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ABSTRACT.  This paper concerns itself with the relationship between two
seemingly different methods for representing a closed, orientable 3-manifold: on
the one hand as a Heegaard splitting, and on the other hand as a branched cover-
ing of the 3-sphere.  The ability to pass back and forth between these two repre-
sentations will be applied in several different ways:

1. It will be established that there is an effective algorithm to decide
whether a 3-manifold of Heegaard genus 2 is a 3-sphere.

2. We will show that the natural map from 6-plat representations of knots
and links to genus 2 closed oriented 3-manifolds is injective and surjective.  This
relates the question of whether or not Heegaard splittings of closed, oriented 3-
manifolds are "unique" to the question of whether plat representations of knots
and links are "unique".

3. We will give a counterexample to a conjecture (unpublished) of W.
Haken, which would have implied that S   could be identified (in the class of all
simply-connected 3-manifolds) by the property that certain canonical presentations
for 7TjS3 are always "nice".

The final section of the paper studies a special class of genus 2 Heegaard
splittings: the 2-fold covers of S   which are branched over closed 3-braids.  It is
established that no counterexamples to the "genus 2 Poincare conjecture" occur
in this class of 3-manifolds.

1. Introduction. We begin our study in §2 with a brief discussion of
several different methods for presenting links, and the relationship between them.
In particular, we discuss two ways to form a link from a braid, as a "closed «-
braid", or as a "plat". These results will be used later.   §3 contains a brief
review of known facts about twist maps on surfaces.

In §4 we develop the central results of this paper. We study the relation-
ship between representations of closed, orientable 3-manifolds by Heegaard split-
tings, and as branched coverings of S3. Theorem 1 is a generalization of a theo-
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316 J. S. BIRMAN AND H. M. HILDEN

rem due to Alexander [1], which states that every closed, orientable 3-manifold
may be represented as a branched covering of S3, branched over a link.  Our
method of proof is very different from Alexander's, and moreover it contains cer-
tain extra information about the relationship between Heegaard genus and
Heegaard "sewing maps", on the one hand, and the branch set and number of
sheets, on the other hand.  In the general case, the covering will not be regular,
however in certain special cases (notably all genus 2 Heegaard splittings) the cover-
ing will not only be regular, but even cyclic.

The idea used in the proof of Theorem 1 may be specialized to the case of
Heegaard splittings which enjoy a certain symmetry. We give these 3-manifolds
the name "p-symmetric Heegaard splittings", and establish (in Theorems 2-5) the
relationship between p-symmetric Heegaard splittings and p-fold cyclic coverings
of S3. The results in Theorems 2-5 were announced by the authors in [8].  We
note that Theorem 5 was also discovered independently by O. Ja. Viro [32].
Also, that Theorem 5 generalizes a result due to Schubert [30].

§§5—7 are concerned with applications of the results of §4.  In §5 we give
an algorithm to decide whether a 2-symmetric 3-manifold is S3.  Our algorithm
applies to all 3-manifolds of Heegaard genus g < 2, and to a proper subset of 3-
manifolds of Heegaard genus g > 3. The algorithm was announced by the authors
in [8]. At the conclusion of §5 the algorithm is applied to give a new proof that
every genus 1 homology sphere is S3.

In §6 we define a function F from equivalence classes of plat presentations
of knots and links to equivalence classes of Heegaard splittings of closed, oriented
3-manifolds and we show that F is injective and surjective.

§7 contains applications to problems concerning presentations for itxS3. In
Lemma 13 we give an algorithm for obtaining a "canonical" presentation for the
fundamental group of a 3-manifold which is defined by a Heegaard splitting,
where it is assumed that the action of the "sewing maps" on the fundamental
group of the Heegaard surface is known. In Lemma 14 we characterize the class
of sewing maps which have the property that the corresponding Heegaard splittings
define S3. These two lemmas are used in Theorem 8 to obtain a counterexample
to a conjecture of W. Haken about canonical presentations of nxS3— an unfortu-
nate result, because it points up the difficulty in solving the "trivial group problem"
for 3-manifolds.  Finally, at the end of §7, we discuss symmetries in our canoni-
cal presentations for fundamental groups of "2-symmetric" 3-manifolds (Theorem
9).

The final section of the paper contains a brief proof that one will not find
counterexamples to the Poincaré conjecture among 2-fold coverings of S3 which
are branched over closed 3-braids. This may be regarded as a small step in an
attempt to prove the "genus 2 Poincaré conjecture".
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2.  Links, closed braids and plats.  A link will be understood to mean the
union of p > 1 tame polygonal disjoint simple closed curves in S3. The term
knot will be used when we wish to stress the fact that p = 1. Two links are
equivalent if there is an orientation-preserving homeomorphism of S3 —► S3
which maps one onto the other. A link type is the equivalence class of a tame
link.

Let E2 he the Euclidean plane, let UnE2 be the «-fold product space, and
let FnE2 denote the subspace of Tl„E2 consisting of all points (px,. . . , pn) E
YlnE2 which have the property p¡ ¥= pf if i + j. Let BnE2 denote the quotient
space of FnE2 obtained by identifying points which differ only by a permutation.
Let ipx0,. . . , pn0) E FnE2, and let p0 be its image in BnE2. The classical
braid group Bn is defined to be in the fundamental group itx{BnE2, p0).  Each
element ßEBn may be represented by a loop (/, 37) —> {BnE2, p0) which lifts
to a path (/, 0) —► {F„E2, (px0, . . . , p„Q)). This path may be described by the
image set {px{t), ..., pn{t)), 0 < t < 1, where {px{0), . . . , pn{0)) = {px0,
... , pn0) and 0,(1), . . . , pn{l)) = (pMi0,.... pMn0) is a permutation of
ipxo, . . . , P„0).  We will call this image set, or any other obtained in a similar
manner from another representative of the same element ßEBn,& geometric n-
braid.   We may think of a geometric «-braid as a configuration of « "strings"
suspended between parallel planes r = 0 and t = 1 in E3.

The braid group Bn has been studied extensively in the literature.  For a
review of the literature on braids and related topics, see [6]. Original references
include [3], [4], [9], [14], [19]. We will make particular use of the following
well-known facts:

1. The braid group may be generated by a standard set of "elementary"
braids ox, . . . , o„_x, where o¡ denotes a braid in which the ith string crosses
over the (/ + l)st, as illustrated in Figure 1.

2. The group Bn has a faithful representation as the full group of auto-
homeomorphisms of an «-punctured disc, where admissible maps are required to
keep the boundary fixed pointwise. The elementary braid a¡ may be visualized
in this representation as a twist which interchanges the ith puncture and the
(/ + l)st puncture, and is the identity map outside a disc which encloses these
two punctures, but avoids all other punctures.  Generators xx,. . . , xn can be
chosen for the fundamental group of the punctured disc in such a way that the
elementary braid a¡ induces the automorphism o¡{x¡) = xi+x, o¡{xi+x) =
xT+\xixi+1 > ai(xj) ~ xj is / ^ /, / 4- 1 •
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Figure 1.   Geometric n-braid representing the element o¡

A link type is said to be represented as a closed n-braid if it has a represen-
tative which is obtained from a geometric n-braid by identifying the points p,(0)
and p¡{l) for each i = 1, . . . , n. It was proved by Alexander [2], [6] that every
link type may be represented by a closed n-braid for some (nonunique) integer n.
The braid number of a link is the smallest such integer.

A link type is said to be displayed as a 2m-plat if it is obtained from a geo-
metric braid on 2m strings by identifying the points p2i_ x (0) and p2l(0), and
alsoP2/_i0) an(*P2i(l)' f°r eacni ~ I, • • ■ ,m- It was established by Reide-
meister in [29] that every link type may be represented as a 2m-plat for some
(nonunique) integer m.  For another proof, see [6].

A link type is said to have an m-bridge presentation if it is represented as
the union of two subsets A, B of E3, parametrized by *, y, z coordinates, as
follows:

A is the disjoint union of m arcs lying in the plane z = 0, with endpoints
in the set {(/, 0, 0); i = 1, . . . , 2m}.

B is the disjoint union of m arcs lying in the plane y = 0, the /th arc having
its endpoints at (2/ - 1, 0, 0) and (2/, 0, 0), and its interior in the subset of the
plane defined by the condition z > 0.

The relationship between plat and bridge representations of a link, and
between bridge number and braid number, is expressed by:

Lemma 1.  If a link type is represented in an m-bridge presentation, then
it may also be represented as a 2m-plat; conversely, if it is represented as a 2m-
plat, then it may also be represented in an m-bridge presentation.  Thus the bridge
number is also the smallest integer b such that the link can be represented by a
2b-plat.

Proof.  See [6].

Lemma 2.   77ie bridge number of a link is less than or equal to its braid
number.
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Proof.  See [6].
3. Twist maps on surfaces. Let Y be a solid handlebody of genus g, and

let 9 Y denote its surface (a closed, orientable surface of genus g). In the sections
which follow we will need to know certain information about self-homeomorphisms
of oYg.

Let c be a simple closed curve on the surface oYg. Let Nc be a neighbor-
hood of c which is homeomorphic to a cylinder. Assume that Nc has cylindrical
coordinates (y, 6), -1 <y < +1, 0 < 6 < 2it. A twist tc about c is defined by
the identity map outside Nc, with tc(y, 6) = (y, 0 + n(y + 1)).

It was proved by M. Dehn [11] that every homeomorphism of oYg is iso-
topic to a product of twists. Dehn's result was later reproved and simplified by
W.B.R. Iickorish [17], [18], who showed:

Lemma 3 (Lickorish [18]).   Let $: dYg—*bYgbe a homeomorphism.
Then <ï> is isotopic to a product of the twists tc ,. . . , f about the curves
cx,..., c3e_x illustrated in Figure 2.

Figure 2.   Generators for the mapping class group of a
closed, orientable surface of genus g

4.  Heegaard splittings of branched coverings of S3. Let M, N he triangu-
lated «-dimensional manifolds, and let it: M —* N be a simplicial map.  The map
it is said to be a branched covering space projection if the restriction of it to the
complement of the (n - 2)-dimensional skeleton of the triangulation is a covering
space projection. The branch set ACN is the set of points z EN which have
the property that z has no neighborhood U such that the restriction of it to an
arc-component of it~l{U) is a covering. The set L = n~i{A) will be referred to
as the branch cover, and we will say that M is a covering space of N, branched
over A.  We will also refer to the pair {M, L) as a branched covering of {N, A),
writing it: {M, L) —* {N, A).

Let (Af. L) be a branched covering of (TV, A), with projection it. Let ü be
the restriction of it to {M - L). Then it: {M-L)-*{N- A) is an ordinary
covering space projection, which will be referred to as the associated unbranched
covering space.
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We will say that M is a p-fold cyclic covering of N branched over A if the
group ri*nx(M - L) is the kernel of a homeomorphism from nx(N - A) onto a
cyclic group of order p.

It was proved by Alexander in [1] that every closed, orientable 3-manifold
may be represented as a branched covering of S3. Alexander also stated (without
proof) that the branch set may be chosen to be a 1-manifold.  This fact has been
widely accepted in the literature, although no published proof exists.  (The gap
will, however, be filled in Theorem 1, below.)(3)

We will also be interested in a second method of representing closed, orien-
table 3-manifolds, as Heegaard splittings. Let Yg be a solid handlebody of genus
g. Let Yg be a second copy of Yg, and let r: Yg —* Yg be the map that identi-
fies a point z E Y with its corresponding point z' E Y'. Let $> be an orientation-
preserving self-homeomorphism of dY . Then we may use q> to define a map
which "sews" bYg to oY'g by the rule

(1) t$(z) = z,      z^àYg.

The identification space Yg UT$ Yg will be a closed, orientable 3-manifold which
is represented by a Heegaard splitting of genus g.  It is a classical result that every
closed, orientable 3-manifold may be obtained in this way, for some (nonunique)
integer g and surface homeomorphism <ï>. A 3-manifold which is so represented
will be said to have Heegaard genus g if it admits a Heegaard splitting of genus g,
but no Heegaard splitting of genus < g.

The following result will be established below:

Theorem 1* LetM= Yg UT(J) Yg be a closed orientable 3-manifold of
Heegaard genus g.

(1.1) If g < 2, then M may be represented as a 2-fold cyclic covering of S3,
branched over a link of bridge number g + 1.

(1.2) If g > 3, then M may be represented as a (4g - 4)-sheeted branched
covering ofS3, with the branching set a 1-manifold of at most 4g-4 components.

Theorem 1 generalizes a result of Alexander [1]. The method used here to
prove Theorem 1 is very different from that employed by Alexander, and may be
of some interest in its own right. Statement (1.1) of Theorem 1 was established
by the authors in [8], and will also be reproved below in a somewhat more gen-
eral context.  We remark that our proof of Theorem 1 is constructive in that it

(3)   See W. B. R. Lickorish, 3-manifolds as branched covers, Proc. Cambridge Philos.
Soc. 74 (1973), 449—451, for another new proof of Alexander's theorem, different from that
given here.

'Note added in proof. Hilden and Montesinos have shown that any closed oriented
3-manifold is a 3-fold branched covering of S3. See Bull. Amer. Math. Soc. 80 (1974), pp.
845-846 and 1243-1244.
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allows us to relate the branching set in an explicit manner to the Heegaard "sewing
map".

We will also be interested in certain special types of Heegaard splittings,
which we will refer to as p-symmetric Heegaard splittings. Let Yg, Y'g, t, $ be as
defined above. It will be assumed further that there is given a piecewise-linear
homeomorphism P. E3 —► E3 of period p, and that Y is left invariant under the
action of P. Note that the homeomorphisms P and r define in a natural way a
transformation P = tPt~1 which acts on Y' that P' also has period p, and that
Y'g is left invariant under the action of ?'. The Heegaard splitting Yg UTi> Yg
will be said to be p-symmetric if

(i) There is an integer p0, with 1 <p0 <p, such that

(2) (4»)(P|3yp(*-1) = (p|avppo.

(ii) The orbit space of Y under the action of P is a 3-ball.
(iii) The fixed point set of P = fixed point set of P   for each k, 1 < k < p.
(iv) The image of the fixed point set of P is an unknotted set of arcs in

the ball Yg/P.
It will be proved below that the class of 3-manifolds which admit p-sym-

metric Heegaard splittings coincides with the class of 3-manifolds which may be
represented as p-fold cyclic coverings of S3 branched over a link.

To state the latter result precisely, we define a new concept: the p-symmetric
Heegaard genus of a 3-manifold M is the smallest integer g such that M admits a
p-symmetric Heegaard splitting of genus g. We will establish

Theorem 2. Let g > 0, p > 1, b > I be integers which are related by the
equation

(3) g = ib - l)ip - 1).

Then every closed, orientable 3-manifold of p-symmetric Heegaard genus g admits
a representation as a p-fold cyclic covering of S3 branched over a link{4) of bridge
number < b.

Theorem 3.  The p-fold cyclic covering ofS3 branched over a knot of
braid number b is a closed, orientable 3-manifold of p-symmetric Heegaard genus
g<{b-l)ip-l).

Theorem 4. Every closed, orientable 3-manifold of 2-symmetric Heegaard
genus g is a 2-fold covering of S3 branched over a {g + l)-bridge link.

Theorem 5. Every closed, orientable 3-manifold of Heegaard genus g < 2

(4)  The reader is reminded that a "link" may have u > 1 components, while a "knot"
is a link of 1 component.
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is a 2-fold covering of S3 branched over a link of bridge number g + 1. Converse-
ly, the 2-fold covering ofS3 branched over a link of bridge number b < 3 is
a closed, orientable 3-manifold of Heegaard genus b-l.

Theorems 2-5 were announced in [8]. Theorem 5 was also discovered
independently by O. Ja. Viro in [32]. We note that Theorem 5 reduces to a
result of Schubert [30] in the case g = 1 and b = 2; our method of proof is,
however, different from his method.

We will begin our proof by establishing Theorems 2 and 3. Theorems 4 and
5 will then follow, easily. Statement (1.1) of Theorem 1 is implied by Theorem
5. The proof of statement (1.2) of Theorem 1 is somewhat more complicated,
and will be treated last.

Note that all of the results above are trivially true if g = 0, hence we will
always assume g > 1.

Proof of Theorem 2. The definition of a P-symmetric Heegaard splitting
implies that the map q: Y —>■ Y JV is a branched covering space. The restriction of
q to oYg defines a branched covering space dYg —► ö(Yg/V), and since Yg/Vis a
3-ball, it follows that its boundary is a 2-sphere.  Since the covering is cyclic of
order p, standard results on classification of surfaces imply that g, p and b are
related by (3).

To elucidate the structure of the branch set, it will be convenient to use an
explicit representation for a handlebody Y  of genus g as a subset of Euclidean
3-space E3. This handlebody will be constructed in such a way that it is invariant
under a rotation P of period p about the z-axis of E3, and also in such a way
that YgfP is a 3-ball. The handlebody Y will then be used to construct a p-
symmetric 3-manifold M = Yg UT<p Yg.

Let (r, 8, z) denote cylindrical coordinates in E3.  Let g > 1, p > 2, b > 2
be integers which satisfy the equality (3).  Let Y  = Yb    denote a handlebody
of genus g = (b - l)(p - 1), which will now be described in terms of its cylin-
drical coordinates.

Let K(b, p) be the union of the set of line segements {[(1, 2nf/p, i),
(0, 0,i)];j=l,...,p;i=l,..., b} and {[(1, 2nj/p, 1), (1, 2nj/p, b)],
j = 1, . . . , p}. (See Figure 3.) The handlebody Yb    will be regarded as the
set of points whose distance from K(b, p) is less than or equal to (l/10y.  Let
P denote rotation about the z axis by 2n/p.   It is easily verified that K(b, p)
and Y(b, p) are left invariant as sets by P, that Y(b, p) has genus (b - l)(p - 1)
and that Fb    = {(r, 9, z) E Yb   \ n/p < 6 < 3ir/p} is a fundamental set for P.
(See Figure 4.)

The natural projection Yb —► Yb JV is a branched covering space pro-
jection. The branch cover (preimage of the branch set), denoted by Lb , is the
point set Yb    n z axis.  It consists of the b disjoint arcs [(0, 0, / - 1/10P),
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(0, 0, b)

(0, 0, b -1)

(0, 0, 1)

(l,4jr/p.6)

~{l,2it/p,b)

~4(l,47r/p, 1)

(l,2jr/p,l)

(1,0,1)

Figure 3.   Tut of the set K{b, p)

2

2

E
Figure 4.   Fundamental set Fh p for action of P on K{b, p)

(0, 0, / + 1/10")] where i=l,... ,b. The underlying space {Ybpl?, Lbpl?)
is obtained by identifying the points {r, n/p, z) and {r, 3n/p, z) in Fb   . It is a
3-ball with i distinguished unknotted, unlinked arcs.  For simplicity we will here-
after denote {Ybpl?, LbJV) by {D, Ab).

Let Y'b    be another copy of Yb   , and let t: Yb    —* y¿    be the map
that identifies a point zEfj    with its corresponding point z E Y'b      For
simplicity, we will use the same symbol r to denote the map that identifies a
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point z with its corresponding point z' whether the domain be Yb   , dYb   ,
Lb   , D or 3Z?.  It will be clear from the context what we intend the domain to
be. Recall that Yb    is invariant under the rotation P of 2it/p about the z-axis.
It then follows that Y'b    will be invariant under the map P' = rPr-1, which
also has period p.  In a similar fashion, we may use t to define the branch cover
L'bp = TL'bpT-1, the set {YbplV, L'bpfV) = (D\ A'b) and the branched cover-
ing space projection n': (Y'b   , L'b p) —* (D\ A'b), all in a natural way.

Let <I> be an orientation-preserving homeomorphism which satisfies the con-
dition (2). Then M = Yb p UT^ Y'b    is a closed orientable 3-manifold which is
exhibited as a p-symmetric Heegaard splitting.  Let <p = 7r$7r_ 1. Then the map
it U it: Yb p UT(J) Y'b p —> D UTtp D' is a p-fold cyclic covering space projection
branched over Ab UT¡p A'b. Since D UTip D' is a Heegaard splitting of genus 0, it
can only be S3. Hence M = Yb p Ut4) Y'b    is a p-fold cyclic covering space of
S3, branched over Ab UTifi A'b.

It remains to show that Ab UT¡p A'b is a link which is represented by a 2b-
plat.  To see this, recall that the point set Ab is a collection of b unknotted,
unlinked arcs Abx, . . . , Abb which are contained in the 3-ball D, with bAb a set
of 2b points on W (cf. Figure 5).  The point set A'b is the image of Ab under j.

Figure 5. The set (D, Ab)

The sewing map np - Tit^ir'1 has the property Tip(dAb) — dA'b.  It is now clear
that Ab UTii A'b can only be a 1-manifold which is represented as a 2d-plat im-
bedded in the 3-sphere D UT¡fl D'.  This completes the proof of Theorem 2.    D

We turn our attention next to Theorem 3, which is a partial converse to
Theorem 2.  As a preparatory step, we investigate further the branched covering
space projection n: Yb    —> D constructed in the proof of Theorem 2, considering
in particular the restriction of this branched covering space projection to the sur-
face ôYb   .  The associated unbranched covering space will be the regular cyclic
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covering space (7?, <*Yb    - àLbp, dD - dAb) of the 2-sphere dD with the 26
points öAb removed. We next describe a set of generators for the fundamental
group itx{dD - dAk) of the base space.

The point set

{dFb p n the half-plane 0 = 2tt/p) U{(r, 6, z) E oFbp\B = n/p or 3;r/p}

describes a simple closed curve c on 3D that contains all the branch points. Pick
a point x0 not on c. Let Sx, Qx.Sb, Qb be the ordered array of points on
dD whose coordinates on Fbp are (0, 0, 1 - 1/10?), (0, 0, 1 + l/lO^,
(0, 0, b + l/10p).  These are now the branch points.  Let s( he a simple closed
curve which starts at jc0 , first intersects the curve c between the points S¡ and
Si+l, and then intersects c exactly one more time, enclosing the point S¡ (but no
other point S- or Qk). Let q¡ be a simple closed curve which starts at x0, first
intersects c between Q¡_x and Q¡ (where Q0 = Sb), and then intersects c exactly
one more time, enclosing the point Q( (but no other point g* or Sk). Notice that
s¡ and q¡ have opposite orientation.  The group irx{dD - dAk) is a free group,
which admits the presentation

(4) <sx, ... , sb, qx, ... , qb;sxqxls2 • • • q~l).

The subgroup belonging to the covering space it: {dYb    - dLb   ) —► (3D - bAb)
is the set of words which have total exponent sum a multiple of p.

Lemma 4.   If p = 2, every orientation-preserving homeomorphism ofdD
which leaves the set dD n Ab invariant lifts to a homeomorphism ofbYb   which
leaves the set dYb    O Lb    invariant.  Ifp>3, an orientation-preserving homeo-
morphism ofdD which leaves the set 3D n Ab invariant lifts to a homeomorphism
ofbYbp which leaves the set dYb    n Lb p invariant if and only if the homeo-
morphism leaves the point set S = {S,,..., Sb} invariant.

Proof of Lemma 4.   It is well known that a homeomorphism 17 of dD
which fixes the branch points as a set lifts if and only if 77* leaves the subgroup
of the covering invariant [22].  If 17 preserves orientation, then 17* necessarily
takes each s-type generator (respectively 17-type generator) into a conjugate of
another s-generator (respectively 17-generator) or into a conjugate of some q~x
(respectively s~ ' ).  (To see this, think of s¡ as a curve which traverses an arc a
from the base point to a point near S¡, then winds about S¡ in a small circular
path, and then traverses a in the reverse direction, and recall also that s¡ and «7,-
wind in opposite directions.)  If p = 2, the elements s¡ and wc^'w-1 have the
same exponent sum (mod 2), so that every 77* leaves the subgroup of the covering
invariant.  But if p > 2, then s¡ and vv^r'vv-1 do not have the same exponent
sum (mod b) and the subgroup of the covering is left invariant if and only if 17,.
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maps s-generators into conjugates of other s-generators. This happens if and only
if rj* leaves the set S = {Sj,. . . , Sb} invariant. This proves Lemma 4.   D

One more preparatory lemma is needed for the proof of Theorem 3. Ob-
serve that the statement of Theorem 3 refers only to knots, not to links. This is
not surprising, in view of the following:

Lemma 5.   There is a unique p-fold cyclic covering of S3 branched over a
link of p > 1 components if and only if either p = 2 or p = 1.

Proof of Lemma 5.   The p-fold coverings of S3 branched over a link L
are in 1-1 correspondence with nontrivial homomorphisms w of ttx(S3 - L) into
the symmetric group on p letters, by the following rule: one considers p copies of
S3, each with the distinguished subset L, and identifies them along L according to
pasting instructions given by w. If the covering is cyclic, then the correspondence
will be with equivalence classes of nontrivial homomorphisms of irx (S3 - L) onto
the cyclic group Z , where two such homomorphisms ft, ß are equivalent if there
is an automorphism 5 of Z  such that a = ß8. Since Z   is abelian, any such
homomorphism factors through the commutator quotient group of nx(S3 - L),
which is a ju-fold direct sum Z ®- • • ®Z. The pre-images of the generators of
the summands are necessarily meridians of L, and there is one summand Z for
each component of the link.  The meridians of the link are mapped onto the
elements (0, . . . , 0, 1, 0, . . . , 0), where the meridian of the kth component
has an entry 1 in the Mi copy of Z. Since the elements (0, . . . , 0, 1, 0, . . . , 0)
must each be mapped onto nontrivial elements of Z , it follows that the only
cases where there is precisely one admissible mapping is if either p = 2 or ju = 1.
This completes the proof of Lemma 5.    D

Proof of Theorem 3. Let K be a closed ô-braid knot,(5) and let p be any
integer > 2.  By the argument used in the proof of Theorem 2, we may always
represent (53, K) as

(S3, K) = (D, Ab) Uy {D't A'b)

for some autohomeomorphism ip: (9Z) - oAb) —*■ (dD - oAb). We may then re-
verse the entire argument used in the proof of Theorem 2 to construct the p-fold
cyclic covering of D (respectively D') branched over A b (respectively A b). This
covering space will be a handlebody Yb p (respectively Y'b   ) of genus g =
{b - IXp - O-

Since K is a closed ¿-braid, the condition of Lemma 4 will be satisfied,
hence the homeomorphism <p lifts to a homeomorphism q> of oYb p. The

(5)  The reader is referred to § 2 for the definition of a closed b-braid.   Note that (by
Lemmas 1 and 2) every closed ö-braid is also a 2&-plat, and hence has bridge number < b;
however the converse need not be true.
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homeomorphism <3> may be used to construct a 3-manifold M = Yb p Ut4( Y'bp,
which is now seen to be a p-symmetric Heegaard splitting of genus g =
ip - l)ip - 1). Also, M is a p-fold cyclic covering space of S3, branched over K.
By Lemma 5, this covering space is unique. This completes the proof of Theorem
3. D

Our next result, Theorem 4, is a sharpened version of Theorems 2 and 3,
which holds in the special case p = 2.

Proof of Theorem 4. To establish Theorem 4, we must prove
(4.1) Every closed orientable 3-manifold of 2-symmetric Heegaard genus g

is a 2-fold covering of S3 branched over a link of at most g + 1 bridges.
(4.2) Every 2-fold covering of S3 branched over a link of g + 1 bridges has

2-symmetric Heegaard genus at most g.
Statement (4.1) is precisely Theorem 2, for the special case p = 2. State-

ment (4.2) is a strong version of Theorem 3, which holds when p = 2. The proof
of statement (4.2) may be accomplished by a sequence of steps just like those
used to prove Theorem 3, except that

(a) If p = 2, Lemma 4 tells us that every autohomeomorphism <p of {dD -
bAb) lifts to bYb   . Hence we may consider all ig + l)-bridge links, instead of
restricting our attention to the sublcass of closed ig + l)-braids.

(b) If p = 2, the statement of Lemma 5 allows us to consider links of
p > 1 components, instead of restricting our attention to the case p = 1, i.e. to
proper knots.

This completes the proof of Theorem 4.   D
Proof of Theorem 5. Theorem 5 will follow immediately from Theorem

4, if we can show that every closed, orientable 3-manifold of Heegaard genus
g = 1 or 2 also has 2-symmetric Heegaard genus g. This is true because every
homeomorphism $ of the boundary 3 Y of a handlebody of genus g < 2 is iso-
topic to a homeomorphism which commutes with a particular involution T: dY
—* dYg, which is such that dYg/T is a 2-sphere. To verify this latter statement,
note that, by Lemma 3 of §3, every homeomorphism q> of dYg is isotopic to a
product of the Lickorish twists t„ ,. . . , r.,    ., and that if g < 2 each such

*-l '■3g— 1
twist may be chosen to commute with a rotation T of period 2 about the x axis
in Figure 4.(6)  Since the quotient space dYJT is a 2-sphere in this case, the
proof of Theorem 5 is complete.

Finally we approach the proof of Theorem 1. Statement (1.1) of Theorem
1, which relates to the case of g < 2, is contained in Theorem 5, hence we may
restrict our attention to the case g > 3. Our proof will be, essentially, an escala-
tion of the technique used in the proof of Theorems 2 and 3, however in the

(6)  The special symbol T will be used instead of P to refer to this particular rotation.
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general case to be considered now the Heegaard splitting Y2 UT<¡) Y' is not assumed
to be p-symmetric, and the covering space projection we will define when we
develop a representation of M = Yg UT<I, Y'g as a branched covering of S3 will not
be a regular covering space.

Figure 6.   Projection of Y onto the plane z = 0

Proof of Theorem 1. As before, let {r, 0, z) denote cylindrical coordi-
nates in E3. The reader is referred to Figure 6.  Let K(g), g > 3, be the union of
the line segments {[(1, (2k + l>/fe - 1), 0), (2, (2k + l)nl(g - 1), 0)] ; k -
0, . . . , g - 2} and the circles z = 0, r = 1 and z = 0, r — 2.  Let 1^ be a regular
neighborhood of K(g) which is invariant under a rotation L of 2ir/(g - 1) radians
about the z axis, and also under a rotation Bk of it radians about the lines z = 0,
0 = (2k + IJnlig - 1), for each k = 0.g - 2. We also assume that the
intersection of Yg with each half-plane 6 = 6Q has central symmetry, and we de-
note the homeomorphism of Yg obtained by simultaneously performing the
central symmetry on each such section by M.

Note that M commutes with L and also with 80, . . . , Bg_2. Thus we
have defined an action on Yg by the finite group G generated by L, M and B0,
. . . , B_  2. The group G is an extension of order 2 of a dihedral group of order
2{g - 1). Nontrivial elements of G with fixed points are {M, Bk and MBfc, k =
0, . . . , g - 2}. The fixed point sets of M, Bk and MBfc are the intersection of
Yg with the circle z = 0,r= IVt; the line z = 0, 0 = Tkrtfig - 1), and the line
r = lVt, 0 = 2knfig - 1) respectively.  (See Figure 7.)

Let T - oYg. The group G acts on Tg by restriction. Let a¡, b¡, c¡, d¡
and e be the curves on Tg depicted in Figure 7. Let a¡, ß(, y¡, 8¡ and e be the
Dehn twists about these curves (see §3 for the definition of a Dehn twist). We
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Figure 7.   Curves on Tg = dYg

may choose these twists and curves in such a way that afcM = Mafc, p^B^ = Bkßk,
TfcBfc ■ Bfc7fc> SfA " ßfc5fc and eBk " Bke for each * - 0,...,f - 2. By
Lemma 3, this collection of Dehn twists generates the mapping class group of Tg.

Lemma 6.   Given any Dehn twist co in the above collection, there is an
element x(co) E G such that:

(i) co commutes with x(w)-
(ii) x(w) = Bfc or x(co) = M;k = 0, . . . ,g-2.

(iii) If co is the projection of co to the manifold Tg/x{io), then to is isotopic
to the identity map.

(iv) Let P{to) be the image of the fixed point set of x(co) under the map-
ping it: Tg—* Tglx{(o)  Let g(co) be the image under it of the remaining fixed
points.   Then the isotopy cot of co may be chosen so that P n cof(g) = 0 for all
0<i<l.

Proof of Lemma 6.  If co = ßk, yk or 8k choose x(co) = Bft. If to = ak,
choose x(co) = M.  If co = e choose x(co) = Bfc for any k. Conditions (i) and (ii)
above are satisfied. In each case the support of to on TJx{co) is a disc, hence
(iii) is also satisfied.

If co = ßi or S¡, the disc supporting co contains no points of g(co) at all. If
co = y¡ or a¡, then there is only one point of g(co) in the disc supporting co. In
fact co is a twist centered at this point. In either of these cases co can be untwist-
ed without moving the points of g(w) at all, and (iv) is easily satisfied. Finally,
if co = e, then co is a twist exchanging a pair of points of P{<o). The line segment
connecting these points contains all the points of g(co) in the support of co and
is left invariant as a set by ço (the pre-image of this line segment is the support
of e intersected with the x -y plane).  As co is untwisted, çof(g(co)) traces out
the path indicated in Figure 8, easily avoiding the set P{to). This completes the
proof of Lemma 6.   D
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support of e

Figure 8. Effect of et on points in Q{é)

Continuing the proof of Theorem 1, let Yg be another copy of Y . Let t
be the map that identifies Yg with Y'g. Let Tg = T{Tg) = T(oYg) = dYg. In
what follows we shall allow the group G to act on the sets T' and Y', and allow
the Dehn twists to act on T  x {n + 1}, considered as a subset of the set Tg x
[n, n + 1]. This is always done in the obvious way.

Let rf. Tg x {2/ - 1} -* Tg x {2/} be defined by Tf(z, 2/ - 1) = (z, 2j).
Let (¿j be a Dehn twist acting on Tg x {2/ - 1}. We will use the symbol Tg x
[2/ - 2, 2/ - 1] UT.W. Tg x [2j, 2/ + 1] to indicate that Tg x {2/ - 1} is to be
identified with Tg x {2/} by the rule (co^z), 2/ - 1) = (z, 2/).

Lemma 7.  Every closed, orientable 3-manifold M of Heegaard genus g
admits a representation of the form:

(5)
M=Yg Ur0 T* X  1°' ^  ^Vx TS *  I2' 31  U' 2W2

u. Tgx   [2m, 2m + I] UT Y'
m + l     *

where t0 and Tm + X are the obvious identifications ofdYg = Tg with Tg x {0}
and of TgX {2m + 1} with Tg = oYg.

Proof of Lemma 7.   Since the Dehn twists generate the mapping class
group, M has Heegaard genus g, and Tg has a collar neighborhood, the Heegaard
splitting of M yields the representation

M=Yg UTq Tg x [0, 1] UTi Tg x [2,3] U- • •

VTmTg  K[2m,2m + l]UTm + i^2Wir;.

A homeomorphism between M and a manifold M' with the required form is
defined below:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HEEGAARD SPLITTINGS OF BRANCHED COVERINGS OF S3 331

»0 *1 h2

Yg UTo 7¿ x [0,1] UTi Tg x [2, 3] U ■ • • UTm 7, x [2m, 1m + 1] ̂ „„^ Ç

hm + l rtm + 2

YgUTQTgx[0,l] UTiWi 7, x [2,3] U • • • U,^ T, x [2«, 2» + 1] U^ y;

Define «0(z) = z, «m + 2(z) = z. hx{z, t) = (z, i) and hAf, t) = (co^! • ■ •
cOjCOjiz), t) for each / = 2, . . . , m + 1.  This proves Lemma 7.   D

Before proving the next lemma we introduce a definition which we will
make use of only in the remainder of this section.  Given a branched covering
space projection it: M —> N, where M and TV are compact manifolds, a point x E
M is called ordinary if p is a local homeomorphism in some neighborhood of x.
A point that is not ordinary is called irregular, and the set of irregular points is
called the irregular set.   Notice that the branch cover is precisely the inverse
image of the image under n of the irregular set.

The next lemma is a weak version of Theorem 1.

Lemma 8.   Let M be defined by equation (5). 77ze« there is a branched
covering it: M —► S3, where S3 is represented by

S3 = {Yg/G) UTq {Tg/G) x [0, 1] UTj iTJG) x [2, 3] • • •

UT    {T/G) x [2m, 2m + I] UT        {Y'/G)
m      * m + l      °

such that
(i) it restricted to YgKJY'gKJTgx [2m, 2m + 1] U Tg x {0, 2, 4, ... ,

2m} is the natural projection.
(ii) 7r: {Tg) x [2j, 2/ + 1] —*• {Tg/G) x [2j, 2/ + 1] preserves the second

coordinate j = 0, . . . , m.
(iii)  77ie irregular set is a 1 -complex.   The singular points of this 1 -complex

are the points (1Î4, {2k + l)nl(g - 1), 0) and t{IVi, {2k + l)itl{g - 1), 0) in Yg
and Yg respectively.

Proof of Lemma 8.   First note that {Tg/G) and {Yg/G) are S2 and D3
respectively. To see this observe that a fundamental set for the action of G on
Yg is Yg n {{r, 0, z)\ 0 < r < VA, 0 < 6 < rtlig - 1)}. {Yg/G) is obtained from
the fundamental set by making the identifications (r, 0, z) = (r, 0, -z) for points
{r, 6, z) lying in the half-planes 0 = 0 or 0 = ir¡(g - 1) or the cylinder r = VA
(see Figure 9).

Next, we use condition (i) to define 7r on the set denoted in (i).  We wish
to extend the definition of it to the rest of M and then check that conditions
(ii) and (iii) are satisfied. Pick some /: 0 </ < «i - 1. We wish to extend the
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Figure 9.  Fundamental set for action of G on Y,g

definition of rr from Tg x {2/} U Tg x {2/ + 2} to Tg x [2j, 2/ + 1 ] UT/+ J       1
7^ x {2/ + 2}.  Let XÍ^y+i) G G be the element whose existence is guaranteed
by Lemma 6.  Let coy+ j >f be the isotopy whose existence is guaranteed by Lem-
ma 6, parts (iii) and (iv) (wy+1>0 = id; 6?/+i,i = y/+i)-  Let

Pi--Tgx[2j,2j+l]UTj+iWi+iTgx{2j + 2}

— (V(x(co/+1))) x [2/, 2/ + 1] UT/+iy/+i (r,/(x(W/+1))) x {2/ + 2}
be the natural projection.  Let

qf. (Tg/X{coi+x)) x [2j, 2/ + 1] VTf+x„f+i {Tglx{^)) x {2/ + 2}

-> iTjfo/+x)) x [2j, 2/ + 1] UT/+i (tyx(w/+t» x {2/ + 2}

be the homeomorphism (*, t) —> (6?/+i,i-2/0c)' ?)> 2/ < f < 2/ + 1, and (*,
2/ + 2) —> (*, 2/ + 2). Note that q. is well defined and that q}- restricted to
Tg x {2j, 2/ + 1} is the identity. Let

yf. {Tglx{o>i+x)) x [2/, 2/ + 1] Ur/+i (r,/x(w/+1)) x {2/ + 2}

-*■ (7-,/G) x [2/, 2/ + 1] UT.+ i (yC) x {2/ + 2}

be the natural projection. Now define n on Tg x [2j, 2/ + 1] U T  x {2/,+ 2}
to be 7,-^.Pi for each /, and note that n is well defined because yflpi is just the
natural projection on the sets Tg x {2j, 2/ + 2}.

Now we investigate the irregular set of n restricted to Tg x [2j, 2/ + 1].
Since it is easily checked that p-, q-, and y.- are all branched coverings, this set is
equal to P¡ U pJxqJxQ- where P¡ is the irregular set of the natural projection
pf: Tg x [2j, 2/ + 1] -+ (Tglx(cOj)) x [2j, 2/ + 1] and ßy is the irregular set of
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the natural projection

7>: {Tglx{<Oj)) x [2/, 2/ + 1] ^ {Tg/G) x [2j, 2/ + 1].

By the definition of q- (utilizing part (iv) of Lemma 6) P¡ and pJxqJxQj are dis-
joint sets. Thus the irregular set consists of S(g - 1) arcs, whose intersection with
the set Tg x {t} consists of 8{g - 1) points. Putting together all the irregular sets
of 7T restricted to Tg x [2/, 2/ + 1 ] we see that the irregular set óf 7r restricted to
Tg x [0, 1] UTiOJi Tg x [2, 3] U • • • UTmWm Tg x [2m, 2m + 1] consists of
8(g - 1) disjoint arcs.  Thus all the singular points of the irregular set belong to
the set Yg U Yg. Checking the definition of 7r on these sets Yg U Yg we see that
the singular points of the irregular set are the points {VA, {2k + Vfitfig - 1), 0)
and t{VA, {2k + l)it/{g - 1), 0), k = 0, . . . , g - 2. This completes the proof
of Lemma 8.   D

We may now complete the proof of Theorem 1, part (1.2).  First we elim-
inate the singular point from the irregular set. In view of Lemma 8, and the
definition of jt, all we need to do is to show that we can modify the map tt of
Lemma 8 in a neighborhood of a point (1^, {2k + Vynlig - 1), 0) so as to elim-
inate the singular point.

Let H be the subgroup of G consisting of elements that fix the point
(1%, {2k + l)nlig - 1), 0). Let m ■ Yg -> (iy/vf), t?2: (tyM) -* (YJH) and
i73: {Yg/H) —► {Yg/G) be the natural projections. Then 77 restricted toT equals
T^TjjTjj. The irregular set of r\x, denoted Bx, is the circle (z = 0, r = VA) C\ Y .
The irregular set of t¡2, denoted B2, is T)x (the ray (z = 0, 0 = {2k+ l)nl(g-l) C\
Yg)).   The map r¡3 is a local homeomorphism in a neighborhood of
r)2r)x{VA, {2k + Vyn¡{g - 1), 0). Let ij. be a homeomorphism of Yg/U supported
in a small ball D centered at n^lVt, {2k + l)nl(g - 1), 0) such that MnxiBx)) f>
B2 n D = 0. The map Tj^jiMi has no singular points in its irregular set and
agrees with 77 except in a small neighborhood of {VA, {2k + l)nl(g - 1), 0). We
can repeat the process at each of the points (ltë, {2k + l)nl(g - 1), 0) and
t{VA, {2k + l)itl{g - 1), 0) until all singular points have been eliminated from
the irregular set of 7r.

The irregular set, which we shall call S, is now a 1-manifold, but its image
has singular points. To eliminate these we shall further modify the map 7r so that
it restricted to 5 is an embedding.

Let M be the set of multiple points of S, i.e. M = {x ES\ ir(y) = n{x) for
some y ES with y ¥= x}. Let U¡, i = 1, ...,«, be a covering of n{S) by open
balls such that the restriction of 77. to any component of n" ' {U¡) embeds the
intersection of 5 with that component. Suppose Kis a component of it~l{U¡),
for some 1, such that V n M ¥= 0. Let 1// be a homeomorphism of S3 supported
on Ui such that ip{it{V n S)) n it{S) = 0. (Such a homeomorphism exists by a
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general position argument.) Now define ir'(x) = n{x) if * G Fand 7r'(*) =
\¡j(n{x)) if* G V.

The branched covering it' has the following properties:  (1)  For any i, i =
1,. . . , n, 7r'-1(í7/) = 7r-1 (i/,). (2)   The set of multiple points for 7r', M' is
contained in M.   (3)   V C\ M' = 0, but V C\M^= 0. We can iterate this process
until no component of the inverse image of any U¡ contains a multiple point.
The. final branched covering we obtain, n, embeds the irregular set.  Thus the
branch set ir{S) is a one-manifold.  Since n is a local homeomorphism on the com-
plement of S, the branch cover 7r_17r(5) is also a 1-manifold.

5. An algorithm to decide whether a 3-manifold which admits a 2-symmet-
ric Heegaard splitting is S3. In this section we apply the results of §4 to establish
that there is an effective algorithm to decide whether a 3-manifold which admits
a 2-symmetric Heegaard splitting is S3.  The reader is reminded that this class
includes all 3-manifolds of Heegaard genus g < 2. This result was established
earlier by the authors in [8]. As an application, we will use our algorithm to
give a new and very simple proof that every genus 1 homology sphere is S3.

Let Y be a handlebody of genus g which is imbedded in 3-space in the
manner indicated in Figure 4, so that it is invariant under a rotation T of 180°
about the z axis. Note that the orbit space Yg/T is a 3-ball D, and that T has
period p = 2. Let Y'g be a second copy of Yg, and let t: Yg —► Y'g be the natural
map.  Let <ï>: dY —>■ 9y be a homeomorphism which commutes with the re-
striction of T to oYg, and let M=Y UT(I, Y' be the 3-manifold defined by
using the rule in equation (1) to identify points on oY and oY'g. Thus M is
defined by the 2-symmetric Heegaard splitting Yg UT<t) Yg.  Recall that every 3-
manifold of Heegaard genus g < 2 admits such a representation, because by Lem-
ma 3 every homeomorphism $ of 3 Y is isotopic to a product of Lickorish
twists f   .r about the curves cx,. . . , c3g_x in Figure 4, and if
g < 2 each such twist may be defined in such a way that it commutes with T.
If g > 3, we restrict ourselves to twists about cx,. . . , c2g+1.

Let [<E>] denote the isotopy class of $. We will assume that [$] is defined
as a product of twists, i.e., that we are given

(6) [*]»[&}•••{# ][& ],     e, = ±l,/i,= l,...,2*+l.

77ze algorithm.   Let [$] be given by equation (6).
1. Construct the {2g + 2)-string braid

(7) t—Z'~i\
where a¡ {i = 1,. . . , 2g + 1) is a standard generator of the (2g + 2)-string
Artin braid group.   [See Figure 1.]
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2. Construct the {2g + 2)-plat L determined by the geometric braid ß (see
§2).

3. Apply the algorithm given by Haken in [16], or by Schubert in [31] to
decide whether L is the trivial knot type.

We assert:

Theorem 6. The 2-symmetric 3-manifold M = Yg Ur<t( Yg is S3 if and
only if L defines the trivial knot type.

Proof of Theorem 6. Suppose that M is homeomorphic to S3. Then T
is an involution of the 3-sphere, hence by a theorem of Waldhausen [33] the
fixed point set F of T is an unknotted circle.  Hence its image 77(F) under the
collapsing map it: M—^ M/T is also the trivial knot type. We claim that 77(F) is
precisely the plat defined by the {2g + 2)-braid ß in equation (7).  If we can
establish this, it will follow that a necessary condition for M ~ S3 is that this plat
be trivial. To see that this condition is also sufficient, note that if 77(F) is the
trivial knot type, then by the construction described in the proof of Theorem 2,
§4, M is the 2-fold cyclic covering of

(8) M/T = {Yg UT<t Y'g)IT = D UTtp D' ~ S3
branched over the trivial knot.  But then M can only be S3, hence the condition
is also sufficient.

It remains to establish that n{F) is the plat defined by the {2g + 2)-string
braid ß. To see this, recall that it was established in the proof of Theorem 2 that
77(F) is the point set Ab UTip A'b C D UTif) £>', where Ab is a collection of b =
2g + 2 unknotted arcs which are contained in the 3-ball D, and A'b = T{Ab) is
the corresponding collection in D' = r{D) (cf. Figure 5); also that D U    D' is
S3 (the 3-balls D and D' are sewn together by the surface mapping up: dD —►
dD', where <p = 77<J>it_1).  The mapping $: dYg —► dYg is the twist product given
in equation (6), hence [p] will be the corresponding product of twists [7rc' ît—1] ,
and [7rrc  tr~1 ] is precisely the elementary braid autohomeomorphism o¡ of the
surface (3D - dAb), as defined in §2.(7) Thus $ projects to

[*]-*- oe;r • • • oe2/p\

hence n{F) is precisely the plat determined by ß.{s)  This proves Theorem 6.   D

(7) The fact that lrrtc.Tt~1] = o¡ is clear from the definitions of the twists tc. and o¡
and the projection Jr.   For an explicit proof, see [6, Chapter 4].

(8) Note that we have followed the convention that mappings are applied from right
to left.  Thus Op  ■ ■ • Op. means "apply Op. first, then o2.,.  This convention is
opposite to the convention normally followed by group theorists, e.g., as in [20, pp. 173—
179].  However, since we are not concerned with orientations, it will not matter whether we
construct our plat from the braid Op1. • • ■ o¡[ or from the braid a¡[ • • • Op1., as one may be
obtained from the other by turning the braid diagram upside down and over.
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Remark.   We were unable to generalize our algorithm to the case of 3-
manifolds which are represented by p-symmetric Heegaard splittings, where p >
2, because the "Smith conjecture" [34] for periods p > 2 has not been established.
If this gap were filled, our algorithm could be adapted to an arbitrary p-
symmetric Heegaard splitting. By a recent result of Montesinos [24] this would
still be a proper subset of all closed orientable 3-manifolds.

As an application of our algorithm, we now give a new and very brief proof
of a classical result: every genus 1 homology 3-sphere is S3. The algorithm will
also be applied later (in §7) to the more difficult cases of Heegaard splittings of
genus 2.

Corollary 1.  Let M = Yx UTÍ> Y\ be a 3-manifold which is defined by
a genus 1 Heegaard splitting.   Then M ~ S3 if and only if HX(M) = 0.

Proof of Corollary 1.  Let a, ft (respectively a, b') be generators of
nxoYx (respectively rtxoY'x), with r(a) = a', r(b) = b'. Suppose that $: oYx —►
oYx has the action:

(9) n       n
b-+a2lb22,     nxln22-nx2n21 = l.

Suppose also that the natural inclusion maps from nxoYx —► rtxYx (respectively
ndY'x —*■ rtx Y[) have kernels generated by b (respectively b'). With these conven-
tions, a straightforward application of van Kampen's theorem shows that nxM
admits the presentation:

(10) <a;a"21 = l>.

Thus HX{M) = 0 if and only if n21 = ±1.
Our proof will be complete if we can show that n21 = ±1 implies M~ S3.
Let tc , tc   be Dehn twists about representatives of b — cx, a — c2 respec-

tively (cf. Figure 2). These twists induce the automorphisms

(11)
b -*■ b, b->ab.

An easy calculation shows that:

[^^t^]"22"1^]"21^^""11.        "21=±1-

We may now apply our algorithm to decide whether M ~ S3. To accomplish this,
replace the map 3> by the 4-braid

ß = onx22-1o"22'o\-n^,     n2X=±l,
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and construct the 4-plat determined by ß (see Figure 10). It is immediate that
this plat defines the trivial knot type for every choice of the integers nxx, n22,
hence M ~ S3.   D

»   •   •   •• •   •   •

• .   •   •• »   •   •

Figure 10. 4-plat corresponding to the genus 1 Heegaard splittings

•-ífa"iííi¿r,n («21=+D

6. Equivalence classes of genus two 3-manifolds and equivalence classes of
6-plat presentations of knots and links.  In this section we prove the theorem:

Theorem 7. Let Y= Y be a solid handlebody of genus g, which is
imbedded in E  in the manner indicated in Figure 4. Let T'- Y —► Y be the
involution which is induced by rotation about the z axis in Figure 4. Let a:
Y —► Y be a homeomorphism which has the property that ft|3 Y commutes with
T\bY.   Then there is a homeomorphism ß: Y'—*■ Y such that ß\dY = a|3y, and
ß commutes with the involution T.

We then use this theorem to show that the natural map from equivalence
classes of 6-plat presentations of knots and links to equivalence classes of Heegaard
splittings of genus two 3-manifolds is injective and surjective.

In what follows, let b denote the set Y C\ z axis, which is the branch cover
of the natural projection p: Y —► Y/t. The symbol D denotes the 3-ball Y/r,
and a = p(b) is the branch set.

Lemma 9.   Let fbe a proper map of D2 into Y, such that f(dD2) is a
simple closed curve in oY which is disjoint from TfioD2).  There is a proper map
gofD into Y such that g\dD2 = f\dD2, g is an embedding, and g{D2) n Tg(D2)
= 0.
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Proof of Lemma 9. The idea of the proof is to modify / so that j\D2) no
longer intersects b, then project/to obtain a Dehn disc in D3 -a and use the
Dehn lemma.

Assume j\D2) intersects b n times. We begin by finding a homotopy,
/-/4, fixed on 3D2, such that/4 intersects b «-times, and/4(D2) O T/4(D2)
is a 1-complex in which each vertex is the boundary of exactly two or four 1-
simplices. We do this via a sequence of homotopies, each fixed on 3D2. Each
subsequent function in the following list will be assumed to have all the properties
listed for the functions preceding it.

0. The function f0 intersects b exactly « times and is simplicial with respect
to some triangulation of D2.

1. The function fx — f0 is nondegenerate, also /j(l-skeleton) O b = 0.
2. The function f2 c*fx. Also, if o\ and o\ are 2-simplices such that

f2{o\) n b =£ 0 and f2{o\) C\i^0 then f2{o\) n f2{o\) = 0 (we may have to
pass to a finer triangulation). Also, if o2 is a 2-simplex such that f2{o2) <~\b =
0, then f2{o2) n rf2{a2) = 0.

3. The function f3 —f2- If f3{o2) D b # 0, then f3{o2) is not perpendic-
ular to b.

4. The function /4 - f3, also pf4{D2) is a normal Dehn disc in D3.
This means that singularities of p/4(D2) do not occur on the boundary, and are
either double points, along which two sheets cross, or triple points at which three
sheets cut, or branch points,  (g E pf4{D2) is a branch point if a small sphere
centered at g cuts pf4{D2) in a single nonsimple curve.) This may be accom-
plished by a small homotopy of p/3 fixed on 3D2 U neighborhood offj i{b),
which may be lifted to a homotopy of f3. We need not homotopy f3 at the
points of f3l{b) because by 1, 2 and 3, all the singularities of pf3{D2) in a
neighborhood of a are of the right type.

By 2 and 3 each point P of/4(D2) n T/4(D2) n b has a neighborhood N
such that /4(D2) n T/4(D2) n W is a line segment with P in its interior.

If g £/4(^2) n Tf4{D2) n{Y- b), let N be a spherical neighborhood of
g such that NnTN = 0. The map p: (f4(D2) U Tf^{D2)) n N -> p/4(D2) n
pW is a homeomorphism.  Since p of any point of/4(D2) n Tf4{D2) D N is a
singular point of p/4(D2) D W we see that /4(D2) D TfA{D2) is a 1-complex.  If
p(g) is a double point then it is the boundary of exactly two one-simplexes in
/4(D2) n T/4(D2).  If p(g) is a triple point then it is the boundary of exactly
four one-simplexes in /4(D2) D T/4(D2). Now p(g) cannot be a branch point
since if that were so the inverse image of the intersection of p/4(D2) with a
small sphere centered at p(g) would be a simple closed curve in either fJN) or
T74(fV).  Since f4{N) n T/4(A0 = 0, Q could not belong to/4(D2) n T/4(D2).
Thus/4(D) intersects ¿ «i times, /4(D2) n TfA{D2) is a 1-complex in which each
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vertex is the boundary of either two or four 1-simplices.
Now we show that each component of/4(£)2) n Tf4(D2) contains an even

number of points of b. Let K be a component of/4(D2) D T/4(D2) that contains
a point in b. Since /4(Z>2) n TfA(D2) is invariant under T, and the point in è is
left fixed by T, an easy connectedness argument shows K is invariant under T.
Triangulate K so the map p: K —► K/T is simplicial. There are an even number
of 1-simplices in K for this triangulation. We remove the midpoint of each 1-
simplex and all the vertices. Note that the number of components is divisible by
four, and the closure of each component contains exactly one vertex. Now count
the number of components.  This number equals 2 x (# vertices in K n b) +
4 x (# vertices in p(K) - a that are the boundaries of two 1-simplices) + 8 x
(# vertices in p(K) that are the boundaries of four 1-simplices). Thus the number
of vertices in K C\ b is even. Now we show how to modify /4 so as to eliminate
two intersections of/4(D) with b. Let AT be a component of/4(D2) n T/4(£>2)
containing points of b and let 5 be a simple arc in p(K) containing two distinct
points of a for endpoints and no points of a in its interior. p~l(8) is a simple
closed curve in Y and f4~lp~1(5) contains a simple closed curve in D2 bounding
a disc we shall call E. We may choose a parametrization, y(s), 0 < s < 1, of
/7 V"1 (5) such that /4(t(s)) = T/4(t(1 - s)), 0 < s < 1. Now let Q be a
homeomorphism of the disc E such that Q(y(s)) = 7(1 - s). Define the function
fs : fs(x) = /4(*) if * G E, and /s(*) = T/4(ß(*)) if * G E.  Note that /s is well
defined since fs(y(s)) = Tf4(Q(y(s))) = Tf4(y(l - s)) - fA(y(s)). We have not
altered the fact that fs(D) n b is n points. Now examine /4 and fs in a neighbor-
hood of 7(0).  Note that 7(0) belongs to the interior of a simplex o2 which /4
linearly embeds in Y, in such a way that f4(o2) is not perpendicular to ft.  Thus
there is a unique line segment in /4(o2) that is perpendicular to b. This line seg-
ment and b define a plane P, which divides E3 into two closed half-spaces ZZj
and H2. Examining the definition of/s we see that there is a neighborhood N
of 7(0) such that fs(N) lies entirely in one of these half-spaces. Now it is easy
to find a homotopy f6 — fs fixed on the complement of the interior of N such
that f6(N) n b = 0. In a similar manner we may find a neighborhood N' of
y(Vi) and a homotopy /7 — f6 fixed on the complement of the interior of N'
such that fn(N') C\ b =0. In summary we have found a function /7 such that
/7|3D2 = /|3£>2, /7(£>2) n b contains two fewer points then j\D2) n b, and if
/7(o2) Db^0 then /7(o2) n ¿> belongs to the interior of/7(a2).  Repeating
the same process n/2 times we finally arrive at a function gx such that gx(D2) n
b ■ 0 and ̂  \oD2 =/|3Z32.

Since £j(3Z)2) is a simple closed curve in BY disjoint from Tgj(3D2), it
follows that pgx(D2) is a singular Dehn disc in D3 -a.  By the Dehn lemma [26]
there is a function g such that g(Z)2) is a nonsingular disc in D3 - a and
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g\dD2 = gx \dD2. We may lift g to a function g: D2—■> Y such that g satisfies the
conclusion of Lemma 9.   D

Proof of Theorem 7. Now note that (D3, a) is a 3-ball with g + 1 dis-
tinguished disjoint unknotted, unlinked, and proper arcs, where g is the genus of
Y. Since a\d Y commutes with T it projects to a homeomorphism a of the 2-
sphere 3D3 that takes da into itself.  Let D\, . . . , D2 he a set of disjoint proper
discs in D3 - a such that D3 - Uf=iD2 consists of g + 1 components each of
which contains one distinguished arc. Let D2 he one of the two lifts of D2 to Y.
This function o¡ restricted to DJ satisfies the hypothesis of the preliminary lemma.
Hence there is a disc Ef such that a(3D2) = dEf and Ef n TE2 = 0. Let Ef =
p{E2).  In general the set {Ef} will not be pairwise disjoint.  However, we may
systematically eliminate intersections and replace the {Ef} with a set of pairwise
disjoint proper discs {Ff} such that Ff = a(3D2). To see how to do that sup-
pose Ef and EJ intersect. We may suppose they are in general position and so
they intersect in a set of circles.  Let c he a circle of intersection such that c
bounds a disc G2 in Ef not containing any other intersection points in Ef and c
bounds a disc H2 in Eh Since H2 and G2 do not intersect they bound a ball J3
in D3 -a. There is an isotopy ^ supported on a regular neighborhood of the ball
J3 such that y "pushes" G2 through H2.  If we replace the disc Ef with ¡p{Ef)
we reduce the number of circles of intersection by at least one. We can continue
to do this, being careful at each stage not to introduce new intersections, until all
the intersections are eliminated.  Now extend a to 3D3 U Uf=iD2 by letting a
map Df homeomorphically onto Ff. Since 3D2 divided 3D3 into g + 1 regions
Rq, . . . , R2 each containing two points of 3a, the regions c^Rq), . . . , Çi{R2)
also each contain two points of da.  Thus we have g + 1 regions S3,, . . . , S3
each of which is a ball containing one arc of a and another g + 1 regions T3,,
.... T3, each of which is a ball containing one arc of a. We also have a homeo-
morphism a: dSf —*■ 3T3 that preserves the set 3a. Now we extend a in any way
at all to a homeomorphism a: S¡ —> T¡ and, making use of the fact that any two
unknotted arcs in a ball are isotopic, find an isotopy j£ such that j¿a is a homeo-
morphism sending a into a and \¡¿a\dD3 = a. Now we may lift \¡¿a to get the
desired homeomorphism ß of Y.   This completes the proof of Theorem 7.   D

We recall from §4 that a 2b plat is a representation of a knot or link of
form (D, Ab) Ur6 (D', A'b) where D is a 3-ball containing Ab, a set of b unlinked
unknotted arcs, (£>', A'b) is another copy of (D, Ab), t is the map identifying D
with D', restricted to 3D, and 5 is a homeomorphism of 3D leaving the points in
dAb invariant as a set.

We say the plat (D, Ab) Ut6 (D', A'b) is equivalent to the plat (D, Ab) UT^
(D'( A'b) if there are orientation-preserving homeomorphisms a, a of (D, Ab) and
(D', A'b) respectively, such that (a'|3D>S = ti|/(o:|3D).
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Recall from §4 that Yg UTM Y'g defines a Heegaard splitting of a 3-manifold;
m: (Yg, Lb) —► (D, Ab) and it': (Yg, L'g) —► (D\ A'b) are Mold branched cyclic
coverings, with branch covers the sets Lb and L'b respectively. We say the Heegaard
splittings Yg UTli Y'g and Y UT-V Y' are equivalent if there are orientation pre-
serving homeomorphisms a anda' of Y and Y' respectively such that (a'\dY')rp
= Tv(a\dYg).

Let Fb    be the map that assigns to an equivalence class of plats {(D, Ab)
UTg (D\ A'b)} the equivalence class of Heegaard splittings [Yg VTfl Yg} where p
is the lift to 37 of the homeomorphism 5 of 3D.  Fh    is well defined because
homeomorphisms a, ft' of (D, Ab) and (£>', A'b) lift to homeomorphisms a, a' of
Y , Y' and the commutative diagram defining equivalence downstairs lifts to a
commutative diagram defining equivalence upstairs. At this point, we specialize
to the case b = 3, g = 2 and denote F3 2 simply by F.  We wish to show that F
is injective and surjective.  (For g > 3, Fb    is probably not surjective as there are
isotopy classes of homeomorphisms of óY that have no representative commuting
with the covering transformation.)

Theorem 8.  The natural map F from equivalence classes of 6-plats to
equivalence classes of genus 2 Heegaard splittings is injective and surjective.

Proof of Theorem 8. Surjectivity follows easily from the fact that any
homeomorphism of 3 Y2 is isotopic to one commuting with the covering transfor-
mation in the covering n: oY2 —► 3D.

Suppose Y2 U     Y2 = Y2 UTJ> Y'2. Then there are orientation-preserving
homeomorphisms a, a  of Y2 and Y'2 such that (ft' \dY'2)rp = Tv(a\ôY2). Since
the genus is 2, ft|3y2 is isotopic to a homeomorphism ax of 3y2 where ax com-
mutes with the covering transformation. We can extend the isotopy to all of Y2.
Call the isotopy ftf. Then we can use at to define an isotopy of ft'|3y2, defining
ftf|3y2 by the equation (at\öY'2)rp = Tí>(af|3y2). This is possible since p, v, t
and a, are all homeomorphisms.  Thus (a'x\bY2)rp = ri>(ftj|3y2). Now ft'j must
be fibre preserving since ax,p,v and r are all fibre preserving. Thus aj commutes
with the covering transformation. Since the isotopy a't may be extended to an
isotopy of Y'2 we could use the homeomorphisms ftj and a\ in place of the
homeomorphisms ft and a to define the equivalence of Heegaard splittings. Thus
we may assume that ft|3y2 and a'|3y2 commute with the covering transformation.
By Theorem 7 we may choose extensions of a|3y2 and ft'|3y2 that commute
with the covering transformation in the coverings rt: Y2 —*■ D and rr': Y'2 —► D'.
Thus we may assume a and a had this property to begin with. Now a, and
ft' project to homeomorphisms ft and ft' with (a'|3D')T8 — r<//(ft|3D) so that
(D, A3) UT6 (D', A'3) = (D, A3) UT0 (D\ A'3).   D

Theorem 8 sheds light on a question raised by Papakyriakopoulos [28,
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p. 330].  He asks whether any two Heegaard splittings of a 3-manifold are equiv-
alent^9) (His definition of equivalence is somewhat different from ours in that
he allows homeomorphisms of M = Yg UTM Yg onto M = Y UTP Y' that map
Yg onto Y'. We could have used a similar definition of equivalence (suitably
modifying our definition of equivalence of plats) and obtained a theorem similar
to Theorem 8, but the exposition would have been more complicated.) Theorem
8 shows that, for genus 2, the existence of two nonequivalent 6-plat presentations
of a prime knot or link would imply a negative answer to Papakyriakopoulos'
question.

Theorem 8 and the results of §4 indicate that the following question is
interesting, and may be easier to answer than the analogous question about 3-
manifolds:  Are any two "Heegaard splittings" of a prime knot equivalent?* i.e.
let D UTl^ D' he a Heegaard splitting of S3. hetAb be a collection of b unknotted
and unlinked arcs in D with endpoints on 3D, and let A'b = r{Ab).  Then L^ =
Ab UTt// A'b is a link in S3 = D U^ D', represented as a 2Z>-plat.(1 °)  Let B2b
be the group of all autohomeomorphisms of (3D, Ab), and let G be the subgroup
of those autohomeomorphisms which extend to (D, Ab).

Question.   Suppose that L is prime. Are all 2Z>-plat representatives of the
link type of L^ obtainable as Ab UTtp A'b, where <p = \¡jx • t// • \¡i2, with \j/x, i>2
EG!

7. Presentations for irxS3.  If a 3-manifold M is defined by a Heegaard
splitting Y  UT<I) Yg, and if the action of the defining homeomorphism on itx{dYg)
is known, then there is a very easy algorithm which allows us to determine a pre-
sentation for nx{M). This algorithm will be presented in Lemma 10. We will then
study the question:  If M ~ S3, what types of "canonical" presentations can we
expect for itx{M) = 1? To attack this question, we first characterize algebraically
the class of elements in the mapping class group of the surface dYg which have
the property that they define Heegaard splittings of S3  (Lemma 11).  It will then
be established in Theorem 9 that nxS3 can, in fact, have very "bad" presentations
which arise in a natural manner in connection with Heegaard splittings.

We will end this section with an observation which relates in particular to
2-symmetric Heegaard splittings:   If M = Yg UT<1) Y'g, is 2-symmetric, then 77^

(9)   For composite manifolds the question was answered in the negative by Engmann,
Nicht-homöomorphe Heegaard-Zerlegungen vom Geschlect 2 der zusammenhangenden
Summe zweier Linsenräume, Abh. Math. Sem. Univ. Hamburg 35 (1971), 33-38.

Note added in proof.   This question has been answered in the negative.  Theorem 8
was used by Birman, Gonzalez-Acuna, and Montesinos to exhibit two inequivalent Heegaard
splittings of a prime genus two Z homology sphere, Heegaard splittings of prime 3-manifolds
are not unique (to appear).

(,0)   The autohomeomorphism ip defines the 26-braid which determines our plat, as
in equations (6) and (7) of §5.
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has a "symmetric" presentation (Theorem 10).
To determine a presentation for the fundamental group of a 3-manifold

which is defined by a Heegaard splitting Y  Ut4> Y', we first choose canonical
generators for nxidYg). These generators will be denoted by wx.w2g and
will be assumed to satisfy the single defining relation

g
(12) H wkwg+kwklWg-*k = 1.

fc=i

Let u = {ux.Ug} be a free basis for irx Yg, where if i: oYg —► Yg denotes
the inclusion map, and i0: nxdY —*■ rrxY denotes the homomorphism induced
by i, then

i*-Wj-+Uj, Kj<g,

(13) W-Wj^l,       g+Kj<2g.

Let w'j, u'j, i', i'i, u be defined in an analogous manner for the handlebody Y'.
Suppose also that the homeomorphism r: Y —* Y' has the effect:

(14) TV wy.-► vv;',      Kj<2g.

The defining homomorphism <ï>: 3Y —► oY will be assumed to induce an
automorphism <£,.: nxoY —*■ itxdYg which acts as follows:

*,: wg —> Uj(wx,... , w2),
(15) ' ' *

«Hi1 : w, -* U'fwx,..., w2g),      Kf< 2g.

Then we claim

Lemma 10.   rr^Yg UT<¡, Yg) admits the following two presentations:
(i) <«;, ...,u'g, Uk(u\.u'g, I.l),g + l< k < 20.
(ü) («j,... ,ug; U'k(ux,... ,ug,l.1), g + 1 < k < 2g).

Proof of Lemma 10.   The presentations of Lemma 10 are obtained by a
straightforward application of the van Kampen theorem.   D

The presentation (i) (or (ii)) of Lemma 10 defines a homomorphism from
the free group Fg of rank g with free basis u   (or u) onto nx(Yg Ut4) Y'). A
natural question to ask, if one is attempting to understand the relationship between
the algebraic and geometric properties of 3-manifolds, is whether the trivial group
always appears in these particular "canonical" presentations in a "nice" way.  For
example, an obvious first guess would be that perhaps nx(Yg UT<I) Yg) = 1 only
if the set Ü = {Uk(u'x, . . . , u'g, 1, . . . , 1)} are a set of primitive elements in the
free group Fg. This is false, as will be seen below. (This appears to be a known
result, although we were unable to locate an explicit reference in the published
literature.) More subtly, it has been conjectured by W. Haken that if Yg UT<p Yg
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is S3, then' at least one of the presentations (i) or (ii) of Lemma 10 has the prop-
erty that the relators are a set of conjugate primitive elements. This conjecture
is, unfortunately, laid to rest below:

Theorem 9.   There exists a genus 2 Heegaard splitting of S3 which has the
property that neither of the sets {U3{u'x, u'2,l, 1), UJu'x, «2, 1, 1)} or
{U'3{ux, u2, 1, 1), U'4{ux, u2, 1, 1)} is a conjugate primitive set.

Proof.  Our proof begins with the establishment of several lemmas, the
first of which may have some interest in its own right.

Lemma 11.   Let Y Ur4)   Y'g be any ''standard!'' Heegaard splitting ofS3,
and let Yg UT^ Yg be an arbitrary Heegaard splitting.  Then Yg UT<p Yg is S3 if
and only if

(16) * = *i*o*2«

when $j and $2 are surface homeomorphisms which extend to homeomorphisms
ofYg.

Proof of Lemma 11.   Lemma 11 will be shown to follow from results of
Waldhausen in [33]. It was established by Waldhausen that every "minimal"
Heegaard splitting of S3 has genus 0.  (The reader is referred to [33] for the
definition of a minimal Heegaard splitting.) An induction based on genus then
implies that if Yg Ur4, Y' ~ S3, then there exists a homeomorphism

(17)

which maps Yg
diagram

«: Yg UT9 Y'g YgUT9 Y'
0     8

Vg

dYa

Y'g, and is consistent on the boundary, that is, the

T„,<ï>
+ 3v;

h\dY,

dY„
t*%

«13 r;

-   *Y'g

is commutative. Thus

(18) $ = Û1{h\dYgyr*%{h\dYg).

Setting d>j = 7-1{h\dYg)r^ and 4>2 = h\dYg, we then obtain the desired result.
To establish sufficiency, suppose that M — Y UT(t Y', where í» satisfies

condition (18) of Lemma 11. Let hx, h2 be extensions of $x, $2 respectively
to Y.g' We may then define a homeomorphism h: Y UT<(( Y' Y U *   Y'lg   t*o   s
by the rule h\Y = h2 and h\Y' = 7  lhxT. Condition (18) ensures that « is well
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defined on oYg. Since Yg UT<t{) Yg ~ S3, it then follows that Yg UT<Î) Y'g is
also S3. This proves Lemma 11.   D

Our next two lemmas are very easy:

Lemma 12.   Let Übe a set of g elements of F.. Let ß E Aut Fr  Then
ß(Ü) is a conjugate primitive set only if U is a conjugate primitive set.

Proof of Lemma 12.   This follows immediately from the definition of a
primitive set and a conjugate primitive set.   D

Lemma 13.   Let $x: dYg-+dYgbe a homeomorphism which extends to
Yg.  Suppose that the action of <ï>j   is given by

<pj : Wj -*■ Rj{wx,... , w2g),      1</ < 2g.
Then
(19) Rj(ux,. . . , ug, 1, . .., 1) = 1   for each g + 1 <] < 2g

and
(20) {Rj{ux.Ug,l,...,l),l<j <g)

are a basis for the free group with free basis ux.ug.

Proof of Lemma 13.   Let im: 7rj(3y„) —*• tTj Y be the homomorphism
induced by the inclusion map. A necessary and sufficient condition for 3>j to
extend to X. is that 3>,   leave ker /'„ invariant [22], and since ker /« is the nor-
mal closure of {w +1,. . . , wg} in itx{dY ), it follows that (19) must be true,
and also <J>j   induces an automorphism <ï>j    : itx Yg —*■ irx Yg, defined by

(21) *i^: ut -> Rj(ux.a,, 1,.... 1),      Kj<g.

This proves Lemma 13.   D
We are now ready to prove Theorem 9. We begin by producing a genus 2

Heegaard splitting of S3 which has the property that, in the presentation (i),
neither of the relators is conjugate to a primitive element.  Explicitly ,(n) let

(22) $ = t7ltifi%q\qlqxqlqlt7xtst^t2tx,

where ij, t2, t3, r4, rs are the Lickorish twists about the curves cx, c2, c3, c4, cs
defined in Figure 4 (cf. §3). To see that Y2 UT<I, Y'2 is S3, we note that the
algorithm given in §4 is applicable, because every genus 2 Heegaard splitting is
2-symmetric. We thus construct the 6-plat corresponding to $ (Figure 11). Since
the plat defines the trivial knot type, it follows from Theorem 6 that Y2 UT<b Y2
~S3.

(li)  This example is a modification of an example which was shown to the authors
by C. Miller, who attributes it to Reidemeister.  We were unable to find a reference in
Reidemeister's works.
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Figure 11. Plat corresponding to the genus 2 Heegaard splitting

To compute the action of $* on itx{dY2) we first observe that the twists
tx,. . . , ts induce the following automorphisms of 77,^3 y2):

(23)

h'-wi
t3 : w,

w~

w,

wxw3,

wxw3iw2w4w21,

■W2W^lW21W3W2,

w~w7ïw71Wr,w0w/1w~1

í2.:w3_*W3wl'

w. w4w2,

w^1,

"3      ' "2n^    n2    w3w2mt,w1    »

where every generator which is not listed explicitly is kept fixed. The action of
í»+ on the generators w3, w4 of nxdY2 may now be computed, using equations
(22) and (23):

$*: w3 —*■ w\w1xw2w1xwxw3w13,
(24) w. ,3„,-l, „-2, ,-2k4    - wxw3 xw2w^w2  w4w2 *w4w2   .

Thus, from Lemma 10,7Tj(y2 UT<¡, Y'2) admits the presentation

(25) (i) (ux, u'2 : u'3ux-2, u'3u'24).

One verifies immediately by a standard test (see [20, Corollary N4] ) that neither
u2ux2 nor u'xu24 is conjugate to a primitive element in the free group with
free basis «j, u'2. If the presentation (ii) had a similar property, we would be
done: however if one does a similar calculation, replacing the automorphism <£*
by i*1, one discovers that the words U'3{ux, u2, 1, 1) and U\{ux, u2, 1, 1) are
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in fact primitive.  Hence we need to do some more work.
Let <i>0 : 3 Y2 —► 3 Y2 be the twist product

(26) *oeVsVlVl-
Applying the algorithms of §5, we verify that the 6-plat determined by the 6-
braid o4oso4oxo2ox defines the trivial knot type, hence Y2 UT<J)   Y'2 ~53.
Therefore, by Lemma 11, it follows that $ = $1<ï>0<ï>2, where $t and $2 extend
to Y2. We will now show that if

(27) * = 'I)21í>0í'2,

then Y2 Ut4, Y'2 is S3, and also 7rj(y2 UT^ Y'2) admits two canonical presenta-
tions (i) and (ii), as described in Lemma 10, which have the property that the
relators in each of these presentations fail to be a conjugate primitive set. This
will provide the example needed to complete the proof of our theorem.

To see that Y2 UT^ Y'2 is S3, note that 3>2 extends to Y2, hence also $2 l
extends to Y2, hence by Lemma 11 it must be true that Y2 Ut4, Y'2 ~ S3.

To see that our canonical presentation has the required properties, suppose
that the action of $.    and <f>,   on 7r(3y,) is given by

*V Wj-*Rj(WV W2< W3> Wa)

(28) *2, : Wj ~* Sj(Wl> W2> W3- W4>

*21 '■ Wj —* Tj(WV W2< W3> W4)' 1 < / < 4.

Note that the action of 4>0   and 4*01 may be computed from equations (23) and
(26) to be

*o:wi->w31. *ô1:wi~*"wiw2wrl»

(29)
W2 ~* W4 ! ' W2 "~*■ W2W4W2 ' '

w3-*w3wxw3l, w3^-w7\

w4^w4w2w41, w4—*-w2l.

Observe that, since $j and 4>2   (and hence also <ï>2 l) extend to Y2, it follows
from Lemma 11 that

(30)   Ri(wx,w2,l,l) = Sj(wx,w2,l,l) = Tj(wx,w2,l,l) = l   if; = 3,4.

Using this fact, and composing automorphisms to compute the action of ^#, we
then find that the two canonical presentations for nx(Y2 UTi, Y'2) are

<«;, u'2: S3(l, 1, Tx(u\, u2, 1, 1), T2(u\, u'2, 1, 1)),
S40> L Tx(u\, u'2, 1, 1), T2(u\, u'2, 1, !))>.
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<«,, u2: S3{1, 1, ItU«!. »2' 1. J)> ÏsT^p "2' 1. 0).
54(1, 1, r-Hwp «2, 1, 1), T2\ux, u2, 1, 1))>.

Note also that the relators in the canonical presentation (i) for itx{Y2 Ut4> Y'2)
ate u'2u\~2 and u'3u'2~4. Hence, composing automorphisms to obtain the action
of í>#, we must have

(31) <"2V,-2 =S3(1, l,Rx{u'x, u2, 1, l),R2{u'x, u'2, 1, 1))>,

(32) <«;3"2-4 = 54(1, l,Rx{u\, M2,l, l),R2{u\, u'2, 1, 1))>.

As observed before, these are not a conjugate primitive set.
Now, since <bx and <I>2 (and hence also <ï>2 l) extend to Y2, it follows from

Lemma 13 that the set {Rx{u\, u2, 1, 1), R2{u'x, u'2, 1, 1)} and the set
{Tx{u\, u2, 1, 1), T2{u\, u2, 1, 1)} are each bases for the free group F2 with free
basis u\, u\.

Hence the relators in the presentation (i) must be the images of u'23u'x~2
and u3u24 under a change in basis.  Also {Txl{ux, u2, 1, 1), T2l{ux, u2, 1, 1)}
are a basis for F2, hence the relators in the presentation (ii) are the image of
ulux2 and u\u24 under a change in basis.  But then Lemma 12 implies that the
relators in the presentations (i) and (ii) are not conjugate primitive sets. This com-
pletes the proof of Theorem 9.   D

We conclude this section with a result which relates to the special case of
2-symmetric Heegaard splittings of S3.

Theorem 10. Let Yg UT<t Y'g be a 2-symmetric 3-manifold.   Then the
canonical presentations (i) and (ii) of Lemma 13 have the special property that
any relators in the basis elements u\,. . . , u'g or ux,. .. , ug, if read backwards,
remain relators.

Proof of Theorem 10. The presentations (i) and (ii) of Lemma 10 were
obtained after a particular choice of basis elements. These basis elements have the
special property that each u'¡ and each u¡ is mapped to its inverse by the involution
T* (acting on irx{Yg UT^ Y'g)). Since T* is an automorphism of ^(l^ UT(I> Y'g),
our theorem is established.   D

8. Poincaré's conjecture is true for 2-fold coverings of S3 which are
branched over closed 3-braids. Our object in this section will be to establish

Theorem 11. If Mis a 2-fold covering ofS3 branched over a link defined
by a closed 3-braid, then nxM = 1 implies M ~ S3.

Remark.   By Lemma 1, every 3-braid knot is a knot of at most 3 bridges,
and by Theorem 5 every 2-fold covering of S3 branched over a 3-bridge knot
admits a genus 2 Heegaard splitting. Hence Theorem 11 may be regarded as a
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first step in an attempt to establish the "genus 2 Poincaré conjecture".
Proof of Theorem 11.  Let ß be an element in the 3-string Artin braid

group B3, let (3"denote the closed braid determined by ß (cf. §2), and let Af» de-
note the 2-fold covering of S3 which is branched over ß. Let Aß(x) denote the
Alexander polynomial of ß.  If M» is simply-connected, then by a result of Fox
[13, p. 179] it must be true that Aß(-1) = 1. We will delineate the class of 3-
braids which have this property, and show that the only possibility, if nxMß = 1,
is that AL ~S3.

We consider two homomorphic images of the group B3. The first, B3, is
the Burau matrix group [9], [6], [21], a group of 2 x 2 matrices over the group
ring of an infinite cyclic group, say (*>.  The homomorphism r¡: B3 —> B3 may
be defined by

(33) Zl=n{ox)=[~Xx   J],      a2=77(a2)=[¿   _*],

where ox and o2 are standard generators of B3 (cf. §2).  It was established by
Burau [9] that these matrices are closely related to Alexander matrices of closed
braids; explicitly, if pr= rfiß), then

(34) Aß(x) = detlíT- Z|/(l + * + *)2, .

where Z is the 2 x 2 identity matrix.
Now, we are interested in ^(-l), hence we may define a second homo-

morphism %: B3 —* B3, defining B3 to be the matrix group obtained by replacing
the indeterminate "*" by "-1".  The group B3 is easily recognized to be the
group of 2 x 2 matrices with integral entries and determinant + 1, for on setting
* = -1 in the matrices ox and o2 we obtain

(35) 5i = &°i) = [_ !    , J.      52 = tfa) = [i,    } J.
which are known to generate the latter group [10, p. 85].  Defining relations in
B3 are [10] :

(36) ffiff2ffi " o2oxo2,

(37) {oxo2)6 = 1.

Since relation (36) lifts to the single defining relation in B3, and since (aj02)6 is
known to belong to the center of B,, it then follows that

(38) ker(|n) = cyclic subgroup of B3 generated by (oxo2)6.

To delineate the class of 3-braids which have the property that ^(-l) = 1,
suppose that
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(39) ß = friß) = P   bX      ad-bc=l,a,b,c,d integers.

Equation (34) then implies that

(40) Aß{- 1) a-1      b
c     d-l = 2-a-d.

Since Aß{x) is only defined up to multiplication by an arbitrary power of x, we
must consider two cases, namely 2 - a - d = ± 1, or a + d = 1 or 3.  It is proved
in [21, Lemma 2.3] that if trace 3 = 1 or 3, then ß is conjugate to one of the
elements oxo2,o2lox1, or a2oxx. Using equation (38) above, we then find that
Aß{-1) = 1 if and only if ß is conjugate in B3 to one of the elements {ox o2)6m +1
{oxo2)('m~l,o2oxi{(yxo2)("n, m = 0, ±1, ±2.Since conjugate braids
determine equivalent closed braids (in the sense of link equivalence), we have thus
proved that Aß{-1) = 1 implies

ß = ßOt) = {o1o2)6m±1    or   ß^ = {a2ox-iXoxo2)6m,
(41)

m = 0, ±1,±2.

To conclude the proof, we examine the class of links determined by the
closed braids enumerated above.  A simple picture shows that if «j ^ 0, the knots
defined by the braids ß^ are torus knot types, hence their groups have nontrivial
centers.  By a recent result of Gordon and Heil [15], if M is a simply-connected
3-manifold which is represented as a covering of S3 of finite degree branched over
a knot which has a group with a nontrivial center, then in fact M must be S3. On
the other hand, suppose ß = fffl, m + 0.   Then, an argument given by J.
Montesinos in [25] shows that the 2-fold covering of 53 branched over the knot
determined by ßffl is homeomorphic to the three-manifold obtained by cutting
out a "twist knot" from S3 and sewing it back differently. By results of Bing
and Martin [35], a simply-connected 3-manifold cannot be obtained from S3 by
surgery on a nontrivial twist knot.  Therefore the only case where we might find
a homotopy sphere which is not a 3-sphere is if ß = j3¿ or J32,, but in this case
ß = is easily seen to define the trivial knot type, so that in fact M is S3. This
concludes the proof of Theorem 10.   D
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