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Abstract

This paper solves a model of the optimal asset and consumption choices of a liquidity con-

strained investor who derives utility from the consumption of both non-durable consumption

goods and housing. Using PSID labor income and house price data I estimate a large positive

correlation between income shocks and house price shocks, and a large negative correlation

between house prices and interest rates. I use these estimates to parameterize the model.

Using the model I evaluate the effects of labor income, interest rate and house price risk

on housing choices and investor welfare. Due to the dual role of housing as an asset and a

source of consumption services, liquidity constraints are an important determinant of hedging

demands.

JEL classification: G12.

Keywords: Hedging demands, asset choices, interest rate risk, house price risk, labor income

risk, borrowing constraints.



1 Introduction

This paper studies asset and consumption choices in the presence of illiquid durable con-

sumption goods whose price fluctuates over time (e.g. housing). It is fairly easy to motivate

the importance of this topic. Buying a house is the single most important investment that

households undertake during their lifetime. Due to the large transaction costs of buying and

selling a house there is an important dimension of illiquidity or irreversibility in the home

investment. And the price of housing fluctuates considerably over time, and with it the value

of the home investment and the wealth of homeowners.

This topic is particularly interesting since the effects of house price risk on consumers’

choices are not obvious. The reason is that even though fluctuations in house prices lead to

fluctuations in wealth, for an investor with utility defined over housing consumption, home-

ownership serves as an hedge against fluctuations in the cost of consumption: decreases in the

price of housing, and in the wealth of homeowners, tend to be accompanied by a decrease in

the implicit rental cost of housing. In a multi-period problem with time-varying house prices

investors may seek to hedge their exposure to house price fluctuations by acquiring a different

house, and this gives rise to intertemporal hedging demands (Merton, 1971).

The extent to which hedging considerations affect current housing choices depends on the

existence of frictions. If markets are complete such that the payoffs of the home investment

are spanned by existing financial assets, investors may hedge house price risk using the latter

and current consumption choices are not affected. However, in reality it is likely that in-

vestors lack the contingent claims that would allow them to perfectly replicate the return-risk

characteristics of the home investment. Moral hazard issues and transaction costs make this

assumption reasonable (Smith, Rosen and Fallis, 1988), and lead to a dual dimension of the

home acquisition decision, involving both investment and consumption considerations.
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There are several frictions that are usually of concern to home buyers, including large

transaction costs, uninsurable labor income risk and borrowing constraints. Labor income or

human capital is undoubtedly an important asset for the majority of households. If markets are

complete so that labor income can be capitalized and its risk insured, then human capital can

simply be added to current wealth and plays no particular role. But market incompleteness

seems to be an important feature to consider. Moral hazard issues prevent investors from

borrowing against future labor income, and insurance markets for labor income risk are not

well developed. This is the route taken by recent research on portfolio choice (Heaton and

Lucas, 1996, 1997).

In this incomplete markets environment I set-up a model of the optimal asset and con-

sumption choices of a finitely lived investor. In each period, an investor endowed with a stream

of risky uninsurable labor income has to decide the size of the house to own and how much to

consume of non-durable goods. Housing has a dual role, as an asset and a consumption good,

and its price fluctuates over time. I allow house price shocks to be correlated with income

shocks and interest rates. To capture the illiquid nature of the home investment, I assume a

proportional transaction cost of selling a house.

I use data from the Panel Study of Income Dynamics (PSID) to parameterize the labor

income and house price processes. This is the largest longitudinal US dataset containing

both labor income and housing information. I find that real house prices grew during the

sample period, and that their growth rate exhibits positive serial correlation. These features

of residential real estate prices are in accordance with the findings of Case and Shiller (1989)

and Poterba (1991), among others. Interestingly, I also find that house price shocks are

strongly positively correlated with income shocks, and strongly negatively correlated with

interest rates.

Using the model I study the effects of labor income risk, interest rate risk, and house
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price risk on housing investment and investor welfare. I find that both labor income and

interest rate risk crowd out housing investment, but due to the highly leveraged nature of

investors’ portfolios the welfare and portfolio implications of the latter are much larger. I

also find that all three sources of risk contribute towards increasing the volatility of the

stochastic discount factor. Realistic transaction costs of selling a house are shown to have

large effects on asset choices, by reducing the number of house trades and restricting investors’

ability to take advantage of serial correlation in house prices. Finally, the characterization

of hedging demands for the housing asset emphasizes both horizon effects and the role of

liquidity constraints.

There are several related papers, both in the consumption and dynamic asset allocation

literatures. The model in this paper builds upon the work of Deaton (1991) and Carroll

(1996), who study the effects of labor income risk and borrowing constraints on consumer

behavior. Grossman and Laroque (1991) study portfolio choice in the presence of illiquid

durable consumption goods, but holding the price of the durable good fixed. A vast literature

has emerged studying the effects of return predictability on asset choices (Barberis, 1999,

Brennan, Schwarz and Lagnado, 1997, Campbell and Viceira, 1999, Kandel and Stambaugh

1996, Kim and Omberg, 1996, Lynch and Balduzzi, 1999). Return predictability is also a

characteristic of the house price process that I consider. Finally, my paper is also related

to the literature on optimal investment in the presence of costly reversibility (Bertola and

Caballero, 1994, Abel and Eberly, 1996).

This paper is organized as follows. Section 2 presents the model. Section 3 uses PSID

data to parameterize the model. Section 4 presents the results. The final section concludes.
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2 The Model

2.1 Model Specification

2.1.1 Time Parameters and Preferences

I model the asset and consumption choices of an investor with a time horizon of T periods.

The investor derives utility from the consumption of housing and non-durable consumption

goods. As Grossman and Laroque (1991) I assume that buying a house is strictly preferred

to renting (may be due to tax advantages), so that I do not model the decision to buy versus

rent. In each period t, t = 1, ..., T , the investor must choose the size of the house to own

(Ht), and non-durable goods consumption (Ct). The size of the house should be interpreted

broadly as reflecting not only the physical size but also its quality. I assume that the household

has isoelastic preferences, generalized to allow for multiple goods. The objective function of

household i is:

max
Ht,Ct

E0

TX
t=1

βt

³
Hδt
t C

1−δt
t

´1−γ

1− γ + βT+1W
1−γ
T+1

1− γ (1)

where β is the time discount factor, δt measures how much the investor values housing con-

sumption relative to other goods consumption, and γ is the coefficient of relative risk aversion.

I allow δt to vary over time, with household specific characteristics such as family composition

(Attanasio and Weber, 1995). The household also derives utility from terminal wealth, WT+1,

which can be interpreted as the remaining lifetime utility from reaching age T +1 with wealth

WT+1. This preference specification allows for precautionary savings (Zeldes, 1989, Deaton,

1991, Carroll, 1996).
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2.1.2 Interest Rate Risk

The interest rate describes the state of the economy. I assume that the annual interest rate,

ert, follows a first-order autoregressive (AR(1)) process such that:

ert = µ(1− φ) + φert−1 + e²t (2)

where µ is the mean interest rate, and e²t is a normally distributed white noise shock with
mean zero and variance σ2

² .

2.1.3 Labor Income

The investor is endowed with a stochastic labor income stream, eYt, t = 1, ..., T , against which
he cannot borrow. Investor i’s age t log labor income, eyit, is exogenously given by:

eyit = f (t, Zit) + euit (3)

where f (t, Zit) is a deterministic function of age, t, and other individual characteristics, Zit,

and euit can be decomposed into an aggregate and idiosyncratic components:

euit = eηt + eωit. (4)

I assume that idiosyncratic risk is transitory so that eωit is an i.i.d. normally distributed
random variable with mean zero and variance σ2

ω. The aggregate shock, ηt, follows an AR(1)

process. To save on state variables I assume that it is perfectly negatively correlated with

interest rates such that:

eηt = −βert. (5)
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To assess the validity of this assumption in the parameterization section I use PSID data to

estimate the correlation between ηt and rt.

2.1.4 House Prices and The Housing Investment

There are several sources of risk associated with housing that I capture in the model. Acquiring

a house is to some extent an illiquid investment, since the housing market is characterized by

large transaction costs. Accordingly, I assume that when selling the house the investor faces

a monetary cost equal to a proportion λ of its current market value.

The price of housing fluctuates over time, and with it the value of homeowners’ wealth.

Let Pt denote the date t price per unit of housing, so that a house of size H has price PtH

at date t. The price of other goods consumption (the numeraire) is fixed and normalized to

one. I assume that the growth rate of house prices, ∆pt = ln(Pt)− ln(Pt−1), follows an AR(1)

process.

Frequently, the price of housing in a given area is affected by labor income shocks in the

same area. This may be an important source of risk since at times when consumers need cash,

the value of the house is also smaller making it difficult to borrow against it. I capture this

by assuming that house price growth is perfectly negatively correlated with interest rates (or

perfectly positively correlated with aggregate income shocks) such that:2

∆pt = −αert. (6)

Thus I assume that when interest rates are low house price growth is high. In the parameter-

ization section below I estimate the correlation between ∆pt and rt.

It is possible and probably more realistic that house prices follow a more general process,

2This assumption greatly simplifies the numerical solution of the problem since it avoids having an addi-

tional state variable.
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involving a higher-order autoregressive process, or moving average terms (Case and Shiller,

1989, Poterba, 1991). Furthermore, it would also be reasonable to assume that investors do

not know the stochastic process governing house prices, the parameters of this process, or

even current housing prices. The housing market is a fairly illiquid market, for which price

information is not readily available, as it is the case for centralized securities markets. It

would be interesting to consider more general processes for house prices, but the introduction

of additional state variables would not be computationally tractable.

2.1.5 Borrowing Constraints

The acquisition of real estate is often associated with a leveraged position, which makes the

wealth of homeowners’ particularly sensitive to house prices. Mortgage contracts, or more

generally loan contracts which use the value of real estate as collateral, are often complex.

Although it is important to explore the portfolio implications of alternative loan contracts, I

simplify the analysis by considering the following type of loan.

Investors may borrow up to the market value of the house they own minus a downpayment.

The downpayment is a proportion ψ of the current market value of the house. Let Bt denote

borrowing in period t. This leads to the following constraint:

Bt ≤ (1− ψ)HtPt, ∀t . (7)

To avoid having Bt as a choice variable I assume that in each period t constraint (7) holds

with equality, as in Carroll and Dunn (1999). Since this assumption imposes that households

hold debt that they may be willing to repay, I assume that the date t interest rate on the loan

is equal to the date t interest rate on financial savings. In this case the assumption that (7)

holds with equality is not restrictive.

While keeping the problem tractable, the type of loan contract considered here has the
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interesting feature that the borrowing limit is time-varying, and depends both on investor’s

choices and current house prices. Furthermore, the borrowing limit is, through house prices,

correlated with income shocks. Since labor income shocks are positively correlated with house

prices the borrowing constraint is more likely to bind at times when borrowing is more valuable.

2.1.6 The Investor’s Optimization Problem

The investor starts period t with given levels of housing and financial assets. Then conditional

on the state of the economy (the level of interest rates) and current house prices he must choose

whether to change houses and the level of other goods consumption. Following Deaton (1991)

I denote cash-on-hand in period t by Xt. Let Mt be an indicator variable which takes the

value of one when the household moves houses and zero otherwise. The equations describing

the evolution of cash-on-hand:

Xt+1 = eYt+1+(Xt−Ct+Bt−Bt−1)(1+ert+1)+((1−λ)PtHt−1−PtHt)(1+ert+1)Mt−Btert+1, ∀t .
(8)

Terminal wealth, WT+1 is given by:

WT+1 = XT+1 + (1− λ)PT+1HT −BT . (9)

The problem the investor faces is to maximize (1) subject to (3) through (9), plus non-

negativity constraints on housing and other consumption. The control variables for the prob-

lem are {Ht, Ct}Tt=1. The state variables are St = {t,Xt, Ht−1, rt, Pt}Tt=1 .

The Bellman equation for this problem is:

V (St) = max
Ht,Ct

(Hδt
t C

1−δt
t )1−γ

1− γ + Etβ
t+1V ( eSt+1) , t = 1, ..., T. (10)
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2.1.7 Solution Technique

This problem cannot be solved analytically. The numerical techniques I use for solving it are

standard (see Judd, 1998). Given the finite nature of the problem a solution exists and can

be obtained by backward induction. I discretize the state space and the choice variables using

grids equally spaced in the log scale. The density functions for the random variables were ap-

proximated using Gaussian quadrature methods to perform numerical integration (Tauchen

and Hussey, 1991). The interest rate process was approximated by a two-state transition prob-

ability matrix, so that in each period interest rates can either be low or high. The grid points

for this process were chosen using Gaussian quadrature. The choice of a two state transition

probability matrix for the interest rate process substantially reduces the dimensionality of the

problem since, at any given date t, we only need to keep track of the number of times that

interest rates have been high in the past to obtain current house prices.

In period T + 1 the utility function coincides with the value function. In every period t

prior to T , and for each admissible combination of the state variables, I compute the value

associated with each combination of the choice variables. This value is equal to current utility

plus the expected discounted continuation value. To compute this continuation value for

points which do not lie on the grid I use cubic spline interpolation. The combinations of the

choice variables ruled out by the constraints of the problem are given a very large (negative)

utility such that they are never optimal. I optimize over the different choices using grid search.
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3 Parameterization

The objective of this section is to estimate the parameters of the interest rate, house prices and

labor income stochastic processes. The house price and income data used is from the family

questionnaire of the Panel Study of Income Dynamics (PSID) for the years 1970 through

1992. This is the largest longitudinal US dataset containing both labor income and housing

information. Families that were part of the Survey of Economic Opportunities subsample

were dropped to obtain a random sample.

3.1 Interest Rate

To estimate equation (2) I use as a measure of the interest rate the 6-month real T-bill rate from

1970 to 1992 (the time period for which I also have labor income and housing information).

Table 1 shows the results.

3.2 Labor Income

I use a broad definition of labor income so as to implicitly allow for insurance mechanisms -

other than asset accumulation - that households use to protect themselves against pure labor

income risk. Labor income is defined as total reported labor income plus unemployment com-

pensation, workers compensation, social security, supplemental social security, other welfare,

child support and total transfers (mainly help from relatives), all this for both head of house-

hold and if present his spouse. Observations which still reported zero for this broad income

category were dropped. Labor income defined this way is deflated using the Consumer Price

Index, with 1992 as the base year. I drop observations in the upper and bottom 2% percentiles

of the distribution of real income changes.

The estimation controls for family-specific fixed effects. The function f(t, Zit) is assumed
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to be additively separable in t and Zit. The vector Zit of personal characteristics, other

than age and the fixed household effect, includes marital status, and household composition.

Household composition equals the additional number of family members in the household

besides the head and (if present) spouse. Figure 1 shows the fit of a second order polynomial

to the estimated age dummies. This is the age profile passed on to the simulation exercise. I

focus on the behavior of young liquidity constrained households so that I truncate the problem

at age forty-five.

The residuals obtained from the fixed-effects regressions of (log) labor income on f(t, Zit)

can be used to estimate σ2
η and σ

2
ω. Define Y

∗
t as:

log(Y ∗it ) ≡ log(Yit) − bf (t, Zit). (11)

Using (4) to substitute out gives:

log(Y ∗it) = eηt + eωit (12)

Averaging across individuals gives:

log(Y ∗it ) = eηt. (13)

The variance of eηt is obtained immediately as the variance of log(Y ∗t ). Subtracting this variance
from the variance of euit gives the variance of eωit. The estimated coefficients are presented in
table 1. The standard deviation of temporary labor income shocks is as large as 0.38, although

there probably is substantial measurement error that biases our estimate upwards. Therefore

in the simulation exercise I have decided to use a smaller value, or σω equal to 0.20.

The standard deviation of aggregate labor income shocks is much smaller, and equal to

0.034. Aggregate labor income shocks are strongly negatively correlated with interest rates:
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the coefficient of correlation is as large as -0.45 and statistically significant at the 5% level

(Table 2). This value is below minus one, but is large and negative.

3.3 House Prices

Homeowners in the PSID are asked to assess the current (at the date of the interview) market

value of their house.3 Therefore the market value of the house does not correspond to a real

transaction. A major concern with self-assessed values is that households, when asked about

the current market value of their house, do not try to rationally assess this value. However,

Skinner (1994) compared the self assessed house values in the PSID to the objective measures

of the Commerce Department, and found that the two series are quite close in mapping housing

price changes in the 1970’s and 1980’s.

The self assessed value of the house was deflated using the Consumer Price Index, with

1992 as the base year, to obtain real house prices. I drop all observations corresponding

to families who moved since the previous interview. The value of the house in the PSID is

truncated at 99999 US dollars prior to 1975, and at 999999 US dollars after this year. I drop

truncated observations. I also drop observations in the upper and bottom 2 percentiles of the

distribution of real house price changes.

In the model the price of different houses are perfectly correlated. This clearly is a limi-

tation of the analysis, but it is also a limiting case of the desirability of housing as an hedge.

Define pit ≡ log(Pit) where Pit is the real price of house i at time t. Averaging across houses
I obtain for each year t an index of house prices:4

3The current market value of the house refers to the month of March whereas labor income is from January

to December.
4By averaging across the price of different houses I am mainly concerned with common house price risk.

For example, if we assume that the price of house i at time t, pit, is given by pit = pt + ²it where ²it is a

purely idiosyncratic i.i.d. shock with zero mean, by averaging across i we obtain an estimate of the common
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pt =

PNt
i=1 pit
Nt

, t = 1970, ..., 1992. (14)

where Nt is the number of observations at time t. ∆pt is obtained by taking first differences.

Figure 2 plots the evolution over time of pt. Real house prices grew during the sample period

particularly in the 1970’s. Mankiw and Weil (1989) linked this increase in house prices to the

changing demographic structure of the US population, although there has been considerable

debate in the literature as to whether this was the main reason of the increase, and whether

it could have been anticipated. The average house price increase over the sample period is

as high as 1.4 percent (Table 1). The growth rate of house prices is fairly volatile, with a

standard deviation of 0.045, although this volatility is lower than if idiosyncratic house price

risk is also considered.

Table 2 shows the correlation between ∆pt, aggregate income shocks, and interest rates.

House price growth is strongly positively correlated with aggregate income shocks: the co-

efficient of correlation is equal to 0.79 and significant at the one percent level. House price

growth is also negatively correlated with interest rates as assumed in the model. Although

the coefficient of correlation is significantly below minus one, it is as large as −0.39.

3.4 Other Parameters

I focus on the behavior of young liquidity constrained households, so that I truncate the

problem at age 45, and set T equal to 20. In the baseline case I assume a time discount factor

equal to 0.98, a coefficient of relative risk aversion equal to 3, and δt constant and equal to

0.10. This value implies that investors choose a house which on average is roughly three times

their current labor income.

component in house prices. One important source of house price risk not captured by the model is idyosincratic

risk.
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The downpayment constraint is equal to 15 percent of the current market value of the

house. Smith, Rosen, and Fallis (1998) estimate the monetary component of the transaction

costs of changing house to be approximately 8-10 percent of the unit being exchanged. This

estimate comprises transaction costs associated with search, legal costs, costs of readjusting

home furnishings to a new house, and a psychic cost from disruption. Accordingly I set λ

equal to 8%. Table 3 summarizes these parameters.
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4 Results

4.1 Benchmark Results

To study the behavior of the variables in the model, I calculate cross-sectional averages across

two thousand households receiving different draws of income and asset returns and plot them

against age. Figure 4 plots labor income, housing, non-durable consumption, and financial

savings. The average consumer is borrowing constrained. Non-durable consumption tracks

income very closely early in life. The little financial savings that accumulate are due to a

precautionary savings motive.

The cross-sectional averages plotted in Figure 4 hide considerable variability at the house-

hold level. Table 4 shows several summary statistics which allow us to study the nature of

this variability. From the work of Deaton (1991) and Carroll (1996) we know that a prudent

consumer, facing borrowing constraints and income risk, accumulates a buffer-stock of assets

that allows him to smooth consumption over time, by saving in good times and dissaving in

bad times, or when faced with negative income shocks. The first and second rows of Table

4 show the average and standard deviation of non-durable consumption growth, that is, of

∆ct = ln(Ct)− ln(Ct−1). The table shows both unconditional and conditional values (condi-

tional on the state of the economy, or the level of interest rates). Unconditionally, non-durable

consumption grows at an average rate of 4.52 percent. But this growth rate is as high as ten

percent when interest rates are low (and house prices and labor income are high), and as low

as minus one percent when interest rates are high.

Households are able to some extent use financial assets as a buffer-stock. The unconditional

standard deviation of consumption growth is equal to 0.142, which is significantly lower than

the standard deviation of income growth. As for the growth rate, this unconditional value does

not let us see the whole picture: the standard deviation of consumption growth is higher when
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interest rates are high, so that households are less successful at using assets as a buffer-stock

in bad states of the world.

Households’ ability to use assets as a buffer-stock is important since consumption volatility

plays an important role in many asset pricing models. As it is well known the consumption

capital asset pricing model is often rejected because aggregate non-durable consumption is

too smooth. Indeed, Hansen and Jagannathan (1991) have shown that a volatile stochastic

discount factor is needed to explain a high equity premium. Although my model is set in

partial equilibrium and therefore cannot be used to price assets, it may be used to study how

far it goes towards generating a volatile stochastic discount factor. The last row of Table 4

shows the standard deviation of the ratio of marginal utility of non-durable consumption in

consecutive periods. The model is able to generate a volatile stochastic discount factor, with

an unconditional standard deviation of 0.394. In addition there is substantial time-variation in

the volatility of the stochastic discount, with a standard deviation equal to 0.206 when interest

rates are low, but as high as 0.461 in bad states of the world. Remember that bad states of

the world differ from good states along three dimensions: high interest rates, low permanent

income, and low house price growth. In the next subsection I evaluate the contribution of

income risk, interest rate risk, and house price risk towards the time-variation in the volatility

of the stochastic discount factor.

Table 4 also characterizes house trades for the benchmark parameters. The large trans-

action costs of selling a house limit the number of house trades. Overall there are over 2100

house trades, so that each household on average trades houses 1.09 times or once every 9.58

years. Most households who trade houses do so to increase the size of the house they own,

as result of borrowing constraints and an increasing labor income profile. In addition most

households (roughly three quarters) trade houses when interest rates are low. When interest

rates are low and, due to positive serial correlation, are expected to remain low, expected
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interest payments are low, labor income is high, and house price growth is high. Therefore,

when interest rates are low households have more resources available and housing is a more

attractive investment.

Although most households trade houses to increase size, roughly five percent of them

(116 households) do so to decrease house size. These are households who are faced with

high interest rates and low permanent income and cannot afford their current house. These

households contribute significantly towards the higher volatility of the stochastic discount

factor in the high interest rates state of the world.

4.2 Evaluating The Effects of Income Risk, Interest Rate Risk, and

House Price Risk

In my model there are three types of shocks: income, interest rate, and house price shocks.

To evaluate their effects on asset choices I solve the model setting the variance of aggregate

income shocks, interest rate shocks, and house price shocks to zero.

The first panel of Table 5 shows the effects of setting the variance of aggregate income

shocks to zero (ση = 0). Labor income risk crowds out housing investment: on average, in

the absence of aggregate income risk, households buy houses that are 2.2 percent larger. As

in models of portfolio choice with risky financial assets and nontradable labor income (e.g.

Heaton and Lucas, 1997), labor income risk is a source of background risk. It also leads to

higher financial asset holdings. The larger housing investment and the lower financial asset

holdings explain why, in the absence of aggregate income shocks, households do not do a much

better job at smoothing non-durable consumption than in the benchmark case.

The last row shows the welfare effects of setting the variance of aggregate income shocks

to zero. To compute such a measure I evaluate the utility associated with this scenario by
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computing the expectation of discounted lifetime utility at the initial date. I then renormalize

discounted utility into consumption-equivalent units, and compute the percentage difference

between the no aggregate income risk scenario and the benchmark case. As expected, house-

holds are better off in the absence of aggregate income shocks: consumption would have to be

0.58 percent higher at every date in the benchmark case to ensure the same level of lifetime

expected utility.

The effects of eliminating interest rate risk are much larger than those of eliminating

aggregate income risk, even though the variance of the latter is larger (Table 5, σ² = 0

scenario). In the no interest rate risk scenario the interest rate is constant and equal to its

unconditional mean, so that low and high interest rate states now differ only on the level of

aggregate income and the growth rate of house prices. Interest rate risk crowds out housing

investment: in the absence of interest rate risk average house size is 13.2 percent larger than

in the benchmark case. In addition average financial asset holdings are 23.5 percent lower.

Eliminating interest risk also has large welfare effects: consumption would have to be 1.63

percent higher in the benchmark case to ensure the same level of lifetime expected utility.

Since borrowing-constrained households hold a highly leveraged portfolio, interest rate risk is

a major source of background risk.

The final panel of table 5 shows the effects of setting the variance of house price shocks to

zero. In this last scenario house prices are fixed and equal to one. Investors are worse off than

in the benchmark case. Of course this result is not due to the elimination of house price risk,

but to the fact that in the benchmark case housing is an asset with positive average return.

When house prices are fixed average house size is larger. The main reason for this is that

when households trade houses, they tend to increase house size by more: the average house

size increase for those who trade houses is 35.43, compared to only 30.21 in the benchmark

case. In the benchmark case, due to the positive expected return on housing, house prices
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tend grow over time. This means that housing consumption becomes more expensive relative

to non-durable consumption, and there is a shift in consumption towards non-durable goods.

This result is interesting since it highlights the dual role of housing in my model, as both an

asset and a source of consumption services.

4.3 Evaluating The Effects of Transaction Costs

The effects of transaction costs of adjusting stockholdings have been studied by Constantinides

(1986), Davis and Norman (1990), Heaton and Lucas (1997), Lynch and Balduzzi (1999),

among others. The results can be loosely summarized as follows. When investors trade for

the sole purpose of portfolio re-balancing, transaction costs have a small effect on portfolio

allocation as in the presence of transaction costs investors choose to trade infrequently. When

investors trade for the purpose of consumption smoothing as well, transaction costs have

large effects as investors choose to trade frequently, even though there are costs of doing

so. Transaction costs of adjusting the level of housing have potentially large effects on asset

and consumption choices. Investors trade houses for the purpose of consumption smoothing

as well as portfolio rebalancing. And transaction costs of adjusting the level of housing are

substantial. A value equal to ten percent of the unit being exchanged is considered reasonable

by Smith, Rosen, and Fallis (1988).

Table 6 shows the effects of setting λ equal to 0.6, 0.8 (the benchmark value), and 0.10.

Transaction costs substantially reduce the number of house trades. Whereas in the benchmark

case investors on average trade houses once every 9.58 years, when transaction costs are

lower they do so once every 5.20 years. This higher number of trades is mainly the result

of investors trying to take advantage of serial correlation in interest rates and house price

growth, by acquiring bigger houses when interest rates are low, and trading these for smaller

houses when interest rates increase. The result is an average house size growth of 17.5 percent
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when interest rates are low, and -8.73 percent when interest rates are high. The corresponding

values for the benchmark case are 8.29 percent and 1.81 percent, respectively, so that investors

behave less aggressively when transaction costs are higher.

Unconditionally, transaction costs of changing the level of housing crowd out housing

investment, as do income risk and interest rate risk. However, while the elimination of interest

rate (or income) risk leads to a higher average level of housing in both low and high interest

rate states, lowering transaction costs increases housing in low interest rate states, but may

decrease it in high interest rate states (as in the λ equal to 6 percent scenario compared with

the benchmark case). Of course this is the result of a more aggressive market timing in the

low transaction costs scenario. As expected households are better off in welfare terms when

transaction costs are lower.

4.4 Risk Aversion

Table 7 shows the results for different values of the coefficient of relative risk aversion. As in

models of portfolio choice in the presence of stock return predictability (e.g. Campbell and

Viceira, 1999, Lynch and Balduzzi, 1999) I also find that less risk averse investors are more

aggressive in their market timing. This shows up in the difference between average log house

price growth in low and high interest rate states. For γ equal to 5 average log house price

growth is 7.1 percent in low interest rate or high expected house price growth states, and 2.4

percent in high interest rate or low expected house price growth states. Instead, for γ equal

to 3 average log house price growth is higher and equal to 8.3 percent when interest rates

are low, and lower and equal to 1.8 percent when interest rates are low. That is, low risk γ

investors increase house size by more when expected returns are positive, and by less when

interest rates are high. Thus low γ investors tend to trade houses and incur the associated

transaction costs more often. Unconditionally, low γ investors also hold on average a longer
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position on the housing asset: the percentage house size difference between γ = 3 and γ = 5

investors is as large as 27 percent.

Whereas all these qualitative results might be expected from the recent literature on port-

folio choice in the presence of stock return predictability, the large quantitative impact of γ

is somewhat surprising. This is because for power utility γ plays a dual role, measuring both

risk aversion and elasticity of intertemporal substitution. Less risk averse investors are willing

to take more risk. In addition, low γ investors are more willing to substitute consumption

intertemporally in response to the state of the economy. That is, low γ investors are more

willing to adjust their consumption decisions to take advantage of low interest rates or a high

expected growth rate of house prices. This is important in a model with housing since to fol-

low a more aggressive portfolio rule, i.e. to buy a larger house when house prices are expected

to grow investors need to save a larger down-payment. The dual role of γ, measuring both

risk aversion and elasticity of intertemporal substitution, is also important for understanding

the hedging demands that the model generates, which I characterize in the next section.

4.5 Hedging Demands

In my model housing is both an asset and a source of consumption services. When at the initial

date an investor acquires a house of a given size, he also acquires a hedge against fluctuations

in the price of housing. But since most investors later on trade houses to increase house size,

the house they acquire at the initial date is only a partial hedge against fluctuations in the

price of housing. In this section I investigate how current asset and consumption choices are

affected by the desire to hedge higher expected future housing consumption needs.

In order to buy a larger house to hedge higher future housing consumption needs investors

have to save a larger down-payment. For this reason the extent to which investors are borrow-

ing constrained is an important determinant of current housing choices and hedging demands.
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In particular, borrowing constraints explain why in the benchmark case investors do not buy

a larger house early on, even though they expect to increase house size in the future. Simi-

larly, consider two borrowing-constrained investors with the same initial income and financial

assets, but facing different expected growth rates of labor income. A house of a given size is

less adequate as an hedge for the investor who faces a steeper labor income profile since he

expects to increase house size by more in the future. But does this mean that this investor

will buy a bigger house at the initial date? Not necessarily. The steeper labor income profile

makes borrowing constraints more severe, and reduces investors’ willingness to save the larger

down-payment required. Thus investors face a trade-off between buying a bigger house which

is a better hedge and buying a smaller house to relax liquidity constraints.

Perhaps the cleanliest way to investigate the nature and the determinants of this trade-off

is through preference parameter shifts, namely shifts in δt. Recall that δt measures preference

for housing relative to non-durable consumption. In the benchmark case it is equal to 0.10

for all t. I first consider the case of δt equal to 0.10 for t < 34, but equal to 0.15 after this

date. Therefore, for all periods t < 34 instantaneous utility is the same as in the benchmark

case, but the investor expects a future preference tilt towards housing consumption. Figure

5 plots cross-sectional averages of house size across two thousand households, and compares

the results to the benchmark case.

Surprisingly, at the initial date investors on average buy smaller houses than in the bench-

mark case. The reason is that investors expect to trade houses earlier, and therefore at the

initial date choose to buy a smaller house in order to relax liquidity constraints. Thus, even

though due to the preference tilt towards housing consumption δt = 0.15 for t ≥ 34 investors
are short housing by more than δt = 0.10 ∀t investors, they choose to buy an asset which is less
adequate as an hedge. It is only when the horizon shortens, and investors trade houses, that

average house size becomes larger than in the benchmark case. The importance of liquidity
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constraints can be assessed by considering housing choices when the constraints are relaxed.

One way of doing so is by endowing investors with positive initial wealth, as when initial

wealth is sufficiently large borrowing constraints are no longer binding. Table 8 shows the

results for initial wealth, W0, equal to ten thousand dollars. In this case, and at all horizons,

investors who are shorter housing buy on average larger houses.

Table 8 also shows the results for γ equal to five. For higher γ hedging demands are larger:

the percentage difference in average house size between δt = 0.15 for t ≥ 34 and δt = 0.10 ∀t
is at all horizons larger than when γ equal to three. Furthermore, due to the larger hedging

demands, γ = 5 investors are not willing to at the initial date buy smaller houses to relax

liquidity constraints.
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5 Conclusion

This paper characterized the optimal asset and consumption choices of a liquidity-constrained

investor who derives utility from the consumption of both housing and non-durable consump-

tion goods. Using PSID labor income and house price data I estimated a large positive

correlation between income shocks and house price shocks, and a large negative correlation

between house prices and interest rates. These estimates were used to parameterize the model

such that when interest rates are low, labor income is high, and house prices are growing fast.

Using the model I studied the effects of labor income risk, interest rate risk, and house

price risk on housing investment. I found that both labor income and interest rate risk

crowd out housing investment, but due to the highly leveraged nature of investors’ portfolios

the welfare and portfolio implications of the latter are much larger. I also found that all

three sources of risk contribute towards increasing the volatility of the stochastic discount

factor. Realistic transaction costs of selling a house were shown to have large effects on asset

choices, by reducing the number of house trades and restricting investors’ ability to take

advantage of serial correlation in house prices. The characterization of hedging demands for

the housing asset emphasized the role of liquidity constraints. Liquidity constraints have such

an important role due to the dual dimension of housing as both an asset and a source of

consumption services.

There are several limitations of the analysis which are important to pursue in future

research. First, I have considered a very particular type of debt contract. Given the whole

array of debt contracts that investors have available, and the financial importance of the

mortgage decision, it is important to study the portfolio and welfare implications of other

debt contracts. Second, in my model investors have access to a single financial asset, which

can be interpreted as short-term treasury bills. In reality investors have access to other
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financial assets, most importantly long-term bonds and equities. An important step in future

research is to study how portfolio allocations to bonds and equities interact with house price

risk and housing choices. Finally, I have assumed that the parameters of the house price

process were known. Given the large standard deviations associated with these estimates, it

is important to study the effects of parameter uncertainty on hedging demands, perhaps in a

Bayesian setting.
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Table 1: Estimated parameters of the interest rate, house price, and labor income processes. The

interest rate measure is the 6-month real T-bill rate from 1970 to 1992. µ is the mean interest

rate, φ is the estimated first-order autoregressive coefficient, and σ² is the standard deviation of the

residuals. σω and ση are the standard deviations of idyosincratic and aggregate labor income shocks

estimated using household-level labor income data from the PSID. ∆pt = ln(Pt)− ln(Pt) is average
house price growth, where Pt is an index of house prices in year t constructed using PSID data.

σ(∆pt) is the standard deviation of the growth rate of house prices. The labor income and house

price data is from 1970 to 1992.

Parameter Value

µ 0.014

φ 0.775

σ² 0.016

σω 0.381

ση 0.034

∆pt 0.014

σ(∆pt) 0.045



Table 2: Correlation Matrix and p-values. This table shows the correlation coefficients between the

growth rate of house prices, ∆pt, aggregate labor income shocks, ηt, and real interest rates. The

labor income and house price data is from the PSID. The interest rate measure is the 6-month real

T-bill rate. All data is annual from 1970 to 1992. P-vlaues are shown below.

∆pt ηt rt

∆pt 1.000

ηt 0.786 1.000

0.000

rt -0.390 -0.449 1.000

0.080 0.032



Table 3: Other Parameters. This table shows the model parameters used in the benchmark case.

Description Parameter Value

Time Horizon T 20

Discount factor β 0.98

Risk aversion γ 3

Preference for housing δ 0.10

Down payment ψ 0.15

Transaction cost λ 0.08



Table 4: Benchmark Results. This table shows the results obtained from simulating the model

with the parameters shown in Tables 1 and 3. ∆ct = ln(Ct)− ln(Ct−1) is average non-durable

consumption growth and ∆ht is average house consumption growth. σ(∆ct) and σ(∆ht) are the

standard deviations of non-durable consumption and house size growth, respectively. Ht is average

house size. PtHt is average house value. Fin.Assets is average financial savings. The table also

shows the total number of house trades, as well as the number of house trades associated with an

increase (Ht > Ht−1) and a decrease (Ht < Ht−1) in house size. σ(SDF ) is the volatility of the

stochastic discount factor. The table shows results conditional on the level of interest rates and

unconditional values.

rt low rt high Uncond.

∆ct 0.100 -0.010 0.045

σ(∆ct) 0.115 0.147 0.142

∆ht 0.083 0.018 0.051

σ(∆ht) 0.285 0.201 0.249

Ht 54.300 44.719 49.528

PtHt 71.247 48.189 59.763

Fin.Assets 10.122 4.438 7.291

# House Trades 1576 598 2174

#Ht > Ht−1 1576 482 2058

#Ht < Ht−1 0 116 116

σ(SDF ) 0.206 0.461 0.394



Table 5: The Effects of Income, Interest Rate, and House Price Risk. This table shows the results

obtained from simulating the model setting the variance of aggregate income shocks, interest rate

shocks, and house price shocks to zero. ∆ct and∆ht are average non-durable consumption and house

consumption growth. σ(∆ct) and σ(∆ht) are the respective standard deviations. Ht is average house

size. PtHt is average house value. Fin.Assets is average financial savings. The table also shows

the total number of house trades, as well as the number of house trades associated with an increase

(Ht > Ht−1) and a decrease (Ht < Ht−1) in house size. σ(SDF ) is the volatility of the stochastic

discount factor. Welfare measures the percentage increase in consumption in the benchmark case

needed to ensure the same level of lifetime utility. The table shows results conditional on the level

of interest rates and unconditional values.

ση = 0 σ² = 0 σ(∆pt) = 0

rt low rt high Uncond. rt low rt high Uncond. rt low rt high Uncond.

∆ct 0.093 -0.001 0.046 0.090 -0.000 0.045 0.062 0.014 0.038

σ(∆ct) 0.113 0.151 0.141 0.108 0.143 0.135 0.102 0.128 0.118

∆ht 0.090 0.006 0.048 0.081 0.032 0.056 0.084 0.032 0.058

σ(∆ht) 0.291 0.1936 0.251 0.283 0.207 0.249 0.291 0.195 0.250

Ht 56.014 45.211 50.633 60.213 51.884 56.064 56.613 49.065 52.854

PtHt 73.587 48.178 60.932 78.774 55.526 67.195 56.613 49.065 52.854

Fin.Assets 8.458 4.172 6.323 7.576 3.560 5.576 4.106 3.207 3.658

# House Trades 1781 627 2408 1576 625 2201 1668 501 2169

#Ht > Ht−1 1781 426 2207 1576 594 2170 1668 501 2169

#Ht < Ht−1 0 201 201 0 31 31 0 0 0

σ(SDF ) 0.207 0.457 0.385 0.203 0.428 0.363 0.215 0.352 0.302

Welfare 0.575% 1.621% -0.464%



Table 6: The Effects of Transaction Costs. This table shows the results obtained from simulating the

model setting λ equal to 6, 8, and 10 percent. ∆ct and∆ht are average non-durable consumption and

house consumption growth. σ(∆ct) and σ(∆ht) are the respective standard deviations. Ht is average

house size. PtHt is average house value. Fin.Assets is average financial savings. The table also shows

the total number of house trades, as well as the number of house trades associated with an increase

(Ht > Ht−1) and a decrease (Ht < Ht−1) in house size. σ(SDF ) is the volatility of the stochastic

discount factor. Welfare measures the percentage increase in consumption in the benchmark case

needed to ensure the same level of lifetime utility. The table shows results conditional on the level

of interest rates and unconditional values.

λ = 0.06 λ = 0.08 λ = 0.10

rt low rt high Uncond. rt low rt high Uncond. rt low rt high Uncond.

∆ct 0.095 -0.001 0.047 0.100 -0.010 0.045 0.097 -0.009 0.044

σ(∆ct) 0.102 0.134 0.128 0.115 0.147 0.142 0.114 0.146 0.141

∆ht 0.175 -0.087 0.044 0.083 0.018 0.051 0.076 0.025 0.051

σ(∆ht) 0.386 0.414 0.421 0.285 0.201 0.249 0.278 0.161 0.229

Ht 73.553 35.656 54.678 54.300 44.719 49.528 51.155 43.476 47.330

PtHt 100.885 36.843 68.988 71.247 48.189 59.763 67.204 46.978 57.130

Fin.Assets 9.633 4.853 7.252 10.122 4.438 7.291 10.043 4.463 7.263

# House Trades 3396 2293 5689 1576 598 2174 1386 501 1887

#Ht > Ht−1 3396 573 3969 1576 482 2058 1386 493 1882

#Ht < Ht−1 0 1720 1720 0 116 116 0 5 5

σ(SDF ) 0.184 0.4679 0.394 0.206 0.461 0.394 0.207 0.449 0.385

Welfare 0.337% -0.412%



Table 7: The Effects of Risk Aversion. This table shows the results obtained from simulating the

model setting γ equal to 3 and 5. ∆ct and ∆ht are average non-durable consumption and house

consumption growth. σ(∆ct) and σ(∆ht) are the respective standard deviations. Ht is average house

size. PtHt is average house value. Fin.Assets is average financial savings. The table also shows

the total number of house trades, as well as the number of house trades associated with an increase

(Ht > Ht−1) and a decrease (Ht < Ht−1) in house size. σ(SDF ) is the volatility of the stochastic

discount factor. The table shows results conditional on the level of interest rates and unconditional

values.

γ = 3 γ = 5

rt low rt high Uncond. rt low rt high Uncond.

∆ct 0.100 -0.010 0.045 0.085 -0.000 0.042

σ(∆ct) 0.115 0.147 0.142 0.094 0.130 0.121

∆ht 0.083 0.018 0.051 0.071 0.024 0.047

σ(∆ht) 0.285 0.201 0.249 0.247 0.1473 0.205

Ht 54.300 44.719 49.528 41.758 36.108 38.944

PtHt 71.247 48.189 59.763 54.634 38.641 46.669

Fin.Assets 10.122 4.438 7.291 9.519 4.674 7.106

# House Trades 1576 598 2174 1535 566 2101

#Ht > Ht−1 1576 482 2058 1535 553 2088

#Ht < Ht−1 0 116 116 0 13 13

σ(SDF ) 0.206 0.461 0.394 0.250 0.694 0.570



Table 8: Hedging Demands. This table shows the results from simulating the model setting δt = 0.10

for t < 34 and δt = 0.15 for t ≥ 34 for different values of initial wealth, W0, and the coefficient of

relative risk aversion γ. Ht is average house size. # Trades is the cumulative number of house trades.

The table also shows the percentage difference in average house size and the number of house trades

relative to the δt = 0.10 ∀t scenario.

Age

25 27 29 31 33 34

γ = 3.00,W0 = 0.00

Ht, δt = 0.15 for t ≥ 34 22.151 35.763 44.216 51.011 56.136 62.356

Ht, δt = 0.10 ∀t 24.030 35.990 43.103 47.825 50.993 52.925

% Dif. Ht -7.818 -0.632 2.584 6.662 10.087 17.820

# Trades, δt = 0.15 for t ≥ 34 - 917 1396 1741 1965 2212

# Trades, δt = 0.10 ∀t - 836 1257 1520 1690 1777

% Dif. # Trades - 9.689 11.058 14.539 16.272 24.479

γ = 3.00,W0 = 10.00

Ht, δt = 0.15 for t ≥ 34 46.530 51.000 55.111 59.090 62.205 67.143

Ht, δt = 0.10 ∀t 45.278 50.969 54.205 57.065 58.841 60.195

% Dif. Ht 2.766 0.060 1.672 3.549 5.717 11.542

# Trades, δt = 0.15 for t ≥ 34 - 281 500 662 779 963

# Trades, δt = 0.10 ∀t - 288 505 669 770 839

% Dif. # Trades - -2.431 -0.990 -1.046 1.169 14.779

γ = 5.00,W0 = 0.00

Ht, δt = 0.15 for t ≥ 34 19.611 27.736 34.040 39.328 43.989 49.878

Ht, δt = 0.10 ∀t 19.611 27.601 32.841 36.601 39.786 41.635

% Dif. Ht 0.000 0.489 3.650 7.449 10.563 19.797

# Trades, δt = 0.15 for t ≥ 34 - 778 1253 1606 1873 2167

# Trades, δt = 0.10 ∀t - 778 1207 1469 1683 1794

% Dif. # Trades - 0.000 3.811 9.326 11.289 20.792



Figure 1: Income Profile
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Figure 2: Logarithm of Real House Prices in the US
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Figure 3: Income Shocks, House Price Shocks and Interest Rates
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Figure 4 - Benchmark Results
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Figure 5 - Hedging Demands
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