Chen et al. 2002a).

Based on the fact that increased activity of oncogeni-
cally activated Smo proteins correlates with their in-
creased resistance to cyclopamine, it was suggested that
Smo exists in active and inactive conformational states
(Taipale et al. 2000). Similarly, experiments in Dro-
sophila suggest that dSmo can exist in two conforma-
tional states (Zhao et al. 2007). However, the activity of
all small molecules found to activate or inhibit Smo ap-
pear to be specific for vertebrate Smo proteins, suggest-
ing that mechanisms of action of Drosophila and mam-
malian Smo may be different. Stronger evidence for this
comes from both structural and functional analyses,
which indicate that Smo C-terminal domain has evolved
differentially in vertebrates and invertebrates.

Several lines of evidence suggest that the cytoplasmic
components and the mechanism of Hh signal transduc-
tion have diverged between Drosophila and mammals.
In the following section, we will first discuss the mecha-
nism of intracellular Hh signal transduction in Dro-
sophila, which is fairly well understood. We will then
discuss the evidence suggesting that Drosophila and
mammals appear to use different components and
mechanisms in transducing the Hh signal between Smo
and the Ci/GLI transcription factors.

Intracellular Hh signaling in Drosophila

In the absence of Hh, Ptc keeps Drosophila Smo in an
unphosphorylated state. Unphosphorylated Smo is
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cleared from the cell surface via endocytosis and is de-
graded in lysosomes (Jia et al. 2004; Zhang et al. 2004).
After Hh stimulation, Smo is hyperphosphorylated and
its endocytosis and degradation are blocked. Phosphoryla-
tion can be mimicked by mutation of the phosphoryla-
tion sites to negatively charged residues or by mutating
adjacent positively charged arginine clusters to alanine.
Based on these observations, Zhao et al. (2007) suggested
that phosphorylation neutralizes the positive charge of
the dSmo C terminus and induces a conformational
switch in the C-terminal cytoplasmic tail and conse-
quent dimerization or multimerization of dSmo. How
these events lead to activation of downstream signaling
pathway components is not understood (Zhao et al. 2007).

dSmo C terminus binds directly to the kinesin-like
protein Cos2, which acts as a scaffolding protein, bring-
ing together multiple cytoplasmic components of the
pathway (Jia et al. 2003; Lum et al. 2003b; Ogden et al.
2003; Ruel et al. 2003). These include the full-length
transcriptional activator form of Ci, CiA (155 kDa) (Rob-
bins et al. 1997), and multiple serine–threonine kinases,
including a kinase that specifically acts on the Hh patha-
way, Fused (Fu) (Therond et al. 1996) and the multifunc-
tion kinases PKA, GSK3�, CKI�, and CKI� (for review,
see Aikin et al. 2008).

In the absence of Hh, CiA is hyperphosphorylated by
the combined action of PKA, which acts as a priming
kinase, and GSK3� and the casein kinases, which further
phosphorylate the primed substrate (Fig. 1B). The hyper-
phosphorylation promotes recognition of CiA by the
ubiquitin E3 ligase Slimb (�-TrCP in vertebrates) (Jiang
and Struhl 1998), leading to the generation of a truncated
transcriptional repressor form of Ci, CiR (75 kDa) (Y.
Chen et al. 1999; Price and Kalderon 1999, 2002; Wang et
al. 1999; Jia et al. 2002, 2005). In addition to promoting
CiR formation, Cos2 regulates Ci by tethering it to the
cytoplasm and preventing its nuclear translocation (C.H.
Chen et al. 1999; G. Wang et al. 2000).

In the presence of Hh, Sno accumulates and the bind-
ing of Cos2 to Smo prevents conversion of CiA to CiR
(Hooper 2003; Jia et al. 2003). However, this mechanism
alone is not sufficient to fully activate the pathway, as
some CiA is still retained in the cytoplasm by another
protein, Supressor of Fused [Su(Fu)] (Pham et al. 1995;
Methot and Basler 2000). Genetic evidence from Dro-
sophila indicates that full activation of the pathway in
response to Hh requires the Fu protein kinase, which
blocks the negative influence of Su(Fu) on Ci (Ohlmeyer
and Kalderon 1998; Lefers et al. 2001; Lum et al. 2003b).
Upon entering the nucleus, CiA binds to specific se-
quences (Kinzler and Vogelstein 1990; Hallikas et al.
2006) in promoter and enhancer regions and controls the
transcription of the Hh target gene(s).

In Drosophila, cellular responsiveness to Hh is con-
trolled by modulating the expression of Ci. In the poste-
rior compartment of the wing disc, Hh and its receptor
components are expressed, but target genes are not acti-
vated, as Ci mRNA expression is repressed by Engrailed
(Eaton and Kornberg 1990). Cells posterior to the mor-
phogenetic furrow of Drosophila eye, in turn, fail to re-

spond to Hh because Ci levels are post-transcriptionally
down-regulated due to the expression of hib (Hh-induced
MATH and BTB protein; SPOP in vertebrates), a protein
that acts as a substrate recognition subunit for the Cul3
E3 ubiquitin ligase. In contrast to Slimb-mediated ubiq-
uitinylation, which leads to partial Ci degradation, the
hib/Cul3-mediated ubiquitinylation causes complete
degradation of Ci (L. Zhang et al. 2006). Expression of hib
increases in response to Hh, providing another negative
feedback mechanism to this pathway (Fig. 1C; Kent et al.
2006; Q. Zhang et al. 2006).

Divergence of pathway components and mechanisms

Despite the conservation of the Hh signaling pathway
and many of its roles in development between inverte-
brate and vertebrate species (Ingham and McMahon
2001; Taipale and Beachy 2001), the mechanisms by
which Smo regulates the Ci/GLI transcription factors ap-
pears to be distinct between Drosophila and mammals
(Huangfu and Anderson 2006; Varjosalo and Taipale
2007).

The relatively rapid evolution of some components of
the Hh pathway, including Smo, Cos2, and Fu, is appar-
ent at sequence level. The C-terminal domains of verte-
brate Smo proteins are significantly shorter than those of
invertebrates and lack the main phosphorylation regions
described below. In addition, the two mammalian or-
thologs of Cos2, Kif27, and Kif7 have none of the unique
sequence characteristics of Cos2 that differentiate Cos2
from the kinesin family of motor proteins. Based on se-
quence, Kif7 and Kif27 appear to be functional molecular
motors, whereas Cos2 has apparently lost its ability to
bind ATP and function as a motor protein. The closest
mammalian homolog of Drosophila Fu is also highly di-
verged, and significant homology between these proteins
can be seen only in the protein kinase domain itself
(Murone et al. 2000).

Drosophila Smo activation is coupled to the hyper-
phosphorylation of 26 serine/threonine residues located
within the C-terminal cytoplasmic tail by PKA and CKI
(Jia et al. 2004; Zhang et al. 2004; Apionishev et al. 2005).
None of these PKA or CKI phosphorylation sites are con-
served in vertebrate Smo. The vertebrate Smo C termini
lacks one of the two known Cos2-binding domains (Jia et
al. 2003), and the region homologous to the other domain
(Lum et al. 2003b) is dispensable for mouse Smo (mSmo)
function (Varjosalo et al. 2006). Drosophila Cos2, or
mouse Kif7 or Kif27 do not appear to bind to mSmo or
GLI proteins or affect Shh signaling when overexpressed
in NIH-3T3 cells (Varjosalo et al. 2006). Furthermore,
loss of the Fu protein kinase—which forms a tight com-
plex with Cos2 and is required for Hh signaling in Dro-
sophila—appears not to impair Hh signaling in mice
(Chen et al. 2005; Merchant et al. 2005). Taken together,
this evidence suggests that the Cos2–Fu complex, which
is centrally important in Drosophila, plays little or no
role in mammalian Hh signaling. Instead, it appears that
mammalian Hh signaling critically depends on Su(Fu)
(Svard et al. 2006)—which has a minor role in Drosophila
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(Ohlmeyer and Kalderon 1998)—and on several compo-
nents involved in formation of the primary cilia, which
either do not have Drosophila orthologs or whose or-
thologs appear not to function on the Drosophila Hh
pathway (Nybakken et al. 2005).

Primary cilium is an organelle that protrudes from the
surface of most vertebrate cells. Genetic evidence sug-
gesting a role for primary cilium in mammalian Hh sig-
naling comes from studies that found that mutations of
several proteins required for its formation, including
Kif3a, Ift88, and Ift172, result in embryonic phenotypes
characteristic of the loss of Shh signaling (Huangfu et al.
2003; Park et al. 2006; Caspary et al. 2007; Vierkotten et
al. 2007). Subsequent studies have linked these proteins
to the processing of the GLI transcription factors (May et
al. 2005; Caspary et al. 2007). Some experiments suggest
that primary cilium would act as a “signaling center”
where the biochemical events of signal transduction
take place. It has been reported that activated mamma-
lian Smo accumulates to primary cilia in response to Shh
treatment (Corbit et al. 2005); in the absence of Shh, this
accumulation is prevented by Ptc (Rohatgi et al. 2007).
Other components involved in Hh signaling, including
Su(Fu) and unprocessed GLI proteins, have also been lo-
calized to the primary cilium (Haycraft et al. 2005).

Drosophila lacking centrioles, and all microtubule-
based structures derived from them, including centro-
somes, cilia, and flagella develop almost normally, indi-
cating that cilia are not required for Drosophila Hh sig-
naling (Basto et al. 2006). In contrast, the genetic studies
described above have clearly established that mamma-
lian Hh signaling depends on a process that requires
components involved in formation of primary cilia.
However, this evidence is also consistent with a model
where some other microtubule-linked process that is
critical for Hh signaling is disrupted by loss of these pro-
teins. In addition, the fraction of cellular Hh pathway
components found in the primary cilium at any given
time appears small. Thus, it remains to be established
what role cilia play in mammalian Hh signaling and
whether localization of the pathway components to cilia
is required for signaling.

The lack of effect of the closest mammalian homolog
of Drosophila Fused on Hh signaling suggests that
other—mammalian-specific—kinases act on this path-
way. We recently identified two such kinases, DYRK2
and MAP3K10, which are required for Shh signaling in
NIH-3T3 cells (Varjosalo et al. 2008). Of these, DYRK2
directly phosphorylates GLI2 and GLI3 and induces their
degradation. MAP3K10, in turn, appears to act in a more
indirect fashion, binding to and phosphorylating mul-
tiple other proteins that regulate the Hh pathway, in-
cluding GSK3�, DYRK2, and Kif3a (Nagata et al. 1998;
Varjosalo et al. 2008). Because of the many connections
of MAP3K10 to different pathway components, its
mechanism of action is likely to be complex, and re-
quires further study. In addition to DYRK2 and
MAP3K10, it has been reported that other vertebrate-
specific kinases regulate Shh signaling. These include
protein kinase C-� (PKC�), mitogen-activated protein/ex-

tracellular signal-regulated kinase-1 (MEK-1), Akt, and
DYRK1 (Mao et al. 2002; Riobo et al. 2006a,b). From our
studies and previous analyses of the Hh pathway, it ap-
pears that Hh does not regulate the activity of any
known kinase toward a generic substrate. Thus, the
mechanism by which Hh signal is transduced appears
not to depend on activation of pathway-specific kinases,
but on regulation of access of substrates to relatively
generic multifunctional kinases.

In conclusion, the mechanisms of mammalian Hh sig-
naling have clearly diverged from those of Drosophila.
This suggests that even signal-transduction mechanisms
of conserved signaling pathways have not been “locked”
early in evolution, and that they can be subject to evo-
lutionary change. The divergence of the Hh pathway—
arguably the last major signaling pathway to evolve—is
also relevant to the evolution of multicomponent signal-
ing pathways. Some pathways, such as the Notch path-
way, where the same protein (Notch) functions as a re-
ceptor and a transcriptional coactivator are relatively
simple and consist of a small number of pathway-spe-
cific components (Artavanis-Tsakonas et al. 1999; Pires-
daSilva and Sommer 2003). Other pathways, such as the
Hh signaling pathway in Drosophila are more complex.
In addition to many multifunctional proteins, the Hh
pathway consists of 11 known specific components: Hh,
Skinny hedgehog (Ski), Dispatched, iHog/boi, Ptc, Smo,
Cos2, Fu, Su(Fu), and Ci (Burke et al. 1999; Chamoun et
al. 2001; Lum and Beachy 2004). The emergence of the
Cos2–Fu system in invertebrates suggests that such mul-
ticomponent pathways may evolve by insertion of novel
proteins between existing pathway components.

Regulation of GLI activity

In contrast to the differences in signaling between Smo
and GLI, the activities of the GLI proteins themselves
are regulated similarly to Ci—with the added complexity
that the activator and repressor functions of Ci are di-
vided in mammals to three GLI proteins, GLI1–3 (Jacob
and Briscoe 2003; Ruiz i Altaba et al. 2007). GLI1 and
GLI2 are responsible for most activator functions and
have similar activities at protein level (Bai and Joyner
2001). Whereas loss of GLI2 is embryonic lethal (Mo et
al. 1997; Ding et al. 1998; Matise et al. 1998), GLI1 is
dispensable for normal development (Park et al. 2000).
GLI1 expression is induced by Hh ligands, and its func-
tion appears to be primarily to provide positive feedback
and to prolong cellular responses to Hh. GLI3, in turn,
functions primarily as a repressor (B. Wang et al. 2000;
Litingtung et al. 2002), and its loss or mutation leads to
limb malformations in mice and humans (Vortkamp et
al. 1991; Schimmang et al. 1992).

GLI activity appears to be regulated by Hh in a way
that is very similar to that observed in Drosophila. In the
absence of Hh, GLI3 is phosphorylated, recognized by
�-TrCP, and proteolytically processed to a truncated re-
pressor form (B. Wang et al. 2000; Pan et al. 2006).
Whether similar processing of GLI2 results in complete
degradation or generation of a truncated repressor form is
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unclear (Pan et al. 2006; Wang and Li 2006). Addition of
Shh leads to inhibition of processing and accumulation
of full-length forms of both GLI2 and GLI3.

Dose-, time-, and context-dependent responses to Hh

The developmental processes that the Drosophila and
vertebrate Hh signaling pathways regulate appear re-
markably conserved (Ingham and McMahon 2001). At
the cellular level, the effects of Hh range from growth
and self-renewal to cell survival (Liu et al. 1998; Rowitch
et al. 1999), differentiation, and/or migration. During
embryogenesis, the Hh cascade is used repeatedly and in
different tissues to induce a large number of develop-
mental processes. The ability of a single morphogen to
affect almost every part of the vertebrate body plan is
made possible by the fact that cellular responses to Hh
depend on the type of responding cell, the dose of Hh
received, and the time the cell is exposed to Hh (see
below). At the molecular level, the diverse cellular re-
sponses are effected by induction of different sets of tar-
get genes. Among the genes regulated tissue specifically
by Hh signaling are those encoding other secreted signal-
ing proteins, including bone morphogenetic protein 4
(BMP4) (Astorga and Carlsson 2007), fibroblast growth
factor 4 (FGF4) (Laufer et al. 1994), and vascular endo-
thelial growth factor (VEGF)-A (Pola et al. 2001), genes
involved in cell growth and division (e.g., N-Myc) (Oliver
et al. 2003), and many transcription factors that are es-
sential for animal development, including members of
the Myod/Myf, Pax, Nkx, Dbx, and Irx families (Pierani
et al. 1999; Gustafsson et al. 2002; Jacob and Briscoe
2003; Vokes et al. 2007). The total number of genes that
Hh regulates is only beginning to be discovered: A num-
ber of expression profiling studies have identified several
novel target genes (for example, see Xu et al. 2006; Vokes
et al. 2007), and our genome-wide in silico analyses iden-
tified 42 conserved enhancer modules with two or more
GLI sites in the human genome (Hallikas et al. 2006).

The genes that are induced by Hh in many tissues, in
turn, are generally involved in positive and negative
feedback to the pathway itself and include Hib, GLI1,
Ptc, and HIP (Fig. 1C). As Ci and the GLI proteins act as
repressors in the absence of Hh and activators in its pres-
ence, many of the target genes also behave similarly,
being repressed in the absence of Hh and induced in its
presence.

Hh acts both directly and indirectly to pattern tissues

During the development of the Drosophila wing imagi-
nal disc, posterior (P) compartment cells express and se-
crete the Hh protein (Fig. 5A). The secreted Hh then
induces the expression of target genes in cells located in
the anterior (A) compartment. Hh acts both directly at
intermediate range to pattern the anterior wing tissues
close to the A–P boundary and indirectly over long range
by inducing the BMP family morphogen decapentaplegic
(dpp) (Basler and Struhl 1994; Tabata and Kornberg 1994).
Dpp diffuses bidirectionally into both A and P compart-

ments and controls the growth and patterning of the en-
tire wing. Dpp expression is normally repressed by CiR,
and its activation only requires that this repression is
lifted. Therefore, very low levels of Hh suffice to induce
dpp expression (Methot and Basler 1999). The short and
intermediate range effects of Hh require induction of tar-
get genes such as collier (col) and engrailed (en), whose
expression require CiA function and higher levels of Hh
(Methot and Basler 1999; Hooper 2003).

Shh has an analogous role in controlling vertebrate
limb patterning. Shh expressed by the ZPA located at the
posterior margin of developing limb buds diffuses to ad-
jacent tissues, forming a temporal and spatial gradient
that specifies the anterior–posterior pattern of the limbs
(Fig. 5B).

Time and dose dependency of the Hh response

The effect of Hh dose on target tissue responses is best
characterized in the specification of cell identities in the
ventral neural tube (Jessell 2000; Patten and Placzek
2000; Marti and Bovolenta 2002). During neural tube de-

Figure 5. (A) Hh acts both directly and indirectly to pattern the
Drosophila wing imaginal disc. (Left) Hh activates decapen-
taplegic (dpp; red) at the anterior side of the A–P boundary of the
imaginal disc, which diffuses into and patterns both A and P
compartments (red arrow). Hh (blue) also acts directly to pattern
the anterior compartment close to the A–P boundary. (Right)
Adult wing showing the regions derived from the anterior (A,
top) and posterior compartment (P, bottom, shaded), and the
regions patterned by Dpp (red arrows) and Hh (blue color, be-
tween wing veins 3 and 4). (B) Shh has a similar role in anterior-
posterior patterning of the distal elements of vertebrate limbs
and in specifying digit identity (roman numerals). (C) Time and
dose-dependent action of Shh. The gradient of Shh (blue color)
emanating from the notochord (not shown) and floor plate (FP)
progressively defines five different neuronal subtypes in the
ventral neural tube. The Shh protein gradient is converted to
gradient of GLI activities shown on the left. GLI1 and GLI2
(bottom) act as transcriptional activators, whereas GLI3 func-
tions as a repressor (GLI3R, top). (MN) Motoneuron; (V0–V3)
interneurons. Dotted line indicates the dorsal limit of the do-
main patterned by the Shh gradient. Data adapted from Fuccillo
et al. (2006).
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velopment, Shh protein diffuses from the notochord and
floor plate, creating a concentration gradient across the
ventral neural tube (Fig. 5C). Different doses of Shh
within this gradient specify five neuronal subtypes at
precise positions along the floor plate–roof plate axis.
Initially, Shh induces Class II homeodomain (e.g.,
Nkx2.2, Nkx6.1) (Pierani et al. 1999; Jacob and Briscoe
2003) and represses Class I homeodomain (Pax6, Pax7,
Irx3, and Dbx1/2) transcription factors. Cross-repressive
interactions between these factors then act to sharpen
the expression boundaries and to subsequently direct
cells to differentiate into specific lineages (Briscoe and
Ericson 2001).

The activity of Shh as a morphogen was initially
thought to be due to concentration-dependent responses,
but the duration of Shh signal seems also to critically
affect cellular responses. Both during neural tube and
limb development, the pattern of cellular differentiation
is controlled not only by the amount but also by the time
of Shh exposure (Briscoe and Ericson 2001; Ahn and Joy-
ner 2004; Harfe et al. 2004). The changing of the concen-
tration or duration of Shh seem to have an equivalent
effect on intracellular signaling.

Chick neural cells convert different concentrations of
Shh into time-limited periods of signal transduction,
such that signal duration is proportional to Shh concen-
tration (Dessaud et al. 2007). This depends on the gradual
desensitization of cells to Shh caused by up-regulation of
patched (Ptc) (Taipale et al. 2002). Thus, in addition to its
role in shaping the Shh gradient (Chen and Struhl 1996;
Briscoe et al. 2001; Jeong and McMahon 2005), Ptc par-
ticipates cell-autonomously in gradient sensing. This
mechanism integrates Shh signal strength over time, al-
lowing cells to more accurately determine their distance
from the Hh source—resulting in more robust patterning
of the nervous system.

Role of Hh signaling in young and adult mammals

The multiple roles of Hh signaling in embryonic pattern-
ing are discussed above and reviewed in more detail in
McMahon et al. (2003). Much less is known about the
roles played by Hh in pupal development and in main-
taining homeostasis of tissues during adult life.

During maturation of mouse pups, Ihh signaling is im-
portant for bone growth. Permanent deletion of Ihh in
chondrocytes of mice carrying conditional and inducible
null alleles of Ihh results in permanent defects in bone
growth, inhibiting proliferation and promoting differen-
tiation of chondrocytes, leading to dramatic expansion of
the hypertrophic zone (Razzaque et al. 2005; Maeda et al.
2007) and truncation of long bones. Interestingly, similar
phenotype was observed with treatment of young mice
with Smo antagonist for just 48 h (Kimura et al. 2008). In
adults, Hh pathway controls bone homeostasis; activa-
tion of the Hh pathway in osteoblasts leads to bone re-
sorption, and conversely, Hh inhibition protects aging
mice against bone loss (Mak et al. 2008; Ohba et al.
2008). Adult mice seem to tolerate Hh antagonists well,
suggesting that short-term Hh pathway inhibition might

not interfere with the possible role of Hh as a stem cell
factor (Berman et al. 2002; Kimura et al. 2008).

The best-characterized role for Hh signaling in adults
is in the reproductive system, and Hh proteins are ex-
pressed and required for maturation of the germ cells in
multiple species. In Drosophila ovary, Hh acts as a so-
matic stem cell factor, directly controlling the prolifera-
tion and maintenance of ovarian somatic stem cells
(Zhang and Kalderon 2001). In mammals, Ihh and Dhh
produced by granulosa cells act as paracrine factors to
induce target gene expression in the developing theca
cell compartment. This suggests that hedgehog signaling
regulates the theca cell development in growing follicles
(Wijgerde et al. 2005). Dhh also has a role in the regulat-
ing the development and function of the somatic cells of
the testis (Bitgood et al. 1996; Yao et al. 2002).

Aberrant Hh signaling in disease

Loss of Hh signaling activity during vertebrate embryo-
genesis causes severe developmental disorders including
holoprosencephaly, polydactyly, craniofacial defects,
and skeletal malformations (Muenke and Beachy 2000;
Hill et al. 2003; McMahon et al. 2003; L. Zhang et al.
2006). It is now also becoming evident that components
required for the function of primary cilia are required in
mammalian Shh signaling (Huangfu et al. 2003). It is
therefore possible that Hh signaling may also be altered
in human syndromes caused by defects in cilia, includ-
ing Meckel, Bardet-Biedl and Kartagener syndromes,
polycystic kidney disease, and retinal degeneration (Pan
et al. 2005; Kyttala et al. 2006).

On the other hand, aberrant activation of Hh signaling
can cause basal cell carcinoma (BCC, the most common
type of skin cancer) (Hahn et al. 1996; Johnson et al.
1996), medulloblastoma (a childhood cancer with an in-
variably poor prognosis) (Goodrich et al. 1997; Berman et
al. 2002), and rhabdomyosarcoma (Table 1; Kappler et al.
2004). These tumor types occur at an increased rate in
patients or mice with germline mutations in Ptc, and
sporadic cases are often associated with mutations in the
Hh pathway components Ptc, Smo, or Su(Fu), or more
rarely, the amplification of GLI1.

Aberrantly activated Shh signaling has also been sug-
gested to play a role in other cancers, such as glioma,
breast, esophageal, gastric, pancreatic, prostate, and
small-cell lung carcinoma (see Table 1 for references).
With the exception of rare GLI1 amplifications found in
gliomas (Kinzler et al. 1987), the mutational basis of Hh
pathway activation in these types of cancer has not been
ascertained.

Multiple lines of evidence suggest that Hh acts to pro-
mote cancer by directly regulating cellular growth and/
or survival. Loss of one ptc allele causes larger body size
in mice (Goodrich et al. 1997) and in humans (Gorlin
1987). Several common human single nucleotide poly-
morphisms affecting body height map close to Hh path-
way components, including Ihh, Ptc, and Hip (Lettre et
al. 2008; Weedon et al. 2008), suggesting that individual
variation in height is determined in part by the strength
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of negative feedback loops that fine-tune Ihh signaling
during bone growth. Hh pathway controls growth also
during embryonic development—transgenic mice that
overexpress ptc are consistently smaller than control
mice, but remarkably well proportioned, illustrating that
Hh signaling controls growth in many tissues. However,
whether this growth effect is direct or indirectly caused
by altered placental or vascular development is unclear.

In development of midbrain and forebrain, Shh is cru-
cial in driving the rapid, extensive expansion of the early
brain vesicles. The action of Shh is mediated through
coordination of cell proliferation and survival (Britto et
al. 2002). In addition, Shh has been implicated in regu-
lating cell proliferation and survival in a number of other
cell types, including retinal precursor cells (Jensen and
Wallace 1997), myoblasts (Duprez et al. 1998), optic
nerve astrocytes (Wallace and Raff 1999), cerebellar gran-
ule cells (Dahmane and Ruiz i Altaba 1999), and neural
crest cells (Ahlgren and Bronner-Fraser 1999).

The molecular mechanisms by which Shh controls
growth are beginning to be unraveled. In vitro studies
have shown that the Shh protein up-regulates N-myc
expression in cerebellar granule neuron progenitor
(CGNP) cultures and that N-myc overexpression pro-
motes CGNP proliferation even in the absence of Shh
(Kenney et al. 2003). N-myc is thought to promote pro-
liferation of CGNPs synergistically with cyclins D and E
(Knoepfler et al. 2002), whose expression is also regu-
lated by Shh (Duman-Scheel et al. 2002).

Direct evidence for the role of N-myc in pathway-as-
sociated cancer comes from a study of Shh pathway-in-
duced medulloblastoma formation in mice, where it was
shown that the disruption of N-myc, but not c-myc, in-
hibits cellular proliferative responses to Shh (Hatton et
al. 2006). This provides in vivo evidence that N-myc
plays a central role in Shh-mediated proliferation in

CGNPs and in medulloblastoma cells, which are
thought to be derived from CGNPs (Hatton et al. 2006).

Potential for therapeutic intervention

As the Hh pathway in BCC and medulloblastoma is of-
ten affected at the level of Ptc or Smo, small molecule
antagonists should act at/or downstream from these
components (Taipale et al. 2000). Furthermore, several
studies have shown that Smo can be targeted by small
molecule drugs, and that antagonizing Smo could pro-
vide a way to interfere with tumorigenesis and tumor
progression. The most commonly used antagonist of the
Hh pathway is the plant alkaloid cyclopamine (Taipale
et al. 2000). Cell-based high-throughput screening has
revealed several distinct classes of antagonists, which,
like cyclopamine, bind to Smo. These include SANTs
1–4 (Chen et al. 2002b); KAAD-cyclopamine (Taipale et
al. 2000), compound-5 and compound-Z (Borzillo and
Lippa 2005), and Cur-61414 (Frank-Kamenetsky et al.
2002). Although one phase I clinical trial has already
reported promising results of Hh pathway antagonist in
advanced BCC (Garber 2008), further clinical studies are
needed to establish which of these antagonists are suit-
able for therapeutic use. As it has been proposed that
autocrine Shh expression is required for growth of some
cancers (Dahmane et al. 1997; Karhadkar et al. 2004), and
stromal cell-derived Shh can also activate the Hh path-
way in tumors (Becher et al. 2008), it might also be pos-
sible to treat tumors with Shh-specific monoclonal an-
tibodies. In fact, one such antibody, 5E1, has been shown
to block the growth of some tumors, including small-cell
lung carcinoma (Watkins et al. 2003). In addition to tar-
geting tumors that themselves have hyperactive Hh
pathways, antagonists of the Hh pathway could also af-
fect growth of tumors that use Hh ligands to induce an-
giogenesis (Pola et al. 2001; Nagase et al. 2008) or recruit
other types of stromal cells supporting tumor growth.
Further studies are needed to characterize the role that
Shh plays in such tumor–host interactions.

Because adults can tolerate inhibition of the Hh path-
way (Berman et al. 2002; Kimura et al. 2008), specifically
blocking Hh signaling offers an effective treatment for
the various cancers originating from aberrant Hh path-
way activation. However, systemic treatment of pediat-
ric tumors such as medulloblastoma may not be feasible
due to the severe effects that transient inhibition of the
Hh pathway has on bone growth (Kimura et al. 2008).

Perspective

The Hh signaling pathway was first identified in Dro-
sophila 16 yr ago. Subsequently, it has taken its rightful
place among the major signaling pathways controlling
animal development, being found to regulate the mor-
phogenesis of a variety of tissues and organs during the
development of organisms ranging from Drosophila to
human (McMahon et al. 2003). In addition, the Hh path-
way has been linked to multiple forms of human cancer,

Table 1. Cancers linked to aberrant Shh signaling

Cancer type References

Basal cell carcinoma (BCC) (Hahn et al. 1996;
Johnson et al. 1996)

Medulloblastoma (Goodrich et al. 1997;
Berman et al. 2002)

Rhabdomyosarcoma (Hahn et al. 1996;
Kappler et al. 2004)

Glioma (Kinzler et al. 1987)

Breast cancer (Kubo et al. 2004)
Esophageal cancer (Berman et al. 2003;

Watkins and Peacock 2004)
Gastric cancer (Berman et al. 2003)
Pancreatic cancer (Thayer et al. 2003)
Prostate cancer (Karhadkar et al. 2004;

Sanchez et al. 2004)
Small-cell lung cancer (Watkins et al. 2003)
Biliary tract cancer (Berman et al. 2003)
Bladder cancer (Hamed et al. 2004)
Oral cancer (Nishimaki et al. 2004)

Mutations in Hh pathway components have been identified in
BCC, medulloblastoma, rhabdomyosarcoma, and glioma (top).
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and the possibilities for therapeutic intervention are be-
ing actively pursued.

The synthesis and processing of the Hh ligand, its re-
lease and transport through tissues, and mechanisms of
signal transduction in the receiving cells have been stud-
ied extensively. However, many aspects of Hh signaling
remain incompletely understood. Further research is
needed in multiple areas, including the study of Hh tar-
get gene responses, which is required to understand in
detail how the graded Hh signals are converted to dis-
crete cell-fate decisions, and to decipher the molecular
mechanisms that underlie the exquisite specificity of
cellular responses to Hh. In addition, the therapeutic po-
tential of Hh pathway agonists and antagonists in hu-
man degenerative diseases and cancer should be further
investigated.
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