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Hedging Effectiveness under Conditions of Asymmetry 

 

John Cotter and Jim Hanly 

 

We examine whether hedging effectiveness is affected by asymmetry in the return distribution by 
applying tail specific metrics, for example, Value at Risk, to compare the hedging effectiveness of 
short and long hedgers. Comparisons are applied to a number of hedging strategies including OLS, 
and both symmetric and asymmetric GARCH models. We apply our analysis to a dataset consisting of 
S&P500 index cash and futures containing symmetric and asymmetric return distributions chosen ex-

post. Our findings show that asymmetry reduces out-of-sample hedging performance and that 
significant differences occur in hedging performance between short and long hedgers.  

 

Keywords: Hedging Performance; Asymmetry; Lower Partial Moments; Value at Risk; Conditional Value at Risk. 
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1. Introduction 

A large literature has developed in the evaluation of futures based hedging strategies. The 

dominant hedging framework uses the variance as the risk measure and the Optimal Hedge Ratio 

(OHR) has, therefore, become synonymous with the minimum variance hedge ratio (see Lien 

and Tse, 2002, for a comprehensive survey). A shortcoming of the variance risk measure is that 

it cannot distinguish between positive and negative returns and therefore it does not allow for 

distribution asymmetries. Moreover it measures average risk only, and does not distinguish 

between specific parts of a return distribution such as the tail of the distribution.   

 

In the literature on optimal hedging, two broad strands have emerged that address these 

issues. The first approach is the use of hedging estimation methods that seek to minimise some 

measure of risk other than the variance. These include Lower Partial Moments (LPM), Value at 

Risk (VaR) and Conditional Value at Risk (CVaR) and these are all tail-specific measures that 

can be applied separately to either side of a distribution. The second approach is the use of 

hedging estimation methods that allow for asymmetry in the return distribution. Of these, 

asymmetric extensions to the Generalised Autoregressive Conditional Heteroskedastic (GARCH) 

class of models have been applied. However no study has addressed the issue of hedging 

effectiveness under conditions of asymmetry, by combining these models, together with hedging 

effectiveness methods that measure tail probabilities, and we address this here.  

 

First, we identify asymmetry in the bivariate distribution of cash and futures markets. In 

comparing hedging performance, it is common practice to examine and assess alternative 

models that estimate OHR’s. We choose three of the most commonly applied. OLS is chosen as 

it has been the benchmark model to examine optimal futures hedging (see Ederington, 1979). 

We also use a Naive model that assumes the hedge ratio equals 1.  To account for time variation 



 2

we use two different GARCH models, both symmetric and asymmetric, to examine the impact 

of asymmetry in both the volatility and covariance dynamics. Both of the GARCH models we 

use have been broadly applied in the literature (Brooks Henry and Persand, 2002) as have the 

OLS and Naïve models. This gives our study a solid platform on which to base our comparisons 

for symmetric and asymmetric data. 

 

We apply tail specific hedging effectiveness measures to cash and futures containing 

symmetric and asymmetric return distributions chosen ex-post. This allows us to compare the 

hedging effectiveness of short and long hedgers under conditions of asymmetry. Our analysis 

could also be illustrated via simulation of alternative asymmetric distributions and associated 

parameters.1 However, this would miss out on the real world application to financial data where 

it is standard that both excess skewness and excess kurtosis are evident in returns.  Unlike excess 

kurtosis that indicates the presence of fat tails, there is no consensus on whether skewness of 

returns can be characterised as being either positive or negative, and nor do we have agreement 

on the magnitude of asymmetry. Also we are unable to identify a correct distribution for 

financial returns (with the exception that normality is usually rejected).  To avoid having to 

identify a correct distribution with the correct parameter values, and especially the direction and 

magnitude of skewness, we use the far simpler approach of analysing real financial data and 

identifying timeframes where asymmetry is present and absent in order to examine hedging 

performance.   

 

Combining these, we have four estimation methods and four performance metrics.  This 

approach allows us to comprehensively examine hedging effectiveness of both short and long 

hedgers for both symmetric and asymmetric distributions, and to see whether there is a dominant 

OHR estimation method that emerges across a broad range of hedging effectiveness metrics.  
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Our most important finding is that the presence of skewness in the return distribution 

significantly reduces out-of-sample hedging effectiveness. Therefore hedges may underperform 

during stressful market conditions when they are most required. We also find significant 

differences between the hedging effectiveness of short and long hedgers for skewed returns. This 

implies that hedgers who fail to use tail specific hedging performance metrics may chose 

inefficient hedging strategies that result in being mishedged vis-à-vis their hedging objectives. 

Our results for the best hedging model are mixed but tend to favour using the OLS model. Based 

on these findings, it would appear that there is little to be gained in terms of hedging efficiency 

from the use of more complicated hedging strategies such as asymmetric GARCH models for 

both non-skewed and skewed distributions.  

 

The remainder of the paper proceeds as follows. Section 2 outlines the methods used for 

estimating OHR’s. Section 3 describes the metrics for measuring hedging effectiveness. Section 

4 describes the data. Section 5 presents our empirical findings and Section 6 summarises and 

concludes the paper. 

 

2. Methodology 

The OHR is defined in the literature as the ratio that minimises the risk of the payoff of the 

hedged portfolio. The payoff of a hedged portfolio is given as:  

fs rr β−+  (short hedger)              (1a) 

fs rr β+−  (long hedger)                 (1b) 

where sr and 
fr  are returns on the cash and futures respectively, and β is the estimated OHR. 

We define a short (long) hedger as being long (short) the cash asset and short (long) the futures 
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asset. In this study we utilise four different methods for estimating OHR’s benchmarked against 

a no-hedge strategy. The simplest model is a 1:1 or Naïve hedge ratio (h = 1) where each unit of 

the cash contract is hedged with equivalent units of the futures contract. The next method applied 

is an OLS HR, which is the slope coefficient of a regression of cash on futures returns. An OHR 

estimated by OLS associated with Ederington (1979) has been applied extensively in the 

literature. Cecchetti et al., (1988) argue that the OLS method is not optimal because it assumes 

that the OHR is constant, whereas time-varying volatility is the rule for financial time series. As 

the OHR depends on the conditional distribution of cash and futures returns, so too should the 

hedge ratio. We therefore use a rolling window OLS model to account for time varying effects. 

This is given as: 

tfttst rr εβα ++=                             (2) 

where str and 
ftr are the cash and futures returns respectively for period t, tε is the disturbance 

term and tβ  is the OHR. This can also be expressed as: 

ft

sft

t
h

h
=β                                      (3) 

where fth denotes the variance of futures returns and sfth is the covariance between cash and 

futures returns. We also use two additional GARCH based estimation methods that allow the 

OHR to be time varying.  

 

2.1 The Symmetric Diagonal VECH GARCH Model (SDVECH) 

We use the Diagonal Vech (1,1) GARCH model proposed by Bollerslev, Engle and Wooldridge 

(1988). This model imposes a symmetric response on the variance and is useful for comparison 

of hedging estimation and performance as it has been extensively applied in the hedging 

literature. This model is specified as follows: 
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stststr εµ +=  
ftftftr εµ += ,  ( )tt

ft

st
hN ,0~1−Ω









ε

ε
            (4) 

tfftfftstsssst hbawh ,,,,1,11 ++=+ εε                       (5) 

tfftfftftfffft hbawh ,,,,1,22 ++=+ εε                       (6) 

tsftsftftssfsft hbawh ,,,,1,12 ++=+ εε                      (7) 

where 
ftst rr ,  are the returns on cash and futures respectively, 

tfts ,, ,εε  are the residuals, 

1,1, , ++ tfftss hh denotes the variance of cash and futures and 1, +tsfh is the covariance, w is a 3x1 

parameter vector, and a and b are 3 x 3 parameter matrices. The matrices a and b are restricted to 

be diagonal implying that the conditional variance of the cash returns depends only on past 

values of itself and past values of the squared innovations in the cash returns. The conditional 

variance of the futures returns and the conditional covariance between cash and futures returns 

have similar structures.  Because of the diagonal restriction we use only the upper triangular 

portion of the variance covariance matrix, the model is therefore parsimonious, with only nine 

parameters in the conditional variance-covariance structure of the Diagonal VECH model to be 

estimated. This is subject to the requirement that the variance-covariance matrix is positive 

definite for all values of tε in order to generate positive hedge ratios.  

 

2.2 The Asymmetric Diagonal VECH GARCH Model (ASDVECH)  

The second GARCH model that we use is an asymmetric extension of the SDVECH model. The 

asymmetric model is able to capture asymmetries both within and between cash and futures 

markets as it allows volatility to respond differently to negative and positive returns. The 

asymmetric GARCH model builds on the univariate asymmetric GARCH model of Glosten, 

Jagannathan and Runkle (GJR) (1993) and allows the variance to respond differently to positive 

and negative return innovations through the use of an additional term designed to capture 
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asymmetries. The multivariate model is similar to that used in de Goeij and Marquering (2004). 

It differs from the SDVECH model by changing the equations for the variances of the cash and 

futures given in (5) and (6) as follows: 

1,,

1

,,,,1,11 , −+ +++= ttstssstsstsststsssst Iahbawh εεεε              (8) 

1,,

1

,,,,1,11 , −+ +++= ttftffftfftfftftfffft Iahbawh εεεε             (9) 

Also the covariances are modelled to allow for asymmetric shocks using: 

tftftstssf

tftftstssftftftstssftftstsftsfsfsftsf

IIa

IIaIIaahbwh

,,,,

4

,,,,

3

,,,,

2

,,,
1

,1,

)1(

)1(,

εε

εεεεεε

ε

εεεε

−+

−++++=+
      (10) 

Where 
tkI ,ε is an indicator variable equal to one if 0,, <tkε , and zero otherwise where 2,1=k such 

that the space can be partitioned into four quadrants in the 21 ,εε plain to allow for positive and 

negative shocks.  

 

GARCH models have been broadly applied in the hedging literature to estimate time 

varying optimal hedge ratios (see Kavussanos and Visvikis, 2008). However, the performance of 

these models has been mixed. Over short time horizons and in-sample they have performed well 

(see Sultan and Hasan, 2008); however, over longer hedging horizons and out-of-sample, their 

performance has been poor. Brooks et al, (2002) use an asymmetric model to compare the 

hedging performance of a symmetric and asymmetric GARCH model. They find that accounting 

for asymmetry may yield marginal improvements in hedging efficiency in-sample but not for 

out-of-sample hedging. In contrast, Lien and Yang (2006) examine the effects of asymmetry in 

the spread between currency spot and futures on hedging performance. They find that a GARCH 

model incorporating asymmetric effects outperforms a symmetric model for both in–sample and 

out-of-sample comparisons. However, they confine their examination of hedging effectiveness to 

the variance metric in contrast to our use of a number of measures, and importantly, tail-specific 
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ones.  Switzer and El-Khoury (2007) also examine hedging using the GJR GARCH model 

applied to weekly oil data. However their approach differs from ours in that they define 

asymmetry on a univariate dimension whereas the impact of  asymmetry in hedging should be 

examined in the bivariate dimension. We now turn to hedging effectiveness in the next section. 

 

3. Hedging Effectiveness 

In this paper we use four different performance metrics that have been applied in the hedging and 

risk management literatures. Three of these, LPM, VaR and CVaR were chosen as they are tail 

specific measures and can examine risk separately for both sides of the distribution of hedged 

portfolios. They are, therefore, particularly suitable for a study into the effects of asymmetry on 

hedging effectiveness. They can also measure performance for short and long hedgers separately. 

As a benchmark comparison we also included the two-sided risk measure, the variance in our 

performance evaluation.  For each risk measure, performance is measured by the percentage 

reduction compared to an unhedged portfolio.2  

 

 The LPM is a hedging effectiveness metric that we use to allow for asymmetric data as it 

can distinguish between the left and right tails of a distribution.  The LPM measures the 

probability of falling below a pre-specified target return (Bawa, 1975).  The LPM of order n 

around τ is defined as 

LPMn (τ; R) = [ ]( ){ }n
RE −τ,0max ≡  ( ) ( )∫

∞−

−
τ

τ RdFR
n

        (11) 

where F(R) is the cumulative distribution function of the investment return R3, and τ is the target 

return parameter. The value of τ will depend on the level of return or loss that is acceptable to the 

investor. Some values of τ that may be considered are, zero or the risk free rate of interest. The 

parameter n is the weighting applied to shortfalls from the target return. The more risk averse an 
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investor the higher the weight (n) that would be attached (Fishburn, 1977). We can form a 

complete set of downside risk measures by changing the τ and n parameters to reflect the 

position and risk preferences of different types of hedger. The more risk averse investors may set 

τ as the disaster level of return and have utilities that would reflect an LPM with n=2, 3… We 

choose τ = 0 and n = 3 describing a risk-averse investor.4  

Because of its focus on tail specific risk, he LPM serves as an intuitive risk measure that 

is in line with the risk preferences of many investors (Lee and Rao, 1988). Price and Nantell 

(1982) in a comparison of LPM and variance based measures of hedging effectiveness, find that 

they provide equivalent measures for normal distributions but that the LPM differentiates for 

distributions that are asymmetric, as it is a tail specific measure that measures the left and right 

tail probabilities independently. Studies have compared the hedging effectiveness of short and 

long hedgers using the LPM methodology (Demirer and Lien, 2003). The results indicate that 

hedging effectiveness for long hedgers differs from that of short hedgers; with long hedgers 

deriving more benefit from hedging in terms of risk reduction as measured by reduced LPM’s. 

The second hedging effectiveness metric is VaR. This is the loss level of a portfolio over 

a certain period that will not be exceeded with a specified probability. VaR has two parameters, 

the time horizon (N) and the confidence level (x). Generally VaR is the (100-x)th percentile of 

portfolio returns over the next N days. We calculate VaR using 99=x  and 1=N .  

A shortcoming in VaR is that it is not a coherent measure of risk, as it is not subadditive5. 

Also in practice two portfolios may have the same VaR but different potential losses as it does 

not account for losses beyond the (100-x)th percentile. We address this by estimating an 

additional performance metric; CVaR, a coherent measure of risk. CVaR is the expected loss 

conditional that we have exceeded the VaR. It is given as: 

 CVaR = E[L|L> VaR]              (12) 
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This measures the expected value of our losses, L, in excess of the VaR. CVaR is 

attractive to hedgers because it estimates not only of the probability of a loss, but also the 

magnitude of a possible loss. In calculating CVaR we use the 1% confidence level which gives 

us the expected loss beyond the 1% VaR.  

 Few studies in the hedging literature have applied either VaR or CVaR as measures of 

hedging effectiveness in combination with GARCH models.  However, Giot and Laurent (2003) 

use both the VAR and CVaR measures to examine the risk of short and long trading positions 

over a one day time horizon, estimating volatility with both symmetric and asymmetric GARCH 

approaches. They show that symmetric models underperform models that account for 

asymmetry; however, their analysis is only applied to unhedged positions.  

 

4. Data 

Our data consist of daily cash and futures closing prices of the S&P500 Equity Index. To 

examine equity hedging, we chose the S&P500 index because of its economic importance and 

because it has been extensively used in the hedging literature as a benchmark in examining 

hedging effectiveness. All data was obtained from Datastream and daily returns were calculated 

as the first differenced logarithmic prices. Continuous series were formed by using the nearby 

contract with rollover driven by choosing the highest volume contract.   

 

As we are examining the influence of asymmetry on hedging effectiveness, we require 

data that exhibits both skewed and non-skewed characteristics in order to facilitate a comparison. 

These considerations motivated our choice of sample periods for the S&P500 data. Our initial 

sample is daily logarithmic returns from January 1, 2000 through December 31, 2008. Because 

hedging is concerned with the bivariate return distribution of cash and futures, the measure of 

asymmetry we use is the skewness of the hedged portfolio comprising one cash and one futures 
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contract. The second criterion we use is that both in-sample and out-of-sample periods must be 

consistently symmetrically or non-symmetrically distributed to ensure consistency for the in-

sample and out-of-sample performance results.  Following these criteria, we picked a sample of 

daily cash and futures prices for the period January 2004 – December 2006. From these sample 

periods we were able to extract two separate equal sized datasets, one skewed and one non-

skewed. The symmetric period runs from January 2004 – December 2004, while the asymmetric 

period runs from January 2006 – December 2006. 

 

For each period, the first 160 observations are used for the in-sample estimation of the 

hedging models. The remaining 100 observations were used to facilitate out-of-sample 

comparisons for model evaluation. The characteristics of the data are now examined. 

INSERT TABLE 1 HERE 

Summary statistics for the hedged portfolio are displayed in Table 1. We see that the 

characteristics of the return distributions of the two series are markedly different. Returns in 

2004 are symmetric - insignificant skewness (-0.01). In contrast, returns in 2006 are asymmetric 

- significant negative skewness (-1.51). Furthermore, the 2004 series is normal as measured by 

an insignificant Bera Jargue statistic while the 2006 series is non-normal. The data were checked 

for stationarity using Dickey Fuller unit root tests. As expected, the series is stationary. 

Stationarity is important as a non-stationary series may lead to spurious regressions and 

invalidate the estimated optimal hedge ratios.  

 

5. Empirical Results 

The in-sample hedge ratios are graphically represented in Figure 1 together with the associated 

summary statistics in Table 2.  The results of fitting the hedging estimation models are quite 

standard and are not reproduced here (available on request). 



 11

INSERT FIGURE 1 HERE 

INSERT TABLE 2 HERE 

A quick glance at Figure 1 shows that there are differences in the characteristics of the 

OHR’s for the symmetric and asymmetric series. We see that the SDVECH and ASDVECH 

models are very similar for the symmetric series. This is confirmed if we examine the summary 

statistics of the two hedging models in Table 2. If we compare the mean hedge ratios of the two 

models using standard t-tests we find no significant differences between the SDVECH and 

ASDVECH models (t-stat 0.08). This result isn’t surprising given the symmetric nature of the 

underlying distribution of the series for 2004. When we examine the asymmetric series, however, 

we find significant differences between the mean OHR for the SDVECH model and the 

ASDVECH model (t-stat 3.12), and supported in Figure 1. Therefore the choice of hedging 

model is more relevant where there is asymmetry in the bivariate distribution of cash and futures.  

 

Turning next to hedging performance, Table 3 presents in-sample and out-of-sample 

results for hedging effectiveness for both symmetric and asymmetric data. Examining first the in-

sample results, these show that hedging is effective at reducing risk as measured by each of the 

hedging effectiveness metrics. Risk reductions from hedging range from about 60% to almost 

99% depending on the risk metric and the model used. For example, if we look at the symmetric 

series, we find reductions of the order of 94% - 98% in the Variance and LPM respectively, 

whereas reductions in both the VaR and CVaR are in the region of 73% - 77% for the best 

performing model.  

INSERT TABLE 3 HERE 

These results may be driven by VaR and CVaR metrics modelling extreme tail events 

whereas the LPM is a more general metric that doesn’t pick up the most extreme outliers in the 

same way.6 It is clear that hedging may be more limited in reducing extreme losses as measured 
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by the VaR or CVaR. A key point is that hedges may not be as effective at reducing exposure to 

tail risk as compared with more general measures of volatility such as the variance. In hedging 

terms, this means that investors may face the risk that their hedges will not be as effective during 

stressful markets conditions when they are most needed.  

We also make a statistical comparison of the hedging effectiveness of short and long 

hedgers using Efrons (1979) bootstrap methodology, by employing t-tests of the differences 

between short and long hedgers based on the point estimates of our results. This approach is also 

adopted in tests of model hedging effectiveness and allows us to make statistical as well as 

economic inferences from our results7. In-Sample, the differences in hedging effectiveness 

between short and long hedgers for asymmetric data are significant at the 1% level in 75% of 

cases, whereas for the symmetric sample they are significant in only 33% of cases. The 

differences between short and long hedgers even for the symmetric period demonstrates the 

importance of using tail specific hedging effectiveness metrics, irrespective of the characteristics 

of the return distribution.  

 

We now turn to the out-of-sample results. When we examine hedging performance across 

each performance metric and for each hedging model, we find that the asymmetric period yields 

lower hedging performance as compared with the symmetric period, by an average of 22%. The 

performance is even worse if we look at tail measures of risk, the VaR and the CVaR. Taking the 

short hedgers as an example, the average reduction in VaR across all hedging models is 74% as 

compared with just 20% for the asymmetric period. The results for long hedgers are similar. 

Thus, we conclude that asymmetry in the joint distribution of cash and futures, reduces hedging 

effectiveness, irrespective of the risk measure used, or the hedging model employed. 
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Using the tail specific performance metrics, we also compare the out-of-sample hedging 

performance of short and long hedgers, for both symmetric and asymmetric distributions. For the 

asymmetric sample, we find evidence of significant differences between short and long hedgers 

in every single case. For example, long hedgers significantly outperform short hedgers, both 

statistically and economically, based on a comparison of VaR and CVaR for all hedging models. 

To illustrate the economic differences, a long hedger who uses an OLS model to hedge an 

exposure of $1,000,000 will reduce the VaR from $120,190 to $36,340, a reduction of 69.8%. A 

short hedger by comparison will reduce their exposure from $99,780 to $76,100, a reduction of 

23.7%. We also find that for the symmetric sample there are significant differences between 

short and long hedgers in 58% of cases, although the differences are not as pronounced as for the 

asymmetric data.  

 

We next examine hedging model performance. Table 4 presents absolute figures for the 

hedging effectiveness measures of each of the hedging models, for both in-sample and out-of-

sample hedges. The lower values represent better hedging performance. For example, the 

variance of 0.5219 for the symmetric hedge represents the risk associated with an unhedged 

position, whereas the SDVECH model is the best hedging model as it yields the lowest risk with 

a variance of 0.0249. Looking first at the in-sample results, we see that the best hedging model 

depends on the hedging performance metric. For example, using symmetric data for long 

hedgers, the SDVECH model performs best in terms of the Variance (0.0249) VaR (0.364) and 

the CVaR (0.426), while the ASDVECH hedge is the best performing model using LPM 

(0.0037). However, while the ASDVECH model performs well in a number of cases, its failure 

to outperform the SDVECH model even when the data are asymmetric would seem to indicate 

that the extra complexity of this model does not result in better performance. This supports the 

findings of Brooks et al (2002) who find that the symmetric GARCH model tends to perform as 
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well as the asymmetric GARCH model in an out-of-sample setting. The out-of sample results 

show that the OLS and Naive models are the better performers for the symmetric data.  For the 

asymmetric period, the OLS model is the best performer in 7 out of 8 cases.  

 

While these findings highlight the best hedging models for a given scenario, a key issue 

is whether there are significant differences in the performance of the different hedging models. 

To test this we compared the performance of the different hedging models, again employing 

Efrons (1979) bootstrap methodology with the results presented in Table 4. We find significant 

differences in the hedging effectiveness of the different models in only 39% of cases in-sample, 

and 20% of cases out-of-sample. We also find that the absolute differences in performance 

between models are small and not economically significant. This demonstrates that an OLS 

hedge can provide as good or better hedging performance than more complicated models based 

on time-varying GARCH specifications, especially in an out-of-sample setting. This further 

supports the findings in the literature which show that OLS tends to perform as well or better 

than GARCH models. (Cotter and Hanly, 2006)   

 

 

6. Conclusion 

This paper compares the hedging effectiveness of S&P500 equity index futures for both 

symmetric and asymmetric distributions. We also compare the hedging effectiveness of short and 

long hedgers using a variety of tail specific performance measures, including VaR and CVaR. 

We find that out-of-sample hedging effectiveness is significantly reduced by the presence of 

skewness in the bivariate return distribution of cash and futures. This is an important finding as it 

means that hedging may not be as effective during asymmetric return periods. We also find 

larger differences in hedging performance between the short and long hedgers for the 
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asymmetric distribution as compared with a symmetric distribution. Therefore the use of one-

sided hedging performance measures that are consistent with modern risk management 

techniques such as VaR and CVaR is to be recommended. The traditional variance reduction 

criterion is not adequate, and will provide inaccurate measures of risk for different types of 

hedgers, both for symmetric and especially asymmetric distributions.  

 

Results for the best overall hedging estimation model are mixed. The OLS model provides good 

hedging performance across all measures of hedging effectiveness, for both short and long 

hedgers. The GARCH models perform well in-sample, but the differences in performance 

compared with the OLS model are not significant. We also find that employing a GARCH model 

that allows for asymmetries yields no significant improvement in performance over the standard 

GARCH model.  

  



 16

References 

Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical 
Finance, 9, 203 - 228. 

 
Bawa, S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 

2, 95-121. 
 
Bollerslev, T., Engle, R., & Wooldridge, J. (1988). A capital asset pricing model with time-

varying covariances. Journal of Political Economy 96, 116 - 131. 
 
Brooks, C., Henry, O., & Persand, G. (2002). The effects of asymmetries on optimal hedge 

ratios. Journal of Business, 75, 333 – 352. 
 
Cecchetti, S., Cumby, R., & Figlewski, S. (1988). Estimation of the optimal futures hedge. 

Review of Economics and Statistics, 70, 623 – 630. 
 
Cotter, J., & Hanly, J. (2006). Re-examining hedging performance. Journal of Futures Markets, 

26, 657-676. 
 
de Goeij, P., & Marquering, W. (2004). Modeling the conditional covariance between stock and 

bond returns: a multivariate GARCH approach. Journal of Financial Econometrics 4, 
531–564. 

 
Demirer, R., & Lien, D. (2003). Downside risk for short and long hedgers. International Review 

of Economics and Finance. 12, 25 – 44.  
 
Ederington, L. (1979). The hedging performance of the new futures markets. Journal of Finance, 

34, 157 – 170. 
 
Efron, B. (1979). Bootstrap methods: Another look at the Jack-knife. The Annals of Statistics, 7, 

1–26. 
 
Fishburn, P. (1977). Mean-risk analysis with risk associated with below-target returns. The 

American Economic Review, 67, 116–126. 
 
Giot, P., & Laurent, S. (2003). Value-at-Risk for long and short trading positions. Journal of 

Applied Econometrics, 18, 641-663. 
 
Glosten, L., Jagannathan, R., & Runkle, D. (1993). On the relationship between the expected 

value and the volatility of the normal excess return on stocks. Journal of Finance, 48, 
1779-1801. 

 
Kavussanos, M. & Visvikis, I. (2008).  Hedging effectiveness of the Athens stock index futures 

contracts. The European Journal of Finance, 14, 243–270.  
 
Lee, W. & Rao, R. (1988). Mean lower partial moment valuation and lognormally distributed 

returns. Management Science 34, 446–453. 
 



 17

Lien, D., & Tse, Y. (2002). Some recent developments in futures hedging. Journal of Economic 
Surveys, 16, 357 – 396. 

 
Lien, D., & Yang, L. (2006). Spot-futures spread, time-varying correlation, and hedging with 

currency futures. Journal of Futures Markets, 26, 357 – 396. 
 
Price, K., Price, B., & Nantell, T. (1982). Variance and lower partial moment measures of 

systematic risk: Some analytical and empirical results. Journal of Finance, 37, 843- 855. 
 
Sultan. A. and Hasan, B. (2008).  The effectiveness of dynamic hedging: evidence from selected 

European stock index futures. The European Journal of Finance, 14, 469–488.  
 
Switzer, L., & El-Khoury, M. (2007). Extreme volatility, speculative efficiency and the hedging 

effectiveness of the oil futures markets. Journal of Futures Markets, 27, 61 – 84. 



 18

  

 

Notes 

 

1. Simulation, although not pursued here, offers a number of advantages including allowing us to address a 

range of complexities such as non-linearities in the relationship between spot and futures. 

2. The percentage reduction in the relevant performance measure is generally compared with a no-hedge 

position.  However there may be some cases where a no-hedge position does not yield the worst hedging 

performance, whereby the comparison is than made against the hedging model that yields the worst 

hedging performance.  

3. Rather than assuming a particular distribution we use the empirical distribution of returns to estimate the 

LPM 

4. We used a number of values for n, n=1 up to n=5 which yielded similar results and are not reported. 

5. Subadditivity implies that the risk of two positions when added together is never greater than the sum of the 

risks of the two individual positions (see, for example, Artzner et al, 1999). 

6. While each of these measures is one sided, the LPM with a  target rate set t=0 will include all observations 

less than 0, whereas both the VaR and CVaR calculated at the 1% interval will include only extreme 

observations located in the left or right tails of the distribution.  

7. The returns of the hedged portfolios as compiled using equations 1a and 1b were bootstrapped by 

resampling with replacement from the returns.100 simulations were used allowing for the construction of 

confidence intervals around each point estimate.  
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Table 1. Summary Statistics - Hedged Portfolio  
 

 Mean 

x10
-4

 

Min Max Std Dev 
 

Skewness Kurtosis B-J Stationarity 

Symmetric 

2004 

-0.080 -0.005 0.006 0.002 -0.01 0.75* 6.1 -28.8* 

         

Asymmetric 

2006 

-0.090 -0.009 0.005 0.002 -1.51* 7.50* 707.9* -19.6* 

Notes: This table presents summary statistics for the Naive hedged portfolio for the S&P500 which comprises one cash and one futures contract. 
The skewness statistic measures asymmetry where zero would indicate a symmetric distribution. The kurtosis statistic measures the shape of a 
distribution where a value of zero would indicate a normal distribution.  The Bera-Jarque B-J statistic combines skewness and kurtosis in 
comparison to normality.  Stationarity is tested using the Dickey-Fuller unit root test. We characterise the 2004 series as symmetric given the 
insignificant skewness figure of -0.01. Similarly we characterise the 2006 series as asymmetric with a significant skewness figure of -1.51. 
*Denotes Significant at the 1% level. 

 

 

Table 2. Summary Statistics of Optimal Hedge Ratios 
 

 Symmetric 

2004 

Asymmetric 

2006 

Hedging Model SDVECH ASDVECH SDVECH ASDVECH 

Mean 0.987 0.986 0.950* 0.969 

Std Dev 0.032 0.031 0.046 0.065 

Min 0.831 0.845 0.774 0.711 

Max 1.078 1.082 0.995 1.092 

Stationarity   -8.60*  -8.28*  -6.94*  -4.58* 

Notes: This table presents summary statistics for the estimated time-varying optimal hedge ratios for each hedging model. A statistical 
comparison is made between the mean of the SDVECH and ASDVECH hedge ratios for each period based on a difference in means t-test. 
Results show that for the asymmetric period there is a significant difference between the SDVECH OHR (0.95) and the ASDVECH OHR 
(0.969). Stationarity is tested using the Dickey-Fuller unit root test. * Denotes significant at the 1% level. 



 20

Table 3. Hedging Effectiveness – Short Vs Long Comparison 
 

  

Variance 

 

LPM 

 

VaR 

 

CVaR 

 

Variance 

 

LPM 

 

VaR 

 

CVaR 

 

 Panel A: SHORT HEDGERS Panel B: LONG  HEDGERS 

 IN-SAMPLE 

Symmetric 

2004 

     
    

 No Hedge 0 0 0 0 0 0 0 0 
 Naïve 93.66 98.01 72.18 70.50* 93.66 98.47 72.61 66.58 
 OLS 93.77 98.19 72.02 71.69* 93.77 98.53 72.88 69.44 

 SDVECH 95.22 98.91 74.42 72.99 95.22 98.87 77.06* 73.54 

 ASDVECH 95.12 98.84 74.41 72.93 95.12 98.88 77.03* 73.48 
          

Asymmetric 

2006          
 No Hedge 0 0 0 0 0 0 0 0 
 Naïve 94.32 99.05 65.62 61.33 94.32 97.42 82.88* 79.97* 
 OLS 94.53 99.03 68.43 65.22 94.53 97.87 83.77* 79.17* 

 SDVECH 94.05 98.45 70.76 69.06 94.05 98.18 74.38* 71.80* 

 ASDVECH 94.14 99.15* 65.62 60.07 94.14 96.76 84.29* 78.32* 
         
 OUT-OF-SAMPLE 

Symmetric 

2004 

     
    

 No Hedge 0 0 0 0 0 0 0 0 
 Naïve 95.57 99.48 73.28 78.06 95.57 98.55 82.28* 81.53* 
 OLS 95.37 99.34 74.40 79.42 95.37 98.67 80.61* 79.23 

 SDVECH 95.47 99.43 74.05 77.42 95.47 98.57 81.55* 81.72* 
 ASDVECH 95.44 99.40 74.24 77.21 95.44 98.61 80.58* 80.10* 
          

Asymmetric 

2006          
 No Hedge 0 0 0 0 0 0 0 0 
 Naïve 85.03 98.10* 14.77 31.26 85.03 71.15 69.25* 62.94* 
 OLS 85.43 97.92* 23.73 33.89 85.43 75.67 69.76* 63.16* 
 SDVECH 85.41 97.93* 22.15 33.67 85.41 75.14 69.62* 63.09* 

 ASDVECH 85.16 97.97* 19.73 32.07 85.16 73.37 69.51* 63.01* 
Notes: This table presents the in-sample and out-of-sample hedging performance for the S&P500 returns for both the asymmetric and symmetric 
datasets. Results reported give the percentage reduction in the performance metric from the hedged model as compared with the worst hedged 
position. For example, short hedging the S&P500 contract for the asymmetric dataset with the OLS model yields a 94.53% in-sample reduction in 
the variance as compared with a No-Hedge strategy. Statistical comparisons are made between the performance of short and long hedgers on a 
metric by metric basis using Efron’s 1979 bootstrap technique. * Indicates that the percentage reduction in the risk metric is significantly better 
comparing long to short hedges at the 1% confidence level.  
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Table 4. Statistical Comparison of Hedging Model Performance 
 

 Variance 

x10
-3

 

LPM 

x10
-5

 

VaR 

x10
-2

 

CVaR 

x10
-2

 

Variance 

x10
-3

 

LPM 

x10
-5

 

VaR 

x10
-2

 

CVaR 

x10
-2

 

 Panel A: SHORT HEDGERS Panel B: LONG  HEDGERS 

 IN-SAMPLE 

Symmetric 

2004          

 None 0.5219* 0.2617* 1.5632* 1.607* 0.5219* 0.3347* 1.5892* 1.610* 
 Naïve 0.0331* 0.0052* 0.4349* 0.474* 0.0331* 0.0051* 0.4353* 0.538* 
 OLS 0.0325* 0.0047* 0.4374* 0.455* 0.0325* 0.0049* 0.4310* 0.492* 
 SDVECH 0.0249a 0.0029a 0.3998a 0.434a 0.0249a 0.0038 0.3645a 0.426a 
 ASDVECH 0.0255 0.0030 0.4001 0.435 0.0255 0.0037 a 0.3651 0.427 
          

Asymmetric 

2006          

 None 0.4904* 0.3533* 1.7384* 1.823* 0.4904* 0.2639* 1.9462* 2.117* 

 Naïve 0.0279 0.0034* 0.5977* 0.705* 0.0279 0.0068* 0.3332* 0.424a 
 OLS 0.0268a 0.0034* 0.5488* 0.634* 0.0268a 0.0056 0.3159 0.441* 
 SDVECH 0.0292* 0.0055* 0.5083a 0.564a 0.0292* 0.0048a 0.4986* 0.597* 
 ASDVECH 0.0288* 0.0030a 0.5977* 0.728* 0.0288* 0.0085* 0.3058a 0.459* 
         

 OUT-OF-SAMPLE 

Symmetric 

2004          

 None 0.3868* 0.2758* 1.1252* 1.404* 0.3868* 0.1315* 1.5076* 1.603* 

 Naïve 0.0171a 0.0014a 0.3007 0.308* 0.0171a 0.0019 0.2671a 0.296 
 OLS 0.0179 0.0018 0.2880a 0.289a 0.0179 0.0018a 0.2923* 0.333* 
 SDVECH 0.0175 0.0016 0.2920 0.317* 0.0175 0.0019 0.2782 0.293a 
 ASDVECH 0.0177 0.0017 0.2898 0.320* 0.0177 0.0018 0.2928* 0.319* 
          

Asymmetric 

2006          

 None 0.2136* 0.1333* 0.9978* 1.369* 0.2136* 0.0578* 1.2019* 1.360* 

 Naïve 0.0320 0.0025a 0.8504* 0.941 0.0320 0.0167* 0.3696 0.504 

 OLS 0.0311a 0.0028* 0.7610a 0.905a 0.0311a 0.0140a 0.3634a 0.501a 
 SDVECH 0.0312 0.0028 0.7768 0.908 0.0312 0.0144 0.3651 0.502 
 ASDVECH 0.0317 0.0027 0.8009 0.930 0.0317 0.0154 0.3665 0.504 
Notes: This Table presents the in-sample and out of sample hedged portfolio statistics upon which we base our performance measures. The best 
performing model is the model that yields the lowest value for each risk measure and is denoted by a. For example, the OLS model yields the 
lowest variance of 0.268 when hedging the in-sample asymmetric data. Statistical comparisons are made for each hedging model against the best 
performing model using Efron’s 1979 technique. For example, taking the out-of-sample asymmetric dataset for a short hedger, we can see that 
there is a significant difference between the variance of both the No Hedge model 0.2136 and the best performing OLS model 0.0311, however 
there is no significant differences between the OLS as compared with the Naïve, SDVECH or ASDVECH models * Denotes a better performance 
being recorded for the best performing benchmark relative to that measure at the 1% significance level. 
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Figure 1. In-sample OHR’s for the S&P500 series. 

 

 
 

 
Notes: Three OHR’s are presented for both the symmetric and asymmetric distributions which are 2004 and 2006 
respectively. The OHR’s are the OLS, symmetric GARCH SDVECH and asymmetric GARCH ASDVECH models. 
Both of the GARCH models yield similar hedges for the symmetric period whereas for the asymmetric period there 
is a significant difference between the SDVECH and ASDVECH models. 
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