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Abstract

Star-convexity prior is popular for interactive single ob-

ject segmentation due to its simplicity and amenability to

binary graph cut optimization. We propose a more general

multi-object segmentation approach. Moreover, each ob-

ject can be constrained by a more descriptive shape prior,

“hedgehog”. Each hedgehog shape has its surface nor-

mals locally constrained by an arbitrary given vector field,

e.g. gradient of the user-scribble distance transform. In

contrast to star-convexity, the tightness of our normal con-

straint can be changed giving better control over allowed

shapes. For example, looser constraints, i.e. wider cones

of allowed normals, give more relaxed hedgehog shapes.

On the other hand, the tightest constraint enforces skele-

ton consistency with the scribbles. In general, hedgehog

shapes are more descriptive than a star, which is only a spe-

cial case corresponding to a radial vector field and weakest

tightness. Our approach has significantly more applications

than standard single star-convex segmentation, e.g. in medi-

cal data we can separate multiple non-star organs with sim-

ilar appearances and weak edges. Optimization is done by

our modified α-expansion moves shown to be submodular

for multi-hedgehog shapes.

1. Introduction

Distinct intensity appearances and smooth contrast-

aligned boundaries are standard segmentation cues. How-

ever, in most real applications of image segmentation there

are multiple objects of interest with similar or overlapping

color appearances. Intensity edges also could be cluttered

or weak. These common practical problems require addi-

tional regularization, see the second row in Fig.1.

Our paper proposes a simple and sufficiently general

shape regularization constraint that could be easily inte-

grated into standard MRF methods for segmentation. Shape

two examples of images with seeds (medical and photo)

multi-object segmentation using Potts model

multi-object segmentation adding our hedgehog shapes prior

Figure 1. Hedgehog shapes prior for multi-object segmentation.

priors have been successfully used in binary graph cut seg-

mentation [15, 23, 11]. While our “hedgehog” shape prior

extends popular star-convexity constraint [23] in ways dif-

ferent from previous related methods [15, 11] and it has

its own merits, our main contribution is a multi-hedgehog

prior in the context of multi-object segmentation problems.

We observe that similarity between object appearances and

edge clutter are particularly problematic in larger multi-

label segmentation problems, e.g. in medical imaging. Pre-
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vious graph cut methods did not address shape regular-

ization constraints in such problems. Our multi-hedgehog

prior is fairly flexible, has efficient optimizers, and shows

significant potential in resolving very common ambiguities

in multi-label segmentation problems, see Fig.1 (last row).

Our general multi-object segmentation framework al-

lows to enforce “hedgehog” shape prior for any of the ob-

jects. The class of all possible hedgehog priors is suffi-

ciently representative yet each specific hedgehog constraint

offers sufficiently powerful regularization to address color

overlaps and weak edges. One extreme case of our prior is

related to the standard star shape prior [23]. The other ex-

treme case allows shapes with restricted skeletons [18, 21].

The main contribution of our method is that it offers

a practical and efficient way to integrate multiple shape

priors into popular multi-label MRF segmentation frame-

work [6]. Our work also allows to extend previous multi-

surface graph cut methods [17, 8]. For example, [17] com-

pute multiple nested segments using one fixed polar grid

defined by some non-overlapping rays. Besides particular

image discretization, these rays introduce two constraints:

one star-like shape constraint shared by the nested segments

and a smoothness constraint penalizing segment boundary

jumping between adjacent rays. In contrast, our method

defines independent shape constraints for each segment.

Similarly to [15], shape normals are constrained by arbi-

trary vector fields, rather than non-overlapping rays [17]

or trees [23, 11]. Our use of Cartesian grid allows to

enforce standard boundary length smoothness [4]. While

this paper is focused on Potts model with distinct shape

constraints, hedgehog shapes can be easily combined with

inter-segment inclusion or exclusion constraints [8]. The

use of distinct (not necessarily nested) shape priors extends

[17]. See [12] for a more detailed discussion.

There are other earlier methods for segmenting multi-

ple objects with shape priors, e.g. [1] in the context of con-

vex optimization and [24] in MRF-frameworks. These ap-

proaches require training data sets, which could be limiting

when objects of interest have complex shapes that do not

conform to any predefined structure, e.g. lesions. It is hard

to train for such shapes. In contrast, our shape prior does not

require training data and it is fairly flexible: even complex

shapes could be defined via simple user interaction. Fur-

thermore, [24] is not suitable for 3D medical segmentation

where there no occlusion, since [24] allows a pixel or voxel

to be assigned to multiple objects by construction.

Overview of contributions: We propose a new multi-

label segmentation model and the corresponding optimiza-

tion algorithm. Our contributions are summarized below.

• hedgehog shape constraint - a new flexible method for

segmentation regularization based on simple and intu-

itive user interactions.

• new multi-object segmentation energy with multi-

hedgehog shape priors.
• we provide an extension of α-expansion moves [6] for

the proposed energy.
• experimental evaluation showing how our multi-object

segmentation method solves problematic cases for the

standard Potts model [6].

The rest of the paper is organized as follows. Section 2

defines our hedgehog shape prior for a simpler case of bi-

nary segmentation of one object. We discuss its properties

and show how it can be globally optimized with s/t graph

cuts. Section 3 defines multi-hedgehog shape constraint in

the context of multi-label MRF segmentation and proposes

an extension of α-expansion optimization algorithm. Our

experiments in Section 4 includes multi-object segmenta-

tion of real photos and 3D multi-modal medical data. Fi-

nally, we discuss possible extensions and variations of the

hedgehog prior in Section 5.

2. Hedgehog shape constraint for one object

This section describes hedgehog shape prior for a single

object in case of binary segmentation. Section 3 describes

a more general multi-hedgehog segmentation prior where

multiple objects can have separate hedgehog constraints.

While multi-hedgehog prior helps in a much wider range

of problems, e.g. in medical imaging, binary segmentation

with one “hedgehog” is easier to start from and it has merits

on its own. In particular, single-hedgehog prior generalizes

popular star-convexity [23, 11] in binary segmentation.

Similarly to star prior [23], hedgehog prior could be de-

fined interactively. Instead of a single click in the star cen-

ter, hedgehog shape allows an arbitrary scribble roughly

corresponding to its skeleton. Hedgehog can also be de-

fined by an approximate user-defined outline of a desired

shape or by a shape template. In any case, such scribble,

outline, or template define the corresponding (signed) dis-

tance transform or distance map d : Ω → R and a field

of its gradients ∇d, as illustrated in Fig.2. Section 5 ex-

plores the potential/merits of using other vector fields. Our

hedgehog constraint for segment S is defined by vector field

{∇dp | p ∈ Ω} and angular threshold θ restricting orienta-

tions of surface normals n̄S
p at any point p on the boundary

of S to a cone

Cθ(p) : ∠(n̄S
p ,∇dp) ≤ θ ∀p ∈ ∂S (1)

assuming gradient ∇dp is defined at p. More generally,

hedgehog constraint for segment S could be defined by any

given vector field {v̄p | p ∈ Ω} defining preferred directions

for surface normals, Similarly to [15], we can use dot prod-

uct to define allowed normals cones Cθ(p) : ⟨n̄S
p , v̄p⟩ ≥ τ

where width varies depending on the magnitude of v̄p. In

case v̄p = ∇dp this constraint reduces to (1) for τ = cos(θ)
since |∇dp| = 1 at all points where gradient ∇dp exists.
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(a) scribble’s distance map d (b) constraint ∠(n̄S
p ,∇dp) ≤ θ

Figure 2. Hedgehog prior for segment S. (a) User-scribble or

shape template define a (signed) distance map d. (b): Orientations

of surface normals n̄S
p for S are constrained by ∠(n̄S

p ,∇dp) ≤ θ.

2.1. Single hedgehog properties

Even a single hedgehog shape prior discussed in this sec-

tion could be useful in practice. For example, if θ = π/2 it

closely approximates a popular star convexity [23] in case

of a single click. However, our formulation uses locally

defined constraints, which can be approximated by a sim-

ple rule for selecting local edges, see Section 2.2. Unlike

[23, 11], we do not enforce a global tree/forest structure,

see Fig.3(b). Similar to [15, 11], hedgehog prior allows

a much larger variability of shapes for scribbles different

from a point. In our case, a scribble defines a rough skele-

ton of a shape. For smaller values of θ our cone constraints

(1) give a tighter alignment of surface normals with vec-

tors ∇dp forcing the segment boundary to follow the level-

sets of the scribble’s distance map d. Under certain condi-

tions1 this implies consistency of segment’s skeleton with

the skeleton of the given scribble, outline, or template.

2.2. Single hedgehog via graph cuts

We show an approximation for hedgehog constraint (1)

for object S in the context of binary N-dimensional image

segmentation via graph cuts [3]. All cone constraints (1) for

any given θ and distance map gradients ∇d, see Fig.3(a),

correspond to a certain set of infinity cost directed edges,

see Fig.3(b). For example, consider cone of allowed sur-

face normals Cθ(p) at some point p illustrated in Fig.4 for

two different values of parameter θ. It is easy to see that

a surface/boundary of segment S passing at p has normal

n̄S
p ∈ Cθ(p) iff this surface does not cross the correspond-

ing polar cone

Ĉθ(p) := {(py) | ⟨(py), (pz)⟩ ≤ 0 ∀z ∈ Cθ(p)}. (2)

This reformulation of our hedgehog constraint (1) is easy

to approximate via graph cuts by setting infinity cost to all

1In general, skeleton consistency is subject to smoothness and radial

curvature condition, see Definition 9 and Theorem 1 in [22] due to [7].

(a) gradients ∇d (b) graph edges E(π4 )

Figure 3. Hedgehog constraint (1) for user seeds (green) and the

corresponding distance map gradients ∇d in (a) is approximated

by infinity cost directed edges E(θ) in (b) selected as in Fig.4.

(a) wide cone of normals Cθ (b) tight cone of normals Cθ

Figure 4. Approximating hedgehog constraint (1) at grid node p.

Cone Cθ of allowed surface normals (blue) is enforced by ∞ cost

directed edges (pq) in the corresponding polar cone Ĉθ (red).

directed edges adjacent to p whose directions agrees with

polar cone Ĉθ(p), see Fig.4. To avoid clutter, the figure only

shows such directed edges (pq) ∈ Ĉθ(p) starting at p, but

one should also include similarly oriented directed edges

(qp) ∈ −Ĉθ(p) := {(yp) | ⟨(yp), (pz)⟩ ≤ 0 ∀z ∈ Cθ(p)}
pointing to p. The set of all directed graph edges consistent

with local polar cones orientations, see Fig.3(b), is

E(θ)={(pq) ∈ N | (pq) ∈ Ĉθ(p) or (pq) ∈ −Ĉθ(q)}. (3)

Obviously, hedgehog constraints are better approximated by

large neighbour systems N . The reader is referred to [12]

for a more detailed discussion and experiments regarding

discretization artifacts and how to avoid them.

It is easy to see that set (3) of infinity cost edges cor-

responds to a submodular pairwise energy approximating

hedgehog shape constraint (1) for binary labeling f = {fp}
representing segment S = {p | fp = 1}

hθ(f) =
∑

(pq)∈E(θ)

w∞ · [fp = 1, fq = 0] (4)

where w∞ is an infinitely large scalar.
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(a) (b) (c)

Figure 5. (a) image and scribble (octagon shown in blue). (b-c) show our results for varying θ, ground truth (gray) and the vector field

used to enforce hedgehog constraints (blue). In (b) the vector field used to constraint the surface normals is the gradient of the scribble’s

distance transform and in (c) it is the gradient of a function where the levelsets are scaled versions of the scribble. Notice how the used

vector field affects the segmentation for the same value of θ in (b) and (c). The hedgehog prior reduces to star-shape prior [23] only in (b)

when θ = 90 and if the star center was the octagon’s center.

Figure 5 shows a simple foreground/background seg-

mentation experiment illustrating how the choice of θ and

vector field affects the segmentation result. As you case see

in Fig.5(b) increasing θ leads to a segmentation that better

aligns with the levelsets of the distance transform which is

beneficial in case of clutter. Also, using a different vector

field other than the gradient of the distance transform leads

to a different set of allowed shapes by the hedgehog prior.

We can see how the choice the vector field affected the seg-

mentation by comparing Fig.5(b) to (c) for the same θ.

3. Multi-hedgehog segmentation energy

Given a set of pixels P , neighborhood system N , and

labels L our multi-labeling segmentation energy is

E(f) =

data
︷ ︸︸ ︷
∑

p∈P

Dp(fp)+

smoothness
︷ ︸︸ ︷

λ
∑

pq∈N

Vpq(fp, fq)+

hedgehogs
︷ ︸︸ ︷

Hθ(f) (5)

where f = {fp ∈ L| ∀p ∈ P} is a labeling.

The first two terms, namely data and smoothness terms,

are widely used in computer vision, e.g. [5, 3, 20]. The data

term commonly referred to as the regional term as it mea-

sures how well pixels fit into their corresponding labels. To

be specific, Dp(fp) is the penalty for assigning label fp to

pixel p. Similar to [20], a label’s probabilistic model, Gaus-

sian Mixture in our case, is found by fitting a probabilistic

model to the seeds given by the user.

The smoothness term is a standard pairwise regular-

izer that discourages segmentation discontinuities between

neighboring pixels. A discontinuity occurs whenever two

neighboring pixels pq ∈ N are assigned to different labels.

In its simplest form, Vpq(fp, fq) = wpq[fp ̸= fq] where [ ]
is Iverson bracket and wpq is a non-increasing function of

the intensities at p and q. Also, λ is a parameter that weights

the importance of the smoothness term.

Third term, our contribution, is the Hedgehog term

Hθ(f) =
∑

k∈L

∑

(pq)∈Ek(θ)

w∞ [fp = k, fq ̸= k] (6)

where w∞ = ∞. Those familiar with graph cuts may prefer

to think of it as an ∞-cost arc from p to q, thus prohibiting

any cut that statisfy fp = k and fq ̸= k. The Hedgehog term

is the sum of the Hedgehog constraints over all the labels

and it guarantees that any feasible labeling2, i.e. E(f) < ∞,

will result in a segmentation with surface normals respect-

ing the orientation constraints (1).

3.1. Expansion Moves

In this section we will describe how to extend the binary

expansion moves of α-exp [6] to respect the shape con-

straints, and show that these moves are submodular. The

main idea of α-exp algorithm is to maintain a current fea-

sible labeling f
′

, i.e. E(f
′

)<∞, and iteratively move to a

better labeling until no improvements could be made. To

be specific at each iteration, a label α ∈ L is chosen and

variables fp for all p ∈ P are given a binary choice xp; 0 to

retain their old label fp = f
′

p or 1 switch to α, i.e. fp = α.

2We use feasible (and not bound) because there is at least one trivial

solution with finite cost. In practice, it is practical to assume that one of the

labels, e.g. background label, does not require enforcing shape constraints

otherwise the problem could become over-constrained. One trivial solution

is to label all pixels as background except those labeled by user scribbles.
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The Hedgehog term (6) for a binary α-exp move could

be written as

Hα
θ (x) =

∑

(p,q)∈Eα(θ)

Spq(xp, xq) +
∑

k∈L\α

∑

f
′

p=f
′

q=k

(pq)∈Ek(θ)

Sqp(xq, xp) (7)

where x = {xp ∈ {0, 1} | ∀p ∈ P} and

Spq(xp, xq) =

{
∞ if xp = 1, xq = 0
0 otherwise.

(8)

The first term in (7) guarantees that the resulting labeling re-

spects label α hedgehog constraints. In addition, the second

term guarantees that the hedgehog constraints satisfied by

the current labeling f
′

for all labels in L\α are not violated

by the new labeling f .

According to [16], any first-order binary function could

be exactly optimized if all pairwise terms are submodu-

lar. A binary function g of two variables is submodular if

g(0, 0) + g(1, 1) ≤ g(1, 0) + g(0, 1). Our energy (7) is

submodular as it could be written as the sum of submodu-

lar pairwise binary energies over all possible pairs of p and

q. Notice that for any given pq pair, Spq(1, 1) = 0 by con-

struction and Spq(0, 0) = 0 as long as the current labeling

is a feasible one, i.e. it does not cut any of the ∞-cost arcs.

Also, Spq(1, 0) and Spq(0, 1) are both ≥ 0 by construction.

Therefore, the submodularity condition is satisfied for all

pairs of p and q.

Fig.6 shows an illustrative example of an α-exp move

over the green label. In this example we assume that we

are enforcing the shape constraints only for the green and

purple labels. Fig.6(a) shows the initial seeds for three dif-

ferent labels while (b) shows the current feasible labeling.

Fig.6(c-d) show the shape constraints enforced by green and

purple labels while expanding the green label. Note, green

shape constraints are enforced all over the image while pur-

ple shape constraints are enforced inside its current label-

ing support area, as it is not necessarily to enforce it every-

where. Fig.6(e) shows a feasible move that respects green

and purple shape constraints while (f) shows an infeasible

move that respects only the green shape constraints.

4. Experiments

In the following set of experiments we show the benefit

of incorporating our Hedgehogs term (6) to the well studied

Potts model segmentation energy, i.e. data term + smooth-

ness term, for multi-object segmentation in 2D and 3D. We

will also give an illustrative real life example to show that

the hedgehog shape is more general than star-shape [23].

The results shown in this section for our method were gen-

erated using θ = π
4 when computing the hedgehog shape

constraints, also we did not enforce any shape constraints on

(a) initial seeds (b) current labeling

(c) (7) first term constraints (d) (7) second term constraints

(e) feasible expansion move (f) infeasible expansion move

Figure 6. Illustration of a feasible and an infeasible expansion

move for the green label. (a-b) Initial seeds and current label-

ing, respectively. (c-d) Hedgehog shape constraints (7) enforced

by green and purple labels when expanding the green one. (e-f)

show a feasible and an infeasible expansion moves, respectively.

In (f) severed ∞-cost purple shape edge/constraint is shown in red.

the background model. Also, the same smoothness weight

λ is used when comparing methods unless stated otherwise.

Our optimization framework is similar to [20] where the

user marks a set of initial seeds in the form of a scribble

for the required labels, e.g. left kidney, right kidney etc.

The seeds for each label were used to fit an initial Gaussian

Mixture color model, and to generate its hedgehog shape

constraints. Similarly to [13, 9], we iteratively optimize our

energy (5) (or Potts model) in an EM-style iterative fashion.

We alternate between finding a better segmentation and re-

estimating the color models using the current segmentation.

Finally, the framework terminates when it can not decrease

the energy anymore.
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(a) initial seeds (b) Potts model λ = 2

(c) Potts model λ = 6 (d) Hedgehogs + Potts λ = 2

Figure 7. Three hedgehogs one for each star. (a) shows user scrib-

bles. (c-b) and (d) show Potts model results for different λ and our

results, respectively. (d) shows that enforcing hedgehogs shape

priors (our method) eliminated oversegmented solutions as the one

in (b) which is typical for small λ. (c) shows Potts model result for

a larger λ at which the stars were not oversegmented, notice star

tips were wrongly segmented due to the increase in shrinking bias.

For the example shown in Fig.7(a), (b-c) show Potts

model results for λ = 2 and 6, respectively. It should be

noted that 6 is the smallest smoothness weight that did not

result in oversegmentation when using Potts. However, the

result in Fig.7(c) is biased towards smaller objects (notice

star tips) because by increasing the smoothness we are also

increasing the shrinking bias. Oversegmented results as in

Fig.7(b) could be avoided without increasing the shrink-

ing bias by incorporating multi-shape priors. Our method

which incorporates Hedgehog priors with Potts model was

able to find a better segmentation, see Fig.7(d).

The objective of the example shown in Fig.8(a) is to seg-

ment left and right lungs, and the background. Potts model

result shown in Fig.8(b) has holes, i.e. part of the back-

ground appears in the middle of the lungs. Furthermore,

Potts model converged to biased color models where the

right lung preferred brighter colors while the left preferred

darker colors. Similar to the previous example, increasing

λ for Potts model will increase the shrinking bias and it be-

comes hard to segment the elongated part of the the right

lung. Using multi-star which is a generalization of [23] to

multi-object segmentation is not enough because the right

lung is not a star-shape. To be specific, there is no point

(a) initial seeds (b) Potts model

(c) Multi-Star + Potts model (d) Hedgehogs + Potts model

Figure 8. Two hedgehogs one for each lung. As can be seen in

(b) Potts model resulted in segmentation with holes (background

inside lungs), and converged to wrong color models. Segmenta-

tion holes could be eliminated by using multi-star shape priors

(c)—star centers are the midpoints of the green and red circles.

However, multi-star can never properly segment the right lung as

it is not a star-shape. Our method (Hedgehogs + Potts) (d) elimi-

nated holes and properly segmented the lungs by enforcing a more

general shape constraint derived from the user scribble.

inside the right lung that could act as a center of a star-

shape that would include it. Fig.8(d) shows the result for our

method, where user scribbles were used to enforce shape

constraints compared to using a single pixel per label [10].

We applied our method on PET-CT scans of three differ-

ent subjects to segment their liver, left kidney, right kidney

and the background. Although we applied our method and

Potts model on the 3D volumes we only show the results on

a few representative slices from each volume in Fig.9. Also,

the results of different methods for each subject were com-

puted using the same smoothness. We can see from the last

two rows which compare our method to Potts, using Hedge-

hogs constraints enabled us to avoid geometrically incorrect

segmentations, e.g. one liver inside the other (last-row mid-

dle), or parts of left kidney is between the right kidney and

liver (last-row right). Furthermore, for test subjects 1 and

2 the kidneys and background were poorly segmented by

Potts model, e.g. most of the kidneys were segmented as

background for test subject 1. Potts poor performance is due

to the large overlap between the kidneys and background

color models. This overlap resulted in an in-discriminative

data term for Potts to properly separate them. This issue

becomes worse in iterative frameworks where color mod-

els are re-estimated based on current segmentation. To be

specific, if at any iteration Potts model resulted in a bad

segmentation then re-estimating the color models will bias

them towards the bad segmentation and subsequent itera-

tions worsen the results. Comparing our results for subjects

1 and 2 to Potts model shows that our method is less prone
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Figure 9. Three hedgehogs for liver and two kidneys, the colored contours represent liver and kidneys ground truth. Each column shows the

result of a different test subject. The first four rows show our results, each row represents a different slice. The last row shows Potts model

results. Also, the last two rows show results of the same slice for our method and Potts model, respectively. Our method (Hedgehogs+Potts)

out performed Potts, results show that enforcing shape constraints avoids/forbids some undesirable segmentations, e.g. for subject 2 Potts

segmentation shows that the left kidney surrounds the right kidney, and for subject 3 it shows that part of the left kidney is between the

right kidney and liver. In addition, for subjects 1 and 2 Potts model did not properly separate the kidneys from the background.
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to the aforementioned issue as we forbid undesirable seg-

mentations, i.e. those that do not respect shape constraints.

For quantitative comparison, Table 1 lists for each

organ of a subject the F1 Score, Precession and Re-

call measures of our method and Potts model where

F1 = 2 ∗ Precession∗Recall
Precession+Recall

. For kidneys, our method

clearly out performed Potts model, e.g. note Potts model

poor precision/recall for subjects 1 and 2. For liver, both

methods performed comparably.

Subject 1 Subject 2 Subject 3

Ours Potts Ours Potts Ours Potts

Right Kidney

F1 score 0.85 0.05 0.69 0.11 0.92 0.85
Prec. 0.77 0.16 0.58 0.13 0.93 0.85

Recall 0.96 0.03 0.84 0.10 0.91 0.87

Left Kidney

F1 score 0.96 0.08 0.81 0.48 0.93 0.84
Prec. 0.90 0.97 0.85 0.34 0.95 0.76

Recall 0.95 0.04 0.78 0.80 0.91 0.93

Liver

F1 score 0.92 0.93 0.90 0.91 0.92 0.84
Prec. 0.92 0.93 0.97 0.96 0.97 0.96

Recall 0.92 0.93 0.84 0.87 0.88 0.74

Table 1. The table lists the F1 score, precision and recall measures

for each method, individual organ and subject—the closer these

values are to 1 the more accurate the segmentation is. For the

kidneys where most of the color model overlap occurs, our method

was a clear winner. For the liver which has a bigger volume and

a more distinct color model compared to the kidneys/background,

the two methods performed comparably.

5. Discussion

As illustrated in Section 2.2 the vector field plays an im-

portant role in controlling the set of shapes allowed by the

hedgehog prior. While this work focuses only on a very ba-

sic vector field, i.e. gradient of the distance transform, the

obtained results are promising. There are many ways to ex-

tend our work in regards of which vector field to use, which

constraints to enforce and how to enforce them.

Instead of Euclidean distance transform gradients,

hedgehog prior vector field can correspond to the gradient

of the geodesic distance transform [19, 2] incorporating in-

formation about image colors. In case of binary segmen-

tation with θ = π
2 and with such geodesic vector field the

hedgehog shape prior is similar to the geodesic-star [11].

Another idea for a hedgehog vector field could be based on

a shape template and its medial axis transform with a known

radius function. One can generate a set of nested shapes by

scaling the radius function and compute the hedgehog vec-

tor field as the normals to these shapes.

Figure 10. This figure shows a few different shape penalty/cost

functions vs. γ, i.e. the angle between a segment’s normal and its

preferred orientation, but any convex function could be used [14].

In this work we only experimented with f1.

Our proposed hedgehog utilizes only the angular infor-

mation of the vector field. Alternatively, one could replace

the hard constraints, i.e. ∞-cost edges, with soft constraints

proportional to the vector field’s magnitude at each pixel.

In general, hedgehog prior could utilize different shape

penalty functions as in Fig.10. In this work we only ex-

plored f1 in Fig.10, for simplicity.

6. Conclusion

We proposed a novel interactive multi-object segmenta-

tion method where objects are independently restricted by

hedgehog shape priors. In a nutshell, hedgehog shape prior

for a given object uses a vector field derived from the user

interaction to restrict the object’s surface normals. In ad-

dition, we showed how to modify α-expansion moves to

optimize our multi-labeling problem with hedgehog con-

straints. We also proved submodularity of the modified bi-

nary expansion moves. Furthermore, we applied our multi-

labeling segmentation with hedgehog shapes on 2D images

and 3D medical volumes. Our experiments show the sig-

nificant improvement in segmentation accuracy when using

our method over Potts model. Specially in medical data

where our method outperformed Potts model in separating

multiple organs with similar appearances and weak edges.
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