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ABSTRACT. By means of branched coverings tecbniques, we prove that
the Heegaard genus and the regular genus of an orientable 3-manifold with
boundary coincide.

1. PRELIMINARIES

Titrougitout this paper the term “manifoid” wíll denote a compact,
connected, orientable PL-rnanifold witit (possible empty) boundary.

An (n + 1)-coloured graph (with boundary) is a pair (r,y), where
r = (v(r),r(r)) is a multigrapit and y : E(1’) -~ A, = {O,1,. ..,~n}
is a map such that y(e) # y(f), for each palr e,f of adjacent edges of
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Y’; y is called edge-coloration on Y’. Por eacit E ~ A~, tite B-residues of
(Y’,y) are tite connected components of the grapit FB = (V(fl,y’(B)).
ForeacitceA,,,weset¿—A —{c}.

Tite vertices of Y’ witose degree is strictly less than u + 1 are called
tite boundary vertices of Y’; if Y’ itas no boundary vertices, í.e. if Y’ is
regular of degree u + 1, titen (1’,y) is said to be an (u + 1)-coloured
graph uiithout boundary.

Tite grapit(1’, y) is called regular with respect to the colour c E A,, 1ff
Y’~ is regular of degree u. From now on, we only consider (u±1)-coloured
grapits witicit are regular tnith respect to tIte “last» colour u.

If (Y’,y) is an (u + l)-coloured grapit, tite boundary graph (8I’,0y)
is defined in tite following way:

- tite vertices of OF are tite boundary vertices of Y’;
- two vertices of OF are joined by a c-coloured edge uf titey belong to

tite same -(u, c}-residue of (Y’, y).

Gíven an (u + 1)-colonred grapit (Y’, y), let us denote by g(I’) tite
number of components of Y’; by convention we set g(0) = 1. A connected
(n+ 1)-colonred grapit (l’,y) is called contracted 1ff g(Y’ft) = land, for
every c E A,,Á,g(F?) = g(8Y’).

Let K be an u-dimensional pseudocomplex [11W].Tite disjoint star
std(s, K) of a símplex s in Ii’ is tite disjoint union of tite n-simplexes
containing s, witli re-identification of tite (u — 1)-símplexes containing
8 and of ah titeir faces; tite disjoint link of s in K is tite subcomplex
lkd(s,K) = {r E std(s,K)/s flr =

A vertez-colorationon K is a map E: V(K) —* A,, witich is injective
on every símplex of K. E K is itomogeneous, tite pair (K, E) is called a
coloured n-cornplex.

From now on, for sake of conciseness, we often drop edge - and
vertex - colorations, writing Y’ and K instead of (Y’,

7) and (K,¿).

Iliere exists a correspondence between (u + 1)-coloured grápits and
colonred n-complexes. In fact, given an (u + 1)-colonred grapit Y’, we
can constrnct a colonred n-complex K(I’) in tite following way:

- take an n-simplex a(v) for eacit y E V(Y’) and label its vertices by
A,,;
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- for eacit e E A,, and eacit pair y, u, of c-adjacent vertices in Y’,
identífy tite (n — 1)-faces of «(y) and «(u,) opposite to the vertices
labelled e, so titat equa]ly labelled vertices coincide.

The aboye construction can be easily reversed in order ta associate
an (it + 1)-colonred grapit 1’(K) to eacit coloured it complex K.

Note titat, by construction, each (A~ — {c0,... , ch})-residue E of Y’
corresponds to a unique h-simplex s of K(Y’), witose vertices are labelled
by {co,... ,ch} and viceversa; moreover K(S) =Ikd(s, K(Y’)). It is easy
to see titat Y’(K(Y’)) = Y’; conversely K(Y’(K)) = K uf tite disjoint star
of every símplex in K is strongly connected [G1]. la tUs case K is said
to be representable.

If ¡K(Y’)¡ (tite polyitedron determined by K(Y’)) is a manifold, then
8(IK(~)I) = K(OY’)¡ and we say titat IK(Y’)I is representa)by r. More-
over ¡K(Y’)¡ 18 orientable uf Y’ is bipartite.

A contracted (u + 1)-colaured graph representing a manifold M is
called a crijstallization of M.

For a general survey on manifold representation titeory by means
of edge-coloured grapits, see [FGG].

la [G2], [G4] a particular concept of imbeddíng of a coloured grapit
into a surface is defined. TUs naturaily leads to the definition of an
invaríant for manifolds, tite regular genus, witicit extends to dimension
u tite classical notion of genus of a surface.

lii [G3] tite regular genus of a closed 3-manifoid is proved to coin-
dde witit íts classical Heegaard genus ([11] and [He]). In titis paper we
extend the result, for tite orientable case, to manifolds witit boundary.
lix particular, by means of branched coverings tecitniques, we prove that
tite lleegaard genus (see (MI) and tite regular genus of an orientable
3-manifoid with boundary coincide. About non-orientable 3-manifolds
with boundary, we orily know titat tite Heegaard genus is less titan or
equal to the regular genus, since part of tite proof of tite main result of
titis paper (Lemma 1 and 3) still itolds. Unfortunately we lack, for tite
non-orientable case, results similar to titose of [M], witicit are required
in Lemma 2 to prove tite oppasite inequality.
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2. REGULAR GENUS

Let r be an (n + 1)-coloured grapit (witit baundary), regular witit
respect to tite colour n.

We cali extended graph associated lo Y’ tite (it + 1)-coloured grapitY’* sucit that:

- v(re) = V(Y’)uV~, witere W is in one-to-one correspondence wutit
V(OY’);

- E(r) = E(Y’) U ir, where E is tite set of ah possible n-coloured
edges witoáe endpoints are a boundary-vertex of r and its corre-
spondent vertex in W.
A regular imbedding of Y’ into a surface (witit boundary) F, is an

imbedding ¿~ of Y’~ into E, satisfying tite following conditions:

(a) t~(V~) = BE o ?(¡Y’fl)

(b) tite connected components of (mt E) — ¿(IY’1) (tite regíons of the
ímbedding) are open balls;

(c) tite boundary of any region 1? of ¿ is eltiter tite image of a cycle of
Y’ (internal region) or tite union of tite image 1?’ of a patit in Y’~
and an arc 1?” of OF, tite intersection consisting of two (possibly
coincident) vertices of ?(V~) (boundary region);

(d) titere exists a cyclic permutation e = (eo,e1,.. . ,e,,) of A,, sucit
titat for eacit interna] region 1?. (resp. boundary region 1?’ u it’),
tite edges of BR (resp. of it) are alternatively coloured e~ and e¿~í
(i E Z,.+í).
According to [02] and [04], for eacit cydllc permutation e = (eo,e1,

... , it) of A,., titere exists a surface (with boundary) F~ and a regular
imbedding ¿~ of Y’ into F~; moreover F~ is orientable uf Y’ is bipartite.
F~ is called tite regular surface associated to Y’ and e.

If F~ is orientable, we have tite following formula (see [(34Proposí-
tion 4]):
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genus(F~) = 1— ~ E g6~~~,(Y’)+

EL +

(.)
1 p(Y’) 1 i~

+ ~(1— n)(p(Y’) —p(Y’)) + (2— n)—~—] — ~ Ytoen.i(Y’)

witere 915(Y’) (resp.
0g

1~(Y’)) us the number of cycles of Y’í¿,~> (resp. of
8Y’<1,5}) and p(Y’) (resp. p(Y’)) ís tite arder of Y’ (resp. of 8Y’). Of caurse
an analogaus formula itolds for non-aruentable regular surfaces.

Set p~(Y’)= genus(F~). Tite regular genus p(Y’) of Y’ is defined as tite
mínimum p~(Y’) among alt cyclic permutations E of A,..

Given an n-rnanifold M tite regular genus of M is tite non-negative
integer:

Q(M) = rnin{p(Y’)/r represents M}

II Y’ is a 4-colaured graph representing a 3-manífoid M, Iet us describe
an cifective constructian of F~.

Let K: (resp. Kfl be tite 1-dimensional subcomplex of K generated
by tite vertices calaured (61,3) (resp. (so, £2)). Denote by H, tite largest
2-dimensional subcomplex of SdK (where Sd rneans “first barycentric
subdivision”) disjoint from SdKUSdK5. Titen 1% = IH~I is tite regular
surface associated to Y’ and e [04]. Moreover F~ is an orientable surface
witli at least one boundary component on each component of BM; íf Y’
is a crystaJlization of M, titen each boundary component of F~ lies on a
dífferent component of BM (see Proposition 12 of [(34]).

Note that H~ splits K(Y’) into twa subcornplexes 14 and 14’ whicit
admit SdKk and SdKk’ as spines and sucit titat 14014’ = B14nBN~’=
H~. Let us set .A~ = INj, AZ = Nfl.

Tite pair (Á~, .A~f) is called tite regular splitting associated to Y’ and
E.



384 E’. Cristoforí, C. Gagliardi and L. Grasselli

Gíven a 3-manífold M by [B Titeorem 11 tite minimum genus can
always be obtained by a crystallization of M. In titis case we can set:

Q(M) = mm {p(Y’)/Y’ is a crystaflizatíon of M}.

Moreover, if M is closed, titen Q(M) = i-t(M), witere R denotes
tite I-Ieegaard genus (see [03]).

3. HEEGAARD SPLITTINGS AND DIAGRAMS
A singular 3-manifoid is a 3-dimensional polyitedron N = ¡H¡, H

being a simplicial complex, sucit that for each vertex y of H, tite link
lk(v, fi) is a combinatorial closed connected surface.

Note titat uf K is a pseudocomplex and ¡Kj = N, titen N is a
singular 3-manifold uf for eacit vertex y of K, tite disjoint Iink lkd(v, K)
ís a combinatorial closed connected surface. In fact, tite first barycentric
subdivision K’ of K is a simplicial complex and lk(v, 1<’) is isomorpitic
to a subdivision of lkd(v, Al).

Note also titat II N is a singular 3-manifoid and H¡ = N, II being
a símplicial complex (resp. ¡Kl = N, Al being a pseudocomplex), titen
for eacit h-simplex «h of fi (resp. of Al), with h> 1 tite tínk lk(ah, fi)
(resp. tite disjoint llnk lkd(ah, Al)) is a combinatorial (3— It — l)-sphere.

Hence, a polyhedron N is a singular 3-manifoid 1ff eacit point x
of fi has a neigitbouritood (PL) itomeomorpitic to a cone over a closed
connected surface. If sucit a surface is not a spitere, titen x is called a
singular point of N.

Given a 3-manifoid M, we obtain a singular 3-manifold N = M by
capping of each component of BM by a cone «ver it. Conversely, given
a singular 3-manífold N, we denote by N tite 3-rnanifold obtained from
N by removing smail open neighbouritoods of its singular points. If Al
Is any (pseudo or simplicíal) complex triangulating N, titen Ñ can be
simply obtained by deleting tite apen stars of tite singular vertices in a
suitable siibdivision of Al.

Note titat, if we avoid 3-manifolds witit spiterical boundary compo-
nents, tite correspondence N —* Ñ becomes bijective.
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Let now G be tite 1-dimensional subset of S3 pictured in Figure
1. By [M], given a 3-manifold M, titere exist an integer It > 1 and a
transitive pair of permntations a,r E Eh sucit titat M N(a,r), witere
N(a, r) is tite h-fold covering of S3 brancited over O, witose monodromy
sends tite two generators of wí(S3 — O) determined by tite oriented meri-
dians of Figure 1, to a and ir.

G

y
x

An cifective construction of a triangulation Al(a, ir) of N(a, r) pro-
ceeds as follows:

- take It copies ti,... , t,, of the standard tetraitedron t witose bidi-
mensional faces are denoted by S, S and T, T as in Figure 2;

- for each 1 = 1,.. .,h cali Sía(í), S¿«
1(¿), TI~(~),

1~r’(i) tite faces
S, 5’, 7’, 7’ (respective]y) in tite copy t~;

- identify S¿~ witit Sj¿ and T¿j witit Tjj by a linear itomeomorpitism
respectiñg tite edges 5’ fl S and T O 7’.

Let 2’~, be tite closed orientable surface of genus g, where, To stays
for tite 2-sphere St By a proper Itandlebody of genus g > O we mean
an (orientable) 3-manifold X

2, obtained by attaciting g 1-itandies on tite
bonndary of tite 3-dimensional disk D

3. Note titat two sucit itandie-
bodies are homeomorpitic if titey itave tite same genus. Tite boundary
BXg of X

9 is tite closed orientable surface T~.

Figure 1
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T

7

Figure 2.

By a Itollow handlebody of genus y =O we mean an (orientable) 3-
manifold X9 abtained from T~ x (0, 1] by adding 2- and 3-itandies along

x {1}; T~ x {O} is calied the free boundartj of J<9~

Remark 1. Note titat a hollow handlebody X2 of genus y is proper
uf its bou ndary ox9 coincides witIt its free boundary fT9 x {0}.

In fact, íf X2 is proper, titen X9= D
3 UH~1>U...UH.$í),witere

for 1 =i =y, 4’> is a 1-itandie on tite boundary of D3. By adding
a collar on OX

9 = 2’9 and dualizing tite itandie presentation, we itave
= (T~ > [O,í])uH;u. . .UJflUD

3, witere eacit H~’ is now a 2-handie
on T~ x {1} and D3 is a 3-itandie.

Conversely,if x
9 is a itollow itandlebody and OX9 = x {O}, titen

s

= (fE9 x (O,1DUH~
2)U...UH$2>UH~S>U...UÑ~3>



Heegaard and Regular Genus of... 387

witere, for 1 < i < r H~> is a 2-itandie on [¡‘9 x {1} ami for 1 =5< s
453> is a 3-itandie. Hence, by dualizing tite presentation and deleting a
collar of tite boundary, we obtain: Xg=HjhJ...UH~’UHU...uH~
witere Hfl, . . ,11 are 0-itandies and Hfl. . ., Hj~ are 1-handies. This
proves titat X2 is proper and we can simpllfy tite presentation in tite
following way: X2 = D

3 u Él1> L’.. u j¡<1> ~. Since BXg = 2’9~ it
follows titat r — s + 1 = g.

A generalized Heegaard splitting of a 3-rnanifold M is a pair (X
2, Y2)

of itollow handiebodies of genus g sucit titat:

- M = X2 u Y2

- [¡‘9 = 2<9 fl Y2 is tite free boundary of botit X2 and Y9.

Tite non-negative integer g is called tite genus of tite splltting.

If at least one of tite two itollow itandiebodies is proper, titen (2<9,
Y2) is said tobe a proper Heegaard splitting of M; in titis case we always
suppose tItat 2<2 18 proper.

The Heegaard genus of M is defined to be tite non-negative integer:

1-1(M) = mm {g/M admits a proper Heegaard splltting of genus g}.

By Remark 1, tite aboye definitions coincide witit tite itomonymous
ones given by Montesinos in [M]; moreover, titey generalize tite classical
ones given for closed manifolds.

A generalized Heegaard diagram is a triple (Te; y; u,), witere y and
w are systems of simple closed curves on T~.

Eacit generalized Heegaard splittíng (Xc, Y9) of a 3-manifoid M
produces a generalized lleegaard diagram, witose systems of curves are
tite attaching spiteres of tite 2-itandies on 2<2 and Y9.

Conversely, from a generalized lleegaard diagram (fZ’~; y, w) we can
obtain a itollow itandlebody 2< (resp. Y) by consideríng 2’~ >< [0, 1] (resp.

x [—1,0]) with 2-itandies attacited on x {1} (resp. 72~ x {—1})
according to y (resp. to iv) and possibly by capping of sorne of tite
spherical boundary components by 3-handies. II M is tite 3-manifoid
obtained from X U Y by identifying titeir free boundaries, titen (X, Y)
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is a generalized l-leegaard splltting of tite 3-manifold M. In titis case we
say titat (Ti; y, iv) represents M.

A generalized Heegaard diagram (Te; y, iv) 18 called a proper Hee-
gaard diagrarn if íts corresponding lleegaard splltting i~ proper.

Remark 2. II (T2;v = (y1,.. .,v~), iv = (tu1,.. .,w.)) isa proper
Heegaard diagram representing a 3-manifold M, titen y ~ g; moreover,
we can always find a subset y’ of y, containing g curves, sucit titat y’ is
a complete system of merídian curves for T9, u .e. T~ — y’ is planar and
connected. Since (Te;y’, iv) still represents M, from now on ine suppose
r = g (or, equivalently, T~ — y to be planar connected).

Propositinn 1. Every 3-manifold M admits a proper Heegaard
splitting.

Proof. Tite first part of this proof adapts an analogous one in
[S].Let Al be a simplicial complex triangulating M and H2 a tubular
neigitbouritood of tite dual 1-skeleton of M. Set H1 = M — J~2, titen H1
and H2 are proper itandiebodies witose intersection is a proper subset of
titeir boundaries. More precisely, OH1 and OH2 are not identifled along
BM, but BM fl ¿9ff2 = ~ witere tite D~s are disks.

Let N1 = D
2 x [0, 1] be a collar of % in H

2 and H tite complex
obtained by attaciting tite 2-itandíes N1 along OH1, respecting tite identí-
fication between OH1 and OH2. 1-fence H~ = H2 — (u~N~) is a proper
handlebody sucit titat H fl fl = OH = OH~ is a closed surface 5. If
C is a collar of 5 in H titen define H’ = H U C, Hf’ = H~ — (Y.

117 is a proper handlebody and ¡17 is a hollow itandlebody obtained
from 5 x [0, 1] by attaciting tite 2-itandies N1 along 5 x {O}. U

II M is a 3-manifold, titen M ~ N(a,r) for a suitable transitive
pair (a, r) of permutations. Let us describe a particular generalized
Heegaard splltting of M arising from (a,r).

Let us cali S and Y tite two disks embedded in 53 as in Figure 1.
Let E be tite boundary of a tubular neigitbouritood of BS in 9 and let
2< and Y be tite closures of tite two components of 53 — E. Titen 2< and
Y are regular neigitbouritoods of 03 and 07 respectively and titerefore
(2<, Y) is a proper genus one Heegaard splitting of 53•
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Let Ñ (resp. 1’) be tite hollow itandlebody whicit is tite preimage
of 2< (resp. of Y) by tite branclied covering map N(a, r) —* ~3 and let
É be tite preimage of E; titen (2<, Y) is a generalized Heegaard splltting
(Theorem 10 of EM]), witicit is called canonical Heegaard splitting of
N(a,r).

If tite canonical splitting is proper, one of tite itollow itandiebodies,
2< say, is proper; itence, all singular points of N(a, r) ile in Y. It is
easy to see titat, in titís case, tite singular vertices in Al(a, r) are tite
endpoints of sorne of tite edges fE fl 7’.

Let H be a snbgronp of Sh(h =1), generated by a certain set
of permutations {«~,. . .,a,.}. We denote by Iai,. ..,oy¡ tite number of
orbits of tite action of H on 1,2,..., h}.

By[M], tite canonical Heegaard splitting of Ñ(a, r) is proper, i.e. 2<
(resp. Y) is a proper itandlebody uf ¡a, rac’I = 1 (resp. Ir,arr-’I =

1).

A furtiter resnlt of [M] will be reqiiired later:

Propositian 2. Let (T9;v,w) be a proper Heegaard diagrarn of a
3-manifold M, inith g > O and ~ 0. There is an algorithm which
determines an integer It =1 and tino permutations u, r E >-Jh such that

(1) Ñ(a, r) =

(Ii) ¡a,raC
1j = 1 (te. tIte canonical Heegaard splitting of Ñ(a,-r) is

proper);

(iv) a¡ = g = 1 + ~}h— ¡[a,flI).

Remark 3. II y = O, titen M ~ 53 and we have directly It = 1 and
a = r = id{í}. 11w = 0, titen M is a proper itandlebody of genus g and
it is very easy to construct a new proper Heegaard diagram representing
M of geniis g ±1and sucit that iv # 0.

4. THE MAIN RESULT

Proposition 3. For every 3-manifoid M, inc have Q(M) = 7-1(M).

Tite proof requires three lemmas:
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Lemma 1. Let Y’ be a crystallization of a 3-manifold M. For each
cyclic permutation e of A3, tItere exists a proper Heegaard splitting of
M inItose genus is p~(Y’).

Proof. Let (Al, .AZ) aud F~ be tite regular splitting and tite regular
surface associated to Y’ and e. Note titat A~ fl B~M (witere B~M is
tite i-th bonndary component of M) is a single disk B~ (since 1? is a
crystallization) sucli titat BB~ = 8~F~; moreoverAZnB~M = B¿M—intB~.

Let us consider tite closed surface S~ = F~ U_(u~B~) and a collar
(Y of & in A~; define Y = A’~’ u (Y and 2< = A~— (Y. 2<isaproper
itandlebody with 02< = 6½(witere (½is tite subset of Be corresponding
toSe x {1}) and 2<0 Y = CX.

Y is a itollow itandlebody witit free boundary C~. In fact consider,
for eacit edge e~ of Al(Y’) witose endpoints are colonred by e~ and 3, tite
2-itandie H1

2> whicit is a regular neigitbouritood of tite dual 2-ceil of e¿
(2>,(see Figure 3); Y is obtained from S~x [0,1] by adding tite H~ s along

sc >< {O}.
To complete tite proof observe titat tite resulting proper l-leegaard

sp]itting (2<, Y) of M itas genus:
genus (Cí) = génus (Se) = genus (F

4) = p6(Y’).

Lo
E,

Figure 3.
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Lemma 2. Let M be a 3-manifold which la not a proper handlebody
and let PI = M be ihe singular 3-rnanifold associated to M. There exists
a 4-cotoured graph without boundary Y’ representing N such that:

- if e (0,1,2,3), ihen p4Y’) =

- all singular vertices of Al(Y’) are 0-colonred.

Pronf. Suppose titat (2’~; y, iv) is a proper Heegaard díagram rep-
resenting M sucit titat g = i-i(M).

By Proposition 2, we can algorititmicaliy determine It> 1 and a, y E
Eh sucb titat Ñ(a, r) ~ M, l«~ ~«~‘l = 1,101 = g = 1 + ~-(h— [o, rjfl.

Consider the triangulation Al(a,r) of N(a, r) described in section
3 aud subdivide it in tite following way (see [Gr]):

- for each tetraliedron t, let Vs (resp. VT) be the barycenter of 5’ fl 5
(resp. 7’ n 7’), join Vs and Vr by an edge lying in tite interior of
and join Vs (resp. VT) witit tite endpoints of 7’ fl T (resp. Sn S).

yT

o

Figure 4.

Label now Vs (resp. VT) by colour 1 (resp. by 2) and tite endpoints
of Sn 5 (resp. of 7’ nf?) by 3 (resp. by O) (see Figure 4), titus obtainíng
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a representable pseudocomplex Al’. Let r be its associated 4-coloured
grapit (wititout boundary).

Note titat, by Proposition 2, tite canonical Heegaaid splitting of
Ñ(a, r) is proper; titerefore all tite singular vertices of Al’ are 0-coloured.

Moreover ~V(Y’)= 4h, goí(F) = It, gí2(I’) = ¡[a,r]¡ = It + 2 —

2g, g23(Y’) = It, goa(1’) = It.

If E = (0,1,2,3), formula (*), for n = 3, gives:

par) = 1 — ~goí(Y’) + g12(F) + g23(Y’) — 4h) = g. U2

Let us recali sorne definitions and results about subdivisions of
coloured grapits (see [Gb]).

Given a 4-coloured grapit wititout boundary Y’, two colours a,fi E
A3 andan a-coloured vertex iv of Al(l’), tite bisection of 1’ of type (a,fi)
around iv is tite 4-coloured grapit U’ associated to tite coloured complex
bK(1’) obtained from Al(1’) in tite following way:

- consider tite set K0(Y’) of all edges of Al(F) witose endpoints are iv

and a fi-coloured vertex and perform a stellar subdivision on eacit
edge of I<¡3(Y’);

- colour iv by fi and tite barycenters of tite elements of Kp(Y’) by a.

Tite coloration of bAl(Y’) agrees with that of Al(1’) on tite remaining
vertices.

Let e be an edge of K(Y’) witose endpoints, ita and mp, are a- and
fi-coloured respectively; tite trisection of Y’ of type (a,fi) on e is tite 4-
coloured grapit associated to tite coloured complex obtained from Al(Y’)
in tite following way:

- perform two successive stellar subdivisions of Al(Ij: tite first on e,
rntroducing a new vertex w~,, tite second on tite edge of endpoints
w~, and ~a, introducing anotiter vertex

- for c E {a,fi} colour u4 by c, keeping tite coloration of Al(Y’) for
tite remaining vertices.
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We sitali cali trisection of type (a, fi) around the a-coloured vertex u,
tite grapit tY’ associated to tite complex tAl(Y’), obtaáned by performing
trisections of type (a, fi) on ah edges of K(Y’), having it as endpoint.

If £ is a cydllc permutation of A3, we itave (see Proposition 7.1 and
7.2 of [Gs]):

- if a and /3 are not consecutive in £ titen p41Y’) = p~(Y’) = p~(bY’);

- if a and fi are consecutive in e titen p~(bY’) = p~(r) + g(A~) +
g~~(A~) — 1, witere A~ is tite &-resídue of Y’ representing lkd(w,
Al(19) and a’ is tite colour non-consecutive to a in c.

Lemma 3. Let Y’ be a 4-coloured graph without boundary repre-
senting a singular 3-rnanifold PI such that al! singular vertices in Al(I’)
are O-coloured. If E = (0,1,2,3), there exists a 4-coloured gmph tnith
boundary Y’, regular with respect to 3, representing Ñ and such that

= Pc(I’).

Pronf. ¡fu, is a (0-colonred) singular vertex of K(Y’), let r~’> be tite
trisection of Y’ of type (0,2) around it. llence p (1’(’7’) — Pc(I?) because
O anO 2 are not consecutive in e.

Consider now tite bísection Y’~
2> of tite previons grapit of type (0,3)

around u,.

Tite genus of Y’<2) changes according to tite following formula:

= p~(r<1)) +p(A~) +g
2a(A~)—1 = p~(Y’) +p(A~) +g2a(A~) —1

(‘)
witere A~ is tite O-residue of Y’<’) representing lIcd(w, K(Y’<’))). Note that
w is now 3-coloured. Perform finaliy a trisection of type (3,1) aronnd
u,, obtaining a4-coloured graph i’(~), witit p~NS)) =

Delete now from Y’<
3) tite ¿-residue E representing lkd(u,, Al(1’G»))

and tite “itanging” 3-coloured edges and cali Y” tite resulting 4-coloured
grapit witit boundary. Clearly Y” is regular witit respect to tite colour 3.

Note titat:

(1) ~~Y”> = gq(Y’~3)) — gíy(S) Vi,jE {O,1,2}
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(2) ga¿(Y”) = g3~(Y’<
3)) —

(3) p(r(3)) = p(Y”) + p(F’)

(4) p(Y”)=p(E)
(5) 8g02(I’) = go

2(z).

By formula (~) applled to Y” we itave:

Vi E {O,1,2}

p~(Y”) = 1— ~[goí(Y”) +g12(Y”) +g23(Y”) +goa (Y”) — (p(Y”) —

By applying formula (*), for n = 2, to tite 3-coloured grapit and
tite permutation e’ = (0,1,2), we obtain:

= 1— ~[go1(E) + gl2h) + go2~z) —
(Sfl)

By adding () and () and making use of (1), (2), (3) we itave:

— p (r~
3>) )+9o2 1 la

—~ go
2(lfl.

By substituting equalities (4) and (5) we obtain:

p~(Y”) + p~(E) = + 1

la -

— ~ g62(Y”) =

— ~ ~ +
8go~l”)

+ ~— 8go
2(Y”)

Finally formula (‘) gives:

( 5*)

p~(Y”) = p~(Y’) + p(A~) + gí3(A~) — p~(S) —

0go
2(F’).
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Note titat botit g23(A~) and
0g

02(Y”) equal tite number of edges ín
Al(t’) witose endpoints are u, and a 1-coloured vertex. Moreover, since z
and A,,, are 3-coloured graplis, they admit a unique regular imbedding,
namely the one in tite surface Ilkd(w, Al(Y’))¡, witicit botit represent (see
[(34] Corollary 5]), i.e. p(A~) = p(~) = p~’(B). Hence p~(Y”) = p~(rj.

By repeating tite aboye procedure for ah tite singular vertices of
Al(Y’), we obtaln tite required 4-coloured grapli Y’. u

Proof of Propositian 3. If Y’ is a crystallizatíon of M, titen, by
Lemma 1, we have 71(M) =p~(Y’), for every citoice of e and, by [11
Theorem 11, it follows 7-1(M) =0(M).

HM is a proper itandlebody of genus g, titen 0(M) = g (see [G4pg.
276]). Since rank(M) =7-1(M), we itave g =1-1(M). llence 9 = 71(M).

Suppose now titat M is not a proper itandlebody and let PI = M be
íts associated singular manifold. Titen tite 4-coloured grapit Y’ obtained
by Lemrna 2 satisfies tite condition of Lemma 3. By applying Leinma 3
to 1’, we obtaln a 4-coloured grapit Y’ representíng M sucit titat p~(Y’) =

p~(Y’) = 7-1(M). Hence 0(M) =P~ = 71(M). u

Remark 4. Let PI be a singular 3-manifold and let 0
0(N) denote

tite set of ah 4-coloured graphs Y’, representing PI, sucit titat tite singular
vertices of Al(Y’) are O-coloured. Note titat, by Lemma 2, 00(N) is non-
empty. Tite regular genusof N is, by definition, tite non-negatíve integer:

0(N) = min{p(Y’)/1’ E G~(N)}.

By Lemma 3 and Proposituon 3, we have 0(N) =7-1(Ñ) 0(Ñ).
If Ñ is not a proper itandlebody, Lemma 2 gives 0(N) =1-1(N). If Ñ
is a proper itandlebody of genus g, tite same inequality can be obtained
by directly canstructing a 4-coloured grapit, of genus g, representing PI
(see [FG]). Hence 0(N) = 7-1(Ñ) = 0(Ñ) for every singular 3-manifold
PI.
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Figure 6.

An example. TIte genus of tIte exterior of tIte trefoil knot. Let M
be tite exterior of tite trefoil knot. la Figure 5 aproper Heegaard diagram

a

Figure 5.
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for M is sitown (see example 2 of [M]).By applying tite algorititm of
Proposition 2, we itave: a = (123)(45) and r = (12345). Figure 6
sitows tite 4-coloured grapit Y’ obtalned by using Lemma 2. Its genu~ 18
p(Y’) = p~(Y’) = 2, witit e = (0,1,2,3). Titerefore 0(M) = 71(M) =2.

Actually 0(M) = 71(M) = 2, since any genus one 3-manifold witose
boundary is a torus, is itomeomorpitic to a solid torus (see also the final
remark of [C]). Moreover, tite given Heegaard diagram describes tite only
genus two proper Heegaard splltting representíng M (see [BRZ]).
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