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INTRODUCTION

With the global obesity crisis continuing to take its toll, the demand for solutions has increased. �e 
discussion about nature vs. nurture and biology vs. psychology has culminated in declaring obesity 
as a disease by some medical organizations. Environmental factors and genetic predisposition, rather 
than personal responsibility are to blame, as for any other disease. �is view implies that the biological 
processes regulating body weight are essentially operating at the unconscious realm. Although this 
has long been accepted for the so-called homeostatic regulation of energy balance, it is less clear for 
the hedonic controls. Here, we critically evaluate the important question how rodent models can help 
understand the contribution of hedonic neural processes to body weight regulation. When looking at 
the concepts of reward, reinforcement, motivation, pleasure addiction, and their neural mechanisms, 
in the context of eating and exercise, the new view emerges that homeostatic and hedonic controls are 
closely interrelated and o�en act in unison at the unconscious level to achieve biologically adaptive 
responses. Although the discussion of a body weight set point has been neglected in recent years, this 
topic becomes more pressing as an important aspect for e�ective treatment of obesity.

HEDONIC MECHANISMS OVERPOWER HOMEOSTATIC 

REGULATION

When the body weight of animals and humans is disturbed by periods of either under- or overfeeding, 
it promptly returns to pre-perturbation levels through a process termed homeostatic regulation that 
involves the controls of both energy intake and energy expenditure (1, 2). �e basic hypothalamic 
circuitry underlying this regulation has long been known (3) and was much re�ned, particularly 
over the last 20 years in the wake of the discovery of leptin. In brief, two distinct neural populations 
in the mediobasal hypothalamus act as primary energy sensors and engage a complex network of 
e�ector circuits controlling both energy-in and energy-out in a biologically adaptive fashion [for 
review, see Ref. (4–7)].

However, while most agree with such basic homeostatic regulation, there has been much 
 discussion regarding the exact level of defended body weight and the mechanisms involved 
(8–13). Clearly, there is no fixed set point around which mammalian species regulate their 
body weight. Rather, it is flexible, depending on both internal and external conditions 
including genetic and epigenetic predisposition, food availability, food palatability, and other 
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FIGURE 1 | Schematic representation of the (A) dichotomy and (B) integrative models of homeostatic and hedonic control of food intake and 

regulation of body weight. In the dichotomy model, homeostatic and hedonic mechanisms are largely independent. In the integrative model, the neural 

circuitries for internal nutrient sensing and hedonic processing act in concert to control eating and body weight and the hedonic system becomes part of the 

homeostatic system. Signals of both short- and long-term internal nutrient availability, such as leptin, gut hormones, and metabolites, are sensed by both, 

the hypothalamic nutrient sensor (pathway 1) and hedonic/reward processing centers (2), and these circuits communicate bidirectionally with each other (3 

and 4) to unconsciously affect eating. For simplicity, energy expenditure as effector mechanism in the regulation of body weight is not included. For details, 

see text.
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environmental factors (10). This is best illustrated by the sea-
sonably variable and homeostatically defended body weight 
set point of hibernators (14).

One factor that is widely believed to be very important for 
in�uencing the individual body weight set point is food hedon-
ics, particularly the shi� toward higher body weight by highly 
palatable, calorie-dense foods (Figure 1A). �e clearest example 
of this shi� in defended body weight is the cafeteria diet-induced 
obese rat and mouse (15). Although it is suspected that the 
increased availability of highly palatable, energy-dense foods 
is also mostly responsible for the current obesity epidemic, it is 
much harder to prove, because of di�culties to strictly control 
energy balance and environmental conditions in humans over 
extended periods of time as it is possible in animal models.  
A widely accepted view is that in genetically and/or epigeneti-
cally susceptible individuals, the obesogenic food environment 
is able to establish a new, higher body weight set point that is 
similarly defended against forced fasting and overfeeding as in 
normal weight individuals (11). �erefore, one of the key issues 
in understanding body weight regulation is the neurological 
explanation for this shi� in defended body weight. What are 
the neural mechanisms that allow availability and palatability of 
energy-dense foods to overpower the basic homeostatic defense 
system? Understanding these mechanisms could lead to the 
development of more speci�c drugs or behavioral interventions 
in the �ght against obesity.

HEDONIC PROCESSING IS AN INTEGRAL 

PART OF THE HOMEOSTATIC 

REGULATORY SYSTEM

�e view that the hedonic and homeostatic neural circuitries are 
not separate entities but are part of the same regulatory system 
is rapidly gaining traction. �is is based on evidence for bidirec-
tional modulation of corticolimbic brain areas by interoceptive 

signals, and of the hypothalamus by exteroceptive signals and 
their cognitive and emotional correlates (Figure 1B).

Bottom-up Modulation of Corticolimbic 

Circuits of Cognition and Motivation by 

Interoceptive Signals of Nutrient 

Availability
�e bottom-up control of hedonic and cognitive processes by 
internal signals is not a new insight. Given the crucial impor-
tance of nutrients for survival, it is a fundamental attribute of the 
expression of hunger and goes back to the beginning of evolution 
of the nervous system. Speci�cally, the hungry state is character-
ized by increased incentive salience attribution (the mechanism 
by which a goal object such as food is becoming highly desired 
and wanted  –  a behavioral magnet), which is neurologically 
manifested by heightened activity of the mesolimbic dopamine 
system (16–18). What is new, are some of the messengers and 
neural mechanisms shown to be involved. For example, it is 
now clear that one of the most eminent homeostatic regulators 
of body weight – leptin – modulates appetite by acting not only 
on the hypothalamus but also on components of the mesolimbic 
dopamine system (19–22) and on olfactory and taste sensory 
processing (23–25). Similarly, many other internal signals 
of nutrient availability, such as ghrelin, intestinal GLP-1 and 
PYY, and insulin, as well as glucose and fat, also partly act on 
corticolimbic structures involved in the cognitive and rewarding 
aspects of food intake control (26–36). E�ects on cognitive func-
tions by these hormones are interesting in the context of human 
studies showing impairments of both cognitive and metabolic 
functions in obese patients (37–39). Although the common link 
is not yet known, a leading hypothesis suggest that intestinal 
dysbiosis resulting from an interaction between sub-optimal 
nutrition, gut microbiota, and the innate immune system with 
subsequent changes in gut-to-brain signaling and blood–brain 
barrier integrity are important (40–43).
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Top-down Modulation of the Classical 

Hypothalamic Regulator by Sensory, 

Cognitive, and Motivational Signals
�e other driver of this integrated view is new insight into the 
top-down modulation of classical homeostatic circuitries by 
cognitive and emotional processing in corticolimbic systems 
(44). Cue-induced, conditioned food intake is thought to be an 
important mechanism in overeating by humans in an obesogenic 
environment (45, 46) and has been studied in rodents for quite 
some time (47). Some of the relevant pathways involved in this 
cognition-dependent food intake have been identi�ed in the 
rat by demonstrating dependence on amygdala and prefrontal 
cortex-to-lateral hypothalamus projections (48, 49). Most 
recently, evidence for top-down modulation of AGRP neurons 
in the mediobasal hypothalamus, the epicenter of classical 
homeostatic regulation, was presented. �ese powerful neurons 
have been thought to be mainly controlled by circulating hor-
mones and metabolites in a relatively slow waxing and waning 
fashion commensurate with the fasted and fed states. Using 
modern, genetically based neuron-speci�c technology, it was 
demonstrated that activity of AGRP neurons is also controlled 
on a second-by-second basis by the conditioned expectation of 
imminent food ingestion (50, 51). �is acute external sensory and 
cognitive control over AGRP neuron �ring rate is likely accom-
plished by direct or indirect inputs from a number of cortical and 
subcortical areas as demonstrated by neuron-speci�c retrograde 
viral tracing (52).

CONTROL OF FOOD INTAKE AND 

REGULATION OF ENERGY BALANCE IS 

PREDOMINANTLY SUBCONSCIOUS

It is clear that the classical hypothalamic neural circuitry respon-
sible for the homeostatic regulation of energy balance and body 
weight, similar to homeostatic regulation of other bodily functions, 
such as blood glucose or blood pressure, is operating largely beyond 
awareness, at the unconscious level. In addition and as discussed 
above, the incentive sensitization mechanism by which interocep-
tive signals of energy depletion such as low leptin drive “wanting” 
through the mesolimbic dopamine system (16, 18, 53) is also largely 
operating outside awareness as demonstrated in human neuroim-
aging studies (54–56). Even in the absence of metabolic hunger and 
associated interoceptive sensitization signals, conscious awareness 
of the cue does not seem necessary. �is has been shown in rats 
with cue-induced conditioned food intake (47, 48). Furthermore, 
the human brain can learn the value of monetary rewards and use 
it for decision-making without conscious processing of contextual 
cues (57). Although optimal decision-making requires self-
control, represented in the dorsolateral prefrontal cortex (58, 59), 
the transformation of reward-driven behavioral action is not under 
obligatory control of this brain area and o�en constrains the free 
will to act (60). Finally, neural activity in certain brain areas can 
be going on for quite some times before humans become aware of 
their own decision (61, 62), suggesting that much of the processes 
leading to a decision are taking place at the unconscious level.

Ingestive behavior in both humans and rodents appears to become 
particularly resistant to cognitive controls when it is highly habitual 
(63, 64). Under normal conditions, information about possible out-
comes is important for cue-induced goal-directed actions making 
such actions sensitive to devaluation. However, habitual behavior no 
longer depends on learned reward expectations and is thus largely 
insensitive to mechanisms of reward devaluation (64, 65). �e neural 
circuits governing non-habitual behaviors are di�erently organized 
than those for habitual or automatic behaviors. Non-habitual behav-
iors heavily depend on the ventral striatum (nucleus accumbens) 
and the ventromedial prefrontal cortex, whereas habitual behaviors 
depend more on the dorsolateral striatum (65, 66). �e memory 
storage and recall mechanisms are also di�erent for habitual vs. 
non-habitual actions and behaviors. In distinction to declarative 
memories which require a conscious mind, procedural memories 
operate largely below the level of conscious awareness and storage is 
more distributed (67–69). As a consequence, procedural memories 
and the habitual ingestive behaviors they guide are relatively resist-
ant to inhibitory cognitive control and executive functions.

CONCLUSION

Animal models have been crucial for dissecting the complex 
mechanisms underlying predisposition to obesity. Given that the 
overwhelming majority of genetic loci linked to human obesity are 
associated with neural functions (70), it is not surprising that the 
neural controls of food intake and regulation of energy balance 
are a main component of these mechanisms. Although functional 
neuroimaging in humans is also starting to make important 
contributions, only the more invasive approaches in rodents have 
been able to provide mechanistic explanations. As a result, the 
traditional dichotomy between homeostatic and non-homeostatic/
hedonic systems responsible for the control of appetite and regula-
tion of body weight, although heuristically still useful, no longer 
adequately describes the extensive anatomical and functional 
interactions between the two systems. In addition, much of the 
output of this larger interactive system is bypassing awareness. �e 
implications of these new insights are far reaching as they will guide 
not only future research but also the design of pharmacological and 
behavioral therapies for obesity and eating disorders.
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