
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tcim20

International Journal of Computer Integrated
Manufacturing

ISSN: 0951-192X (Print) 1362-3052 (Online) Journal homepage: http://www.tandfonline.com/loi/tcim20

Hedging production schedules against uncertainty
in manufacturing environment with a review of
robustness and stability research

I. Sabuncuoglu & S. Goren

To cite this article: I. Sabuncuoglu & S. Goren (2009) Hedging production schedules
against uncertainty in manufacturing environment with a review of robustness and stability
research, International Journal of Computer Integrated Manufacturing, 22:2, 138-157, DOI:
10.1080/09511920802209033

To link to this article: https://doi.org/10.1080/09511920802209033

Published online: 28 Jan 2009.

Submit your article to this journal

Article views: 410

Citing articles: 53 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=tcim20
http://www.tandfonline.com/loi/tcim20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/09511920802209033
https://doi.org/10.1080/09511920802209033
http://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
http://www.tandfonline.com/doi/citedby/10.1080/09511920802209033#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/09511920802209033#tabModule

Hedging production schedules against uncertainty in manufacturing environment

with a review of robustness and stability research

I. Sabuncuoglu* and S. Goren

Department of Industrial Engineering, Bilkent University, Ankara, Turkey

(Received 11 February 2007; final version received 22 March 2008)

Scheduling is a decision-making process that is concerned with the allocation of limited resources to competing tasks
(operations of jobs) over a time period with the goal of optimising one or more objectives. In theory, the objective is
usually to optimise some classical system performance measures such as makespan, tardiness/earliness and flowtime
under deterministic and static assumptions. In practice, however, scheduling systems operate in dynamic and
stochastic environments. Hence, there is a need to incorporate both uncertainty and dynamic elements into the
scheduling process. In this paper, the major issues involved in scheduling decisions are discussed and the basic
approaches to tackle these problems in manufacturing environments are analysed. Proactive scheduling is then
focused on and several robustness and stability measures are presented. Previous research on scheduling robustness
and stability is also reviewed and further research directions are suggested.

Keywords: scheduling; proactive; robustness; stability; uncertainty

1. Introduction

Scheduling plays an important role in achieving timely
and cost-effective production, which is becoming
increasingly important in today’s highly competitive
manufacturing environments. In an industrial setting,
scheduling systems usually operate in highly dynamic
and uncertain environments in which several interrup-
tions (mostly random in nature) prevent the execution
of production schedules exactly as they are developed.
Examples of such disruptions are machine breakdowns,
rush orders, order cancellations, due-date changes,
scraps and waste owing to machine malfunctions, etc.
Variation in processing times and other stochastic
events further increase variability in the system.

Even though real problems are dynamic and
stochastic in nature, most of the solutions in the
literature use static and deterministic models. In theory,
most scheduling problems, even those with determinis-
tic and static assumptions are NP-hard or mathemati-
cally intractable. For that reason, heuristic procedures
are generally recommended for practical applications.

Practitioners often view the ignorance of uncer-
tainty and the dynamic elements of the scheduling
process as the major source of the gap between
scheduling theory and practice. In the last two decades
researchers have closed this gap by proposing several
scheduling systems under various names: on-line
scheduling, dynamic scheduling, real-time scheduling,

etc. (Sabuncuoglu and Kizilisik 2003). Some of these
systems have been developed using artificial intelli-
gence and expert system tools from computer science
as well as OR tools.

Recently, two new approaches have emerged as an
alternative way to cope with uncertainty in a schedul-
ing environment: reactive and proactive scheduling.
These scheduling policies will be discussed in detail in
subsequent sections.

The purpose of this paper is to develop a tool to
understand the philosophy of proactive and reactive
scheduling better on a high level (in terms of what
major decisions are made during a scheduling process
and how these decisions lead to different scheduling
policies). There are other papers in the literature which
review the scheduling process under uncertainty.
Herroelen and Leus (1995) and Davenport and Beck
(2000), for example, review the literature on a low
level (as a collection of techniques that are used to
generate and revise schedules). Aytug et al. (2005) also
includes a taxonomy on uncertainty, but the schedul-
ing process itself is just broadly classified into proac-
tive and reactive. The work of Vieira et al. (2003)
might be considered closer to the approach taken in
this paper. Their review is more general in the sense
that the authors cover the entire rescheduling process
whereas the emphasis in this paper is specifically on
robustness and stability concepts. The emphasis in this

*Corresponding author. Email: sabun@bilkent.edu.tr

International Journal of Computer Integrated Manufacturing

Vol. 22, No. 2, February 2009, 138–157

ISSN 0951-192X print/ISSN 1362-3052 online

� 2009 Taylor & Francis

DOI: 10.1080/09511920802209033

http://www.informaworld.com

paper is not particularly on the classification into
proactive and reactive scheduling (which is well
known in the literature) but on what major decisions
lead to these two policies and on how robustness and
stability are used together with them to cope with
uncertainty.

This paper also analyses the proactive scheduling
problem with the help of a scenario planning approach.
This approach provides a link to decision theory, which
not only enables one to understand robustness and
stability measures that are used in the literature better,
but also presents a way to define several new robustness
and stability measures analogous to some criteria from
decision theory.

The rest of the paper is organised as follows. In
Section 2 two major decisions (when-to-schedule and
how-to-schedule) in scheduling and appropriate poli-
cies to deal with the real life problems are discussed. In
Section 3, reactive and proactive scheduling policies are
focused on. In Section 4, the proactive scheduling
problem is analysed under a scenario planning appro-
ach. Several robustness and stability measures that are
used in the literature are presented. New robustness and
stability measures are formulated by making use of the
similarity between the developed scenario planning
framework and decision theory. In Section 5, the
existing studies in the literature are reviewed. Finally,
concluding remarks are made and future research
directions are recommended in Section 6.

2. Two major issues of scheduling

In highly dynamic and stochastic production environ-
ments, shop-floor schedules cannot be used as they are
developed for a long time because of unexpected
disruptions and random events that alter the state of
the system. Thus, it is often necessary to revise the
schedules at some points in time. In this context, two
immediate questions arise: when to revise (when-to-
schedule) and how to revise (how-to-schedule)?

2.1. When-to-schedule

‘When-to-schedule’ has to do with the timing of
scheduling decisions and determines the system re-
sponsiveness to various kinds of effects from the
environment. As scheduling frequency increases, the
system responsiveness also increases. There are several
alternative ways to decide on timing of scheduling
decisions. The first one, called periodic scheduling,
schedules the system periodically; the period length can
be constant or variable. In the constant case which is
often used in practice, revisions are made at the
beginning of each fixed-time interval. However,
according to the variable-time interval method,

scheduling decisions are made after a certain amount
of schedule is realised (Sabuncuoglu and Karabuk
1999).

Another alternative could be to revise the schedule
following a certain number of random events. For
example, the schedule can be updated after each major
machine breakdown, or a new important job arrival.
This method of scheduling is called continuous
scheduling (Raman et al. 1989). Another method is
adaptive scheduling (Sabuncuoglu and Karabuk 1999),
which may also be called controlled response. Accord-
ing to this policy, a scheduling decision is triggered
following a predetermined amount of deviation from
the original schedule. For example, a revision is made
when the total difference in completion times between
the initial and realised schedules exceeds some thresh-
old value, say 30 min, or some percentage of the
makespan. Similarly, schedules can be revised after a
certain amount of deviation from the planned
throughput, flowtime, or tardiness is observed.

In addition, several hybrid methods can also be
considered. For example, Yamamoto and Nof (1985)
propose a scheduling policy, called event-driven sche-
duling, where revisions are not only made at the end of
each fixed time interval (i.e., periodic scheduling), but
also in response to important events that change the
system state (i.e., continuous scheduling). See Church
and Uzsoy (1992) for comparison of periodic and
continuous scheduling policies for dynamic shops.

Even though the when-to-schedule decisions are
analysed to some extent by Sabuncuoglu and Kizilisik
(2003), the subject needs further research. Specifically,
it would be interesting to know the conditions under
which a particular policy is better than others

2.2. How-to-schedule

‘How-to-schedule’ determines the ways in which sche-
dules are generated and updated. There are four related
issues. The first one has to do with the scheduling
scheme. This can be off-line, on-line, or a combination
of the two (i.e., hybrid). Off-line scheduling refers to
scheduling all operations of available jobs for the entire
scheduling period, before executing the schedule; in on-
line scheduling, decisions are made one at a time, during
the execution of schedule (Sabuncuoglu and
Hommertzheim 1992). A good example for on-line
scheduling is the implementation of dispatching rules in
a dynamic environment. Between these two extremes,
another alternative could be quasi-online scheduling, in
which a subset of the operations of the job set are
scheduled and the rest are left for future time periods
(Sabuncuoglu and Karabuk 1999, Wu et al. 1999).

On-line approach accommodates considerable flex-
ibility in the schedule to compensate for unforeseen

International Journal of Computer Integrated Manufacturing 139

system disturbances but lacks the global perspective
provided by an off-line approach. Therefore, analysing
both approaches’ strengths and weaknesses and
identifying the circumstances under which one per-
forms better than the other is a valuable research topic.
It is known that off-line scheduling is superior to on-
line scheduling in a static and deterministic environ-
ment. In a static and dynamic environment, off-line
scheduling is still better, but the difference between the
performances of these scheduling schemes is not as
large as in the static case (Sabuncuoglu and Karabuk
1999). However, a further analysis of off-line schedul-
ing and on-line scheduling methods is needed in a
dynamic and stochastic environment that includes the
consideration of robustness and stability.

The second issue is the amount of data used during
the schedule generation process. Kutanoglu and
Sabuncuoglu (2001) define the forecasting horizon
(FH) as the time span of job-release data. It represents
the maximum time period for which schedulers have
enough information to generate a schedule. Look-
ahead window (LW) is defined as the portion of FH for
which a new schedule is generated or a revision is
made. It can be smaller than FH or equal to FH. If it is
smaller than FH, only a part of the available
information is used. This is generally attributable to
low confidence about the accuracy of the far-future
information. In this case only near-future information
is used. If LW is equal to FH, all available information
is used and this is called full scheduling. When
LW 5 FH, it is called partial scheduling. Partial
scheduling is illustrated in Figure 1, where horizontal
trail represents the time and vertical arrows mark the
scheduling points. In the figure, successive forecasting
horizons are depicted with dashed curves while solid

curves represent successive look-ahead windows. Note
that if full scheduling is employed with periodic review
and if FH is equal to the period length, this policy
corresponds to doing nothing (i.e., leaving the system
alone and letting it recover from disruptions).

The existing studies indicate that full scheduling is
superior to partial scheduling in a static environment
because of its global perspective and avoidance of
myopic decision-making (Sabuncuoglu and Bayiz
2000). On the other hand, the relative performance of
full scheduling and partial scheduling in a dynamic and
stochastic environment is needed for both robustness
and stability measures.

The third and fourth issues are type of response and
performance metrics to use, respectively, which are
discussed now in detail.

1. Type of response/nature of revision

One can identify at least two cases: 1) rescheduling the
operations of all the remaining jobs from scratch and
2) taking no corrective action and letting the system
recover itself from the negative effects of disruptions.
Between these two extremes, it is also possible to repair
the schedules. One possible repair method could be to
generate a match-up schedule, where at some point in
the future, the new schedule and the original one
become the same/converge. (Bean et al. 1991, Akturk
and Gorgulu 1999). Another method is right/left
shifting of all the remaining jobs (altogether) in the
time horizon so that the disruption length is accom-
modated but the sequence of jobs remains unchanged
(Abumaizar and Svestka 1997). Another minor revi-
sion could be to change only a small number of jobs’
positions in the schedule. The type of response issue

Figure 1. Partial scheduling.

140 I. Sabuncuoglu and S. Goren

has not been thoroughly studied. Even though there
are some studies that analyse rescheduling frequency
(Church and Uzsoy 1992, Sabuncuoglu and Karabuk
1999), the relative weaknesses and strengths of
different response types are not systematically studied.

2. Performance metrics

Finally, the scheduler should decide on which perfor-
mance metric to use. Classical performance measures
such as makespan, flowtime, earliness, or tardiness are
often preferred in practice. In the recent literature, two
new measures have also emerged: robustness and
stability. These are used particularly in the environ-
ments where uncertainty is a major issue.

In practice, a typical scheduling process is as
follows. An initial schedule is generated to guide future
shop floor activities. In the face of random disruptions
such as machine breakdowns, order cancellations, due-
date changes, and scraps and waste, etc or variations in
processing times, this schedule needs to be partly or
completely revised to maintain its feasibility. The
schedule which is actually executed on the shop floor
is called the realised schedule. This schedule may
substantially differ from the initial schedule, depending
on the level of disruptions and changes in the
environment. Robustness and stability are related
with this difference.

Robustness is concerned with the difference in
terms of objective function value. It refers to the
insensitivity of scheduling performance to the disrup-
tions. A schedule whose performance does not
deteriorate much in the face of disruptions is called
robust. In general, the performance of the realised
schedule is the main concern of practitioners rather
than the planned or estimated performance of the
initial schedule. This is because the former is reality
while the latter is just an anticipated course of actions.

On the other hand, stability is concerned with the
difference between initial and realised schedules
themselves, rather than between their performances.
A schedule whose realisation does not deviate much
from the initial schedule in the face of disruptions is
called stable. A schedule also serves as the plan for
other production activities, such as determining
delivery dates, releasing times, planning requirements
for secondary resources such as tools, fixtures, etc (Wu
et al. 1993). Any deviation from the initial schedule can
disrupt the plans for such activities and increase system
nervousness. Thus, stability is an important perfor-
mance metric in practice.

Even though existing studies hint that robustness
and stability are conflicting objectives (e.g. Wu et al.
1993) the nature of trade-off between these perfor-
mance metrics requires further research. Similarly, it

would be interesting to know the circumstances under
which one metric should be given more priority than
the other.

Sotskov et al. (1997) discuss another perception of
stability. They handle the uncertainty in a job shop
environment by an a posteriori analysis, in which an
optimal schedule has already been constructed and the
question is to determine the maximum variation in the
processing time of the operations such that the optimal
schedule at hand remains still optimal. Such a
maximum variation is called ‘the stability radius’ of
the schedule. This notion of stability, obtained by
sensitivity analysis, can be considered as a measure of
‘solution robustness’ in terms of Herroelen and Leus
(2005). Although this type of post optimality analysis
may provide some valuable insights about the impacts
of the uncertainty, it is also associated with some
problems. If the ‘stability radius’ of the optimal
schedule is large enough to accommodate all possible
changes in the processing times the optimal schedule at
hand can safely be used, but if it is not that large, the
question of what course of actions to take still remains
to be answered.

Several robustness and stability measures are
defined later in Section 4.2. When-to-schedule and
how-to-schedule (scheduling scheme, amount of data,
type of response and performance metric) decisions are
entitled as parameters of a scheduling system, as in
setting parameters of a scheduling system will yield
scheduling policies, which are explained in Section 3.
Scheduling parameters are summarised in Figure 2.

2.3. Reacting to disruptions

In the previous section, ‘type of response’ was briefly
mentioned when discussing ‘how-to-schedule’. In this
section, response types are further analysed in detail.
Table 1 shows a list of disruptions and the possible
responses that can be used to cope with these
unexpected events. The first column is the list of
disruptions. Responses are classified in three cate-
gories: 1) Do nothing – taking no corrective action, 2)
Reschedule – rescheduling all operations of available
jobs from scratch, and 3) Repair – making minor
modifications to the existing schedule. Note that
‘reschedule’ column in Table 1 corresponds to the
response of rescheduling all available jobs from
scratch. That is, although different disruptions have
responses with different names in that column, they all
refer to the same approach in essence. Their names are
different because the responses are named after
disruption types for which they are developed.

In Table 2, the response types for each disruption
are also proposed. The ‘X’ entry in the cell means that
this combination of when-to-schedule and response

International Journal of Computer Integrated Manufacturing 141

type can be used together, otherwise the cell is left
empty. For example, according to periodic scheduling,
revisions are made only after a fixed or variable time
period after the previous scheduling point. Thus, if
some disruption occurs in between, no corrective
action is taken and the next scheduling point is
awaited. Therefore, only the ARR1 (Do nothing)
response is applicable if the when-to-schedule decision
is periodic scheduling. The corresponding cell has the
‘X’ entry and other cells related to unexpected arrivals
(ARR2, ARR3 and ARR4) are left empty. In another
example, RO2 inserts the rush order in the first
available position in the existing schedule. If the
when-to-schedule policy is periodic scheduling, no
action is taken and the next scheduling point is
awaited. Hence, RO2 cannot be used with periodic
scheduling and the corresponding cell is left empty.
However, if the when-to-schedule policy is continuous

or adaptive scheduling (which reacts after a certain
amount of deviation from the planned schedule), RO2
can be used to react to rush order(s). Hence, the
corresponding cells are marked with an ‘X’.

In summary, periodic scheduling is suitable with
only ‘do nothing’ type of response, whereas adaptive
scheduling can be used with all types. Similarly, for a
given kind of disruption, all types of response for that
kind can be used with the associated continuous
scheduling scheme.

Recall that some hybrid schemes of when-to-
schedule are considered in the literature (e.g. Yama-
mato and Nof 1985). Similarly, each type of response
listed in Table 2 can be used together with a
combination of the suitable (the ones marked with an
‘X’) when-to-schedule methods.

The information in these two tables can be very
useful for both practitioners and researchers.

Figure 2. Scheduling parameters.

142 I. Sabuncuoglu and S. Goren

Table 1. Disruptions and possible responses.

Disruptions Do nothing Repair Reschedule

Unexpected
Arrivals
(ARR)

Wait until the
next scheduling
point (ARR1)

. Append at the end of
existing schedule (ARR2)

Reschedule all the available
jobs from scratch (ARR4)

. Insert in a suitable position in
the existing schedule (ARR3)

Machine Breakdowns
(BR)

Right Shift (BR1) . Match-up schedule (BR2) Reschedule all the available
jobs from scratch (BR3)

Processing time
variability (PV)

Right Shift/Left-
Shift (PV1)

Reschedule all the available
jobs from scratch (PV2)

Due-Date
changes (DD)

Wait until the next
scheduling point
(DD1)

. Find a suitable position for the
job whose due-date has been
changed (DD2)

Reschedule all the available
jobs from scratch (DD3)

Job cancellations
(JC)

Make to stock
(JC1)

. Delete the job that is cancelled in
the existing schedule, left shift the
portion after the deleted job (JC2)

Reschedule all the available
jobs from scratch (JC3)

Ready-time
changes (RC)

Left or Right Shift
(RC1)

. Find a suitable position whose
ready time has been changed in
the existing schedule (RC2)

Reschedule all the available
jobs from scratch (RC3)

Rush orders
(RO)

. Add the rush order to the beginning
of the existing schedule (RO1)

Reschedule all the available
jobs from scratch (RO3)

. Insert the rush order in the first
available position in the existing
schedule (RO2)

Scraps and
waste (SW)

Wait until the next
scheduling point,
consider a new job
in place of the scrap/
waste then (SW1)

. Append a new job in place of the
scrap/waste at the end of the
existing schedule (SW2)

Reschedule all the available
jobs from scratch (SW4)

. Insert a new job for the scrap/waste
in the existing schedule (SW3)

Table 2. Cross table for type of response/when to schedule.

When To

Type of
Response

Periodic Adaptive

Continuous

How To ARR BR PV DD JC RC RO SW

ARR1 X X X X X X X X X X
ARR2 X X
ARR3 X X
ARR4 X X

BR1 X X X X X X X X X X
BR2 X X
BR3 X X

PV1 X X X X X X X X X X
PV2 X X

DD1 X X X X X X X X X X
DD2 X X
DD3 X X

JC1 X X X X X X X X X X
JC2 X X
JC3 X X

RC1 X X X X X X X X X X
RC2 X X
RC3 X X

RO1 X X X X X X X X X X
RO2 X X
RO3 X X

SW1 X X X X X X X X X X
SW2 X X
SW3 X X
SW4 X X

International Journal of Computer Integrated Manufacturing 143

Practitioners can formulate correct policies and
researchers can conduct theoretical studies to develop
appropriate models and solution procedures.

3. Scheduling approaches: reactive versus proactive

scheduling

In a scheduling environment, it is desirable that realised
schedules have high system performance and that they
do not deviate significantly from initial schedules. To
achieve these objectives and cope with the uncertainty
in scheduling processes two policies are considered:
reactive scheduling and proactive scheduling.

Reactive scheduling does not directly consider the
uncertainty in generating schedules, but revises the
schedule when unexpected events or disruptions occur.
In other words, reactive scheduling aims at finding the
ways to (ideally) optimally react to disruptions after
they occur. The reaction generally takes the form of
either modifying the existing initial schedule (repair-
ing), or generating a completely new schedule from
scratch. In the studies which consider both robustness
and stability, the primary concern when reacting to a
disruption, generally, is to minimise the deviation
between the new schedule and the initial schedule (i.e.,
optimising stability) although minimising degradation
in the performance measure (robustness) can also be
considered in addition (e.g. Wu et al. 1993).

Proactive scheduling on the other hand, considers
future disruptions when generating initial schedules. It
is concerned with generating an initial schedule that
minimises the effects of disruptions on the performance
measures; robustness is usually the primary concern
although optimising stability can also be considered or
even be the primary objective (e.g. Mehta and Uzsoy
1998, 1999).

In Figure 3, four possible implementations are
proposed based on these two policies. Note that
proactive and reactive scheduling can also be com-
bined: the initial schedule can be created in a proactive
manner and then the disruptions can be handled in a
reactive manner (e.g. O’Donovan et al. 1999). And as
Figure 3 shows, there is even a possibility that none of
them will be used (called classical scheduling); in this
case, the schedule acts as a guideline rather than an
operational tool.

Setting the values of the scheduling parameters
discussed in Section 2 may lead to various scheduling
policies. Table 3 presents some examples of these
policies resulting from ‘when-to-schedule’ and ‘how-to
schedule’ decisions. The first four columns show ‘how-
to-schedule’ decisions and the fifth column shows the
‘when-to-schedule’ decision. That is, the first five
columns display scheduling parameters. The last
column contains the type of the scheduling policy that

is obtained using the said values of the scheduling
parameters. For example, if an off-line scheduling
scheme with full amount of data is used, a ‘do nothing’
type of response is adopted, a classical performance
measure is used and the schedule is revised periodi-
cally, a classical scheduling policy is obtained (first row
of Table 3). Similarly, if an on-line scheduling scheme
with partial amount of data is used and the values of
the remaining scheduling parameters are kept the
same, another classical scheduling policy is obtained
(second row of Table 3). To differentiate the latter
from the former, they are given different names
(Classical 2 and Classical 1, respectively). Note that
Table 3 is not an exhaustive list of all possible
scheduling policies; it just provides some examples.

The majority of applications in practice are
classical; some newer ones are reactive. It is rare to
see the stand-alone use of proactive scheduling or its
hybrid use with reactive policies. This is partly
attributable to the fact that theoretical developments
in proactive scheduling are still under their way. This
paper will discuss these existing studies and propose
some research directions.

4. Proactive scheduling

As explained before, proactive scheduling aims at
finding a schedule which is good in the face of
disruptions. The schedule is not necessarily optimal
for the assumed initial problem but it should do well
under dynamic and stochastic conditions. In this
section, the ways to generate such schedules are
discussed. Several measures for proactive scheduling
are also presented.

4.1. Notations and terms

Let P be the original scheduling problem. Suppose
one has m feasible solutions (schedules), S1 through
Sm. In most scheduling problems, m is quite a large
number. In the classical scheduling theory, the aim is
to find an optimal schedule S�0, according to a
selected performance measure such as maximum
lateness, maximum completion time, average flow-
time, etc. Let f(S) denote the value of this
performance measure for schedule S. A schedule S�0
with fðS�0Þ � fðSiÞ for i ¼ 1, . . . ,m, is selected (i.e. a
schedule which minimises the performance measure).
In what follows, possible disruptions in actual
scheduling processes are considered. As illustrated
in Figure 4, suppose that there are n scenarios
corresponding to possible disruptions. A 0th scenario
P0, which corresponds to no disruptions, is also
considered; therefore, there are n þ 1 scenarios in
total. The original problem P0 changes into Pj for

144 I. Sabuncuoglu and S. Goren

scenario j with probability aj. Accordingly, schedule
Si changes into schedule Sij under jth scenario. That
is, Sij is the realised version of the initial schedule Si,

if the disruptions in scenario j occur. Let S�j be the
optimal solution to the problem Pj, with the
objective function value of fðS�j Þ.

Table 3. Examples of scheduling parameters and policies.

HOW TO

WHEN TO Resulting PolicyScheduling Scheme Amount of Data Type of Response Performance Metric

Off-line Full Do nothing Classical Periodic Classical 1
On-line Partial Do nothing Classical Periodic Classical 2
Off-line Full Do nothing Robustness Periodic Proactive 1
Off-line Full Do nothing Stability Periodic Proactive 2
Off-line Full Reschedule Classical Periodic Reactive 1
Off-line Full Repair (Match-up) Classical Continuous Reactive 2
Quasi On-line Full Reschedule Robustness Periodic Proactive/Reactive

Figure 3. Scheduling policies.

International Journal of Computer Integrated Manufacturing 145

If scenario j were known to occur, one would be
looking for the schedule S�j . However, it is not known
which scenario will actually occur in advance. More-
over, it may be extremely difficult to find S�j for Pj due
to the complexity of the scheduling problem. As
explained before, there are numerous performance
measures considered in the scheduling literature
(tardiness, flowtime, makespan, etc.).

4.2. Robustness and stability policies and measures

If the feasible solutions S1 through Sm are taken as
actions of the decision maker and the scenarios P0

through Pn are taken as states of the nature, the
decision theoretic criteria can easily be used to generate
several robustness or stability measures, of which a
selection is presented in this section. If the mentioned
robustness or stability measures are already discussed
in the literature, a reference is also provided. The
measures without a reference are new in this study to
the best of the authors’ knowledge. These measures can
be seen as new formulations which use the existing
principles from the decision theory.

4.2.1. Robustness

Some robustness measures are based on the actual
performance of the realised schedules, f(Sij) and some
are based on regrets. The regret associated with the
initial schedule Si and the scenario j is defined as the

difference between realised and optimal performances,
i.e., fðSijÞ � fðS�j Þ. The former aims at selecting a
schedule with a good realised performance, whereas
the latter tries to select a schedule whose performance
is not bad relative to the best performance.

4.2.1.1. Robustness policies and measures based on
realised performances.

(1) Minimise the expected realised performance.

S� ¼ St; t 2 argmin
i
fE½fðSiÞ�g;

where E½fðSiÞ� ¼
Xn
j¼0

ajfðSijÞ

This method selects the schedule whose perfor-
mance measure is the best on average. This is a
risk-neutral approach. This is the most fre-
quently (almost exclusively) used realised per-
formance based robustness measure in the
literature. (e.g. Wu et al. 1999).

(2) Minimise the worst-case performance.

S� ¼ St; t 2 argmin
i

�
max

j
ffðSijÞg

�

This policy selects the schedule whose worst-
case performance measure is better than all
others (e.g. Artigues et al. 2005 use this measure
to evaluate a given ordered group assignment).
This is a risk-averse approach.

Figure 4. Scenario-based representation of disruptions.

146 I. Sabuncuoglu and S. Goren

(3) Minimise worst-case scenario’s performance, if
it is known.

S� ¼ St; t 2 argmin
i
ffðSikÞg

where k is the worst cast scenario:

(4) Minimise most probable scenario’s performance.

S� ¼ St; t 2 argmin
i
ffðSimÞg

where m 2 argmax
j
fajg

(5) Another policy is to select a schedule such that
the expected deviation of the realised schedule’s
performance from the initial deterministic
performance is minimised.

S� ¼ St; t 2 argmin
i
fsig

where si ¼ j fðSi0Þ � E½fðSiÞ� j

This policy emphasises the definition: ‘the
robust schedule is the one whose performance
degrades minimally in the face of disruptions’
(e.g. Leon et al. 1994).

(6) Minimise the variance of realised performance
measure.

S� ¼ St; t 2 argmin
i
fVar½fðSiÞ�g;

where Var½fðSiÞ� ¼
Xn
j¼0

ajf
2ðSijÞ �

�Xn
j¼0

ajfðSijÞ
�2

The main principle of this policy is to find the
schedule whose performance degradation ismini-
mal in the face of disruptions, as in the previous
measure (e.g. Sevaux and Sörensen 2004).

(7) Another policy is to select the schedule that
minimises a measure that is a convex com-
bination of aforementioned measures, for exam-
ple, selecting the schedule which minimises
rE f Sr

i

� �� 	
þ 1� rð Þsi, where r is a real number

between 0 and 1. The first part of this measure
emphasises the fact that a robust schedule should
perform well in the face of disruptions. The
second part emphasises that a robust schedule’s
performance should not degrade much in the
face of disruptions. By varying r between 0 and 1,
different weights can be given to these two
aspects of robustness (Leon et al. 1994).

4.2.1.2. Robustness policies and measures based on
regret. Robustness measures in Section 4.2.1.1
determine the robustness of a schedule based on its
realised performance. Another way to achieve
robustness is to minimise opportunity losses (regrets).

First, the regret matrix is constructed, D ¼ [dij]mxn,
where dij ¼ jfðSijÞ � fðS�j Þj, for i ¼ 1, . . . ,m and
j ¼ 1, . . . ,n. The ijth element of this matrix is the
difference between optimal performance of the jth

scenario and the realised performance of the ith

schedule in this scenario.

(1) Minimise expected regret.

S� ¼ St; t 2 argmin
i
fE½di�g;

where E½di� ¼
Xn
j¼0

ajdij

This method selects a schedule whose regret is
the least on average. This is a risk-neutral
approach.

(2) Minimise the worst-case regret.

S� ¼ St; t 2 argmin
i
fmax

j
fdijgg

This is a risk-averse approach and is called the
minimax regret method. This is the most
frequently (almost exclusively) used regret
based robustness measure in the literature
(e.g. Daniels and Kouvelis 1995).

(3) Minimise worst-case scenario’s regret.

S� ¼ St; t 2 argmin
i
fdikg

where k is the worst cast scenario:

This policy selects Si with min
i
fdikg, where Pk is

the worst-case scenario.
(4) Minimise most probable scenario’s regret.

S� ¼ St; t 2 argmin
i
fdimg

where m 2 argmax
j
fajg

As discussed in Daniels and Kouvelis (1995), schedul-
ing decisions may be evaluated ex post, as if all
disruptions had been known in advance of scheduling.
In this situation, the decision is concerned with how
realised performance compares with the optimal
performance that could have been achieved if perfect
information had been available. In such a situation the
use of regret-based robustness measures is more
appropriate.

4.2.2. Stability

Estimating the impact of schedule changes is a difficult
task. Several measures based on differences between
operation starting/completion times, number of dis-
rupted operations, or number of scheduling changes

International Journal of Computer Integrated Manufacturing 147

made have been proposed in the literature. Differences
in completion times of tasks are used to account for the
impact of schedule change, for it is the most popular
approach to measure stability in the literature. Let
Ck

S be the completion time of job k under schedule
S. Let N be the number of jobs. Construct the
completion-time differences matrix D ¼ [dij] where
dij ¼

PN
k¼1 jC

Sij

k � CSi0

k j.

(1) Minimise expected differences.

S� ¼ St; t 2 argmin
i
fE½di�g;

where E½di� ¼
Xn
j¼0

ajdij

This method selects a schedule whose stability
is the best on average. This is a risk-neutral
approach. This measure is the most frequently
used stability measure in the literature (e.g.
Mehta and Uzsoy 1998, 1999, O’Donovan et al.
1999). Leus and Herroelen (2005) prove NP-
hardness of minimising the weighted version of
this measure under single machine breakdown,
right-shift rescheduling and common due-date
assumptions on several single machine and
parallel machine settings.

(2) Minimise expected squares of differences.

S� ¼ St; t ¼ argmin
i

E½d2i �;

where E½d2i � ¼
Xn

j¼0 aid
2
ij

This method selects a schedule whose stability
is the best on average. This is a risk-neutral
approach. This measure is analogous to ‘mean
squared error’ measure used in statistics.

(3) Minimise total variance of realised completion
times:

S� ¼ St; t ¼ argmin
i

XN

k¼1 Var½C
ri
k �

where Cri
k is the realised completion time of

job k under schedule i:

Therefore Var½Cri
k � ¼

Xn

j¼1 ajðC
Sij

k Þ
2

�

Xn

j¼1 ajC
Sij

k

�2

:

(4) Minimise the worst-case completion-time
difference.

S� ¼ St; t 2 argmin
i
fmax

j
fdijgg

This policy selects a schedule whose worst-case
stability is greater than all others. This is a risk-
averse approach.

(5) Minimise worst case scenario’s completion-
time difference.

S� ¼ St; t 2 argmin
i
fdikg

where k is the worst cast scenario:

(6) Minimise most probable scenario’s completion-
time difference.

S� ¼ St; t 2 argmin
i
fdimg

where m 2 argmax
j
fajg

If the number of scenarios is finite, the calculation
of robustness and stability measures, and thus the
application of the above policies, is easy. In practice,
however, the scenarios cannot be easily defined or
determined in advance; in fact the number of potential
scenarios is infinite, with a large number of alternative
schedules. Thus, the computational burden of calculat-
ing robustness or predictability measures can be quite
high. A reasonable approach could be to use a good
surrogate measure (an easy-to-compute auxiliary
measure used instead of the actual robustness or
stability measure, which is known to be highly
correlated with the actual measure itself) and to
determine an efficient scheduling algorithm so that
the selected schedule optimises this surrogate measure.
Another approach could be employing simulation to
estimate the values of robustness or stability measure.
Simulation, in fact, is used to evaluate the perfor-
mances of schedules under uncertainty in the literature
(e.g. Kutanoglu and Sabuncuoglu 2001). Most studies
that address robustness or stability, however, avoid
using simulation owing to the computational burden it
introduces.

In some cases, although there are an infinite
number of scenarios, a procedure to generate the
worst case scenario can be available. In such cases,
there is no need to define a surrogate measure or use
simulation (see Daniels and Kouvelis 1995, for such an
example).

5. Recent studies in scheduling robustness and stability

In this section, the scheduling studies which explicitly
address robustness and stability by defining measures
for them and optimise these measures are focused on.
These studies are mostly proactive in nature. Table 4
summarises these studies using the classification
framework based on scenario analysis. In ‘Environ-
ment’ section of Table 4, ‘Shop Floor’ column contains
the type of the shop floor. ‘Sta./Dyn.’ column displays
the job arrival characteristic of the scheduling problem
under study. If all jobs are present and ready to

148 I. Sabuncuoglu and S. Goren

T
a
b
le

4
.

R
ec
a
p
it
u
la
ti
o
n
o
f
st
u
d
ie
s. E
n
v
ir
o
n
m
en
t

S
ch
ed
u
le

G
en
er
a
ti
o
n

H
o
w

to

R
ef
er
en
ce

S
h
o
p
F
lo
o
r

S
ta
./
D
y
n
.

S
to
ch
./
D
et
.

M
et
h
o
d

O
b
je
ct
iv
e

W
h
en

to
S
ch
em

e
R
es
p
o
n
se

W
u
et

a
l.

(1
9
9
3
)

S
in
g
le

M
a
ch
in
e

S
ta
ti
c

S
to
ch
a
st
ic

(M
a
ch
in
e

b
re
a
k
d
o
w
n
)

G
A

P
a
ir
w
is
e

sw
a
p
p
in
g

m
et
h
o
d
s

M
in
im

is
e
d
ev
ia
ti
o
n
o
f

st
a
rt

ti
m
es

o
r
o
f

se
q
u
en
ce
s
(s
ta
b
il
it
y
)

M
in
im

is
e
m
a
k
es
p
a
n

C
o
n
ti
n
u
o
u
s

(E
v
er
y
M
a
ch
in
e

B
re
a
k
d
o
w
n
)

O
ff
-l
in
e

R
es
ch
ed
u
le

(s
a
m
e

m
et
h
o
d
)

L
eo
n
et

a
l.

(1
9
9
4
)

Jo
b
S
h
o
p

S
ta
ti
c

S
to
ch
a
st
ic

(M
a
ch
in
e

b
re
a
k
d
o
w
n
,

p
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
)

G
A

M
in
im

is
e
ex
p
ec
te
d

m
a
k
es
p
a
n
an

d
ex
p
ec
te
d
d
ev
ia
ti
o
n

fr
o
m

o
ri
g
in
a
l

m
a
k
es
p
a
n
u
si
n
g

su
rr
o
g
at
e
m
ea
su
re
s

(r
o
b
u
st
n
es
s)

C
o
n
ti
n
u
o
u
s

(E
v
er
y
M
a
ch
in
e

B
re
a
k
d
o
w
n
)

O
ff
-l
in
e

R
ig
h
t
S
h
if
t

D
a
n
ie
ls

et
a
l.

(1
9
9
5
)

S
in
g
le

M
a
ch
in
e

S
ta
ti
c

S
to
ch
a
st
ic

(P
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
)

B
&
B
,
o
th
er

h
eu
ri
st
ic
s

M
in
im

is
e
a
b
so
lu
te

w
o
rs
t

ca
se

to
ta
l
fl
o
w
ti
m
e

d
iff
er
en
ce

(r
o
b
u
st
n
es
s)

P
er
io
d
ic

O
ff
-l
in
e

D
o
n
o
th
in
g
(l
ef
t

o
r
ri
g
h
t
sh
if
t)

D
a
n
ie
ls
a
n
d

C
a
ri
ll
o

(1
9
9
7
)

S
in
g
le

M
a
ch
in
e

S
ta
ti
c

S
to
ch
a
st
ic

(P
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
)

B
&
B
,
a
n
o
th
er

h
eu
ri
st
ic

M
a
x
im

is
e
li
k
el
ih
o
o
d
th
a
t

re
a
li
se
d
to
ta
l
fl
o
w
ti
m
e

is
n
o
w
o
rs
e
th
a
n
a
ta
r-

g
et

le
v
el

(r
o
b
u
st
n
es
s)

P
er
io
d
ic

O
ff
-l
in
e

D
o
n
o
th
in
g
(l
ef
t

o
r
ri
g
h
t
sh
if
t)

M
eh
ta

a
n
d

U
zs
o
y

(1
9
9
8
)

Jo
b
S
h
o
p

S
ta
ti
c

S
to
ch
a
st
ic

(m
a
ch
in
e

b
re
a
k
d
o
w
n
)

O
S
M
H
/L
P

M
in
im

is
e
d
ev
ia
ti
o
n
s
o
f

co
m
p
le
ti
o
n
ti
m
es

w
h
il
e
k
ee
p
in
g
L
M
A
X

lo
w

u
si
n
g
su
rr
o
g
a
te

m
ea
su
re
s
(s
ta
b
il
it
y
)

C
o
n
ti
n
u
o
u
s

(E
v
er
y
M
a
ch
in
e

B
re
a
k
d
o
w
n
)

O
ff
-l
in
e

R
ig
h
t
S
h
if
t

M
eh
ta

a
n
d

U
zs
o
y

(1
9
9
9
)

S
in
g
le

M
a
ch
in
e

S
ta
ti
c
w
it
h

n
o
n
ze
ro

re
a
d
y
ti
m
es

S
to
ch
a
st
ic

(M
a
ch
in
e

b
re
a
k
d
o
w
n
)

O
S
M
H
/L
P

M
in
im

is
e
d
ev
ia
ti
o
n
s
o
f

co
m
p
le
ti
o
n
ti
m
es

w
h
il
e
k
ee
p
in
g
L
M
A
X

lo
w

u
si
n
g
su
rr
o
g
a
te

m
ea
su
re
s
(s
ta
b
il
it
y
)

C
o
n
ti
n
u
o
u
s

(E
v
er
y
M
a
ch
in
e

B
re
a
k
d
o
w
n
)

O
ff
-l
in
e

R
ig
h
t
S
h
if
t

O
’D

o
n
o
v
a
n

et
a
l.

(1
9
9
9
)

S
in
g
le

M
a
ch
in
e

S
ta
ti
c
w
it
h

n
o
n
ze
ro

re
a
d
y
ti
m
es

S
to
ch
a
st
ic

(M
a
ch
in
e

b
re
a
k
d
o
w
n
,

p
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
)

O
S
M
H

a
n
d
A
T
C

d
er
iv
a
ti
v
es

in
co
m
b
in
a
ti
o
n

M
in
im

is
e
d
ev
ia
ti
o
n
s
o
f

co
m
p
le
ti
o
n
ti
m
es

w
h
il
e
k
ee
p
in
g
to
ta
l

ta
rd
in
es
s
lo
w

(s
ta
b
il
it
y
)

C
o
n
ti
n
u
o
u
s

(E
v
er
y
M
a
ch
in
e

B
re
a
k
d
o
w
n
)

O
ff
-l
in
e

R
ig
h
t
S
h
if
t
A
T
C

d
er
iv
a
ti
v
es

G
u
o
a
n
d

N
o
n
a
k
a

(1
9
9
9
)

F
lo
w

S
h
o
p
(3

M
a
ch
in
es
)

S
ta
ti
c

S
to
ch
a
st
ic

(S
in
g
le

m
a
ch
in
e

b
re
a
k
d
o
w
n
in

th
e
m
id
d
le

m
a
ch
in
e)

A
n
a
ly
ti
c
a
n
a
ly
si
s

M
in
im

is
e
ex
p
ec
te
d

d
ev
ia
ti
o
n
s
o
f

co
m
p
le
ti
o
n
ti
m
es

(s
ta
b
il
it
y
)

C
o
n
ti
n
u
o
u
s

(E
v
er
y
M
a
ch
in
e

B
re
a
k
d
o
w
n
)

O
ff
-l
in
e

R
es
ch
ed
u
le

(i
m
p
le
m
en
t

sc
h
ed
u
le

o
ff
er
ed

b
y
a
n
a
ly
ti
c

a
n
a
ly
si
s)

W
u
et

a
l.

(1
9
9
9
)

Jo
b
S
h
o
p

S
ta
ti
c

S
to
ch
a
st
ic

(P
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
)

B
&
B
/A

T
C

M
in
im

is
e
ex
p
ec
te
d

w
ei
g
h
te
d
to
ta
l

ta
rd
in
es
s
u
si
n
g

su
rr
o
g
a
te

m
ea
su
re
s

(r
o
b
u
st
n
es
s)

P
er
io
d
ic

Q
u
a
si

o
n
-l
in
e

R
ig
h
t-
S
h
if
t

(c
o
n
ti
n
u
ed
)

International Journal of Computer Integrated Manufacturing 149

T
a
b
le

4
.

(C
o
n
ti
n
u
ed
).

E
n
v
ir
o
n
m
en
t

S
ch
ed
u
le

G
en
er
a
ti
o
n

H
o
w

to

R
ef
er
en
ce

S
h
o
p
F
lo
o
r

S
ta
./
D
y
n
.

S
to
ch
./
D
et
.

M
et
h
o
d

O
b
je
ct
iv
e

W
h
en

to
S
ch
em

e
R
es
p
o
n
se

Y
a
n
g
a
n
d

Y
u
(2
0
0
2
)

S
in
g
le

M
a
ch
in
e

S
ta
ti
c

S
to
ch
a
st
ic

(P
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
)

D
yn

am
ic

P
ro
g
ra
m
m
in
g
,

H
eu
ri
st
ic
s
w
it
h

g
re
ed
y
a
p
p
ro
a
ch

a
n
d
su
rr
o
g
at
e

m
ea
su
re
s

M
in
im

is
e
a
b
so
lu
te
,

re
la
ti
ve

an
d
p
er
ce
n
ta
ge

w
o
rs
t
ca
se

to
ta
l

fl
o
w
ti
m
e
d
iff
er
en
ce

(r
o
b
u
st
n
es
s)

P
er
io
d
ic

O
ff
-l
in
e

D
o
n
o
th
in
g
(l
ef
t

o
r
ri
g
h
t
sh
if
t)

Je
n
se
n

(2
0
0
1
)

Jo
b
S
h
o
p

S
ta
ti
c
w
it
h

n
o
n
ze
ro

re
a
d
y
ti
m
es

S
to
ch
a
st
ic

(M
a
ch
in
e

B
re
a
k
d
o
w
n
s)

G
A

O
p
ti
m
is
e
n
ei
g
h
b
o
rh
o
o
d
-

b
a
se
d
ro
b
u
st
n
es
s

(m
a
k
es
p
a
n
)

C
o
n
ti
n
u
o
u
s

(E
v
er
y
M
a
ch
in
e

B
re
a
k
d
o
w
n
)

O
ff
-l
in
e

R
es
ch
ed
u
le

(s
a
m
e

m
et
h
o
d
)

Je
n
se
n

(2
0
0
3
)

Jo
b
S
h
o
p

S
ta
ti
c
w
it
h

n
o
n
ze
ro

re
a
d
y
ti
m
es

S
to
ch
a
st
ic

(M
a
ch
in
e

B
re
a
k
d
o
w
n
s)

G
A

O
p
ti
m
is
e
n
ei
g
h
b
o
rh
o
o
d
-

b
a
se
d
ro
b
u
st
n
es
s

(t
a
rd
in
es
s
a
n
d

fl
o
w
ti
m
e)

C
o
n
ti
n
u
o
u
s

(E
v
er
y
M
a
ch
in
e

B
re
a
k
d
o
w
n
)

O
ff
-l
in
e

R
es
ch
ed
u
le

(s
a
m
e

m
et
h
o
d
)

A
l-
F
a
w
za
n

a
n
d

H
a
o
u
a
ri

(2
0
0
4
)

R
es
o
u
rc
e-

co
n
st
ra
in
ed

P
ro
je
ct

S
ch
ed
u
li
n
g

S
ta
ti
c

S
to
ch
a
st
ic

(P
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
)

T
a
b
u
S
ea
rc
h

M
in
im

is
e
m
a
k
es
p
a
n

M
a
x
im

is
e
to
ta
l
fr
ee

sl
a
ck

(r
o
b
u
st
n
es
s)

P
er
io
d
ic

O
ff
-l
in
e

D
o
n
o
th
in
g
(l
ef
t

o
r
ri
g
h
t
sh
if
t)

A
rt
ig
u
es

et
a
l.

(2
0
0
5
)

Jo
b
S
h
o
p

S
ta
ti
c

D
et
er
m
in
is
ti
c

(M
u
lt
ip
le

sc
h
ed
u
le
s
to

b
e

im
p
le
m
en
te
d
in

ca
se

o
f

d
is
ru
p
ti
o
n
s)

H
eu
ri
st
ic

si
m
il
a
r

to
S
h
if
ti
n
g

B
o
tt
le
n
ec
k

A
lg
o
ri
th
m

M
a
x
im

is
e
fl
ex
ib
il
it
y

(M
in
im

is
e
n
u
m
b
er

o
f

o
rd
er
ed

g
ro
u
p

a
ss
ig
n
m
en
ts

a
n
d

M
a
x
im

is
e
n
u
m
b
er

o
f

o
ff
er
ed

sc
h
ed
u
le
s)

P
er
io
d
ic

Q
u
a
si

o
n
-l
in
e

D
o
n
o
th
in
g
(l
ef
t

o
r
ri
g
h
t
sh
if
t)

K
a
sp
er
sk
i

(2
0
0
5
)

S
in
g
le

M
a
ch
in
e

S
ta
ti
c

S
to
ch
a
st
ic

(P
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
,

d
u
e-
d
a
te

u
n
ce
rt
a
in
ty
)

It
er
a
ti
v
el
y
u
se

L
a
w
le
r’
s

A
lg
o
ri
th
m

o
n
a

sp
ec
ia
ll
y

co
n
st
ru
ct
ed

w
o
rs
t-
ca
se

sc
en
a
ri
o

M
in
im

is
e
a
b
so
lu
te

w
o
rs
t

ca
se

m
a
xi
m
u
m

la
te
n
es
s

d
iff
er
en
ce

(r
o
b
u
st
n
es
s)

P
er
io
d
ic

O
ff
-l
in
e

D
o
n
o
th
in
g
(l
ef
t

o
r
ri
g
h
t
sh
if
t)

S
ev
a
u
x
a
n
d

S
ö
re
n
se
n

(2
0
0
4
)

S
in
g
le

M
a
ch
in
e

S
ta
ti
c

S
to
ch
a
st
ic

(r
el
ea
se

d
a
te
s)

G
A

M
in
im

is
e
ex
p
ec
te
d

re
a
li
se
d
p
er
fo
rm

a
n
ce

a
n
d
th
e
st
a
n
d
a
rd

d
ev
ia
ti
o
n
o
f
th
e

re
a
li
se
d
p
er
fo
rm

a
n
ce

(r
o
b
u
st
n
es
s)

P
er
io
d
ic

O
ff
-l
in
e

D
o
n
o
th
in
g
(l
ef
t

o
r
ri
g
h
t
sh
if
t)

V
a
n
d
e

V
o
n
d
er

et
a
l.

(2
0
0
8
)

R
es
o
u
rc
e-

co
n
st
ra
in
ed

P
ro
je
ct

S
ch
ed
u
li
n
g

S
ta
ti
c

S
to
ch
a
st
ic

(P
ro
ce
ss
in
g
ti
m
e

v
a
ri
a
b
il
it
y
)

H
eu
ri
st
ic
s
su
ch

a
s

V
A
D
E
,
S
C
T
,

T
a
b
u
S
ea
rc
h

M
in
im

is
e
d
ev
ia
ti
o
n
s
o
f

co
m
p
le
ti
o
n
ti
m
es

(s
ta
b
il
it
y
)

P
er
io
d
ic

O
ff
-l
in
e

D
o
n
o
th
in
g
(l
ef
t

o
r
ri
g
h
t
sh
if
t)

150 I. Sabuncuoglu and S. Goren

schedule at time t ¼ 0, the environment is static. On
the other hand, if jobs continue to arrive dynamically
throughout the scheduling horizon, the environment is
said to be dynamic. ‘Stoch./Det.’ column shows the
uncertainty type present in the scheduling environ-
ment: if all job and machine parameters are constant
and known in advance the environment is determinis-
tic. Otherwise the environment is said to be stochastic
and type of the stochasticity is also noted. Other
columns of the table are self-explanatory. For a more
general review of scheduling under uncertainty includ-
ing reactive policies, the interested reader can see
Sabuncuoglu and Bayiz (2000), Vieira et al. (2003) and
Aytug et al. (2005).

The studies that are reviewed here can be broadly
divided into two categories: those that model the
uncertainty by probability density functions and define
robustness or stability measures in terms of these
functions (probabilistic approach); and those employ-
ing a scenario analysis similar to the one in Section 4
(scenario planning approach). In fact, these two
approaches are analogous in the sense that the
probabilistic approach can be considered as a scenario
planning approach with a continuum of infinitely
many scenarios and the probability of each scenario is
governed by the probability density functions used in
the probabilistic approach. Hence, the robustness or
stability measures used in both approaches are
analogous.

5.1. Probabilistic approach

5.1.1. Robustness studies

Leon et al. (1994) study robustness in a job-shop
environment. Their aim is to construct a robust initial
schedule. Given the right-shift response policy, an a
priori off-line schedule is developed to achieve high
system performance in the presence of machine
breakdowns. In their model, the disruptions are
machine failures. The times to failure and repair
distributions are assumed to be known. The shop-
floor performance measure is taken as makespan. The
robustness measure for a given schedule is represented
as a convex combination of expected makespan of the
realised schedule and expected deviation from the
original deterministic makespan (a convex combina-
tion of first and fifth measures in Section 4.2.1.1). The
authors propose several surrogate measures for this
robustness measure. In a correlation study, they
determine the best one and use a genetic algorithm to
minimise this surrogate measure. They test the
performance of the proposed algorithm under random
machine breakdown and processing time variability.
The results indicate that the proposed algorithm

outperforms the classical algorithms that focus on
minimising makespan only. As for processing time
variability, the difference is only significant when
variability is high enough.

A similar study in the context of resource-
constrained project scheduling is conducted by Al-
Fawzan and Haouari (2004). The activity durations are
subject to uncertainty in their problem. The authors
develop a bicriteria model which aims at generating
robust schedules with minimum makespan. Schedule
robustness is defined as the sum of free slacks of
activities. Free slack of an activity is defined as the
maximum amount of time the activity can slip without
delaying the start of the next activity while maintaining
resource feasibility. The authors propose a tabu-search
algorithm to approximate the set of efficient (non-
dominated) solutions. Schedules are represented as
ordered list of activities. At each iteration of the
proposed algorithm, the neighbourhood of a current
solution is generated by random feasible pairwise
swappings of the adjacent activities. The solution to be
considered in the next iteration is the schedule with the
minimum (l6makespan – (1-l) 6 total free slack)
value, where 0 � l �1. This single objective TS
algorithm is run several times, each time with an
increased value of l. During each run of the TS, a set
of non-dominated schedules is also maintained. This
set is updated by appending current neighbourhood
and removing all dominated solutions at each itera-
tion. The final approximate set is generated by
removing the dominated schedules from the union of
the sets obtained at the end of each run. The authors’
computational results indicate that the proposed
bicritaria TS algorithm in most cases generates a
moderately sized set of efficient solutions. Also its
performance on the single objective makespan mini-
misation is observed to be comparable to special
purpose (that solely aim at minimising makespan) tabu
search algorithms.

In another study, Wu et al. (1999) propose a graph-
theoretic decomposition to the job shop scheduling
problem to achieve schedule robustness. In this study,
the authors combine good properties of off-line and
on-line scheduling and propose a quasi-online method
for the job-shop scheduling problem. Their robustness
measure is expected average weighted tardiness. They
use a graph representation of this problem, in which
conjunctive arcs represent precedence constraints and
disjunctive arcs join the operations competing for the
same resource. They propose a branch and bound
algorithm that processes disjunctive arcs and change
some of them into conjunctive arcs. This effectively
makes some of the scheduling decisions. The remaining
scheduling decisions are made dynamically by applying
the ATC heuristic. In their paper, this approach is

International Journal of Computer Integrated Manufacturing 151

called a process first schedule later (PFSL) scheme.
They compare their approach with the off-line algo-
rithm (IATC) and on-line algorithm (ATC). Their
computational experiments show that the PFSL
scheme yields more robust performance under a wide
range of disturbances (various levels of processing time
variability) than traditional off-line and on-line
methods.

In a similar study, Artigues et al. (2005), propose to
generate a family of schedules instead of a unique one
to maintain schedule robustness in a job shop
environment. The families of schedules are represented
by ordered group assignments that define a sequence of
groups for each machine such that the operations
within every group are totally permutable. This
approach introduces flexibility in the sense that the
decision maker can easily switch from one solution to
another one in the family in case of disruptions. The
authors define two criteria to maximise the flexibility of
ordered group assignments: minimising the number of
groups and maximising the number of schedules
represented by the groups. They first study in a single
machine setting with due-dates. A polynomial time
algorithm is proposed to minimise the number of
groups if all jobs are ready at time t ¼ 0. They also
develop a polynomial time dynamic programming
algorithm to maximise the number of schedules if
release dates of jobs are not all zero and a given
sequence has to be represented by the ordered group
assignment. The authors use this single machine
dynamic programming algorithm as a basis for a
heuristic that generates ordered group assignments for
the job shop problem in the spirit of the Shifting
Bottleneck Heuristic. Their computational results
indicate that the proposed algorithm increases the
applicability of the given schedule by introducing
significant flexibility while keeping the makespan of the
represented schedules by the ordered group assignment
acceptable.

Jensen (2003) generates robust schedules in a shop
job environment subject to random machine break-
downs where the performance measure is taken as
makespan. The author defines two neighbourhood-
based robustness measures. The first measure is the
average makespan of the given schedule’s neighbour-
hood, where neighbourhood is defined as the set of all
the schedules that can be obtained by a pairwise
swapping of two consecutive operations on the same
machine. The second robustness measure is an estimate
(upper bound) of the first one. The author compared
the performances of these two robustness measures to
the ‘minimise makespan’ and ‘maximise slack’ criteria.
All four measures are implemented into specific genetic
algorithms and their performances (expected realised
makespan after a simulated single breakdown) are

compared under five different rescheduling methods.
The rescheduling method varies from the right-shifting
to rescheduling the whole system from scratch. The
computational results indicate that it is possible to find
a schedule having both a low makespan and a low
robustness measure. He also observed that for a
moderate breakdown time, slack-based robustness
measure works the best for simple rescheduling
methods (e.g. right-shift) whereas neighbourhood-
based robustness measures ourperform the slack-based
measure for more sophisticated rescheduling methods
(e.g. reschedule from scratch). For very large break-
down times, the author’s computational results in-
dicate that the slack-based robustness measure is
superior in most cases.

Jensen (2001) analyses the performance of the
neighbourhood-based robustness measures in a job
shop environment subject to machine breakdowns
where performance measures are taken as maximum
tardiness, total tardiness or total flowtime. For
tardiness problems, the author also proposes to
minimise a measure of lateness instead of tardiness to
increase the slack in the schedule, which may improve
the rescheduling performance. In other words, corre-
sponding lateness measures are taken as a simple
robustness measure for tardiness problems. The author
compares the performance of the neighbourhood-
based robustness measures to the simple robustness
measure and to ordinary tardiness-minimising criter-
ion. His computational experiments indicate that
lateness-based robustness measures improve schedule
robustness for problems with loose due-dates while
they are equivalent to ordinary scheduling on tight
problems. It is also observed that neighbourhood-
based robustness measures improve schedule robust-
ness when used with simple rescheduling techniques for
all cases and their improvement found to be better
than improvement gained from lateness-based robust-
ness measure in most cases. On the other hand, with
more sophisticated rescheduling methods, neighbour-
hood-based robustness measures do not improve
schedule robustness for tight total tardiness and total
flowtime problems.

Sevaux and Sörensen (2004) study robustness in a
single machine environment with stochastic release
dates. The performance measure is the total weighted
number of tardy jobs. The authors develop a genetic
algorithm where the expected realised performance
and the standard deviation of the realised performance
(first and sixth measures of Section 4.2.1.1) are
employed as fitness functions to generate robust
schedules. Their computational experiments show
that the proposed robust fitness functions improve
schedule robustness as compared to using the determi-
nistic fitness function (total number of tardy jobs).

152 I. Sabuncuoglu and S. Goren

5.1.2. Stability studies

One of the earlier studies in this area is by Wu et al.
(1993) who consider single-machine rescheduling
problem with machine disruptions. They reschedule
the jobs in response to each machine failure so that
minimum makespan is achieved with high schedule
stability. Note that these two goals often conflict;
minimising makespan usually requires some changes in
the schedule, but high schedule stability can be
achieved by minimising the number of changes.
Measuring schedule stability is a difficult task unlike
a regular system-performance measure such as make-
span. The authors consider two criteria for stability.
The first is the deviation of revised schedule with
regard to job starting times. This criterion is useful if
the secondary resources such as tools and fixtures are
delivered according to the original schedule. The
second criterion is the deviation of the revised schedule
from the original schedule in terms of job sequence.
This criterion is useful if there are sequence-dependent
tooling, fixtures, set-ups, etc. The measure for the first
criterion is the average absolute deviation from the
original job starting times; these can be easily
calculated (first measure in Section 4.2.2). However,
the second criterion is difficult to measure. One
possible surrogate measure for the second criterion is
the sum of absolute deviations of job starting times
from the right-shift schedule. Recall that the right-shift
schedule maintains the original sequence and repre-
sents minimal disruption to the original schedule when
job sequence is important. The authors have two
problem types that differ with respect to the stability
criterion in use. Since the problem is NP-hard, even
without stability considerations, they use heuristics to
solve it. The first heuristic is based on pairwise
swapping. The second type utilises genetic algorithms.
All heuristics construct a list of non-dominated
schedules. To test the performances of these algo-
rithms, they conduct two sets of experiments. In the
first set, they generate small problems and compare
their solutions with the optimal solution obtained by a
mixed integer-programming model. In the second set,
they measure the effectiveness of their heuristics with
large problems. In the first set of experiments, all
heuristics are able to find optimal solutions. In the
second set of experiments, they confirm that stability of
the schedules could be improved significantly with little
sacrifice in makespan. No significant difference is
observed between algorithms but the computational
burden of the pairwise-swapping heuristic is more than
that of the adjacent pairwise swapping heuristic; the
genetic algorithm is in between.

In another study, Mehta and Uzsoy (1998, 1999)
generate initial stable schedules under conditions of

random machine breakdowns. They call their initial
schedules as predictable schedules. Like Wu et al.
(1993), Mehta and Uzsoy argue that a good predict-
able schedule should have not only a good shop floor
performance, but should also take predictability (i.e.
stability) into account. That is, deviations from the
original schedule should be minimal because many
other decisions (such as purchasing, tooling, etc.) on
the shop floor are planned according to this initial
schedule. Their term ‘predictable scheduling’ is an
alternative approach to what is known as scheduling/
rescheduling in the classical scheduling literature. The
objective of this approach is to generate an initial
schedule such that deviation from the initial schedule
during execution is minimised while keeping shop floor
performance degradation to an acceptable level.

In their first paper, Mehta and Uzsoy (1999) study
the single machine scheduling problem where jobs have
nonzero ready times and there are random machine
breakdowns. The time-to-failure and repair duration
distributions are assumed to be known a priori. In the
second paper (1998), they study the job-shop schedul-
ing problem with random machine breakdowns. In
both studies, they use maximum lateness as the shop
floor performance measure. Unlike Wu et al. (1993),
they try to minimise deviations while generating an
initial schedule, not when rescheduling after a break-
down. Deviation from the initial schedule is measured
in terms of expected absolute deviation of job-
completion times (the first measure in Section 4.2.2).
The authors offer a two stage approach. In the first
stage a job sequence is determined that minimises the
maximum lateness. They use the algorithm and shifting
bottleneck algorithm of Carlier (1982) for the single
machine case and the job-shop case, respectively. In
the second stage, they insert some idle time in this
sequence. The amounts of idle time are large enough to
provide protection against machine breakdowns but
they are small enough so that maximum lateness does
not greatly increase. Their computation results indicate
that stability can be easily improved while slightly
increasing maximum lateness.

O’Donovan et al. (1999) conjoin reactive and
proactive approaches and examine the scheduling/
rescheduling policy using stability and efficiency
measures in a single-machine environment. Schedule
efficiency is measured by total tardiness; stability is
measured by absolute completion-time deviations from
the initial schedule (the first measure in Section 4.2.2).
The system under study has nonzero job-ready times
and random machine breakdowns. This study is
similar to the one by Mehta and Uzsoy (1999) except
that total tardiness instead of maximum lateness is
used as the system performance measure. They use
pure ATC (Morton and Rachamadugu 1982) and ATC

International Journal of Computer Integrated Manufacturing 153

with inserted idle times for initial schedule generation.
Rescheduling alternatives are ATC, a modified ATC
(which calculates the slack of a job based on its
predicted completion time, taking inserted idle times
into account) and right-shift scheduling. Experimental
results indicate that ATC with inserted idle times for
scheduling and modified ATC for rescheduling are the
best for stability. The authors also consider sensitive
jobs. They argue that in some production environ-
ments, jobs are sensitive to disturbances that have just
occurred and the degree of sensitivity differs from job
to job (the impact of a disruption is not felt equally by
all jobs). In this model, they propose ATC with
inserted idle times for scheduling and Smart ATC for
rescheduling. Smart ATC is similar to modified ATC,
but it uses estimated affected processing time instead of
processing time for a job.

Van de Vonder et al. (2008) generate stable initial
schedules for resource-constrained project scheduling
problem under activity duration variability. The used
stability measure is the first measure in Section 4.2.2.
Like Mehta and Uzsoy (1998), the authors follow a
two-stage approach: in the first stage, an initial
schedule with the objective of minimising makespan
is generated using a deterministic algorithm, where
activity durations are set to their mean values. In the
second stage, additional idle times are inserted at the
start of each activity to protect the schedule from
the negative effects of activity duration variation. The
amount of inserted idle times are determined using
several heuristics. VADE heuristic (Virtual Activity
Duration Extension) iteratively uses standard devia-
tions of activity durations to insert 1 unit of idleness in
front of selected activities. At each iteration, the
resulting schedule is simulated to evaluate its stability
value and is also taken as the input for the next
iteration. The schedule with the minimum stability
measure will be the output of VADE procedure. STC
(Starting Time Criticality) heuristic works in the same
iterative manner, but activity to insert additional idle
time is selected considering both weights and variances
of the activities. RFDFF (Resource Flow Dependent
Float Factor) is used as a benchmark. This heuristic
inserts an additional idle time that is equal to a
multiple (the coefficient is based on weight of the
selected activity and weights of its predecessors) of
float of the selected activity. The authors also propose
a iterative improvement heuristic which takes a
schedule generated by the aforementioned heuristics
as input. A neighbourhood of the current solution is
constructed by sliding a selected activity to all possible
discrete starting times within a time window that
would not affect other activities. The best starting time
is selected by evaluating all the neighbourhood via
simulation and this schedule is taken as input for the

next iteration. Finally a tabu search is also proposed.
The authors’ computational experiments show that
STC is generally the best heuristic if no improvement
phase is considered. They also observe that if all
project activities are subject to significant uncertainty,
tabu search yields the best result but is computation-
ally expensive. STC (or VADE) with an improvement
phase results in an almost equally performance.

Guo and Nonaka (1999) study stability in a 3-
machine flow shop where the performance measure is
makespan and the middle machine is subject to a single
machine breakdown. Their stability measure (called
robust function by the authors) is the first measure in
Section 4.2.2. The authors develop an algorithm to
optimally reschedule the system by considering differ-
ent intervals on time of the machine breakdown (t) and
downtime duration (D). Hence, different schedules
would be obtained for different D and t values after
rescheduling. The authors propose to first generate
several optimal schedules without considering the
machine breakdown. Each optimal schedule is then
analysed according to the proposed algorithm for
different D and t values to calculate its expected
stability value. The schedule with the minimum
stability measure is then selected to set out and it is
rescheduled according to the proposed algorithm when
the breakdown occurs during its implementation.

5.2. Scenario planning approach

Daniels and Kouvelis (1995) generate initial robust
schedules to hedge against processing time variability
in a single machine environment where the perfor-
mance measure is total flowtime. The authors propose
a scenario-based representation and analysis of un-
certainty rather than using stochastic models. They use
the second measure and policy outlined in Section
4.2.1.2 for robustness. Recall that this policy finds the
schedule with the least performance degradation in its
worst case scenario. They formulate mathematical
programs called the absolute deviation robust schedul-
ing problem ADRSP and the relative deviation robust
scheduling problem RDRSP. Their solutions give
robust schedules, when the number of scenarios is
finite. The ADRSP and RDRSP differ from one
another only in their definition of robustness. The first
one measures the deviations from optimal absolutely,
whereas the other measures it relatively (similar to
percentage deviation). They prove that this problem is
NP hard. In practice, the number of scenarios is
infinite and the problem is expected to be more difficult
because possible processing-time values for jobs are
given as ranges (for example the processing time of job
1, P1 2 [a, b]). However Daniels and Kouvelis (1995)
prove that a properly selected finite set of scenarios is

154 I. Sabuncuoglu and S. Goren

enough to determine the worst-case absolute deviation
of a given sequence and they construct a procedure
that does the worst case evaluation in polynomial time.
They develop a branch and bound algorithm and two
O(n log n) surrogate relaxation heuristics that utilise
this procedure to generate a robust sequence. The
computational burden of the branch and bound
algorithm, which solves the problem optimally, grows
rapidly with problem size. Still the number of
sequences evaluated is small as compared to total
number of sequences, n!, where n is the number of jobs.
The heuristics require far less computational time
because they evaluate far fewer permutations of jobs to
determine approximate robust sequences; their com-
putational burden grows only modestly as problem size
increases. Moreover, they closely approximate the
optimal absolute deviations. The authors compare
their solutions to SEPT (shortest expected processing
time) solutions, which are used in practice to generate
the optimal sequence of jobs. They observe that SEPT
performs poorly in terms of robustness.

The study of Daniels and Kouvelis (1995) hedges
against the worst contingency that may arise without
considering any specific probability distribution. The
approach is known as the robustness approach in the
literature. The reader is referred to Kouvelis and Yu
(1996), who apply this method to various problems
such as linear programming, assignment problem,
shortest path problem, etc. as well as scheduling.

Yang and Yu (2002) study the same problem as
Daniels and Kouvelis (1995) - minimise total flow
time in a single machine environment with processing
time variability- with discrete, finite set of processing
time scenarios rather than interval data. The authors
consider three robustness measures: 1) minimise
worst-case scenario cost; 2) minimise worst-case
scenario absolute regret; and 3) minimise worst-case
scenario percentage regret. The problem is proved to
be NP-complete for all three measures even in the case
of two scenarios. The authors show that all three
measures can be solved by a single method. An exact
O(2n) dynamic programming algorithm as well as two
polynomial time heuristics (a greedy heuristic and a
heuristic which uses average total flowtime over all
scenarios as a surrogate robustness measure) are
presented. Their computational experiments indicate
that the greedy heuristic outperforms the surrogate
heuristic, the difference becoming more and more
obvious as the number of scenarios increase.

Kasperski (2005) studies robustness in a single
machine environment with precedence constraints with
maximum lateness criterion. Job processing times and
due-dates are uncertain and each of them involves a
range of possible realisations. Like Daniels and
Kouvelis (1995), the author takes a robustness

approach aiming to minimise worst-cast scenario
performance (minimax regret). Note that this robust-
ness measure is the second measure in Section 4.2.1.2.
The author develops a polynomial time algorithm,
which repeatedly uses Lawler’s algorithm on specially
constructed worst-case scenario candidates.

In another study Daniels and Carillo (1997)
generate robust schedules for a single machine
environment with processing time uncertainty where
the performance measure is total flowtime. They
assume that the processing time of an individual job
can be specified only imprecisely and this uncertainty is
captured within a set of processing time scenarios,
where each scenario can be realised with some positive
probability. Alternative job sequences are evaluated
according to the likelihood that actual system perfor-
mance will be no worse than a given target level T. The
scheduling objective is to determine the sequence
(which is called b-robust sequence) that maximises
this likelihood. The authors prove that this problem is
NP-hard and formulate the problem as an integer
program (IP). They develop a branch-and-bound
algorithm to solve this IP. They also develop a
heuristic where only a few specially generated proces-
sing time scenarios are evaluated. Their computational
results indicate that b-robust schedules perform very
well with respect to the expected total flowtime
measure in addition to maximising the likelihood of
achieving a flowtime performance no worse than a
given target level. The computational results also show
that the proposed heuristic performs well.

6. Concluding remarks and future research directions

In this paper, proactive scheduling problem is analysed
and several robustness and stability measures are
presented. The scheduling decisions are classified in
terms of when-to-schedule and how-to-schedule and
the required response types and methods to cope with
these disruptions are identified. The existing studies are
also reviewed. One can make the following observa-
tions and the related further research directions in this
area:

(1) An analysis of off-line scheduling and on-line
scheduling methods is needed in a dynamic and
stochastic environment that includes the con-
sideration of robustness and stability measures.

(2) The relative performance of full scheduling and
partial scheduling in a dynamic and stochastic
environment is needed for both robustness and
stability measures.

(3) Even though there are some studies that
analyse rescheduling frequency, the relative
weaknesses and strengths of different types of

International Journal of Computer Integrated Manufacturing 155

response (do nothing, reschedule or repair) are
not thoroughly known.

(4) Even though the scheduling decisions are
analysed to some extent by Sabuncuoglu and
Kizilisik (2003), when-to-schedule policies (per-
iodic, continuous, or adaptive) also need
further research. Specifically, it would be
interesting to know the conditions under which
a particular policy is better than others.

(5) Should practitioners consider robustness, sta-
bility, or both? Are robustness and stability
conflicting objectives? What is the trade-off
between these performance metrics (stability,
robustness and efficiency)?

(6) Can one develop a bicriteria approach that
considers both the stability and robustness
measures simultaneously?

(7) As Mehta and Uzsoy (1998) have stated, one
needs to develop better surrogate measures for
stability (and/or robustness).

(8) As also acknowledged by Leon et al. (1994),
the existing studies should be extended for
other performance measures in addition to
makespan.

References

Abumaizar, R.J. and Svestka, J.A., 1997. Rescheduling job
shops under disruptions. International Journal of Produc-
tion Research, 35, 2065–2082.

Akturk, M.S. and Gorgulu, E., 1999. Match-up scheduling
under a machine breakdown. European Journal of
Operational Research, 112, 81–97.

Al-Fawzan, M.A. and Haouari, M., 2005. A bi-objective
modal for robust resource constrained project schedul-
ing. International Journal of Production Economics, 96,
175–187.

Artigues, C., Billaut, J.C., and Esswein, C., 2005. Max-
imization of solution flexibility for robust shop schedul-
ing. European Journal of Operational Research, 165,
314–328.

Aytug, H., et al., 2005. Executing production schedules in the
face of uncertainties: a review and some future directions.
European Journal of Operational Research, 161 (1), 86–
110.

Bean, J.C., et al., 1991. Matchup scheduling with multiple
resources, release dates and disruptions. Operations
Research, 39 (3), 470–483.

Carlier, J., 1982. The one-machine sequencing problem.
European Journal of Operational Research, 11, 42–47.

Church, L.K. and Uzsoy, R., 1992. Analysis of periodic and
event-driven rescheduling policies in dynamic shops.
International Journal of Computer Integrated Manufac-
turing, 5, 153–163.

Daniels, R.L. and Carillo, J.E., 1997. b-robust scheduling for
single machine systems with uncertain processing times.
IIE Transactions, 29, 977–985.

Daniels, R.L. and Kouvelis, P., 1995. Robust scheduling to
hedge against processing time uncertainty in single-stage
production. Management Science, 41 (2), 363–376.

Davenport, A.J. and Beck, J.C., 2000. A survey of techniques
for scheduling with uncertainty [online]. Available from:
http://eil.utoronto.ca/profiles/chris/chris.papers.html [Ac-
cessed 18 April 2008].

Guo, B. and Nonaka, Y., 1999. Rescheduling and
optimization of schedules considering machine failures.
International Journal of Production Economics, 60–61,
503–513.

Herroelen, W. and Leus, E., 2005. Project scheduling under
uncertainty: survey and research potentials. European
Journal of Operational Research, 165 (2), 289–306.

Jensen, M.T., 2001. Improving robustness and flexibility of
tardiness and total flow time job shops using robustness
measures. Applied Soft Computing, 1, 35–52.

Jensen, M.T., 2003. Generating robust and flexible job shop
schedules using genetic algorithms. IEEE Transactions on
Evolutionary Computation, 7 (3), 275–288.

Kasperski, A., 2005. Minimizing maximal regret in the single
machine sequencing problem with maximum lateness
criterion. Operations Research Letters, 33, 431–436.

Kouvelis, P. and Yu, G., 1997. Robust discrete optimization
and its applications. Dordrecht: Kluwer Academic.

Kutanoglu, E. and Sabuncuoglu, I., 2001. Experimental
investigation of iterative simulation-based scheduling in a
dynamic and stochastic job shop. Journal of Manufactur-
ing Systems, 20 (4), 264–279.

Leon, V.J., Wu, S.D., and Storer, R.H., 1994. Robustness
measures and robust scheduling for job shops. IIE
Transactions, 26 (5), 32–43.

Leus, R. and Herroelen, W., 2005. The complexity of
machine scheduling for stability with a single disrupted
job. Operations Research Letters, 33, 151–156.

Mehta, S.V. and Uzsoy, R., 1998. Predictable scheduling of a
job shop subject to breakdowns. IEEE Transactions on
Robotics and Automation, 14 (3), 365–378.

Mehta, S.V. and Uzsoy, R., 1999. Predictable scheduling of a
single machine subject to breakdowns. International
Journal of Computer Integrated Manufacturing, 12 (1),
15–38.

Morton, T.E. and Rachamadugu, R.V., 1982. Myopic
heuristics for the single machine weighted tardiness
problem. Tech. Report CMU-RI-TR-83-09, Robotics
Institute, Carnegie Mellon University.

O’Donovan, R., Uzsoy, R., and McKay, K.N., 1999.
Predictable scheduling of a single machine with break-
downs and sensitive jobs. International Journal of
Production Research, 37 (18), 4217–4233.

Raman, N., Rachamadugu, R.V., and Talbot, B., 1989.
Real-time scheduling of an automated manufacturing
center. European Journal of Operations Research, 40,
222–242.

Sabuncuoglu, I. and Bayiz, M., 2000. Analysis of reactive
scheduling problems in a job shop environment. Eur-
opean Journal of Operational Research, 126, 567–586.

Sabuncuoglu, I. and Hommertzheim, D.L., 1992. Dynamic
dispatching algorithm for scheduling machines and
AGVs in a flexible manufacturing system. International
Journal of Production Research, 30, 1059–1080.

Sabuncuoglu, I. and Karabuk, S., 1999. Rescheduling
frequency in an FMS with uncertain processing times
and unreliable machines. Journal of Manufacturing
Systems, 18 (4), 1–16.

Sabuncuoglu, I. and Kizilisik, O.B., 2003. Reactive schedul-
ing in a dynamic and stochastic FMS environment.
International Journal of Production Research, 41 (17),
4211–4231.

156 I. Sabuncuoglu and S. Goren

Sevaux, M. and Sörensen, K., 2004. A genetic algorithm for
robust schedules in a one-machine environment with
ready times and due dates. 4OR: Quarterly Journal of the
Belgian, French and Italian Operations Research Societies,
2, 129–147.

Sotskov, Y., Sotskova, N.Y., and Werner, F., 1997. Stability
of an optimal schedule in a job shop. Omega: the
International Journal of Management Science, 25 (4),
397–414.

Van de Vonder, S., Demeulemeester, E., and Herroelen, W.,
2008. Proactive heuristic procedures for robust project
scheduling: an experimental analysis. European Journal
of Operational Research, 189 (3), 723–733 (in press).

Vieira, G.E., Herrmann, J.W., and Lin, E., 2003. Reschedul-
ing manufacturing systems: a framework of strategies,
policies and methods. Journal of Scheduling, 6, 39–62.

Wu, S.D., Byeon, E., and Storer, R.H., 1999. A graph-
theoretic decomposition of the job shop scheduling
problem to achieve scheduling robustness. Operations
Research, 47 (1), 113–124.

Wu, S.D., Storer, R.N., and Chang, P., 1993. One-machine
rescheduling heuristics with efficiency and stability as
criteria. Computers and Operations Research, 20 (1), 1–14.

Yamamoto, M. and Nof, S.Y., 1985. Scheduling/reschedul-
ing in a manufacturing operating system environment.
International Journal of Production Research, 23 (4), 705–
722.

Yang, J. and Yu, G., 2002. On the robust single machine
scheduling problem. Journal of Combinatorial Optimiza-
tion, 6, 17–33.

International Journal of Computer Integrated Manufacturing 157

