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Heegaard and Regular Genus of 3-Manifolds
with Boundary

P. CRISTOFORI, C. GAGLIARDI and L. GRASSELLI

ABSTRACT. By means of branched coverings techniques, we prove that
the Heegaard genus and the regular genus of an orientable 3-manifold with
boundary coincide.

1. PRELIMINARIES

Throughout this paper the term “manifold” will denote a compact,
connected, orientable PL-manifold with (possible empty) boundary.

An (n + 1)-coloured graph (with boundary) is a pair (I',7), where
I' = (V(I'), E(T)) is a multigraph and v : E(T') — A, = {0,1,...;n}
is a map such that y(e) # y(f), for each pair e, f of adjacent edges of
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I'; + is called edge-coloration on I'. For each B C A,,, the B-residues of
(T, 7) are the connected components of the graph I'g = (V(I'),vy~1(B)).
For each ¢ € A,,, we set é = A, ~ {c}.

The vertices of I' whose degree is strictly less than n + 1 are called
the boundary vertices of I'; if ' has no boundary vertices, i.e. if I is
regular of degree n + 1, then (T',7) is said to be an (n + 1)-coloured
graph without boundary.

The graph'(T', v) is called regular with respect to the colour ¢ € A, iff
T'; is regular of degree n. From now on, we only consider {(n+1)-coloured
graphs which are regular with respect to the “last” colour n.

If (T',v) is an (n + 1)-coloured graph, the boundary graph (9T, %y)
is defined in the following way:

- the vertices of JT" are the boundary vertices of I';

- two vertices of JI" are joined by a ¢-coloured edge iff they belong to
the same {n, c}-residue of (T, y).

Given an (n + 1)-coloured graph (T',7), let us denote by g(I') the
number of components of T'; by convention we set g(@) = 1. A connected
(n + 1)-coloured graph (T,~) is called contracted iff g(T's) = 1 and, for
every ¢ € A,_;,9(T:) = g{(aT).

Let K be an n-dimensional pseudocomplex {IIW]. The disjoint star
std(s, K') of a simplex s in K is the disjoint union of the n-simplexes
containing s, with re-identification of the (n — 1)-simplexes containing
s and of all their faces; the disjoint link of s in K is the subcomplex
lkd(s, K) = {r € std(s, K)/sNT = 0}.

A vertezr-colorationon K isamap £ : V(K) — A, which is injective
on every simplex of K. If K is homogeneous, the pair (K, £) is called a
coloured n-complex. ‘

_ From now on, for sake of conciseness, we often drop edge - and
vertex - colorations, writing I' and K instead of (I',7) and (K, ¢).

There exists a correspondence between (n + 1)-coloured graphs and
coloured n-complexes. In fact, given an (n + 1)-coloured graph I', we
can construct a coloured n-complex K(I') in the following way:

- take an n-simplex o(v) for each v € V(I') and label its vertices by
Ag;
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- for each ¢ € A, and each pair v,w of c-adjacent vertices in T,
identify the (n — 1)-faces of o(v) and o(w) opposite to the vertices
labelled ¢, so that equally labelled vertices coincide.

The above construction can be easily reversed in order to associate
an (n + 1)-coloured graph I'(K') to each coloured n complex K.

Note that, by construction, each (A, — {¢g,...,cz})-residue Z of T
corresponds to a unique h-simplex s of K(I'), whose vertices are labelled
by {co,...,cn} and viceversa; moreover K(Z) =lkd(s, K(T')). It is easy
to see that I'(K(T')) = T; conversely K(I'(K)) = K iff the disjoint star
of every simplex in K is strongly connected [G]. In this case K is said
to be representable.

If [K(T)| (the polyhedron determined by K(I')) is a manifold, then
O(|K(T)|) = |K(0T')| and we say that |K(T')] is represented by I'. More-
over | K (T')| is orientable iff T is bipartite.

A contracted (n + 1)-coloufed graph representing a manifold M is
called a crystallization of M.

For a general survey on manifold representation theory by means
of edge-coloured graphs, see [FGG].

In [G;], [Gs] a particular concept of imbedding of a coloured graph
into a surface is defined. This naturally leads to the definition of an
invariant for manifolds, the regular genus, which extends to dimension
n the classical notion of genus of a surface.

In [G3] the regular genus of a closed 3-manifold is proved to coin-
cide with its classical Heegaard genus ([H] and [He}). In this paper we
extend the result, for the orientable case, to manifolds with boundary.
In particular, by means of branched coverings techniques, we prove that
the Heegaard genus (see [M]) and the regular genus of an orientable
3-manifold with boundary coincide. About non-orientable 3-manifolds
with boundary, we only know that the Heegaard genus is less than or
equal to the regular genus, since part of the proof of the main result of
this paper (Lemma 1 and 3) still holds. Unfortunately we lack, for the
non-orientable case, results similar to those of [M], which are required
in Lemma 2 to prove the opposite inequality.
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2. REGULAR GENUS

Let T be an (n + 1)-coloured graph (with boundary), regular with
respect to the colour n.

We call extended graph associated to T’ the (n + 1)-coloured graph
I'* such that:

- V(I'*) = V(T')u V", where V* is in one-to-one correspondence with

V{(ar);

- E(I'*) = E(T)U E*, where E* is the set of all possible n-coloured
edges whose endpoints are a boundary-vertex of ' and its corre-
spondent vertex in V'™,

A regular imbedding of T' into a surface (with boundary) F, is an
imbedding ¢* of I'* into F, satisfying the following conditions:

(a) (V") =aF ne(IT*])

(b) the connected components of (int F) — ¢*(|T'*|) (the regions of the
imbedding) are open balls;

(c) the boundary of any region R of :* is either the image of a cycle of
I'* (internal region) or the union of the image R’ of a path in I'*
and an arc R” of @F, the intersection consisting of two (possibly
coincident) vertices of +*(V*) (boundary region);

(d) there exists a cyclic permutation ¢ = (gp,€1,...,€n) of A, such
that for each internal region R (resp. boundary region R' UR"),
the edges of R (resp. of R') are alternatively coloured ¢; and ¢4,

(7' € Zn-!-l)- :

According to [G,} and [G4), for each cyclic permutation € = (go,£1,
...,n) of A,, there exists a surface (with boundary) F; and a regular
imbedding ¢, of I into F,; moreover F, is orientable iff ' is bipartite.
F, is called the regular surface associated to I' and €.

If F, is orientable, we have the following formula (see [G4 Proposi-
tion 4]):
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gemls(Fe) =1- ';‘ [ z ge.‘c.‘+1(r)+
f€Zn 41
*)

30— m)e) - ) + 2 - M| - Log,,. (@)

where g;;(T) (resp. 2¢;;(T)) is the number of cycles of T'y; ;3 (resp. of
OT(;,;3) and p(T) (resp. p(I')) is the order of I (resp. of 9T'). Of course
an analogous formula holds for non-orientable regular surfaces.

Set p.(I')= genus(F.). The regular genus p(T') of " is defined as the
minimum p,(I') among all cyclic permutations ¢ of A,,.

Given an n-manifold M the reqular genus of M is the non-negative
integer:
G(M) = min{p(I')/T represents M}

If I is a 4-coloured graph representing a 3-manifold M, let us describe
an effective construction of F,.

Let K (resp. K} be the 1-dimensional subcomplex of K generated
by the vertices coloured (g;,3) (resp. (£g,€2)). Denote by H, the largest
2-dimensional subcomplex of SdK (where Sd means “first barycentric
subdivision”) disjoint from SdK.USdK]. Then F, = |H.|is the regular
surface associated to I' and ¢ [G4]. Moreover F, is an orientable surface
with at least one boundary component on each component of dM; if T
is a crystallization of M, then each boundary component of F, lies on 2
different component of M (see Proposition 12 of [G4}).

Note that H, splits K (I') into two subcomplexes N} and N/ which
admit SdK! and SdK as spines and such that N'NN/ = aN.NON} =
H,. Let us set AL = |N!|, A" = |N!|.

The pair (AL, A7) is called the regular splitting associated to I' and
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Given a 3-manifold M by [B Theorem 1] the minimum genus can
always be obtained by a crystallization of M. In this case we can set:

G(M) = min {p(T')/T is a crystallization of M}.

Moreover, if M is closed, then G(M) = H(M), where H denotes
the Heegaard genus (see [Ga)).

3. HEEGAARD SPLITTINGS AND DIAGRAMS

A singular 3-manifold is a 3-dimensional polyhedron N = |H|, H
being a simplicial complex, such that for each vertex v of A, the link
Ik(v, H) is a combinatorial closed connected surface.

Note that if K is a pseudocomplex and |K| = N, then N is a
singular 3-manifold iff for each vertex v of K, the disjoint link lkd(v, K)
is a combinatorial closed connected surface. In fact, the first barycentric
subdivision K’ of K is a simplicial complex and Ik(v, k') is isomorphic
to a subdivision of {kd(v, K).

Note also that if ¥ is a singular 3-manifold and |H| = N, H being
a simplicial complex (resp. |K| = N, K being a pseudocomplex), then
for each h-simplex o” of H (resp. of K), with A > 1, the link {k(a*, H)
(resp. the disjoint link {kd(o®, K))is a combinatorial (3 — k ~ 1)-sphere.

Hence, a polyhedron N is a singular 3-manifold iff each point z
of H has a neighbourhood (PL) homeomorphic to a cone over a closed
connected surface. If such a surface is not a sphere, then « is called a
singqular point of N.

Given a 3-manifold M, we obtain a singular 3-manifold N = M by
capping off each component of M by a cone over it. Conversely, given
a singular 3-manifold N, we denote by N the 3-manifold obtained from
N by removing small open neighbourhoods of its singular points. If K
is any (pseudo or simplicial) complex triangulating N, then N can be
simply obtained by deleting the open stars of the singular vertices in a
suitable subdivision of K.

Note that, if we avoid 3-manifolds with spherical boundary compo-
nents, the correspondence N — N becomes bijective.
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Let now G be the 1-dimensional subset of §* pictured in Figure
1. By [M], given a 3-manifold M, there exist an integer A > 1 and a
transitive pair of permutations o, 7 € T, such that M = N(o,7), where
N(o,7)is the h-fold covering of $* branched over G, whose monodromy
sends the two generators of m1{S® — G) determined by the oriented meri-
dians of Figure 1, to ¢ and 7.

Figure 1

An effective construction of a triangulation K (e, 7) of N(a, ) pro-
ceeds as follows:

- take h copies t1,...,%, of the standard tetrahedron ¢ whose bidi-
mensional faces are denoted by S, § and T, T as in Figure 2;

- for each 1 = 1,...,h call Sis(i), Sio-1(s)y Tir(i)» Tir-1(s) the faces
S, 8, T, T (respectively) in the copy i;;

- identify S;; with §;; and T;; with Ti*' by a linear hoemeomorphism
respecting the edges SN S and TNT.

Let Ty be the closed orientable surface of genus g, where, T stays
for the 2-sphere S2. By a proper handlebody of genus g > 0 we mean
an (orientable) 3-manifold X 4, obtained by attaching g 1-handles on the
boundary of the 3-dimensional disk D3. Note that two such handle-
bodies are homeomorphic iff they have the same genus. The boundary
90X, of X, is the closed orientable surface 7.
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Figure 2.

By a hollow handlebody of genus g > 0 we mean an (orientable) 3-
manifold X, obtained from Ty x {0, 1] by adding 2- and 3-handles along
T, x {1}; T, x {0} is called the free boundary of X,.

Remark 1. Note that a hollow handlebody X, of genus g is proper
iff its boundary 80X, coincides with its free boundary Ty x {0}.

In fact, if X, is proper, then X, = D3 U H{? U ... u B, where
for1 <i<uy, H,-m is a 1-handle on the boundary of D3. By adding
a collar on 83X, = T, and dualizing the handle presentation, we have
X, =(Tyx{0,1)UH,;U...UH}UD? where each H{ is now a 2-handle
on Ty x {1} and D? is a 3-handle.

Conversely, if X, is a hollow handlebody and 8X, = T, x {0}, then

X,=(T,x[0,1pu AP v.. . AP VAP U.. .UE®
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where, for 1 < i< r, le is a 2-handle on T x {1} and for 1 < j < s,
I?J(-:‘) is a 3-handle. Hence, by dualizing the presentation and deleting a
collar of the boundary, we obtain: X, = Hf'U...UHJUHU...UH]
where H{,...,H; are 0-handles and H},..., H} are 1-handles. This
proves that X, is proper and we can simplify the presentation in the
following way: X, = D3 U ﬁ{l) U...u ‘E£1—)3+1' Since dX, = T,, it
follows that r— s+ 1 =g.

A generalized Heegaard splitting of a 3-manifold M is a pair (X,,Y,)
of hollow handlebodies of genus g such that:

-M=X,0Y,
- Ty = X,NY, is the free boundary of both X, and Y,,.
The non-negative integer g is called the genus of the splitting.

If at least one of the two hollow handlebodies is proper, then (X,
Y, ) is said to be a proper Heegaard splitting of M; in this case we always
suppose that X, is proper.

The Heegaard genus of M is defined to be the non-negative integer:

H(M) = min {g/M admits a proper Heegaard splitting of genus g}.

By Remark 1, the above definitions coincide with the homonymous
ones given by Montesinos in [M]; moreover, they generalize the classical
ones given for closed manifolds.

A generalized Heegaard diagram is a triple (Ty; v; w), where v and
w are systems of simple closed curves on 7.

Each generalized Heegaard splitting (X,,Y,) of a 3-manifold M
produces a generalized Heegaard diagram, whose systems of curves are
the attaching spheres of the 2-handles on X, and Y.

Conversely, from a generalized Heegaard diagram (T; v, w) we can
obtain a hollow handlebody X (resp. Y') by considering Ty x [0, 1] (resp.
T, x [-1,0]) with 2-handles attached on T, x {1} (resp. T x {—1})
according to v (resp. to w) and possibly by capping off some of the
spherical boundary components by 3-handles. If M is the 3-manifold
obtained from X UY by identifying their free boundaries, then (X,Y)
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is a generalized Heegaard splitting of the 3-manifold M. In this case we
say that (Ty; v, w) represents M.

A generalized Heegaard diagram (T,;v,w) is called a proper Hee-
gaard diagram if its corresponding Heegaard splitting is proper.

Remark 2. If (T,;v = (v1,...,v), w=(wy,...,w,)) is a proper
Heegaard diagram representing a 3-manifold M, then r > g; moreover,
we can always find a subset v’ of v, containing g curves, such that v’ is
a complete system of meridian curves for T, i.e. T, — v’ is planar and
connected. Since (T,; v', w) still represents M, from now on we suppose
r = g (or, equivalently, Ty — v to be planar connected).

Proposition 1. FEvery 3-meanifold M admits a proper Heegaard
splitting. .

Proof. The first part of this proof adapts an analogous one in
{S]. Let K be a simplicial complex triangulating M and H; a tubular
neighbourhood of the dual 1-skeleton of M. Set Hy = M — H,, then H,
and H, are proper handlebodies whose intersection is a proper subset of
their boundaries. More precisely, 0H, and H; are not identified along
oM, but M NOH, = U; D;, where the D!s are disks.

Let N; = D? x [0,1] be a collar of D; in H, and H! the complex
obtained by attaching the 2-handles N; along 9 Hy, respecting the identi-
fication' between H; and H>. Hence H) = H; — (U;N;) is a proper
handlebody such that H} N H} = 8H] = 8H)} is a closed surface §. If
C is a collar of § in Hj then define H{ = H{UC, Hf = H} - C.

Hj is a proper handlebody and H{' is a hollow handlebody obtained
from § x {0, 1} by attaching the 2-handles N; along § x {0}. =

If M is a 3-manifold, then M = N(o,7) for a suitable transitive
pair (o,7) of permutations. Let us describe a particular generalized

Heegaard splitting of M arising from (o, 7).

Let us call S and 7 the two disks embedded in $° as in Figure 1.
Let F'be the boundary of a tubular neighbourhood of 85 in S® and let
X and Y be the closures of the two components of §% — F. Then X and
Y are regular neighbourhoods of 3S and &7 respectively and therefore
(X,Y) is a proper genus one Heegaard splitting of 5.



Heegaard and Regular Genus of... 389

Let X (resp. Y) be the hollow handlebody which is the preimage
of X (resp. of Y) by the branched covering map N(o,7) — S3 and let
F be the preimage of F; then (X,Y) is a generalized Heegaard splitting
(Theorem 10 of [M]), which is called canonical Heegaard splitting of
N(e,T).

_ If the canonical splitting is proper, one of the hollow handlebodies,

X say, is proper; hence, all singular points of N(o,7) lie in ¥. It is
easy to see that, in this case, the singular vertices in K(o,7) are the
endpoints of some of the edges TN T.

Let H be a subgroup of X;(h > 1), generated by a certain set
of permutations {oy,...,0,}. We denote by |o1,...,0,| the number of
orbits of the action of H on {1,2,...,h}.

By [M], the canonical Heegaard splitting of N{(o,1)is proper,ie. X
(resp. Y') is a proper handlebody iff |0, 7o~} = 1 (resp. |r,0707}| =
1).

A further result of [M] will be required later:
Proposition 2. Let (T;v,w) be a proper Heegaard diagram of a

3-manifold M, with ¢ > 0 and w # 9. There is an algorithm which
determines an integer h > 1 and two permutations o, 7 € ¥, such that

(i) N(o,7) & M;

(i) |lo, o7 = 1 (i.e. the canonical Heegaard splitting of N(o,7) is
proper);
(iv) lo| = g = 1+ (h — [0, 7]I)-
Remark 3. If g = 0, then M 2 5% and we have directly # = 1 and
o =7 =lidf). If w =0, then M is a proper handlebody of genus g and

it is very easy to construct a new proper Heegaard diagram representing
M of genus g + 1 and such that w # 0.

4. THE MAIN RESULT

Proposition 3. For every 3-manifold M, we have G(M) = H(M).

The proof requires three lemmas:
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Lemma 1. Let T be a crystallization of a 3-manifold M. For each
eyclic permulation £ of Aj, there erists a proper Heegaard splitling of
M whose genus is p.(T). ' ‘

Proof. Let (A, .A”) and F, be the regular splitting and the regular
surface associated to I' and ¢. Note that AL N &M (where &;M is
the i-th boundary component of M) is a single disk B; (since I is a
crystallization) such that 8 B; = 8, F,; moreover AZNO;M = 8; M —int B;.

Let us consider the closed surface S, = F, U (U;B;) and a collar
C of §¢ in A; define Y = AYUC and X = AL - C. X is a proper
handlebody with 8X = €y (where Cj is the subset of 3C corresponding
to Se x {1})and X NY = C;.

Y is a hollow handlebody with free boundary C;. In fact consider,
for each edge e; of K(I') whose endpoints are coloured by ¢; and 3, the
2-handle H ,-(2) which is a regular neighbourhood of the dual 2-cell of e;
(see Figure 3); Y is obtained from S, X [0,1] by adding the ng)'s along
Se x {0}.

To complete the proof observe that the resulting proper Heegaard
splitting (X,Y) of M has genus:
genus (C;) = génus (S.) = genus (Fe) = p(I).

Figure 3.
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Lemma 2. Let M be a §-manifold which is not a proper handlebody
and let N = M be the singular 3-manifold associated to M. There ezists
a 4-coloured graph without boundary I' representing N such thai:

- if £ = (0,1,2,3), then p(T') = H(M);

- all singular vertices of K(I') are O-coloured.

Proof. Suppose that (Ty; v, w) is a proper Heegaard diagram rep-
resenting M such that ¢ = H(M).

By Proposition 2, we can algorithmically determine h > land 0,7 €
Ty such that N(o,7) 2 M, lo,ror7Y =1, lo| =g = 14 3(h—|[o, 7]]).

Consider the triangulation K(o,7) of N(o,7) described in section
3 and subdivide it in the following way (see {Gr]):

- for each tetrahedron ¢, let Vs (resp. Vr) be the barycenter of SN 5
(resp. T NT), join Vs and Vr by an edge lying in the interior of ¢
and join Vg (resp. V) with the endpoints of TN T (resp. §N.S5).

Figure 4.

Label now Vs (resp. V1) by colour 1 (resp. by 2) and the endpoints
of §NS (resp. of TNT) by 3 (resp. by 0) (see Figure 4), thus obtaining
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a representable pseudocomplex K'. Let I' be its associated 4-coloured
graph (without boundary).

_ Note that, by Proposition 2, the canonical Heegaard splitting of
N(o,7)is proper; therefore all the singular vertices of K' are 0-coloured.

Moreover §V(T') = 4h, gni(T) = h, g12(I) = |[o,7]| = R + 2 —
2g, 923(F) = h, go3(r) = h.

If e =(0,1,2,3), formula (*), for n = 3, gives:

pe(T)=1- %(901@) + g12(T) + g23(F') —4h)=g. W

Let us recall some definitions and results about subdivisions of
coloured graphs (see [Gs]).

Given a 4-coloured graph without boundary I', two colours o, 3 €
Aj and an a-coloured vertex w of K(T'), the bisection of I' of type (a, )
around w is the 4-coloured graph b associated to the coloured complex
bK (T') obtained from K(T') in the following way:

- consider the set K3(T') of all edges of K(T') whose endpoints are w
and a fB-coloured vertex and perform a stellar subdivision on each
edge of K ja(I');

- colour w by 8 and the barycenters of the elements of Kp(T") by a.

The coloration of bK(I') agrees with that of K(T') on the remaining
vertices.

Let e be an edge of K(I') whose endpoints, w, and wg, are a- and
B-coloured respectively; the trisection of T' of type (a,3) on e is the 4-
coloured graph associated to the coloured complex obtained from K(TI')
in the following way:

- perform two successive stellar subdivisions of K'(I'): the first on e,
introducing a new vertex w/,, the second on the edge of endpoints
w,, and wg, introducing another vertex w}’a;

- for ¢ € {a, 3} colour ‘wi by ¢, keeping the coloration of K(I') for
the remaining vertices.
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We shall call trisection of type (e, ) around the a-coloured verter w
the graph tI' associated to the complex tK(T'), obtained by performing
trisections of type («, £) on all edges of A(I'}, having w as endpoint.

If € is a cyclic permutation of Az, we have (see Proposition 7.1 and

7.2 of [Gs])
- if @ and § are not consecutive in £ then p.(iI') = p(T) = p.(bT);

- if @ and @ are consecutive in ¢ then p.(bT') = p.(I') + g(Ay) +
gpar(Aw) — 1, where A,, is the d-residue of I representing lkd(w,
K(T)) and o is the colour non-consecutive to  in €.

Lemma 3. Let I' be a {-coloured graph without boundary repre-
senting a singular 8-manifold N such that all singular vertices in K(I')
are O-coloured. If e = (0,1,2,3), there erists a {-coloured graph with
boundary T, regular with respect to 3, representing N and such that

pe(T) = pe(T).

Proof. If wis a (0-coloured) singular vertex of K(T), let I'") be the
trisection of [' of type (0,2) around w. Hence p (') = p.(T) because
0 and 2 are not consecutive in €.

Consider now the bisection T'®) of the previous graph of type {0,3)
around w.

The genus of I'® changes according to the following formula:

pe(T®) = p(TW) + p(Au) + 923(Aw) = 1 = pe(T) + p(Auw) + g23(Aw) -1

where A, is the 0-residue of T'(?) representing {kd(w, K(I'1)}). Note that
w is now 3-coloured. Perform finally a trisection of type (3,1) around
w, obtaining a 4-coloured graph TG, with p (I'®)) = p (T(2h,

Delete now from I'®) the 3-residue = representing lkd(w, K (T(3)))
and the “hanging” 3-coloured edges and call I' the resulting 4-coloured
graph with boundary. Clearly I" is regular with respect to the colour 3.

Note that:
(1) 9i;(I') = g;5(T®) - gi5(E) Vi, j€{0,1,2}
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(2) g3i(T') = g3(T) - Lp(F")  Vie {0,1,2}
(3) p(T®)=p(I') +H(I")

(4) #(I')=p(E)

(5) 2g02(I') = goz(Z)-

By formula (*) applied to IV we have:

pe(I")y=1- %[9’01(1") + g12(T") + g25(T") + gos(I") = (p(I") — B(I'))—

5B - 5290(T) )

By applying formula (*), for » = 2, to the 3-coloured graph = and
the permutation ¢’ = (0, 1, 2), we obtain:

—_— l — — — 1 — e
per(B) =1~ 5[901(:) + 912(E) + 902(Z) — 5?(5)] ™)
By adding (**) and (***) and making use of (1), (2), (3) we have:

PulT) 9 (2) = pTD) 1= 3 550 4 g0a(3) - 5005 |~ 30T

By substituting equalities (4) and (5) we obtain:
' = (3) 115 a ’ 1
Pe(I") + per(E) = pe(T) + 1 = 5 | SH(I") + “goa(T") — 5H(I") [ -

. .
= 5%002(I") = pe(T®) + 1 = g0p(I").

Finally formula (’) gives:

Pe(I") = pe(I')} + p(Aw) + 923(Au) — pe(E) — 3902(1-")-
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Note that both g,3(A,) and ®gp2(T') equal the number of edges in
K(T') whose endpoints are w and a 1-coloured vertex. Moreover, since =
and A,, are 3-coloured graphs, they admit a unique regular imbedding,
namely the one in the surface |lkd(w, K(T'))|, which both represent (see
[G4] Corollary 5]), i.e. p(Aw) = p(Z) = per(E). Hence pe(I') = p(T).

By repeating the above procedure for all the singular vertices of
K(T'), we obtain the required 4-coloured graph T'. =

Proof of Proposition 3. If ' is a crystallization of M, then, by
Lemma 1, we have H(M) < p.(T'), for every choice of ¢ and, by [B
Theorem 1], it follows H(M) < G(M).

If M is a proper handlebody of genus g, then G(M) = g (see [G4 pg.
276)). Since rank(M) < H(M), we have g < H(M). Hence g = H(M).

Suppose now that M is not a proper handlebody and let N = M be
its associated singular manifold. Then the 4-coloured graph I' obtained
by Lemma 2 satisfies the condition of Lemma 3. By applying Lemma 3
to I', we obtain a 4-coloured graph T representing M such that p.(T) =
pe(I') = H(M). Hence G(M) < pe =H(M). B

Remark 4. Let N be a singular 3-manifold and let G°(N) denote
the set of all 4-coloured graphs I', representing N, such that the singular
vertices of K (I') are 0-coloured. Note that, by Lemma 2, G®(N) is non-
empty. The regular genusof N is, by definition, the non-negative integer:

G(N) = min{p(T)/T € G*(N)}.

By Lemma 3 and Proposition 3, we have G(N) > H(N) = G(N).
If N is not a proper handlebody, Lemma 2 gives G(N) < H(N). If N
is a proper handlebody of genus g, the same inequality can be obtained
by directly constructing a 4-coloured graph, of genus g, representing N
(see [FG]). Hence G(N) = H(N) = G(N) for every singular 3-manifold
N.
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Iigure 5.

Figure 6.

An example. The genus of the exterior of the trefoil knot. Let M
be the exterior of the trefoil knot. In Figure 5 a proper Heegaard diagram
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for M is shown (see example 2 of [M]). By applying the algorithm of
Proposition 2, we have: ¢ = (123)(45) and 7 = (12345). Figure 6
shows the 4-coloured graph I obtained by using Lemma 2. Its genus is
p(T) = p.(T) = 2, with € = (0,1,2,3). Therefore G(M) = H(M) < 2.

Actually G(M) = H(M) = 2, since any genus one 3-manifold whose
boundary is a torus, is homeomorphic to a solid torus (see also the final
remark of [C]). Moreover, the given Heegaard diagram describes the only
genus two proper Heegaard splitting representing M (see [BRZ]).
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